
A General Class of Reductions and
Extension-Based Proofs
Yusong Shi #

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Weidong Liu #

Department of Computer Science and Technology, Tsinghua University, Beijing, China
Zhongguancun Laboratory, Beijing, China

Abstract
The concept of extension-based proofs models the idea of a valency argument which is widely used
in distributed computing. Extension-based proofs have been shown to be limited in power: there is
no extension-based proof of the impossibility of a wait-free protocol for (n, k)-set agreement among
n > k ≥ 2 processes.

Previous work used a restricted class of reductions to show that there are no extension-based
proofs of the impossibility of wait-free protocols for some other distributed computing problems. It
is known that for a restricted class of reductions, if a task T reduces to S and T has an augmented
extension-based proof that it is impossible to solve in the NIS model, then so does S. We introduce
multiple-instance extension-based proofs and show that, if T reduces to multiple instances of S,
instead of just one instance and T has an augmented extension-based proof, then S has a multiple-
instance extension-based proof that it is impossible to solve in the NIIS model. We introduce a new
version of extension-based proofs that can further our understanding of extension-based proofs and
their limitations.

2012 ACM Subject Classification Theory of computation → Interactive proof systems; Theory of
computation → Distributed algorithms; Theory of computation → Distributed computing models;
Theory of computation → Problems, reductions and completeness

Keywords and phrases Reductions, Impossibility proofs, Extension-based proof

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.19

Acknowledgements We would like to thank Faith Ellen and Shihao Liu for helpful discussions and
the anonymous reviewers for their comments.

1 Introduction

In 1985, Fischer, Lynch, and Paterson [12] proved one of the most important results in
distributed computing: There is no deterministic wait-free protocol for the consensus task in
the asynchronous message passing system. The key idea of their proof is called a valency
argument, which proves the existence of an infinite execution when the algorithm never
outputs an incorrect output. The (n, k)-set agreement task, which is a generalization of
the consensus task where n processes can output at most k different values, first proposed
by Chaudhuri [11], was independently shown to have no wait-free protocol by Borowsky
and Gafni [7], Herlihy and Shavit [14], and Saks and Zaharoglou [17]. These papers used
topological structures to model tasks and protocols.

In [2, 3], Alistarh, Aspnes, Ellen, Gelashvili and Zhu pointed out the differences between
valency arguments and combinatorial or topological techniques. In those proofs using
combinatorial or topological techniques, the existence of a bad execution is proved, but not
explicitly constructed. In the proof by Fischer, Lynch and Paterson, an infinite execution
can be obtained by extending an initial execution infinitely often. Alistarh et al. generalized
this type of proof and called it an extension-based proof. An extension-based proof is defined

© Yusong Shi and Weidong Liu;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 19; pp. 19:1–19:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shiys20@mails.tsinghua.edu.cn
https://orcid.org/0009-0008-4482-1819
mailto:liuwd@mail.tsinghua.edu.cn
https://orcid.org/0000-0002-1260-4982
https://doi.org/10.4230/LIPIcs.OPODIS.2024.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 A General Class of Reductions and Extension-Based Proofs

as an interaction between a prover and a protocol that claims to solve a task. Initially, the
prover only knows the initial configurations of the protocol. To obtain information about the
protocol, the prover proceeds in phases. In each phase, the prover submits queries to the
protocol to learn information about this protocol. The prover wins if it discovers any error of
the protocol. Otherwise, the protocol wins. If there exists a prover that can win against any
protocol that claims to solve a task, we say that this task has an extension-based impossibility
proof. The proof of the impossibility of consensus [12] is an example of an extension-based
proof. It was shown that there are no extension-based proofs for the impossibility of a
wait-free protocol for (n, k)-set agreement in the non-uniform iterated immediate snapshot
(NIIS) model [2] and in the non-uniform iterated snapshot (NIS) model [3].

Do other tasks also have no extension-based impossibility proofs? One possible way to
extend existing results is via reductions, which is a widely used technique in the field of
theoretical computer science. The composition R ◦ S of two tasks S and R is a task that
can be solved by a protocol that first solves S and then solves R, where outputs from S
serve as inputs to R. A reduction from task T to task S is a protocol that solves T by using
a protocol that solves S. Processes may use many instances of S and communicate with one
another to decide the input values for each instance.

