
Stabilizing Consensus Is Impossible in Lossy
Iterated Immediate Snapshot Models
Stephan Felber #

Vienna University of Technology, Austria

Hugo Rincon Galeana #

Vienna University of Technology, Austria
Berlin University of Technology, Germany

Abstract
A substantial portion of distributed computing research is dedicated to terminating problems like
consensus and similar agreement problems. However, non-terminating problems have been intensively
studied in the context of self-stabilizing distributed algorithms, where processes may start from
arbitrary initial states and can tolerate arbitrary transient faults. In between lie stabilizing problems,
where the processes start from a well-defined initial state, but do not need to decide irrevocably and
are allowed to change their decision finitely often until a stable decision is eventually reached.

Stabilizing consensus has been studied within the context of synchronous message adversaries. In
particular, Charron-Bost and Moran showed that a necessary condition for stabilizing consensus is
the existence of at least one process that reaches all others infinitely often (a perpetual broadcaster).
However, it was left open whether this is also a sufficient condition for solving stabilizing consensus.

In this paper, we introduce the novel Delayed Lossy-Link (DLL) model, and the Lossy Iterated
Immediate Snapshot Model (LIIS), for which we show stabilizing consensus to be impossible. The
DLL model is introduced as a variant of the well-known Lossy-Link model, which admits silence
periods of arbitrary but finite length. The LIIS model is a variant of the Iterated Immediate
Snapshot (IIS), model which admits finite length periods of at most f omission faults per layer. In
particular, we show that stabilizing consensus is impossible even when f = 1.

Our results show that even in a model with very strong connectivity, namely, the Iterated
Immediate Snapshot (IIS) model, a single omission fault per layer effectively disables stabilizing
consensus. Furthermore, since the DLL model always has a perpetual broadcaster, the mere existence
of a perpetual broadcaster, even in a crash-free setting, is not sufficient for solving stabilizing
consensus, negatively answering the open question posed by Charron-Bost and Moran.

2012 ACM Subject Classification Computer systems organization → Fault-tolerant network topolo-
gies; Networks → Network properties; Theory of computation → Distributed algorithms; Theory of
computation → Randomness, geometry and discrete structures

Keywords and phrases distributed systems, dynamic networks, dynamic graphs, message adversaries,
stabilizing consensus, asynchronous message passing

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.18

Funding This work was supported by the DMAC project (P32431).
Hugo Rincon Galeana: supported by German Research Foundation (DFG), Schwerpunktprogramm
(SPP 2378), project ReNO, 2023-2027, and the financial support of Najla Amira Ochoa Leonor.

Acknowledgements We would like to thank Ulrich Schmid and Kyrill Winkler for their helpful
remarks, which undoubtedly improved this paper.

1 Introduction

Agreement tasks, and in particular consensus, have always been a focal point of distributed
computing research, not only because of their practical applicability, but also because
consensus tasks characterize very precisely the limits of a distributed computing model.

© Stephan Felber and Hugo Rincon Galeana;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.felber@tuwien.ac.at
https://orcid.org/0009-0003-6576-1468
mailto:hugorincongaleana@gmail.com
https://orcid.org/0000-0002-8152-1275
https://doi.org/10.4230/LIPIcs.OPODIS.2024.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Stabilizing Consensus Is Impossible in Lossy Iterated Immediate Snapshot Models

Understanding such limitations not only facilitates the quick assessment of problem solvability
in a given model, but also sheds light on the impact that certain properties, such as synchrony,
impose on the system. For instance, the celebrated FLP impossibility result [15] reveals
the devastating effect of both asynchrony and process crashes on deterministic consensus
solvability. In a similar vein, it has been shown that process crashes impair general task
solvability [21] even in asynchronous shared memory systems, and that byzantine faults [22]
and/or message loss [25, 26, 11, 29, 30] impair consensus solvability even in the context of
synchronous message passing systems.

Although distributed systems research has focused extensively on terminating tasks,
there exist interesting applications and problems that are inherently non-terminating. Apart
from the specific class of self-stabilizing distributed algorithms [12, 14], which can even
tolerate massive transient faults, asymptotic consensus [4, 5], stabilizing consensus [2, 9,
27], and approximate consensus [8, 13] are examples of non-terminating distributed tasks:
processes are not required to terminate after having computed some final value, but rather
eventually converge to some stable configuration. Such tasks are not only of theoretical
interest, but are also essential for implementing practical distributed problems such as clock
synchronization [23, 28] and sensor fusion [3].

In this paper, we focus on stabilizing consensus, which can be viewed as the non-
terminating variant of consensus. As in the case of consensus, all processes start with their
own input values and must eventually agree on a common value. The fundamental difference
to terminating consensus is that every process may start arbitrarily late, and does not need
to decide on a value irrevocably and exactly once, but can change its decision value finitely
often. Nevertheless, all processes must eventually stabilize on the same decision value.

It should be noted that stabilizing consensus is also loosely related to asymptotic consensus
[16], in the sense that, in neither problem, processes are required to terminate. A fundamental
difference, however, is that asymptotic consensus allows processes to decide from a real-
valued range, in contrast to the validity condition for stabilizing consensus, which only allows
decisions from the pool of input values. Stabilizing consensus is a stronger problem, since
any protocol that solves stabilizing consensus also solves asymptotic consensus. Indeed,
we provide a simple novel model introduced below (the DLL), where stabilizing consensus
is impossible (see Theorem 3.10), yet asymptotic consensus can be solved. In this light,
asymptotic consensus is more closely related to approximate consensus [8], while stabilizing
consensus is more closely related to consensus.

1.1 Related work
We study stabilizing consensus in the Synchronous Message Passing setting where processes
communicate through uni-directional links in a round by round fashion and an adversary
suppresses certain links in every round. More specifically, the communication in every round
is modeled as a directed graph sequence, which is under the control of a message adversary [1].
Charron-Bost and Moran [9] provided a class of algorithms in this setting, called the MinMax
Algorithms, solving stabilizing consensus under any message adversary that generates graph
sequences adhering to two constraints: (i) there exists a process (a perpetual broadcaster)
that is able to reach all other process (possibly via multiple hops) infinitely often, and (ii)
the broadcasting time (in terms of rounds) for doing so is bounded by an unknown constant.
The authors showed that (i) is necessary for solving stabilizing consensus, but leave the
question open whether or not (i) is also sufficient.

In this paper, we extend the Lossy-Link model, introduced by Santoro and Widmayer [25],
where two processes are connected by a pair of links that may drop at most one (directional)
message per round, to the novel Delayed Lossy-Link (DLL) model, where both messages may

S. Felber and H. Rincon Galeana 18:3

be lost but (some) messages are guaranteed to be transmitted infinitely often. Whereas
stabilizing consensus can be solved in the Lossy-Link model, we show that stabilizing
consensus is impossible in the DLL model, thus negatively answering Charron-Bost and
Moran’s open question in Theorem 4.8. Our proof vaguely resembles the bivalency proof
used for showing the impossibility of terminating consensus in the Lossy-Link model [25],
in the sense that we construct a forever conflicted run, i.e., a run where processes always
decide on invalid output configurations, by extending conflicted prefixes. Whereas a bivalent
prefix leads to more than one decision value eventually, a conflicted prefix already yields an
output configuration that violates agreement. A bivalency argument is not enough to prove
stabilizing consensus impossible, however.

