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Abstract
Perpetual exploration stands as a fundamental problem in the domain of distributed mobile agent
algorithms, where the objective is to ensure that each node within a graph is visited by at least one
agent infinitely often. While this issue has received significant attention, particularly concerning
ring topologies, the presence of malicious nodes, referred to as black holes, adds more complexity. A
black hole can destroy any incoming agent without leaving any trace of its existence.

In [2, 19], the authors have considered this problem in the context of periodic data retrieval.
They introduced a variant of a black hole called gray hole (where the adversary chooses whether to
destroy an agent or let it pass) among other variants, and showed that 4 asynchronous and co-located
agents are necessary and sufficient to solve the periodic data retrieval problem (hence perpetual
exploration) in the presence of such a gray hole if each of the nodes of the ring has a whiteboard.

This paper investigates the exploration of a ring by introducing a realistic variant of a gray hole,
called a “Byzantine black hole”. In addition to the usual capabilities of a gray hole, the adversary
can also choose whether to erase any previously stored information on that node.

Note that in [2, 19], this problem was considered with only one particular initial scenario (i.e.,
agents are initially co-located) and one specific communication model (i.e., whiteboard). Now, there
can be many other initial scenarios where all agents might not be co-located (i.e., they may be
scattered). Also, there are many weaker communications models such as Face-to-Face and Pebble,
where this perpetual exploration problem is yet to be investigated in the presence of a Byzantine
black hole.

The main results of our paper focus on minimizing the number of agents while guaranteeing
that they perform the perpetual exploration on a ring even in the presence of a Byzantine black
hole under different communication models and for different starting scenarios. On the positive side,
as a byproduct of our work, we achieved a better upper and lower bound result (i.e., 3 agents) for
perpetual exploration in the presence of a Byzantine black hole (which is a more generalized version
of a gray hole), by trading-off the scheduler capability, when the agents are initially co-located, and
each node contains a whiteboard.
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1 Introduction

Exploring a set of nodes in a network is one of the fundamental tasks in the domain of
distributed computing by mobile agents, formulated in the year of 1951 by Shannon [21]. Now,
the security of these mobile agents while exploring these networks is one of the important
issues that needs to be addressed. Among all the possible security threats that are addressed
yet in literature, two among them are the most prominent, specifically, the threats from
a malicious agent [18] and the threats from a malicious host [13]. In this paper, we are
interested in the latter case, where the threats are from a malicious host. This host is a
stationary node in the network, that has the ability to destroy any incoming agents without
leaving any trace of their existence. So, the first task of the mobile agents operating in the
network must be to locate this malicious node. Note that the most trivial optimization
parameter to ensure while locating this malicious host (also termed as a black hole) is that
a minimum number of agents gets destroyed by this node. This problem of locating the
black hole by mobile agents is termed as black hole search (also termed as BHS problem)
problem. The BHS problem has been studied since the year 2006, when Dobrev et al. [12]
first introduced it. After this, till date, there have been many variations to this problem, some
of them are [7, 8, 11, 13, 15]. This problem has various real-life implications, for example
the black hole can be a virus in the network or it can be some crash failure, such that this
node resembles the characteristic of a black hole, after failure.

Observe that, to detect the black hole, there needs to be some agent that has to visit
that particular node. Further, since any agent visiting the node gets destroyed, there must
be some communication tool that can convey this information to other alive agents, such
that at least one agent remains alive knowing the location of the black hole. Three such
communication tools have been predominantly used in literature: the whiteboard model [14],
in which there is a storage capacity at each node, which an agent can use to leave a message
by reading its contents and writing some new information, the pebble model [16], where an
agent can carry a movable token from one node to another, and the face-to-face model [10],
where an agent can share and communicate with another agent when they are at the same
node at the same time. In addition to the communication tools, the initial locations of the
agents (i.e., whether the agents are initially scattered [15] or they are co-located [10]) is also
one of the important parameters, generally studied in the literature.

Further, the most studied version of a black hole has a fairly basic nature, i.e., only
destroying any incoming agent. Note that, in reality black holes may not be so simple;
they may have many ways to disrupt the movement or harm an agent. Considering this
phenomenon, we in this paper have tried to consider a black hole that has more capabilities
other than just destroying any incoming agent. In our case a black hole may or may not kill
any incoming agent; it may do so based on an adversary that decides when to destroy an
incoming agent and when not to. Whenever it decides not to destroy an agent, it simply
behaves like any other node in the network, disguising (or hiding) it among the rest of
the nodes by creating no anomaly for the visiting agent. In addition to this, we have also
considered that the black hole has further capabilities; it can also choose whether to destroy
the message (i.e., stored data in case of a whiteboard, and a placed token in case of pebble)
at that node along with the incoming agent. This choice is also maintained by an adversary
as well. We call this kind of black hole a Byzantine black hole.

Our aim in this paper is to solve the problem of perpetual exploration in a network,
i.e., visiting every node in the network infinitely often except for the Byzantine black hole,
by the mobile agents. Previously, in [2, 19] the authors introduced a set of models for a
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black hole, which has more capabilities other than just destroying an agent, refer to these
malicious nodes as gray hole, gray+ hole and red hole, respectively, based on their capabilities.
They considered the following characteristics: they can fake agents (i.e., copy their software
code), change the whiteboard contents, change the ports different from the requested ones,
or can change the FIFO ordering as well. In this context, they solved perpetual exploration
in a ring (which they term as periodic data retrieval problem) by a team of asynchronous
mobile agents under these aforementioned various black hole characteristics, in which the
agents are initially co-located and each node in a network has a whiteboard. On the other
hand, the results of above-mentioned papers only holds for the case when initially the agents
are co-located and each node of the ring has a whiteboard. Note that there can be many
other initial positions for the agent to start with, and also, whiteboard is a very powerful
communication tool in this domain of study of mobile agents. So, in this paper, we investigate
these gaps in the context of perpetual exploration, considering the presence of one Byzantine
black hole using synchronous agents. Also note that the position of a Byzantine black hole
can be arbitrary (except the starting locations of the agent) but fixed. The Byzantine black
hole we considered is a generalized version of the gray hole, as it also can choose whether to
erase any previous data stored at that node, the moment it acts as a black hole.