Brusse and Ellen [10] introduced augmented extension-based proofs, which provide an
additional type of query, and gave the first result about reductions: if T reduces to S, and
T has an augmented extension-based proof that it is impossible to solve in the NIS model,
then so does S, when the reduction is limited to the use of only one instance of S. Such
a reduction can be represented by R2 ◦ S ◦ R1 where R1,R2 are solvable tasks in the NIS
model. Our goal is to answer the open question proposed in their paper, i.e., whether the
extension to reductions that allow multiple instances of S is possible. In other words, we will
consider the reductions that have the form Rl+1 ◦ S ◦ Rl · · · S ◦ R1 where R1,R2 . . .Rl+1
are solvable tasks.

Suppose that there is a protocol that claims to solve the task S. To make use of
the reduction from T to S, we need to compose multiple copies of this protocol and the
protocols that solve R1,R2 . . .Rl+1 to generate a protocol that solves the task T . This
is not straightforward as in uniform models, such as the IIS model, in which all processes
terminate after the same number of rounds during all executions of a protocol.

This paper mainly concerns two topics addressed in [10]: a way to compose non-uniform
protocols and the construction of an augmented extension-based prover PS for S from an
augmented extension-based prover PT for T . All the discussions in this paper are about the
non-uniform iterated immediate snapshot (NIIS) model rather than the non-uniform iterated
snapshot (NIS) model. The techniques in the two models are quite similar.

1.1 Our contribution
The way of composing multiple protocols in [10] can be generalized to a larger class of
reductions. Note that these protocols are assumed to be transparent which means that the
entity that tries to compose the protocols knows everything about these protocols. We present
some properties of this composition that are necessary for discussions of the construction of
an extension-based prover in both this paper and in [10], but are missing in the previous
work. For example, a protocol in an extension-based proof is not a transparent protocol as
assumed in the composition of multiple protocols, as the prover can only learn information
about it by submitting queries to it. The usage of this composition in the discussions about
extension-based proofs must be inspected in a more rigid way.

Y. Shi and W. Liu 19:3

Next, we prove that if the task T reduces to the task S using multiple instances of S
and T has an augmented extension-based proof that it is impossible to solve in the NIIS
model, then S has a multiple-instance extension-based proof that it is impossible to solve in
the NIIS model. Our proof is not a trivial generalization of the proof in [10]. A technical
difference here is that when the reduction from T to S involves more than one instance
of S, we have to discuss a new version of extension-based proofs, called multiple-instance
extension-based proofs, where the prover interacts with multiple instances of the protocol
(instead of only one instance of the protocol in the original definition). Then, similar to the
approach in [10], we describe how to construct a multiple-instance extension-based prover
PS from an extension-based prover PT . Given a protocol that claims to solve the task S,
the prover PS simulates an interaction between the composed protocol and PT . PS decides
which queries it will submit in its interaction with multiple instances of the protocol that
claims to solve S, based on the queries it sees in this simulation. We will show that PS wins
in the interaction since PT wins in its interaction with T by assumption.

2 Preliminaries

2.1 NIIS model
A snapshot object consists of an array of elements and supports two types of operation: write
and read. In a write operation, a process with id i writes a value to the i-th cell of the array.
In a snapshot operation, a process atomically reads the contents of all the cells of the array.
Similarly, the immediate snapshot (IS) object was introduced by Borowsky and Gafni in [8].
An IS object consists of an array of elements and provides writeread operations, where a
process with id i writes a value to the i-th element of the array and returns a snapshot of
the array immediately after this write. The writeread operations on a single IS object by
multiple processes are said to be concurrent if all their snapshot operations happen after all
their writes to the array are finished.

IS objects are the basic building blocks of the iterated immediate snapshot (IIS) model.
The IIS model consists of n processes Π = {u1, u2 . . . un} and a bounded sequence of IS
objects {IS1, IS2 . . . ISe}. In the execution of a protocol in the IIS model, each process will
terminate after performing a writeread operation on each IS object in ascending order in the
sequence. The IIS model has been shown to have computational power equivalent to that of
the standard shared memory model in [1, 8].