Afek and Gafni [1] showed that asynchronous wait-free shared memory models such as the
Iterated Immediate Snapshot (IIS) model can also be represented by a synchronous message
adversary. We extend the message adversary formulation of the IIS model by adding up
to f read-omission faults per round to the snapshot operations. We call this new model
the Lossy Iterated Immediate Snapshot model LIIS(f). In particular, in the case of only 2
processes, LIIS(1) corresponds to the DLL model. The LIIS(f) model is loosely related to
the d-solo models studied by Herlihy, Rajsbaum, Raynal and Stainer [20], as the presence of
read omissions may lead to d-solo rounds, i.e., rounds where up to d processes do not receive
any information from the rest of the processes.

1.2 Contributions and paper organization
In Section 2, we provide the preliminary definitions and the overall framework that are
essential for our results. In Section 3, we present the Lossy-Link model, and introduce the
Delayed Lossy-Link model for which we prove stabilizing consensus to be impossible, namely
Theorem 3.10. This is our first main result and constitutes the foundation for the rest of the
paper. In Section 4, we present the IIS model and our novel LIIS(f) model, and show that
stabilizing consensus is not solvable in LIIS(f) for any f ≥ 1, via Theorem 4.8. Finally, in
Section 5 we discuss the implications of our result and provide some interesting directions
for future work.

2 The System Model

We consider a finite set of process Π = {p1, . . . , pn} that communicate through message
passing via directional point-to-point links in lock-step synchronous rounds. We assume that
rounds are communication-closed, i.e., messages sent at a round r will also arrive at round r

or will not be delivered. Note that in contrast to [9] we assume synchronous process starts
(i.e., starting round sp = 1 for all p) as this special case already facilitates our impossibility
result. Obviously, our result then carries over to the more general model presented in the
original paper.

Each process pi is given an initial input value xi from a finite set of inputs I. We say
that an initial global configuration is an n-tuple (pi, xi)n

i=1 of process-input pairs. We denote
the set of possible input configurations as I. Similarly, an output configuration is an n-tuple
(pi, yi)n

i=1. We denote the set of possible output configurations by O.
We model distributed problems as input/output relations called tasks that map a set of

input configurations I to a set of valid output configurations. Formally, a task is a triple
T = ⟨I,O, ∆⟩ where ∆ : I → 2O is a validity map that determines a subset of valid output
configurations from a single input configuration. Tasks are widely used in the literature to
capture problems in distributed setting, see for example [24, 17, 18].

OPODIS 2024

18:4 Stabilizing Consensus Is Impossible in Lossy Iterated Immediate Snapshot Models

The communication is governed by a message adversary that determines which processes
are able to communicate at a given round. We use a directed graph Gr on Π, which we
call the communication graph, to represent the message exchange at round r. We denote by
InG(pi) the in-neighborhood of pi in graph G, which always includes pi. Note that InGr (pi)
represents the set of processes from which pi receives a message at round r. We represent
the communication in an execution by a communication graph sequence σ = (Gi)∞i=1, called
a communication pattern, where σ(k) = Gk. We denote by G · σ the concatenation of G with
σ and by Gk the sequence of G repeated k times. If σ = (Gi)∞i=1 is a communication pattern,
we say that (Gi)k

i=1 is the k-prefix of σ, denoted by σ|k1 . Conversely, σ|∞k = (Gi)∞i=k denotes
the suffix starting from round k. We define µ = (Hi)∞i=1 to be a sub-sequence of σ = (Gi)∞i=1,
denoted by µ ⊑ σ, iff there is a strictly increasing sequence s : N→ N such that Hi = Gs(i).
Note that the sub-sequence relation ⊑ is a partial order on sequences with the same domain
and co-domain. A message adversary is just a set of communication patterns M.

Since our focus is on solvability, we assume for convenience that the processes execute a
full-information flooding protocol. That is, at any given round r, each process will send a
copy of its local state, also called view to all possible recipients. For terminating protocols
and terminating tasks, we consider strong termination, i.e., a process stops its execution
whenever a decision is made by the protocol. Thus, processes will stop sending messages
and updating their views once the protocol has output a decision value. In contrast, for
stabilizing tasks and protocols, we consider that the protocol never terminates and processes
keep communicating and updating their views forever.

We define the view of a process pi at the end of a round r under σ = (Gi)∞i=1 and
initial configuration C0 as: viewC0:σ(pi, r) := ⟨V (C0 : σ, pi, r), pi, r⟩, where V (C0 : σ, pi, r) =
{viewC0:σ(pj , r − 1) | pj ∈ Inσr−1(pi)}. We define viewC0:σ(pi, 0) := ⟨{xi}, pi, 0⟩, where xi is
the input value of process pi in C0.

We also employ a subview relation, denoted by viewC0:σ(pi, r) ≺ viewC0:σ(pj , s), which
can be defined inductively: viewC0:σ(pj , s) ≺ viewC0σ(pi, r) iff s = r−1 and viewC0:σ(pj , s) ∈
V (C0 : σ, pi, r); or viewC0

σ
(pj , s) ≺ viewC0:σ(pk, r − 1) for some

viewC0:σ(pk, r − 1) ∈ V (C0 : σ, pi, r). Intuitively, this subview relation captures all the
previous local states that a given process pi is aware of at a given round r.

We denote by inputs(viewC0:σ(pi, r)) := {xj | ⟨{xj}, pj , 0⟩ ≺ viewC0:σ(pi, r)} the set of
inputs pi has heard of by round r. Whenever C0 is clear from the context or not relevant, we
will omit it in favor of notational simplicity.

We define the kernel Ker(σ) of a sequence σ as the set of processes that reach all other
processes infinitely often, i.e., processes in Ker(σ) are able to disseminate their local state
at any point in the run. Formally, p ∈ Ker(σ) if and only if ∀r > 0 : ∃r′ > r : ∀q ∈ Π :
viewσ(p, r) ≺ viewσ(q, r′).

We define the global configuration at the end of round r under a communication pattern
σ as an n-tuple Cr

σ := (viewσ(pi, r))n
i=1.

As we only consider deterministic protocols, global configurations are fully determined by
the input configuration, and the communication pattern σ. Therefore, in the context of this
paper, we will consider that a run consists of the input configuration and communication
pattern. Furthermore, whenever it is clear from the context, or the input configuration is
not relevant, we will use communication pattern and run interchangeably.

We use views to determine indistinguishability between global configurations. More
precisely, a global configuration Cr

α:σ is indistinguishable from a global configuration Cr
β:µ for

a process pi ∈ Π iff viewα:σ(pi, r) = viewβ:µ(pi, r), where α, β ∈ I are input configurations,
and σ, µ ∈M are communication patterns.

S. Felber and H. Rincon Galeana 18:5

Note that any protocol can be split into a full-information flooding part that generates
views and sends messages, and a decision map that produces an output value. If the output
values form a valid configuration, then we say that the protocol solves a problem.