1.1 Related Works
The black hole search (i.e., BHS) problem is a prominent variation of exploration problem
studied in the literature, a survey of which can be found in [20]. This problem is investigated
under various topologies (such as trees [8], rings [13], tori [5], and in arbitrary and unknown
networks [7, 11]). All these discussed networks are static in nature. Recently, there has been
a lot of interest in dynamic networks. The papers [3, 4, 10], studied the BHS problem on
a dynamic ring, dynamic torus and dynamic cactus graph, where the underlying condition
is that, irrespective of how many edges are dynamic in nature, the network must remain
connected at any time interval (which is also termed as 1-interval connected). In rings,
the BHS problem has been studied for different variants; the most predominant among
are choice of schedulers (i.e., synchronous [6] and asynchronous [1]), communication tools
(i.e., face-to-face [7], pebble [16] and whiteboard [1]), and initial position of the agents (i.e.,
co-located [1] and scattered [6]).

The most relevant papers related to our work are the papers by Královič et al. [19] and
by Bampas et al. [2]. The paper by Královič et al. [19] is the first to introduce a variant
of this black hole, where the black hole has the ability to either choose to destroy an agent
or let it pass (which they term as gray hole). Further they extended the notion of a gray
hole, where the gray hole has the following additional capabilities: it has the ability to alter
the run-time environment (i.e., changing the whiteboard information), or it has the ability
to not to maintain communication protocol (i.e., to not maintain the FIFO order). They
solved this problem under an asynchronous scheduler on a ring only when the agents are
initially co-located and each node in the network has a whiteboard. The following results
are obtained by them. They gave an upper bound of 9 agents for performing periodic data
retrieval (i.e., which is equivalent to perpetual exploration) in the presence of a gray hole;
further, in addition to gray hole, when the whiteboard is unreliable as well, they proposed an
upper bound of 27 agents. Next, Bampas et al. [2] significantly improved the earlier results.
They showed a non-trivial lower bound of 4 agents and 5 agents for gray-hole case and for
case of a gray hole with unreliable whiteboard, respectively. Further, with 4 agents as well,
they obtained an optimal result for the gray hole case, whereas with 7 agents they proposed
a protocol for the case with a gray hole and unreliable whiteboard. As far as we are aware,
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we are the first to investigate the perpetual exploration problem of a ring under different
communication tools (i.e., face-to-face, pebble and whiteboard) as well as for different initial
positions (i.e., co-located and scattered), for a variant of a gray hole, where it can erase
any previously stored information but can not alter it. We term this type of gray hole a
Byzantine black hole. In the following part, we discuss the results we have obtained.

Our Contribution. In this paper, we investigate the perpetual exploration problem, by a
team of synchronous mobile agents, of a ring R of size n, in the presence of a Byzantine
black hole. First, we consider the case when the agents are initially co-located. We obtain
the following results.
A: For Pebble model of communication, we obtain that 3 agents are necessary and sufficient

to perpetually explore R.
B: For Face-to-Face model of communication, we obtain that 5 agents are sufficient to

perpetually explore R.
C: For Whiteboard model as well, we achieve the same lower and upper bounds as mentioned

in A. This result shows that, by considering the scheduler to be synchronous instead
of asynchronous (as assumed in [2]), the bound on the number of agents to perpetually
explore R, reduces from 4 to 3 rendering it tight.

Next, we consider the case when the agents are initially scattered, and in this context, we
obtain the following results:
D: For Pebble model of communication, we show that 4 agents are necessary and sufficient

to explore R perpetually .
E: For Whiteboard model of communication, we obtain an improved bound of 3 agents (in

comparison to D), which is necessary and sufficient to explore the ring R perpetually.
In the following Table 1, we have summarized the results.

Table 1 Summary of our results.

Whiteboard Pebble Face-to-Face

Co-located Upper Bound 3 3 5
Lower Bound 3 3 3

Scattered Upper Bound 3 4 –
Lower Bound 3 4 Non-Constant [9]

Organisation. Rest of the paper is organised as follows. Section 2 presents the model and
preliminaries. In Section 3, we discuss some impossibility results. In Section 4 and 5, we
propose perpetual exploration algorithms for the agents when the agents are initially co-
located and scattered, respectively. Lastly, we conclude in Section 6. Due to page limitations
we are omitting the detailed descriptions of the algorithms and the proofs of the theorems
and lemmas. These can be found in the full version [17].

2 Model and Preliminaries

In this paper, we consider the underlying topology of the network as an oriented ring
R = {v0, v1, . . . , vn−1}. Each node vi (where i ∈ {0, 1, . . . , n − 1}) is unlabeled and has two
ports connecting v(i−1) mod n and v(i+1) mod n, labeled consistently as left and right. A set
A = {a0, a1, . . . , ak−1} of k agents operates in R. We consider two types of initial positions
for the set A of agents. In the first type, each agent in A is co-located at a node, which we
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term as their home. In the second type, the agents can start from several distinct nodes,
which we term as scattered initial positions. Each agent has knowledge of the underlying
topology R and possesses some computational capabilities, thus requiring O(log n) bits of
internal memory. The agents have unique IDs of size O(log k) bits taken from the set [0, kc]
(c is a constant), which are perceived by other agents when they are co-located. The agents
are autonomous and execute the same set of rules (i.e., they execute the same algorithm).