Hoest and Shavit [15] introduced a new model called the non-uniform iterated snap-
shot (NIIS) model, a variant of the iterated immediate snapshot (IIS) model. The NIIS
model consists of n processes Π = {u1, u2 . . . un} and an unbounded sequence of IS objects
{IS1, IS2 . . .}. Each process starts with a process id i and its input value vi, and performs
a writeread operation on each IS object sequentially. By definition, each NIIS protocol is
determined by a decision map δ from a local state to output values (or a special value ⊥).
In the execution of an NIIS protocol δ, each time a process completes a writeread operation,
it checks whether it has reached a final state by applying δ to its local state variable. If δ
returns ⊥, the process continues to access the next IS object. Otherwise, the process uses the
return value of δ as its output and terminates. An NIIS protocol is said to be transparent to
some entity if this entity knows everything about the function δ. In this paper, we consider
full-information NIIS protocols in which each process uses its current state as an argument
to perform a writeread operation. After a writeread operation, its new state consists of its
process id i and the result of the writeread operation. Note that unlike the IIS model, the
NIIS model allows different processes to terminate after accessing a different number of IS
objects.

OPODIS 2024

19:4 A General Class of Reductions and Extension-Based Proofs

A configuration of a protocol consists of the state of each process and the contents of
each IS object. Since each process remembers its entire history and only process pi can write
to the i-th component of each IS object, the state of each IS object is included in states of the
processes, which means that a configuration is fully determined by the states of processes. A
process is active in a configuration if it is not terminated. A configuration is final if it has no
active processes. If C is a configuration and U is a set of processes that are poised to perform
writeread operations on the same IS object, then C{U} is the configuration that results from
C when the processes in U concurrently take a step in the protocol. A schedule of a protocol
from C0 is a finite or infinite sequence of sets of processes γ = U1, U2... such that there is a
sequence of configurations C0, C1... where processes in Ui is active in Ci−1 and Ci = Ci−1Ui

for all Ui in γ. A U -only schedule from C is a schedule in which only processes in U appear.
Each finite schedule from an initial configuration results in a reachable configuration. A
protocol is wait-free if each process is terminated after a finite number of steps.

A task T consists of a finite set of input vectors, I, a finite set of output vectors, O,
and a map T : I → 2O that represents the task specification. For each input vector x ∈ I,
T maps x to a non-empty set T (x) ⊆ O of output vectors. Suppose that A is a wait-free
protocol that has an initial configuration with input vector x for each x ∈ I. We say that
a protocol A solves T if, for each x ∈ I, every final configuration that is reached from the
initial configuration of A that has input vector x has output vector y and y ∈ T (x). If T
and T ′ are tasks with maps T and T

′ , respectively, their composition T ◦ T ′ is a task that
has the same set of input vectors as T and the same set of output vectors as T ′ . The map of
the composed protocol is defined by T ′ ◦ T (x) = ∪{T ′(y)|y ∈ T (x)}.

2.2 Extension-based proofs
In [3], Alistarh, Aspnes, Ellen, Gelashvili and Zhu formally defined the class of extension-
based proofs that generalizes the impossibility proof technique used in the FLP impossibility
result. The proof of impossibility is modeled as an interaction between a prover and a
wait-free NIIS protocol that claims to solve the task. The protocol is defined by a map δ

from the process states to the output values or a special value ⊥. The prover asks queries
to learn information about the protocol, such as the δ values of states of processes in some
reached configuration, in an effort to find a violation of the task specification, or construct
an infinite execution.

If there exists a prover that can defeat any protocol that claims to solve the task, we say
that the task has an extension-based impossibility proof. But if for each prover, an adversary
can adaptively design a protocol based on the queries made by the prover such that the
prover cannot win in the interaction, there is no extension-based proof for the impossibility
of the task. The adaptive protocol constructed by the adversary will be referred to as an
adversarial protocol as in [3].