Formally, we define a decision map of a protocol P as a function that maps process
views generated by the full information flooding protocol to output values. We will denote a
decision map as δP : V iews(M)→ O, where V iews(M) is the set of possible views induced
by the message adversary M under the protocol P, and O is the set of possible output
values. Note that for terminating protocols, an additional undecided value ⊥ may be used
for representing that the protocol is not yet ready to decide. However, since we are focusing
only on stabilizing protocols, we require that a decision is made at every view.

We define the stabilization property for tasks, which can be thought of as a relaxation
of termination. Whereas termination requires a process to irrevocably choose its output
value once and possibly even finalize its execution, stabilization allows the protocol to run
indefinitely and correct its output finitely often.

Nevertheless processes must eventually stabilize on a common constant output value.
We call the round on which a process pi stabilizes, i.e., never changes its output again, the
stabilization round si. It should be noted that stabilization may be reached agnostically.
This means that there might be protocols where processes are guaranteed to stabilize, yet
they are possibly never aware that they have already reached a stable state.

We model stabilizing problems as tasks, with the following definition of solvability:

▶ Definition 2.1 (Stabilizing Task Solvability). A protocol P solves a stabilizing task T =
⟨I,O, ∆⟩ iff for any run C0 : σ, there exists an output configuration (pi, yi)n

i=1 ∈ ∆(C0) and
a stabilization round si for every process pi, such that:

∀r ≥ si : δP(viewC0:σ(pi, r)) = yi where yi denotes the output in (pi, yi)n
i=1

A protocol that solves a stabilizing task is called a stabilizing protocol.

2.1 Consensus and stabilizing consensus
Consensus is traditionally defined via the following three properties.
1. Termination: Any process pi eventually irrevocably decides on an output value yi at a

round fi.
2. Validity: If a process pi decides yi, then yi was the input value of some process pj , i.e

yi = xj .
3. Agreement: If process pi decides on an output value yi, and process pj decides yj , then

yi = yj .

Note that we assume that I is finite and that any combination of input configurations
C0 ∈ IΠ is possible. Therefore, the above conditions do not define a single unique task,
but rather a family of tasks. For instance, binary consensus (where |I| = 2), multi-valued
consensus (where |I| > 2) correspond to different tasks, while both are instances of consensus.

Stabilizing consensus is defined by replacing the termination property 1. by the weaker
condition 1’.. Since stabilizing protocols are allowed to decide at each round, the agreement
condition 3. also needs to be adjusted to 3.’.

1’. Stabilization: Any process pi eventually stabilizes on some valid output value yi after
some round si.

3’. Stable Agreement: If process pi stabilizes on an output value yi, and another process pj

stabilizes on yj , then yi = yj .

OPODIS 2024

18:6 Stabilizing Consensus Is Impossible in Lossy Iterated Immediate Snapshot Models

Note that a task does not consider any termination or stabilization condition. Therefore,
the stabilizing consensus problem, as well as terminating consensus, is determined by a
consensus task and a stabilizing (respectively terminating) condition.

▶ Definition 2.2 (Consensus Task). We define the consensus task with respect to an input
configuration set I as Tcon(I) := ⟨I,Ocon(I), ∆con(I)⟩.

Possible output configurations are vectors satisfying agreement Ocon(I) :=
{(pi, yi)n

i=1 yi v ∈ I(I)}, where I(I) denotes the set of input values induced by the input
configurations I, and the task map preserves validity ∆con(I)((pi, xi)n

i=1) := {(pi, y)n
i=1 | y =

xj for j ∈ {1, . . . , n}}.

3 The Lossy-Link, and Delayed Lossy-Link Message Adversaries

We will first introduce two particular message adversaries defined for only two processes,
namely Lossy-Link (denoted by LL) and Delayed Lossy-Link (denoted by DLL). Lossy-Link
was introduced by Santoro and Widmayer [25] and revisited in [26, 11], where it was shown
that consensus is impossible even if at most a single message may be lost in every round. We
will show that stabilizing consensus is solvable in the LL but impossible in the DLL.

Lossy-Link consists of 2 processes that communicate through a bi-directional link that
may lose at most one message per round. For readability purposes, throughout this section
we will denote the set of processes as Π = { , }.

▶ Definition 3.1 (Lossy-Link message adversary). We define the LL as1:

LL := { , , }ω.

Although the Lossy-Link message adversary prohibits solving terminating consensus [25],
it admits a simple stabilizing protocol that solves stabilizing consensus as it satisfies both that
any LL pattern has a non empty kernel, and any LL pattern has a trivially bounded broadcast
time. Hence, we provide a 2-process instance of the MinMax Algorithm, introduced in [9],
for stabilizing consensus. Since we adapt it to our full-information and flooding model, it
suffices to provide a decision map δMinMax : V iews(LL)→ O,
δMinMax(viewσ(pi, r)) := max

x∈V (viewσ(pi,r))
{min(inputs(x))}

We omit a proof (for a complete formal treatment see [9]), but provide a sketch. The case
where both have identical inputs is trivial, so assume w.l.o.g. that x < x . We distinguish
three cases, either (a) never hears from , or conversely (b) never hears from , or
(c) both hear from each other. In (c) both eventually know both values after some round
r. They then always choose x , as its the smallest value they know and as its the smallest
value in any message they will receive, starting from round r + 1.

Case (a) is only possible in ()ω, so always hears from and chooses x , as its the
maximum heard of in the last round (also chooses x by validity). Similarly, case (b) is
only possible in ()ω, where after round 1 the minimum has heard of is x , and
will never receive a larger value, thus always chooses x (chooses the same by validity).

Now consider a different setting, where the communication link between and is
also allowed to drop both messages, but only for at most k consecutive rounds for some fixed
k. We call this model the Bounded-Delay Lossy-Link, abbreviated as BDLL(k). Following our
previous notation, denotes the silent graph.

1 Throughout this paper, ω denotes the first infinite ordinal, it is very convenient for expressing regular
infinite sequences in a compact way.

S. Felber and H. Rincon Galeana 18:7

▶ Definition 3.2 (Bounded-Delay Lossy-Link message adversary). We define the k-Bounded-
Delay Lossy-Link message adversary, denoted by BDLL(k), as:

BDLL(k) := (
k⋃

i=0
{ i} · { , , })ω.

More generally, we define the Bounded-Delay Lossy-Link message adversary, as

BDLL :=
⋃
k∈N

BDLL(k).

Note that, as some communication is always guaranteed, BDLL(k) has a non-empty kernel
for any k, satisfying (i) and trivially (ii). This also applies to the BDLL, where any sequence
is an instance of some BDLL(k).

Nevertheless, just BDLL(1) already breaks δMinMax, as it is not guaranteed anymore that
the maximum in the system reaches all other processes in every round: Consider the graph
sequence (·)ω with x < x , where always alternates its decision value: it
will choose x if the last communication graph was , and x if it was , as it only
considers messages from the last round. In order to circumvent this alternation, we could
adapt δMinMax to look back two rounds instead of only looking at the last one. In fact,
we can generalize this idea, by adapting δMinMax to consider the past k rounds and thus
making it suitable for BDLL(k): δk

MinMax(viewσ(pi, r)) := max
x∈V k(viewσ(pi,r))

{min(inputs(x))},

where V k(viewσ(pi, r)) :=
⋃min(k,r−1)

j=0 V (viewσ(pi, r − j)) is the set of views pi has received
in the last k rounds (when k < r).