We consider three types of communication that the agents have in order to communicate
with other agents. Face-to-Face (F2F): In this model, an agent can communicate with
another agent when they are co-located. Pebble: In this model, the agents are equipped with
a movable token (also termed as “pebble”), which signifies a single bit of information. The
agents can carry a pebble from one node in a fairly mutually exclusive way and also can
drop it on any other node. Agents use this pebble to mark some special nodes, for other
agents to distinguish it. Whiteboard: In this case, each node of R contains O(log n) bits
of memory, which can be used to store and maintain information. Any agent can read the
existing information or write any new information on the whiteboard of its current node.
Note that fair mutual exclusion is maintained, i.e., concurrent access to the whiteboard data
is not permitted.

The agents operate in synchronous rounds, and in each round, every agent becomes
active and takes a local snapshot of its surroundings. For an agent at a node v in some
round r, the snapshot contains two ports incident to v, already stored data on the memory
of v (if any, only in the case of the whiteboard model of communication), the number of
pebbles located at v (if any, only in the case of the pebble model of communication), contents
from its local memory, and IDs of other agents on v. Based on this snapshot, an agent
executes some action. This action includes a communication step and a move step. In a
communication step, an agent can communicate implicitly or explicitly with other agents
according to the communication models discussed above. In the move step, the agent can
move to a neighbouring node by following a port incident to v. Thus, if an agent at node v in
round r decides to move during the move step, in round r + 1, it resides on a neighbour node
of v. All these actions are atomic, so an agent cannot distinguish another agent concurrently
passing through the same edge; instead, it can only interact with another agent (based on its
communication model) when it reaches another node.

A black hole is a stationary malicious node in an underlying graph, which has the ability
to destroy any visiting agent without leaving any trace of its existence. Furthermore, the
black hole nature of the node is controlled by an adversary. In addition to this, whenever
the black hole nature is activated, the adversary can also choose to destroy any information
stored at that node. We term this kind of node a Byzantine Black Hole.

In this paper, we assume that the underlying graph contains a single Byzantine black
hole, while the other nodes are normal nodes, termed as safe nodes. It is assumed that the
starting positions of each agent must be a safe node. This Byzantine black hole node is
unknown to the agent. Here, we assume that if the adversary decides to activate the black
hole nature of the Byzantine black hole node, it does so at the beginning of its corresponding
round, and the node retains that nature until the end of this current round. Furthermore, we
have considered that our Byzantine black hole has the ability always to destroy any incoming
agent during its black hole nature and also choose to destroy any information present on
that node. This paper aims to perpetually explore the ring R with the minimum number of
agents. Next, we formally define our problem:
▶ Definition 1 (PerpExploration-BBH). Given a ring network R with n nodes, where
one node (vb) is a Byzantine black hole, and with a set of agents A positioned on R, the
PerpExploration-BBH, asks the agents in A to move in such a way that each node of R,
except vb, is visited by at least one agent infinitely often.
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3 Impossibility Results

Here, at beginning, we state the first impossibility result which gives us a lower bound on
minimum number of agents required to solve PerpExploration-BBH.

▶ Theorem 2. A set of two synchronous agents in a ring R of size n (where n ≥ 4) cannot
solve PerpExploration-BBH, even in the presence of a whiteboard if number of possible
consecutive black hole positions is at least 3.

The main idea of the proof of the above Theorem 2 is that we create a scenario using
adversarial techniques, where after one agent is destroyed by the Byzantine black hole vb

(say), the other and only alive agent ends up with at least two possible choices for the position
of the black hole, which in turn creates confusion for the agent. Hence it is unable to correctly
detect the black hole node among these two sets of nodes. In this scenario it is impossible
for the only alive agent to successfully explore the whole ring except vb perpetually, either
without correctly detecting the Byzantine black hole position, or without getting destroyed
as well. As a direct implication of Theorem 2, we can have the following corollaries. (Please
see Section 7 in the full version [17], for the detailed proof)

▶ Corollary 3. A set of three synchronous agents are required to solve the PerpExploration-
BBH on a ring R with n (where n ≥ 4) nodes, where each node of R has a whiteboard.

Note that this lower bound of 3 agents is also true for agents with the pebble model of
communication, as the pebble model of communication can be easily simulated in the
whiteboard communication model.

▶ Corollary 4. A set of two agents, each equipped with O(log n) pebbles, can not solve the
PerpExploration-BBH problem on a ring R with n nodes.

Our next result further improves the lower bound for number of agents, when agents are
scattered and have pebble model of communication.

▶ Theorem 5. A set of 3 scattered agents, each equipped with a pebble, can not solve the
PerpExploration-BBH problem on a ring R with n nodes.

We have proved Theorem 5 using an adversarial technique. We created an instance of three
copies of the same ring R (i.e., R1, R2 and R3) in such a way that the position of Byzantine
black hole (vb) are different in each of them but they are consecutive in R. Also, in each
case, the agents are initially placed at the nodes of R, which are at a distance of equal length
between each other. Now, when an agent is destroyed by vb, the other two agents can not
distinguish between these three copies (due to same information on nodes for each of them).
So, the problem reduces to two agents with 3 pebbles solving PerpExploration-BBH
where a number of possible consecutive black hole positions is at least three. Then by
Corollary 4, we can have the desired result (For detailed proof, see Section 8 in the full
version [17]). Next, corollary is a direct consequence of Theorem 5.

▶ Corollary 6. A set of four scattered agents, each with a pebble, are required to solve
PerpExploration-BBH on a ring R with n nodes.

4 Perpetual Exploration with Co-located Agents

In this section we assume that initially agents are co-located at a node which is termed as
home. On the basis of this assumption here we investigate the sufficiency for the number of
agents to solve PerpExploration-BBH problem under different model of communication.
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4.1 Pebble Model of Communication
In this section, we consider the communication model, where the starting node has k − 1
identical and movable tokens (termed as pebbles), where k is the total number of agents
deployed. A pebble can be carried by an agent from one node to another. This pebble acts as
a mode of communication for the agents, as the agents can perceive the presence of a pebble
at the current node. Moreover, an agent can also perceive the presence of other agents which
are co-located at the current round (i.e., gather the IDs of the other co-located agents). Our
main aim is to prove the following theorem in this section.