Three classes of extension-based proofs are defined in [3, 10]. We will first introduce
restricted extension-based proofs. The interaction between the prover and a protocol
proceeds in phases. In each phase φ the prover starts with a finite schedule α(φ) and a set
of configurations A(φ) reached from some initial configurations of the task by α(φ) which
only differ in the input values of processes that are not in the schedule α. For φ = 1, the
schedule α(1) is the empty schedule and A(1) contains all initial configurations. The set of
configurations reached in phase φ is denoted by A′(φ) which is empty at the beginning of
phase φ. The prover queries the protocol by choosing a configuration C ∈ A(φ)

⋃
A′(φ) and

a set of processes U that are poised to perform writeread operations on the same IS object
in C. The protocol replies with the value of δ of each process in U in the configuration C

′

Y. Shi and W. Liu 19:5

resulting from the processes in U concurrently performing writeread operations, and the
prover adds the configuration C ′ to A′(φ). A chain of queries is a (finite or infinite) sequence
of queries such that if (Ci, Ui) and (Ci+1, Ui+1) are consecutive queries in the chain, then
Ci+1 is the configuration resulting from scheduling Ui from Ci. The prover is allowed to
construct finitely many chains of queries in a phase.

When the output values from the response of a query are not allowed output values for
the task, we say that the prover finds a violation of the task specification. Similarly, if a
prover can construct an infinite chain of queries, the protocol must admit that it is not
wait-free. If the prover does not find a violation or construct an infinite execution after a
finite number of queries or chains of queries, it must end the current phase and choose some
configuration C

′ ∈ A′(φ). Let α′ be the schedule such that C ′ is reached via α′ from some
configuration in A(φ). The schedule α(φ)α′ will be used as the initial schedule α(φ+ 1) in
the next phase. Suppose that the configuration C

′ is reached from an initial configuration
Cini. Then A(φ+ 1) consists of all configurations reached by the schedule α(φ+ 1) from
initial configurations that only differ from Cini by the input values of the processes that do
not appear in α(φ+ 1).

Extension-based proofs allow for an additional type of query. The prover performs an
output query by choosing a configuration C ∈ A(φ)

⋃
A′(φ), a set of processes U that are

poised to access the same IS object, and a value y ∈ {0, 1, ..., k}. If there is a U -only schedule
from C that results in a configuration in which a process in U outputs y, the protocol will
return some such schedule. Otherwise, the protocol returns NULL. Augmented extension-
based proofs provide a more general query, called an assignment query. An assignment
query consists of a configuration C ∈ A(φ)

⋃
A′(φ), a set of processes U , and an assignment

function f from a subset U ′ of U to the output values. If there is a U -only schedule from
C that results in a configuration in which the output value of each process u in U

′ is f(u),
the protocol will return some such schedule. Otherwise, the protocol will return NULL.
It is shown that an output query (C,U, y) can be simulated by a sequence of assignment
queries (C,U, fu) for each process u in [10]. Therefore, we will discuss only augmented
extension-based proofs in subsequent sections.

The tasks which have been proved to have no extension-based proofs of the impossibility
are still quite limited. It is proved in [3, 2] that the (n, k)-set agreement task does not have
extension-based proofs of the impossibility in the NIIS and NIS models. Some similar results
on the approximate agreement task are proved in [4, 16]. Shi and Liu [18] gave a topological
characterization of a colorless task to have no extension-based proofs of impossibility.

Attiya, Castañeda, and Rajsbaum [5] studied the limitations of valency arguments in the
IIS model. Note that in the IS and IIS models, extension-based proofs are too powerful. They
define the class of local valency impossibility proofs, that cannot show there is no wait-free
protocol for (n, n− 1)-set agreement, weak symmetry breaking or (2n− 2)-renaming in the
IIS model. Attiya, Fraigniaud, Paz and Rajsbaum [6] introduced an FLP-style impossibility
proof which is a simple case of extension-based proofs and local valency impossibility proofs,
and showed that there are no FLP-style proofs of the impossibility of any 1-dimensional
colorless task if it is not wait-free solvable.

2.3 A class of reductions in the NIIS model
If a task T reduces to a task S, then there exists a protocol A′

l+1 ◦Al ◦A′

l · · ·A1 ◦A′

1 that
solves the task T where each Ai is a protocol to solve the task S and each A

′

i is an NIIS
protocol for some task Ri. We assume that the number of instances of the protocol to solve
S is a constant. We say that (R1,R2,Rl,Rl+1) is a reduction from a task T to a task S.