A similar correctness argument as the one for δMinMax can be used to show that δk
MinMax

solves stabilizing consensus in BDLL(k). However, any δk
MinMax will fail in BDLL(k + 1).

Charron-Bost and Moran cleverly fixed this in [9] and provided an algorithm capable of
solving stabilizing consensus in BDLL(k) for any fixed k, i.e., in BDLL. Intuitively their safe
MinMax algorithm works as follows: Any sequence σ ∈ BDLL is also a member of BDLL(k),
for some k. Of course, one cannot choose some l that is always larger than any k, but, as
the sequence σ is chosen beforehand and k therefore fixed, one can gradually increase l such
that it eventually surpasses any fixed k. And since δl

MinMax also correctly runs for any k < l,
once l surpassed k it will run correctly forever. Note that we will formalize this in Section 4
for n processes.

Nevertheless, we will prove that no stabilizing protocol can exist if there is no fixed bound
k on the length of consecutive silence periods. We call this model the Delayed Lossy-Link
message adversary, which can be seen as the limit of the BDLL.

▶ Definition 3.3 (Delayed Lossy-Link Message Adversary). We define the Delayed Lossy-Link
Message Adversary, denoted as DLL as:

DLL := (∗ · { , , })ω,

where ∗ is the Kleene star of , i.e., ∗ =
⋃

i∈N∪{0}{ i}

Note that the DLL again has a non-empty kernel, as some communication always happens. It
hence satisfies (i), does not satisfy (ii), as there is no bound on how many consecutive silent
rounds may happen.

Also note that any communication pattern σ ∈ DLL is essentially a sequence in the LL
with arbitrarily long but finite periods of no communication in-between. Consequently, any
communication pattern σ ∈ DLL has a unique corresponding silence-free communication
pattern µ ∈ LL where µ ⊑ σ, which we call the silence-free core of σ. Reciprocally, we say
that σ is a delayed pattern of µ.

OPODIS 2024

18:8 Stabilizing Consensus Is Impossible in Lossy Iterated Immediate Snapshot Models

3.1 Stabilizing consensus is impossible in the DLL
In this sub section, we prove one of our main results, namely the impossibility of stabilizing
consensus in the DLL.

The proof strategy is the following: we assume by contradiction that there is a stabilizing
protocol that can solve consensus in the DLL. Then we show that it is possible to construct a
run that infinitely often decides for a conflicting configuration, i.e., with different decision
values for and . The crucial argument for constructing a conflicting run is Theorem 3.9,
which proves that any stabilizing protocol in the DLL can be translated into a patient protocol.
A patient protocol allows processes to change their decision value only in rounds where they
receive a message from another process.

We start by defining conflicted prefixes, which are somewhat similar (but different) to
bivalent prefixes: whereas a bivalent prefix is a prefix that may eventually lead to mutually
incompatible output configurations, a conflicted prefix is one that currently outputs an
invalid configuration. For instance, the communication pattern ω ∈ LL under δMinMax

with x > x yields a bivalent prefix for any round r. Nevertheless, δMinMax never outputs
a conflicted prefix after round 1 in this setting.

▶ Definition 3.4 (Conflicted prefix). Let P be a stabilizing protocol, T = ⟨I,O, ∆⟩ a task,
and σ = (Gi)i∈N a communication pattern. We say that a prefix σk is conflicted with input
configuration C0 = (pi, xi)n

i=1, iff δP(Cr
σ) /∈ ∆(C0).

Respectively, we say that a communication pattern σ is conflicted infinitely often iff there
is a strictly increasing sequence s : N→ N such that σ|s(i)

1 , the s(i)-prefix of σ, is conflicted.
Clearly, a stabilizing protocol solves a task under a message adversary M iff there are no
communication patterns in M that are conflicted infinitely often.

Note that the possibility of arbitrary long silence periods adds a new layer of uncertainty,
particularly in the context of stabilizing protocols. In fact, this removes any possibility of
acquiring any useful information through silence. For instance, in LL, even if process does
not receive a message in round r, it is at least sure that will receive a message in round r.
The effect of this uncertainty on stabilizing protocols is reflected by the following definitions,
Theorem 3.6, and Theorem 3.9.

Let π be a prefix of length k. For notational simplicity, we will use δpi
(π) to denote

δP(viewπ(pi, k)), whenever the protocol P is either unique or not immediately relevant
to the context; similarly δ(C0 : π) denotes the output configuration (pi, δpi

(C0 : π))n
i=1.

Furthermore, if σ is an infinite communication pattern and P is a stabilizing protocol, we
denote by δpi

(C0 : σ) the stable decision by pi under σ with initial configuration C0.

▶ Definition 3.5 (Patient prefix). Let P be a stabilizing protocol, and T = ⟨I,O, ∆⟩ a
stabilizing task in the DLL model. We say that a prefix π is a patient prefix for input
configuration C0, iff for every r > 0; δ(C0 : π) = δ(C0 : π · r).

▶ Lemma 3.6 (Patience Lemma). Let P be a stabilizing protocol for a task T = ⟨I,O, ∆⟩,
C0 ∈ I, and π any prefix in the DLL model. There exists k ≥ 0 such that C0 : π · k is a
patient prefix.

Proof. Note that π · ω is an admissible execution in the DLL message adversary. Since P is
a stabilizing algorithm, must eventually stabilize on a decision δ (C0 : π · ω). Hence
there is some minimal r1 ≥ 0 such that for any r > r1, δ (C0 : π · r) = δ (C0 : π · ω).

Reciprocally, there is some minimal r2 ≥ 0 such that for any r > r2,
δ (C0 : π · r) = δ (C0 : π · ω).

S. Felber and H. Rincon Galeana 18:9

Note that C0 : π · r1 is indistinguishable from C0 : π · r1 to . Symmetrically
C0 : π · r2 is indistinguishable from C0 : π · r2 to .

Let k = max{r1, r2}, and consider π′ = C0 : π · k. For any k′, π′ · k′ is
indistinguishable from C0 : π · k+k′ to , and π′ · k′ is indistinguishable from
C0 : π · k+k′ to .

Moreover, since k + k′ ≥ k, it follows that δ (C0 : π · ω) = δ (π′ · k′) = δ (π′),
and δ (C0 : π · ω) = δ (π′ · k′) = δ (π′). Consequently, π′ = C0 : π · k is
indeed a patient prefix. ◀

Note that Theorem 3.6 allows us to define the patience of a prefix π, for a particular
stabilizing protocol P in the DLL and a particular input configuration C0.

▶ Definition 3.7 (Patience). Let P be a stabilizing protocol, C0 ∈ I be an input configuration,
and π a prefix in the DLL. We say that k ∈ N is the patience of π for P and C0, if k is
minimal such that C0 : π · k is a patient prefix.

▶ Definition 3.8 (Patient Protocol). Let P be a stabilizing protocol in the DLL. We say that
P is patient if the patience of any prefix π is 0.

▶ Lemma 3.9 (Patient Protocol Reduction). Let P be a protocol that solves a stabilizing task
T = ⟨I,O, ∆⟩ in the DLL. Then there exists a patient protocol P ′ that solves T .