▶ Theorem 7. A team of 3 co-located, synchronous agents are necessary and sufficient
to solve PerpExploration-BBH on a ring R, with n nodes under the pebble model of
communication,with the presence of two pebbles initially co-located with the agents.

The necessary part follows from Corollary 4. For the sufficiency part we present an
algorithm, PerpExplore-Coloc-Pbl. We have provided a very brief description of the
algorithm.For detailed description and pseudo code see Section 9 in the full version [17].

Brief Description of the Algorithm. Given a ring R with a Byzantine black hole node
vb, a set of agents, A = {a1, a2, a3} (where we assume, ID of a1 < ID of a2 < ID of a3),
are initially co-located at home. The agents have no knowledge about the position of the
node vb, the only set of knowledge the agents have are: the total number of nodes in the
underlying topology R (i.e., n), and also the knowledge that the initial node, i.e., home is
safe. So, the remaining arc of n − 1 nodes in R is a suspicious region (which we term as S,
where the cardinality of S i.e., |S| denotes the length or size of the suspicious region) for
each of the three agents.

The main idea of this algorithm is as follows: initially two agents a1 and a2 explores the
ring perpetually, while a3 waits at the home. a1 and a2 explores the ring R, executing the
rule described as follows. If all the three agents are at home along with two pebbles, then in
the r−th round (r ≥ 0), a1 moves clockwise with one pebble and it waits at round r + 1 for
a2 to arrive. In round (r + 1), a2, leaving the remaining pebble at home moves to the next
node along clockwise direction to meet a1. In the subsequent round, i.e., (r + 2)−th round,
a1 after meeting a2 moves again to the next node in the clockwise direction and waits for 3
rounds (i.e., till (r + 5)−th round) for a2 if and only if a1 is not at home. In the mean time
at (r + 3)−th round, a2 leaves its current node, moves one step in counter-clockwise direction,
collects the left behind pebble. Then in (r + 4)−th round a2 moves again to the earlier node
in clockwise direction. Subsequently, in (r + 5)−th round, a2 again leaves the pebble at its
current node, and moves in a clockwise direction, to meet a1 (which is waiting at the current
node for a2 to arrive), for better reference see Fig. 1. Note that, when a2 meets a1 outside
home, the pebble it was carrying is left by a2 at the nearest counter-clockwise node of the
meeting node (i.e., where a2 meets with a1). Now from round (r + 6) onwards to (r + 9)−th
round, the same execution repeats, as it has occurred between round (r + 2) to round (r + 5).
The only difference is that, if both agents (i.e., a1 and a2) at round r + 2 were at a node v1,
at round r + 6, they are on the nearest clockwise node of v1 (i.e., at v2, say). This process
continues until a1 reaches home. In this case a1 does not move clockwise, until a2 meets it
with the pebble it was carrying, in that case, it waits further until a2 brings that pebble back
at home. For this to happen after reaching home, 5 rounds are sufficient for waiting. When
a2 reaches home with the pebble, then all 3 agents are again at the home with 2 pebbles.
This way the 3 agents explore the ring. The exploration can hamper if either a1 or, a2, or a
pebble is destroyed by the Byzantine black hole vb while the above mentioned procedure is
executed by them.
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(b)(a) (c)

(d) (e)

Figure 1 An execution of PerpExplore-Coloc-Pbl, starting from the configuration where a0

and a1 are together on a vertex, to the configuration where a0 and a1 are on the same vertex again,
which is the clockwise neighbour of the earlier vertex. The red node is the byzantine black hole, the
green node is the home and red boxes are pebbles.

Firstly, let only a1 is destroyed at some round t. Then there must exists a round t′ < t,
when a2 was with a1 at some node v0 (say) for the last time. This means at round t′, a1
moved clockwise to the next node v1 along with the pebble it was carrying, and it must have
been destroyed before or at the round when a2 reaches v1 again (in this case v1 is vb). Now
when a2 reaches v1 there can be two cases. Either a2 remains alive or (as the adversary may
choose not to destroy a2), it can get destroyed as well. For the initial case, a2 identifies the
Byzantine black hole by not seeing a1 there and then it can leave that node and can explore
the ring perpetually avoiding the node. The latter case is equivalent to both a1 and a2 are
destroyed by the Byzantine black hole vb = v1. Note that since outside home whenever a2
reaches the same node of a1, it leaves behind a pebble at the nearest counter-clockwise node
(here v0). For this case, another agent (i.e., a3) which was waiting at home, finds none of the
two exploring agents returns at home, even after waiting for a sufficient number of rounds.
This incident triggers a3 to move clockwise until it finds a pebble (one that is left behind
by a2 at v0). Whenever the pebble is found, a3 knows that the next clockwise node is the
Byzantine black hole and it starts exploring R avoiding that node.