Proof. Consider a communication pattern σ = (Gi)∞i=1 ∈ DLL. We define inductively a
prefix sequence πi in the following way: π1 := G1 · α1 ; πk+1 := πk · Gk+1 · αk+1 ,
where α1 := patience(G1); αk+1 := patience(πk ·Gk+1). We define a communication pattern
σ′ := (Hi)∞i=1, as the limit of πi.

Consider a protocol P ′ with decision map δ′ defined by: δ′x(σ|k1)) = δx(πk). We will show
that P ′ is a patient stabilizing protocol that solves T .

By construction, each πi is a patient prefix of σ′, hence P ′ is patient. Note that σ is an
infinite sub-sequence of σ′ that does not include an infinite silence suffix ω, σ′ does not
include an infinite silent suffix ω either. Thus, σ′ ∈ DLL.

Since P is a stabilizing protocol that solves T in DLL, in particular, δ provides a stabilizing
solution for communication pattern σ′. Since δ(C0 : σ′) = δ′(C0 : σ), it follows that P ′ is a
stabilizing protocol that solves T for communication pattern σ. ◀

▶ Theorem 3.10 (Stabilizing consensus Impossibility in DLL). Let P be an arbitrary stabilizing
protocol in DLL. There exists a valid communication pattern σ ∈ DLL such that P does not
solve stabilizing consensus for σ.

Proof. Let us assume for a contradiction that there is a stabilizing protocol P that solves
stabilizing consensus in DLL. By Theorem 3.9, there exists a patient protocol P ′ that solves
stabilizing consensus in DLL. We will provide an inductive construction of a run that is
conflicted. More precisely, we define a sequence of conflicted prefixes πi such that πi ⊂ πi+1,
and limi→∞ πi = σ ∈ DLL.
Base case (Empty prefix ε). For the base case, consider an initial input configuration C0

with different values x ̸= x . Due to the validity condition, each process must decide on
its own value. Since x ̸= x , C0 : ε is a conflicted prefix.
Induction step (Prefix πk). Assume that C0 : πk is a conflicted prefix, i.e., δ (C0 : πk) ̸=
δ (C0 : πk).

We assert that at least one of C0 : πk · , C0 : πk · , C0 : πk · is conflicted.
Assuming that none is conflicted, we derive a contradiction (as illustrated in Figure 1).

OPODIS 2024

18:10 Stabilizing Consensus Is Impossible in Lossy Iterated Immediate Snapshot Models

Recall that P ′ is patient and C0 : πk · is indistinguishable from C0 : πk · for .
Therefore, δ (C0 : πk ·) = δ (C0 : πk ·) = δ (C0 : πk).

Since we assumed that C0 : πk · is not conflicted, then
δ (C0 : πk ·) = δ (C0 : πk ·).

Note that C0 : πk · is indistinguishable from C0 : πk · for , and therefore
δ (C0 : πk ·) = δ (C0 : πk ·).

Similarly, since C0 : πk · is not conflicted by assumption,
δ (C0 : πk ·) = δ (C0 : πk ·).

Note that C0 : πk · is indistinguishable from C0 : πk · for and thus,
δ (C0 : πk ·) = δ (C0 : πk ·).

Since C0 : πk · is not conflicted by assumption, δ (C0 : πk ·) = δ (C0 : πk ·).
Finally, since C0 : πk is indistinguishable from C0 : πk · for and P ′ is patient,

δ (C0 : πk ·) = δ (C0 : πk ·) = δ (C0 : πk).
Therefore δ (C0 : πk) = δ (C0 : πk), which contradicts the induction hypothesis, namely

that C0 : πk is conflicted. Thus, either one of C0 : π · , C0 : π · , or C0 : π · is a
conflicted prefix.

Choosing Gk+1 ∈ { , , } such that C0 : πk · Gk+1 is conflicted, we define
πk+1 := πk ·Gk+1. Setting σ = limk→∞ πk, note that σ ∈ DLL by construction and each πk

is a conflicted prefix: Therefore σ is indeed conflicted infinitely often, and P ′ does not solve
stabilizing consensus.

δ (πk ·) δ (πk ·)

δ (πk ·) δ (πk ·)

δ (πk ·) δ (πk ·)

δ (πk ·) δ (πk ·)

=

=

=

=
̸=

Figure 1 An illustration of the induction step in Theorem 3.10. Decision values grouped by a
grey rectangle correspond to decision values of the same prefix, i.e., they should match otherwise
we have a conflicted prefix. Decision values connected via an equality sign are necessarily identical
because the process cannot distinguish the two prefixes. This creates a chain of equalities that is
broken by our induction hypothesis, namely that πk · is conflicted, implying one of the grey
boxes, and consequentally a longer prefix, must be conflicted as well. ◀

4 The Iterated Immediate Snapshot and the Lossy Iterated Immediate
Snapshot Models

Previously, we introduced the Lossy-Link and Delayed Lossy-Link message adversary as
a starting point for our stabilizing consensus impossibility result. This is for two main
reasons: first, the simplicity of the Lossy-Link highlights the source of the impossibility result
without adding distracting details to the proofs, and second, the DLL impossibility translates
transparently to other message adversaries that generalize DLL.

One such message adversaries is the Iterated Immediate Snapshot message adversary,
which is computationally equivalent to the asynchronous Iterated-Immediate Snapshot model
defined as an n-process asynchronous shared memory model where processes communicate

S. Felber and H. Rincon Galeana 18:11

via atomic snapshots. The first approach towards this model was introduced by Borowski
and Gafni [6], who presented the Immediate-atomic-snapshot model as a generalization of
the classical FLP model [15]. They also re-used it as a convenient model for characterizing
wait-free asynchronous shared memory systems [7].

In the IIS model, one considers a set Π = {pi}n
i=1 of processes that communicate through

a shared memory object M . Each process may write into its own register M [i] and is able
to read the whole memory M in an atomic snapshot operation. A process pi that executes
an atomic snapshot writes into its register M [i] and reads all of M instantaneously. Since
snapshot operations executed by different processes may occur concurrently, it is assumed
that every process in a concurrent set is capable of reading each others output. Although
atomic snapshot objects appear to be very strong, it has been shown that they are equivalent
to single-reader single-writer wait-free shared registers [19].

Perhaps one of its most useful features of the IIS model is that it allows us to express
an asynchronous shared memory model in terms of a synchronous message adversary [1],
an asynchronous snapshot by all processes, can hence be represented by a communication
graph. If a process p and a process q execute a snapshot operation, there are 3 possibilities,
either p executed its snapshot before q, q before p, or both snapshots are concurrent. If p

executes its snapshot before q, then p cannot read what q wrote, but q will be able to read
the value from p. Reciprocally, if q executes its snapshot before p, q will see p’s value but
not vice versa. If p and q have concurrent snapshots, then both are able to read each other’s
value. Since we consider time to be linearly ordered, and snapshots occur within the same
time frame (round), then this means that for any pair of processes p and q, either p reads
q or q reads p, or both. When translated to communication graphs, this implies that each
communication graph in the IIS model is semi-complete 2. Since the time at which each
process executed its snapshot determines completely the memory registers that each process
is able to read, every communication graph in the IIS model is also transitive 3.

The converse can also be shown, such that for every communication pattern σ of semi-
complete and transitive graphs, there is an IIS schedule that matches σ. Thus, for the
rest of this paper, we will simply consider that IIS := Gω, where G is the set of semi-
complete and transitive graphs on Π. Note carefully that LL satisfies both transitivity and
semi-completeness.

4.1 The Lossy Iterated Immediate Snapshot Model
Having introduced the IIS model as an n-process generalization of the Lossy-Link model, we
will now add read-omission faults to the immediate snapshot operations. This means that,
whenever processes execute a snapshot in a round, there may be at most f total read-omission
failures of other processes’ registers.

Note that the empty graph ∈ DLL, can be viewed as a read-omission in either or
. However, for n ≥ 3, faulty snapshots are slightly more complex than simply considering

empty graphs. Consequently, we define the set of lossy snapshot graphs, Φ(f) as the set
of directed graphs from G (consisting of semi-complete and transitive directed graphs on
Π) with at least one missing edge and at most f ≤ n(n− 1) missing edges. More precisely,
Φ(f) := {G \ F | G ∈ G, F ⊆ E(G), 1 ≤ |F | ≤ f}.

2 A directed graph is semi-complete if for any pair of vertices v, w, either (v, w) ∈ E(G) or (w, v) ∈ E(G).
3 A directed graph G is transitive iff (v, w)(w, z) ∈ E(G) ⇒ (v, z) ∈ E(G).

OPODIS 2024

18:12 Stabilizing Consensus Is Impossible in Lossy Iterated Immediate Snapshot Models

Similarly to Section 3, we start by limiting the number of consecutive iterations where
a snapshot might be faulty. We denote the Bounded Lossy Iterated Immediate Snapshot
model by BLIIS(f, k), where f ≤ n(n− 1) is the maximum number of omission faults per
iteration, and k is the maximum number of consecutive rounds an immediate snapshot might
be faulty. We then relax this restriction by requiring that correct snapshot iterations must
only happen infinitely often (similar to the DLL). We call this model the Lossy Iterated
Immediate Snapshot model, denoted by LIIS(f). Note that for 2 processes, BLIIS{ , }(1, k)
corresponds to BDLL(k), while LIIS{ , }(1) corresponds to DLL.

These message adversaries can be formally defined as follows:

▶ Definition 4.1 (IIS, BLIIS, LIIS Message Adversaries). Let G be the set of semi-complete
and transitive graphs on Π, and Φ(f) the set of faulty snapshot graphs for f ≤ n(n− 1).

IIS := Gω

BLIIS(f, k) := ({Φ(f)i}k
i=0 · IIS)ω

BLIIS(f) :=
⋃

k∈N BLIIS(f, k)
LIIS(f) := (Φ(f)∗ · IIS)ω, where Φ(f)∗ is the Kleene star of {Φ(f)}.

First, we prove that all presented message adversaries have a non-empty kernel, and
hence satisfy (i).

▶ Lemma 4.2. IIS, BLIIS(f, k), BLIIS(f) and LIIS(f) all have a non empty kernel, i.e.,
for any σ, we have Ker(σ) ̸= ∅.

Proof. As every communication graph in σ ∈ IIS is semi-complete and transitive, σ(r)
contains at least one process that directly reaches all other processes4. As there are only
finitely many processes, the pigeonhole principle guarantees that in the infinite sequence σ

at least one process reaches all others infinitely often, implying Ker(σ) ̸= ∅.
Now assume σ = (Gi)∞i=1 to be an admissible run in either BLIIS(f, k), BLIIS(f) or

LIIS(f). By construction, in any of these models, there is an infinite number of instances of
graphs G ∈ IIS in σ, i.e., (Gs(i))∞i=1 ⊑ σ and (Gs(i))∞i=1 ∈ IIS. But this is a sub-sequence
with a non-empty kernel as proven above, therefore Ker(σ) ̸= ∅ holds. ◀

We will now argue that IIS, BLIIS(f, k) and BLIIS(f) allow solving stabilizing consensus.
We start with the following technical lemma:

▶ Lemma 4.3. Let σ be any communication pattern. There exists a round si such that no
process learns any new input values anymore. Formally,
∀pi ∈ Π : ∀r > si : inputs(viewσ(pi, r)) = inputs(viewσ(pi, si)). We call this set pi’s stable
value set.

Proof. As the set of processes Π is finite and input values are never forgotten in a run, the
set inputs(viewσ(pi, r)) can be increased only finitely often. ◀

▶ Lemma 4.4. Let σ be any communication pattern. After round si, pi’s stable value
set contains the stable value set of all processes in Ker(σ). Formally, ∀pi ∈ Ker(σ),
∀pi ∈ Π : inputs(viewsσ(pj , sj)) ⊆ inputs(viewsσ(pi, si)).

4 It is a well known result that transitive tournaments are equivalent to strict total order graphs, and hence
finite transitive tournaments always contain a dominating vertex. Thus, any finite semi-complete and
transitive graph also includes a dominating vertex. See for example [10] for more results on tournaments.

S. Felber and H. Rincon Galeana 18:13

Proof. By contradiction. Assuming the contrary implies that pi never receives a message
from pj ∈ Ker(σ)that reveals some input value known to pj . This contradicts the assumption
that pj is in the kernel. ◀

▶ Corollary 4.5. For any communication pattern σ with Ker(σ) ̸= ∅, processes in the kernel
have identical stable value sets.

▶ Theorem 4.6. For any σ ∈ IIS ∪ BLIIS(f, k) ∪ BLIIS(f),

δ
r/2
MinMax(viewσ(pi, r)) := max

x∈V r/2(C0:σ,pi,r)
{min(inputs(x))}

solves stabilizing consensus in σ. Note that the number of past rounds considered (i.e, r
2)

now depends on the current round r.

Proof. We set sg = max{s1, . . . , sn}, i.e., the round after which all processes have arrived at
their stable value sets. From Theorem 4.4, it follows that for all rounds r > sg,
∀pj ∈ Ker(σ) : ∀pi ∈ Π : min(inputs(viewσ(pj , r))) ≥ min(inputs(viewσ(pi, r))). From
Theorem 4.5, we infer that processes in the kernel have identical minima.

Assume σ ∈ IIS, and r − 1 > sg. As any σ(r) is semi-complete and transitive, all
processes not in the kernel receive the view of a process pj ∈ Ker(σ). By the above
reasoning, pj ’s minimum is larger than all other minima, therefore the decision function
δ

r/2
MinMax chooses correctly from round sg + 1 on.