Now, there can be two other cases that can hamper the above mentioned exploring
procedure. For the first case, let only a2 is destroyed at some round t > 0. Let t′ < t be
the last round before t when both a1 and a2 were together at a node v0. At round t′, a1,
moves clockwise to the next node v1. Now if a2 is not destroyed in the next 3 rounds, then
it meets a1 at v1 again, contrary to our assumption. So, if only a2 is destroyed then it must
be at any of the rounds t′ + 1, t′ + 2 or t′ + 3. In this 3 round a2 can be either on v0 or
v−1 where, v−1 is the counter-clockwise nearest node of v0. In this case, when a1 finds a2
has not arrived at v1 even after waiting for 3 rounds, in which case, it understands that
either v0 or v−1 is the Byzantine black hole. This knowledge triggers a1 to move clockwise
until it meets a3 at home, leaving the pebble along with it behind at v1. When a3 sees that
even after certain round of waiting only a1 is able to arrive at home, and that too without
the pebble it was supposed to be carrying, a3 understands that a1 must have detected an
anomaly. In this case both a1 and a3 moves counter-clockwise together to find the pebble left
by a1. When they find it they declare v1 as home. After this they start exploring the ring in
different directions in the following way. a1 moves clockwise until v−1 and a3 starts moving
counter-clockwise until v0. After that, they both move in opposite direction until they again
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reach home (which is the new home) and waits for sufficient number of rounds to meet each
other. This way the exploration keeps going on until one among a1 or a3 is destroyed. Let a3
fails to reach home. In that case, a1 will detect that v0 must be the Byzantine black hole and
it can start exploring the ring R avoiding v0. On the other hand if a1 fails to reach then it
must be destroyed by the Byzantine black hole which is nothing but the node v−1. Knowing
this a3 then explores the ring avoiding that node. Now there can be another case when no
agents but a pebble is destroyed at vb. This pebble must be the pebble that is left behind
at v−1 by the agent a2 when it reaches v0 to meet a1. In this case, only the pebble can be
destroyed before a2 reaches to collect the pebble back. So, when a2 reaches v−1, it finds out
that there is no pebble. This leads to a2, knowing that v−1 is the Byzantine black hole and
in which case it starts exploring the ring R avoiding that node. If a2 is also destroyed while
it reaches v−1 to collect the pebble, this case is similar to the case where we described the
algorithm when only a2 is destroyed.

Sketch of Correctness. To prove the correctness of algorithm PerpExplore-Coloc-Pbl
we prove the following Theorem. Here we just present a sketch of the proof. For details see
Section 9.2 in the full version [17].

▶ Theorem 8. Algorithm PerpExplore-Coloc-Pbl solves PerpExploration-BBH on
a ring R with 3 co-located and synchronous agents under the pebble model of communication
with the presence of two pebbles initially co-located with the agents.

We first prove that if no agents are destroyed then either the agents continue with the
exploration of ring R without knowing the exact location of the Byzantine black hole, or
there exists at least one agent that knows the exact location of the Byzantine black hole
which can then explore the ring indefinitely avoiding the Byzantine black hole (See Lemma
15 in the full version [17]). Next we proved that, if one agent is destroyed while exploring the
ring, then either there exists one agent that identifies the Byzantine black hole uniquely and
continues to indefinitely explore all nodes of the ring, except the Byzantine black hole or the
exploration continues while the length of the suspicious region (i.e., |S|) decreases to 2 from
n − 1 (Lemma 17 in the full version [17]). For the later case we proved that the exploration
continues until another agent is destroyed by the Byzantine black hole (Remark 18 in the
full version [17]). In this case when two agents are destroyed by the Byzantine black hole,
the only alive agent can uniquely identify the Byzantine black hole without moving on to it
(Lemma 19 in the full version [17]). Thus it can then perform the exploration of R avoiding
the Byzantine black hole. This proves Theorem 8.

4.2 Face-to-Face Model of Communication
In this section, we consider the Face-to-Face (also termed as F2F) model and prove the
following theorem.

▶ Theorem 9. A team of 5 co-located and synchronous agents are sufficient to solve
PerpExploration-BBH on a ring R with n nodes under the F2F model of communication.

In order to prove Theorem 9, we discuss an algorithm with 5 co-located agents, where
each agent can communicate among themselves at the same node at the same round (i.e.,
each agent have F2F model of communication). Initially 3 lowest ID agents, say, a1, a2 and
a3 are chosen, where fourth lowest ID agent say, a4, is associated with a1 and the largest
ID agent, say a5, is associated with a2. The idea of the algorithm resembles to that of the
algorithm PerpExplore-Coloc-Pbl. Note that as in this case there is no existence of
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pebbles, hence, we configure the behaviour of the agents a4 and a5 in such a way that they
act as pebbles, associated with a1 and a2 in PerpExplore-Coloc-Pbl, respectively. In
PerpExplore-Coloc-Pbl when we say that an agent ai carries a pebble p, in this case
we mean that the agent ai communicates a message carry with its associated agent ai′

such that both these agents simultaneously move together until further new instruction is
communicated. On the contrary as per PerpExplore-Coloc-Pbl when we say that an
agent ai drops a pebble p at a node v, then in this case we mean that ai communicates a
message drop with ai′ , which in turn instructs ai′ not to move further and remain stationary
at the node v until further instruction is communicated. Hence, with this terminology, a
team of 5 agents can execute the algorithm PerpExplore-Coloc-Pbl, and the correctness
also follows similarly. This shows that a team of 5 co-located and synchronous agents are
sufficient to solve PerpExploration-BBH under F2F model of communication. This
proves Theorem 9.

4.3 Whiteboard Model of Communication
The algorithm PerpExplore-Coloc-Pbl can be simulated in whiteboard model of com-
munication. A pebble on a node can be simulated by a bit of information, which is marked
on the whiteboard of that node. Note that, collecting a pebble from the node is simulated by
erasing the same bit of information, on that node and dropping the pebble can be simulated
by marking the node with a bit of information as well on the whiteboard of that node. From
this we get the following result for whiteboard model of communication.

▶ Theorem 10. A team of 3 synchronous co-located agents are necessary and sufficient to
solve PerpExploration-BBH on a ring R if each node are equipped with a whiteboard
having constant memory.

Previously in [2], for asynchronous scheduler the tight bound for number of agents to solve
this problem was 4. Now from Theorem 10, we get a trade-off between reducing the optimal
number of agents required vs the scheduler, in presence of a more generalized version of gray
hole as well (i.e., Byzantine black hole).

5 Perpetual Exploration with Scattered Agents

Here in this section, we discuss the problem of PerpExploration-BBH, when the agents
are initially scattered on more than one nodes, where each of these starting nodes are assumed
to be safe. We investigate this problem, under different communication models. First, we
discuss the pebble model of communication and subsequently we discuss the whiteboard
model of communication.