Assume σ ∈ BLIIS(f, k), and r − k > sg. As σ(r) is semi-complete and transitive for at
least one graph among the ones for r ∈ {r−k, . . . , r}, we can repeat the previous reasoning
but applied to views received in the previous k rounds, V k(C0 : σ, pi, r). Eventually, i.e.,
after round sj + k, we are sure that the interval r− k to r contains a view with the stable
value set of a process pi in the kernel. Note that as IIS ⊆ BLIIS(f, k), this also solves
stabilizing consensus on the IIS.
Assume σ ∈ BLIIS(f), and r > sg. As σ does not have a predefined bound k, we cannot
resort to the previous reasoning. However, we know there is a bound, as σ ∈ BLIIS(f)
implies σ ∈ BLIIS(f, k) for some k. As any δk solves stabilizing consensus also on any
σ ∈ BLIIS(f, l) for l < k by inclusion, we can dynamically consider the previous r

2 rounds.
This ensures that (a) we eventually surpass the fixed bound k, and thus eventually always
consider the view of a process in the kernel, and (b) eventually r − r

2 also exceeds sj and
we only consider stable value sets of pj ∈ Ker(σ). Together with the fact that, pj ’s stable
value set contains the largest minimum among all processes, we conclude that δr/2 solves
stabilizing consensus on σ ∈ IIS ∪ BLIIS(f, k) ∪ BLIIS(f). ◀

As the main result of this section, we will now prove that stabilizing consensus is impossible
in LIIS(1), i.e., in the presence of just one faulty register per round finitely consecutive
rounds. We extend the proof of Theorem 3.10 from DLL to LIIS(1) by identifying four
admissible graphs in LIIS(1) that “replicate” the DLL impossibility result in the LIIS model.

Note that IIS = LIIS(0) ⊆ LIIS(1) ⊆ . . . ⊆ LIIS(f) ⊆ LIIS(f + 1), thus if stabilizing
consensus is impossible in LIIS(1), then it is also impossible in LIIS(f) for any f ≥ 1.

For the remainder of this paper, we will consider a system with at least n ≥ 2 processes,
and focus on two distinct processes p1 and p2. For convenience, we assume that 7→ p1,
i.e., as the choice of index is free, we rename in DLL to p1 in the context of the LIIS(1),
and symmetrically 7→ p2. We use the following convenient notations: Π̃ := Π \ {p1, p2};
KΠ̃, is the complete graph on Π̃; G1 ⊕G2 represents the graph defined by V (G1 ⊕G2) :=
V (G1) ∪ V (G2) , and E(G1 ⊕ G2) := E(G1) ∪ E(G2) ∪ V (G1) × V (G2), i.e., adding all
possible edges from G1 to G2 but not the other way round, and also extend it to runs
σ ⊕KΠ̃ := (Gi ⊕KΠ̃)∞i=1.

OPODIS 2024

18:14 Stabilizing Consensus Is Impossible in Lossy Iterated Immediate Snapshot Models

We define the following graphs: Gp1→p2 := (p1 → p2)⊕KΠ̃; Gp1↔p2 := (p1 ↔ p2)⊕KΠ̃;
Gp1←p2 := (p1 ← p2)⊕KΠ̃ ; and Gp1 p2 := (p1 p2)⊕KΠ̃. Note that Gp1→p2 , Gp1↔p2 and
Gp1←p2 are semi-complete and transitive and therefore snapshot graphs in the IIS. Likewise,
Gp1 p2 ∈ Φ(1), since it can be obtained by removing (p1, p2) from Gp1→p2 or by removing
(p2, p1) from Gp1←p2 .

We show that any sequence in the DLL can be extended to a sequence in the LIIS(1)
where p1 and p2 have identical views, implying that a protocol solving stabilizing consensus
in the LIIS(1) necessarily solves it in the DLL, deriving a contradiction.

▶ Lemma 4.7. Any σ ∈ DLL can be extended to a σ′ ∈ LIIS(1), s.t., V iews(σ) =
V iews{p1,p2}(σ′).

Proof. Let σ ∈ DLL and consider for σ′ = σ ⊕KΠ̃. By construction we know that
σ′(r) ∈ {Gp1→p2 , Gp1↔p2 , Gp1←p2 , Gp1 p2} and as σ does not contain an infinite silent suffix
(i.e., σ|∞k ≠ (p1 p2)ω for all k > 0), σ′ also has no infinite suffix (Gp1 p2)ω where no
communication between p1 and p2 happens. Thus, σ′ is an admissible LIIS(1) sequence.

By construction, in σ′, p1 and p2 only receive messages from each other, moreover, they
only do so in rounds where they also receive a message in σ. Therefore their views are
identical V iews(σ) = V iews{p1,p2}(σ′). ◀

▶ Theorem 4.8 (Stabilizing consensus Impossibility in LIIS(1)). Let P be an arbitrary stabi-
lizing protocol in the LIIS(1) model. P does not solve stabilizing consensus.

Proof. Assume for a contradiction that P solves stabilizing consensus in the LIIS(1) model.
Take any σ ∈ DLL, from Theorem 4.7, it follows that there exists a σ′ ∈ LIIS(1) with identical
views for p1, p2. The decision map δP therefore solves stabilizing consensus on σ ∈ DLL
directly contradicting Theorem 3.10. ◀

5 Conclusion

In this paper we provided the first stabilizing consensus impossibility result where the
existence a non-empty kernel is guaranteed (i) but the number or rounds where everybody
hears from a member in the kernel (ii) is not . While it has been shown that a non-empty
kernel is necessary for solving stabilizing consensus in [9], we prove that it is not sufficient.

At the core of the stabilizing consensus impossibility lies the fact that padding the
communication with arbitrarily long but finite silence periods greatly impairs the decision
power of stabilizing protocols, essentially forcing them to fix a value during silence periods.
This limitation enables us to find a valid prefix that has conflicting decision values, and thus
prevents stabilization. This result highlights the importance of communication liveness within
a system, since any bounded variants of the DLL model are capable of solving stabilizing
consensus.

Furthermore, we extended this impossibility result to the Iterated Immediate Snapshot
model, where the possibility of a single read-faulty snapshot makes stabilizing consensus
impossible. This result sheds new light on the impact of omission faults on consensus,
even when the termination condition is relaxed to stabilization, and the communication
assumptions are as strong as a shared-memory model.

S. Felber and H. Rincon Galeana 18:15

References
1 Yehuda Afek and Eli Gafni. Asynchrony from synchrony. In Davide Frey, Michel Raynal,

Saswati Sarkar, RudrapatnaK. Shyamasundar, and Prasun Sinha, editors, 14th International
Conference on Distributed Computing and Networking (ICDCN), volume 7730 of LNCS, pages
225–239. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-35668-1_16.

2 Dana Angluin, Michael J. Fischer, and Hong Jiang. Stabilizing consensus in mobile networks.
In Phillip B. Gibbons, Tarek Abdelzaher, James Aspnes, and Ramesh Rao, editors, Distributed
Computing in Sensor Systems, pages 37–50, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
doi:10.1007/11776178_3.

3 Jón Atli Benediktsson and Philip H. Swain. Consensus theoretic classification methods. IEEE
Trans. Syst. Man Cybern., 22(4):688–704, 1992. doi:10.1109/21.156582.

4 Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, Belmont, MA, 1989.

5 V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. Convergence in multiagent
coordination, consensus, and flocking. In Proceedings of the 44th IEEE Conference on Decision
and Control, pages 2996–3000, 2005. doi:10.1109/CDC.2005.1582620.

6 Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asyn-
chronous computations. In Proceedings of the Twenty-Fifth Annual ACM Symposium on
Theory of Computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. Association for
Computing Machinery. doi:10.1145/167088.167119.

7 Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of
wait-free computation. In Proceedings of the sixteenth annual ACM symposium on Principles
of distributed computing (PODC), pages 189–198, 1997.

8 Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Approximate consensus
in highly dynamic networks: The role of averaging algorithms. In Magnús M. Halldòrsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, International Colloquium on
Automata, Languages, and Programming (ICALP), volume 9135 of Lecture Notes in Computer
Science, pages 528–539. Springer Berlin Heidelberg, 2015. doi:10.1007/978-3-662-47666-6_
42.

9 Bernadette Charron-Bost and Shlomo Moran. Minmax algorithms for stabilizing consensus.
Distributed Comput., 34(3):195–206, 2021. doi:10.1007/s00446-021-00392-9.

10 Gary Chartrand, Linda Lesniak, and Ping Zhang. Graphs & Digraphs. Chapman & Hall/CRC,
6th edition, 2015.

11 Étienne Coulouma, Emmanuel Godard, and Joseph G. Peters. A characterization of oblivious
message adversaries for which consensus is solvable. Theoretical Compututer Science, 584:80–90,
2015. doi:10.1016/j.tcs.2015.01.024.

12 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications
of the ACM, 17(11):643–644, 1974. doi:10.1145/361179.361202.

13 Danny Dolev, Nancy Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. J. ACM, 33(3):499–516, July 1986.
doi:10.1145/5925.5931.

14 Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
15 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. J. ACM, 32(2):374–382, April 1985. doi:10.1145/3149.
214121.

16 Matthias Függer, Thomas Nowak, and Manfred Schwarz. Tight bounds for asymptotic and
approximate consensus. J. ACM, 68(6), October 2021. doi:10.1145/3485242.

17 Eli Gafni. Distributed computing: a Glimmer of a theory. In Algorithms and theory of
computation handbook: general concepts and techniques, page 29. Chapman & Hall/CRC, 2
edition, February 2010.

OPODIS 2024

https://doi.org/10.1007/978-3-642-35668-1_16
https://doi.org/10.1007/11776178_3
https://doi.org/10.1109/21.156582
https://doi.org/10.1109/CDC.2005.1582620
https://doi.org/10.1145/167088.167119
https://doi.org/10.1007/978-3-662-47666-6_42
https://doi.org/10.1007/978-3-662-47666-6_42
https://doi.org/10.1007/s00446-021-00392-9
https://doi.org/10.1016/j.tcs.2015.01.024
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/5925.5931
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3485242

18:16 Stabilizing Consensus Is Impossible in Lossy Iterated Immediate Snapshot Models

18 Hugo Rincon Galeana, Sergio Rajsbaum, and Ulrich Schmid. Continuous Tasks and the
Asynchronous Computability Theorem. In Mark Braverman, editor, 13th Innovations in
Theoretical Computer Science Conference (ITCS 2022), volume 215 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 73:1–73:27, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2022.73.

19 Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum, editors. Distributed Comput-
ing Through Combinatorial Topology. Morgan Kaufmann, Boston, 2014. doi:10.1016/
B978-0-12-404578-1.00017-6.

20 Maurice Herlihy, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. From wait-free to
arbitrary concurrent solo executions in colorless distributed computing. Theoretical Computer
Science, 683:1–21, 2017. doi:10.1016/j.tcs.2017.04.007.

21 Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient tasks.
Conference Proceedings of the Annual ACM Symposium on Theory of Computing, August 1994.
doi:10.1145/167088.167125.

22 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, July 1982. doi:
10.1145/357172.357176.

23 Jennifer Lundelius and Nancy Lynch. A new fault-tolerant algorithm for clock synchronization.
In Proc. 3rd ACM Symposium on Principles of Distributed Computing (PODC), pages 75–88,
August 1984. doi:10.1145/800222.806738.

24 Michel Raynal and Julien Stainer. Synchrony weakened by message adversaries vs asynchrony
restricted by failure detectors. In ACM Symposium on Principles of Distributed Computing
(PODC), pages 166–175, Montrèal, Quèbec, Canada, 2013. ACM Press. doi:10.1145/2484239.
2484249.

25 Nicola Santoro and Peter Widmayer. Time is not a healer. In B. Monien and R. Cori, editors,
6th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 304–313,
Berlin, Heidelberg, 1989. Springer Berlin Heidelberg. doi:10.1007/BFB0028994.

26 Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results and lower bounds
for consensus under link failures. SIAM Journal on Computing, 38(5):1912–1951, 2009.
doi:10.1137/S009753970443999X.

27 Manfred Schwarz and Ulrich Schmid. Round-oblivious stabilizing consensus in dynamic
networks. In Colette Johnen, Elad Michael Schiller, and Stefan Schmid, editors, Stabilization,
Safety, and Security of Distributed Systems - 23rd International Symposium, SSS 2021, Virtual
Event, November 17-2 0, 2021, Proceedings, volume 13046 of Lecture Notes in Computer
Science, pages 154–172. Springer, 2021. doi:10.1007/978-3-030-91081-5_11.

28 Josef Widder and Ulrich Schmid. Booting clock synchronization in partially synchronous
systems with hybrid process and link failures. Distributed Computing, 20(2):115–140, 2007.
doi:10.1007/s00446-007-0026-0.

29 Kyrill Winkler, Ami Paz, Hugo Rincon Galeana, Stefan Schmid, and Ulrich Schmid. The
Time Complexity of Consensus Under Oblivious Message Adversaries. In Yael Tauman Kalai,
editor, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023), volume 251
of Leibniz International Proceedings in Informatics (LIPIcs), pages 100:1–100:28, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ITCS.2023.100.

30 Kyrill Winkler, Ulrich Schmid, and Yoram Moses. A Characterization of Consensus Solvability
for Closed Message Adversaries. In 23rd International Conference on Principles of Distributed
Systems (OPODIS 2019). Schloss Dagstuhl – Leibniz Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.OPODIS.2019.17.

https://doi.org/10.4230/LIPIcs.ITCS.2022.73
https://doi.org/10.1016/B978-0-12-404578-1.00017-6
https://doi.org/10.1016/B978-0-12-404578-1.00017-6
https://doi.org/10.1016/j.tcs.2017.04.007
https://doi.org/10.1145/167088.167125
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/800222.806738
https://doi.org/10.1145/2484239.2484249
https://doi.org/10.1145/2484239.2484249
https://doi.org/10.1007/BFB0028994
https://doi.org/10.1137/S009753970443999X
https://doi.org/10.1007/978-3-030-91081-5_11
https://doi.org/10.1007/s00446-007-0026-0
https://doi.org/10.4230/LIPIcs.ITCS.2023.100
https://doi.org/10.4230/LIPIcs.ITCS.2023.100
https://doi.org/10.4230/LIPIcs.OPODIS.2019.17
https://doi.org/10.4230/LIPIcs.OPODIS.2019.17

	1 Introduction
	1.1 Related work
	1.2 Contributions and paper organization

	2 The System Model
	2.1 Consensus and stabilizing consensus

	3 The Lossy-Link, and Delayed Lossy-Link Message Adversaries
	3.1 Stabilizing consensus is impossible in the DLL

	4 The Iterated Immediate Snapshot and the Lossy Iterated Immediate Snapshot Models
	4.1 The Lossy Iterated Immediate Snapshot Model

	5 Conclusion