5.1 Pebble Model of Communication
Our goal in this section is to prove the following theorem.

▶ Theorem 11. A team of 4 synchronous scattered agents with one pebble each is necessary
and sufficient to solve the PerpExploration-BBH problem on a ring R with n nodes, when
the agents are initially scattered on R.

The necessary part follows from Corollary 6. For the sufficient part, we present an
algorithm PerpExplore-Scat-Pbl, that can solve the PerpExploration-BBH problem
in the above context. In this algorithm we assumed that 4 agents are initially scattered at 4
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different nodes of R. To include the remaining cases where the agents are initially scattered
at less than or equal to 3 nodes, a slight modification of PerpExplore-Scat-Pbl is enough
which we describe in Remark 26 in the full version [17]. Here we describe only the main idea
of the algorithm. The detailed description and pseudocodes of the algorithm can also be
found in Section 10.1 in the full version [17].

Brief Idea of the Algorithm. Let us consider, the starting position of a0 to be the first,
after which the starting position of a1, a2 and a3, respectively follows in clockwise order. Let
hi be the starting node of an agent ai (i.e., home of ai), where i ∈ {0, 1, 2, 3}. By Seg(ai)
we define the clockwise arc starting from the node hi and ending at h(i+1) (mod 4) (called
segment of ai). If no agents are destroyed by the Byzantine black hole vb then the exploration
of R goes as follows. Note that in this explanation, if we say ak or hk, we mean ak (mod 4) or
hk (mod 4), for some k ≥ 0.

Agent ai moves clockwise along Seg(ai) leaving its pebble at hi until it reaches h(i+1)
(i.e., the end of Seg(ai)). An agent can distinguish the node h(i+1) by seeing the pebble
left there by the agent a(i+1). When ai reaches h(i+1) traversing Seg(ai) for the first time,
it knows the length of the segment Seg(ai) and stores the length in its own memory. For
further traversals it does not depend on seeing pebbles at the end nodes of the segment.
It can simply use the length of the segment. After ai reaches h(i+1), it waits there for a
certain number of rounds so that the other agents can in the meantime reach the endpoints of
there corresponding segments, while moving along a clockwise direction. After this waiting,
ai collects the pebble (if exists) from h(i+1) (the pebble left by a(i+1)) and starts moving
counter-clockwise along with the collected pebble until it reaches its own home, i.e., hi along
with the pebble it was carrying. The waiting time at h(i+1) also ensures that all agents
starts moving counter-clockwise at the same round. Also note that, if ai does not find any
pebble to collect at h(i+1) it starts moving counter-clockwise without any pebble (this case
can only happen if a(i+1) is destroyed at the Byzantine black hole node vb, while it was
returning back after collecting the pebble from h(i+2) in some previous round). After ai

reaches hi moving counter-clockwise, it again waits for another set of rounds before it repeats
the whole process again. Again, the waiting time at hi is configured in such a way that all
agents start repeating the process at the same round (for details on the precise value of these
waiting times, refer to the detailed description of the algorithm in Section 10.1 in the full
version [17]). Note that, since ∪3

i=0Seg(ai) = R, if no agents are destroyed, the perpetual
exploration of R happens. The exploration can be hampered only if an agent is destroyed
at the Byzantine black hole node vb. Note that, since Seg(ai) ∩ Seg(aj) is either empty or
consists of a safe node and in addition to that, as a segment is explored by only one agent.
Hence, at most one agent can be destroyed while exploring their respective segments, as
described above. Without loss of generality, let vb ∈ Seg(aj), for some j ∈ {0, 1, 2, 3}. Now
there are two cases.
Case-I: Let aj is destroyed while moving clockwise. For this case, aj fails to collect the
pebble at h(j+1) left by a(j+1) and return hj . So, when a(j+1), returns h(j+1) after moving
counter-clockwise along with the pebble it has collected from h(j+2), it finds two pebble at
h(j+1). This is considered by a(j+1) as an anomaly and it learns that vb must be in the arc,
which is in the counter-clockwise direction starting from h(j+1). In this scenario, a(j+1) waits
a certain number of rounds (if needed) to ensure that every other alive agents have reached
their corresponding home. Then a(j+1) starts moving clockwise with both the pebbles. The
aim of this move is to meet and gather with the other alive agents. Note that the other
alive agents wait at their corresponding home, after moving along the counter-clockwise
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(b)(a) (c)

(d) (e)

Figure 2 (a) hi’s are home marked as green. Agent ai is on hi initially with a pebble. We name
the pebble initially at hi as pi, but in reality they are anonymous. (a-b) Each agent moves clockwise
until the next home (i.e., h(i+1)) without carrying any pebble. The agents already reached (here a1

and a3) waits for others. (c-e) All agents are on their clockwise nearest home. They start moving
counter clockwise together with the pebble present at their current location towards their initial
home. The agents which already reaches their home, wait for others to reach their home.

direction. It is because, at their respective home they do not detect any anomaly. The
waiting time is provided in such a way that it is enough for a(j+1) to detect anomaly and
meet both the remaining alive agents after moving clockwise, while the other agents are
waiting at their home. The agent a(j+1) first meets a(j+2) at h(j+2) while it moves clockwise
after detecting anomaly. Then both of them moves together, while a(j+2) carries the pebble,
which it was earlier carrying back to home. They move until they meet with a(j+3) at h(j+3).
Note that at this moment 3 agents are at a node (which is h(j+3)), with at least 3 pebbles
(one carried by a(j+3) and two carried by a(j+2)). In this case they execute the algorithm
PerpExplore-Coloc-Pbl and achieve PerpExploration-BBH of the ring R.
Case-II: Let aj be destroyed at vb while it was moving counter-clockwise along with the
pebble it collected from h(j+1). Then in this case, when all alive agents return to their
corresponding home, none of them finds any anomaly as all agent sees exactly one pebble at
their home. So, they wait and start the exploration again at the same round. Note that in
this scenario, all agents except aj , move clockwise to the end points of their corresponding
segments, waits there and collects pebble (if any) and moves back to their corresponding
home again. Now, since aj was destroyed earlier, the pebble left by a(j+1) was picked by no
agents and thus, while a(j+1) returns back to h(j+1) it finds two pebbles and does the same
execution as explained in Case-I.

The basic idea of this algorithm is to gather three agents with at least 3 pebbles
(refer Remark 20 in the full version [17]) at the expense of one agent and then execute
PerpExplore-Coloc-Pbl to solve the PerpExplroation-BBH problem.

Sketch of Correctness. To prove the correctness of the algorithm PerpExplore-Scat-
Pbl, we have to prove the following theorem. Here we only provide the proof idea. For
details see Section 10.2 in the full version [17]). Fig. 2 illustrates the working of the algorithm
PerpExplore-Scat-Pbl.

▶ Theorem 12. Algorithm PerpExplore-Scat-Pbl solves PerpExploration-BBH
problem of a ring R with 4 synchronous and scattered agents under the pebble model of
communication where each agents are equipped with a pebble.
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First, we proved that algorithm PerpExplore-Scat-Pbl guarantees exploration if
no agents are destroyed (Corollary 24 in the full version [17]). This corollary is a direct
consequence of the Lemma 23 also present in the full version [17]. Further we showed that if
an agent is destroyed then exactly one agent detects anomaly and that agent gathers with
the remaining two alive agents within finite rounds This can be found in Lemma 25 in the
full version [17]. The rest of the proof follows from Theorem 8.

5.2 Whiteboard Model of Communication
The main aim of this section is to prove the following theorem.

▶ Theorem 13. A team of 3 synchronous agents are necessary and sufficient to solve the
problem PerpExploration-BBH on a ring R with n nodes, when each node of R has a
whiteboard of O(log n) bits of memory, irrespective of their starting location.

The necessary part follows from Corollary 3. The sufficiency part for co-located initial
situation follows from Theorem 10. For the other cases where the agents are initially
scattered at more than one starting node, we propose an algorithm PerpExplore-Scat-
Whitbrd. This algorithm is designed for the case when all the agents are starting at different
nodes. Note that, this algorithm can be easily modified a bit to include the case where
initially three agents are scattered at two distinct nodes (refer the modification in Section
11.3 in the full version [17]). For detailed description and pseudo code, see Section 11.1
in [17].

Brief Description of the Algorithm. Let a0, a1 and a2 be three agents starting from the
nodes h0, h1 and h2, respectively, where these nodes are in a clockwise order. Let Seg(ai)
(also called “Segment of ai”) be the clockwise arc starting from hi and ending at h(i+1) (mod 3).
The algorithm first ensures that the ring is explored perpetually if no agents are destroyed.
In order to do this, the algorithm goes as follows. Note that in this explanation, if we say ak

or hk, we mean ak (mod 3) or hk (mod 3), for some k ≥ 0.
An agent, say ai, first erases all previously stored data (if any) at hi. Then it writes the

message (home, ID(ai)) at hi and starts moving clockwise. This type of message is called
a home type message that indicates it is home of ai. ai moves clockwise until it reaches
h(i+1). It distinguishes h(i+1) by seeing the home type message left by a(i+1). When ai moves
clockwise, it also marks each node of Seg(ai), except hi and h(i+1), by writing right, after
erasing any previous such markings (if at all exists) at each such nodes. After ai reaches
h(i+1) it waits for a certain number of rounds (if needed), so that the other agents (say aj)
gets enough time to reach endpoints of their corresponding segment (i.e.,h(j+1)). After this
waiting, each alive agent ai write the message (visited, ID(ai)) at h(i+1) at the same
round. This type of messages is termed as a visited type message, which indicates that an
agent with its corresponding ID, also mentioned in the visited type message, has visited
the respective node. Then each ai waits for n rounds at h(i+1) and then starts moving
counter-clockwise at the same round. ai moves counter-clockwise until it reaches hi, i.e., its
own home. While moving counter-clockwise, ai erases previously written right marking
(which it marked while moving along clockwise direction) from each nodes of Seg(ai) and
writes left there upon arriving (except at hi and at h(i+1)). When ai reaches its own
home (i.e., hi), it waits again for a certain number of rounds, upon seeing the visited
type message, left there by a(i−1). This waiting period is enough for each of the other alive
agents to reach their corresponding home. After this waiting period is over, all of the agents,
starts repeating the same procedure again together, from the same round. This procedure
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ensures that, if no agent is destroyed at the Byzantine black hole node vb, then the perpetual
exploration of R continues. This can only be hampered, only if an agent gets destroyed at
the node vb. Without loss of generality let vb ∈ Seg(aj) for some, j ∈ {0, 1, 2}. So only aj

can be destroyed at vb, while performing this exploration. It is because aj is the only agent
to visit each node u of Seg(aj), where u ∈ Seg(aj)\{hj , h(j+1)}. There can be two cases.
Case-I: Let aj be destroyed while it is moving in clockwise direction along Seg(aj). This
implies it fails to reach h(j+1) and also fails to write a visited type message there. So, when
a(j+1) returns to its home (i.e., h(j+1)), it finds no visited type message (as it should’ve,
if ai was not destroyed). a(j+1) interprets from this that, the segment which is adjacent to
its own segment in counter-clockwise direction has the Byzantine black hole and an agent
must have been destroyed there while moving clockwise. This information triggers it to move
clockwise with the aim of gathering with the other agent (i.e., a(j+2)). Note that, when
a(j+1) starts moving, the other agent is waiting and the waiting time is sufficient for the
moving agent to meet it. After they meet, a(j+1) shares the information about its direction
of movement in the whiteboard of h(j+2). With this, they again start moving clockwise
together until they reach hj . The agents can distinguish hj by the home type message written
there by aj before it was destroyed. Note that in the clockwise direction each node after hj

up to the previous node of vb were marked right by aj before it was destroyed. So from
hj , a(j+1) and a(j+2) starts moving cautiously clockwise. That is, while both agents (aL

and aH , where aL and aH are the agent with lowest ID and highest ID among a(j+1) and
a(j+2) respectively) are at a node v0, aL moves clockwise to the next node, say v1 while the
other agent waits at v0. If at v1, aL sees the right marking, it interprets v1 is safe. So, it
comes back to v0. At v0, seeing that aL has returned, aH also interprets v1 to be safe. So,
in the next round both aL and aH moves to v1 together and repeats the process from v1
again. When aL reaches vb, it sees no right marking there. aL if alive, interprets this by
determining the current node to be Byzantine black hole. So, it starts perpetual exploration
of R, except vb. Otherwise, if aL gets destroyed at vb, it does not return to the previous node
where aH is waiting. Even after waiting, when aH sees aL has not returned, it interprets
this incident as the next clockwise node is the Byzantine black hole and starts exploring the
ring R avoiding that node. Thus for this case the perpetual exploration continues.
Case-II: Let aj be destroyed at vb while it is moving counter-clockwise. In this case both the
alive agents a(j+1) and a(j+2) find visited type message after returning to their corresponding
home. This is because, aj is destroyed at vb after writing visited type message at h(j+1).
So, all alive agents after waiting, starts repeating the exploration procedure again. The
agents first erase the whiteboard content at their corresponding home and then writes the
corresponding home type message before it starts moving clockwise until the end of their
corresponding segment. Note that since aj was destroyed earlier (even before the repetition
starts), a(j−1) finds the visited type message which was written there earlier by it, is still
present (which was supposed to be erased if aj was alive). From this information, a(j−1)
deduces that, vb must be in the segment adjacent to its own segment in the clockwise
direction. It also deduces that, an agent must have been destroyed at vb while it was moving
counter-clockwise. This is because, if the agent was destroyed while it was moving clockwise
then it would have been detected by the other agents when they are at their home (as
described in Case-I ), which is before the start of the next clockwise move (note that the
agents have already started the next clockwise move). So, this information triggers a(j−1)
to move counter-clockwise with the aim to gather with a(j−2). Since a(j−1) starts its move
while a(j−2) waits at home and also, since the waiting time is sufficient, a(j−1) meets a(j−2)
during the waiting period at h(j−1). So, after they meet, a(j−1), communicates the direction
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of its move to a(j−2) on the whiteboard of h(j−1) and they move together until they reach
h(j−2)(= h(j+1)) together. They distinguish the node by the home type message left there by
a(j−2) before the start of moving clockwise. Note that, in the counter-clockwise direction,
the nodes in Seg(aj), starting from the next node of h(j+1) up to the previous node of vb

are the only nodes that were marked left by aj before it was destroyed. So, from h(j+1),
the alive agents a(j+1) and a(j+2) start moving cautiously in the counter-clockwise direction.
Among a(j+1) and a(j+2), an agent with lowest ID is denoted by aL and the agent with
highest ID is denoted by aH . The cautious walk is same as described in Case-I, except for
the fact that here after moving one node in the counter-clockwise direction, the agent aL

searches for the left marking. If it finds such marking, it returns to aH and then both
moves counter-clockwise and repeats the process. On the other hand if aL does not find
any left marking (it must be vb) and it stays alive, aL moves out of that node and starts
exploring R avoiding that node. If, on the contrary aL gets destroyed, then aH sees that aL

has not returned while it should have. From this incident it interprets next counter-clockwise
node is vb and it starts exploring R avoiding that node.
Sketch of Correctness: Here we give a brief glimpse on how we proved the following
theorem. For details see Section 11.2 in the full version [17].

▶ Theorem 14. Algorithm PerpExplore-Scat-Whitbrd solves PerpExploration-BBH
problem of a ring R with n nodes and with 3 synchronous agents initially scattered under the
whiteboard model of communication.

In order to prove this theorem, we first define a cautious start node. Let ai be the agent
destroyed at the Byzantine black hole first. We define the cautious start node to be hi if ai

was moving clockwise when destroyed, otherwise it is h(i+1). We first prove that after one
agent is destroyed, the remaining two agents gather at the cautious start node. This result
can be found in details in Lemma 36 in the full version [17]. Note that ai marks each node
on the arc between the cautious start node and the Byzantine black hole with either left
or right markings depending on the direction it was moving before it was destroyed. We
proved that the alive agent can know the direction of ai before it was destroyed. This can be
found in details in Lemma 30 and Lemma 31 in the full version [17]. After the alive agents
reach the cautious start node, they start moving cautiously looking for the marking based
on the direction of ai before it was destroyed. We proved that at least an agent among the
two moving cautiously will stay alive knowing the exact location of the Byzantine black hole
(This result can be found in details in Lemma 37 in the full version [17]). Hence this agent
can explore R perpetually avoiding the Byzantine black hole. This proves Theorem 14.

6 Conclusion

The paper addresses perpetual exploration of a ring network in the presence of a malicious
node that we call a Byzantine black hole. This problem, termed as PerpExploration-
BBH, is explored under three communication models (Face-to-Face, Pebble, and Whiteboard)
considering various initial scenarios (co-located or scattered agents) with the aim of minimizing
number of agents. We proposed optimal bound (in terms of number of agents) for both
the Pebble and Whiteboard communication models under both initial scenarios. Further, an
upper bound of 5 agents and a lower bound of 3 agents is provided for Face-to-Face model in
the case of co-located agents.

Future research could focus on proposing an optimal bound for Face-to-Face co-located
scenario, while also proposing constructive lower and upper bounds for Face-to-Face scattered
scenario. Additionally, investigating this problem in different scheduler models can be another
future direction.
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