OPODIS 2024

19:6 A General Class of Reductions and Extension-Based Proofs

Previous work[10] used a restricted version of this definition in which only one instance
in this composition is a protocol that solves the task S. The restricted version of reductions
in their paper is enough to prove the non-existence of extension-based proofs for many tasks.
But some reductions use multiple instances of S, such as the reduction given by [13] from
weak symmetry breaking to (n− 1)-set agreement, which uses two instances of (n− 1)-set
agreement.

3 Composing NIIS protocols

Let (R1,R2,Rl,Rl+1) be a reduction from a task T to a task S. Suppose that some
protocol, denoted as A, claims that it solve the task T . We denote the NIIS protocols
that solve R1,R2, . . .Rl,Rl+1 by A′

1, . . . A
′

l, A
′

l+1. A difference between A and A
′

i, for each
1 ≤ i ≤ l + 1, is that everything about A′

i is known, which is not true for A. We can assume
without loss of generality that all processes will terminate after accessing the same number
of IS objects in the execution of A′

i. The composed protocol A′

l+1 ◦Al ◦A′

l · · ·A1 ◦A′

1 should
solve T where each Ai is an instance of A. Note that each Ai is an NIIS protocol, and we
cannot assume that all processes will terminate after accessing the same number of IS objects
in the execution of Ai.

We consider the case where there are two NIIS protocols, since a more general composition
can be easily obtained if we can compose two NIIS protocols.

3.1 Composing two NIIS protocols
The composition of NIIS protocols is much more complicated than the composition of IIS
protocols, as processes can terminate after different rounds during the execution of some
NIIS protocol. To compose IIS protocols, we can simply have each process execute IIS
protocols sequentially. Since each process ends the execution of a protocol after the same
round, the information used in the execution of different IIS protocols will not be mixed
together. But this is not true for NIIS protocols, since processes accessing the same IS object
in the composed protocol may be running different NIIS protocols. We need a mechanism to
separate information from different NIIS protocols.

Let A1 and A2 be NIIS protocols such that each output from A1 is a possible input for A2.
We temporarily assume that everything about A1 and A2 is known (this is not true in the
construction of PS). In [10], Brusse and Ellen provided an implementation of the composed
protocol A2 ◦A1 in the NIS model using estimate vectors introduced by Borowsky and Gafni
[9]. The composition of two NIIS protocols in our paper can use almost identical techniques.
But since this is quite important in this paper, we have to explain it in detail. Let IS′

h,
IS

′′

h and ISh denote the h-th IS object accessed by processes in the schedules of A1, A2,
and A2 ◦A1, respectively. Each process ui simulates the steps of ui in protocol A1 followed
by the steps of ui in protocol A2. The result of a writeread operation in simulation of A1
can be obtained from some writeread operation of the composed protocol. Since different
processes may terminate after different rounds in A1, the result of a writeread operation in
the simulation of A2 cannot be easily obtained. Each process locally maintains an infinite
sequence of estimate vectors, each with n components. The h-th estimate vector of process
ui is a potential output of the writeread operation on IS

′′

h in the simulation of A2.
Let γ be a schedule of the composed protocol A2 ◦A1 from some initial configuration Cini.

Each process updates its estimate vectors during this schedule of the composed protocol
A2 ◦ A1, and finalizes its i-th estimate vector after collecting enough information. This
estimate vector can be proved to be equivalent to the return value of the writeread operation

Y. Shi and W. Liu 19:7

to IS
′′

i by the same process in some schedule of the second NIIS protocol. We can call
this schedule the restriction of γ to A2. A process will apply the function δ that specifies
the second protocol to the finalized estimate vector to decide whether it should end the
simulation of A2 (and which value to output if so).

We give some pseudocode in Algorithm 1. The process ui performs writeread operations
to IS1, IS2 · · · sequentially, with hi indicating the next IS object to be accessed. The value
written to ISi by a process consists of three parts: r (round number), state1 (state in the
simulation of A1) and state2 (state in the simulation of A2). The round number is 0 when
the process is simulating A1, is r when simulating the r-round of A2. The attribute state2 is
a sequence of estimate vectors.

When a process simulates A1, it computes the result of the writeread operation on IS
′

i

from the result of the writeread operation on ISi by ignoring the attribute state2. However,
a process ui will update its estimate vectors using the result as described in Algorithm 2. ui

updates the k′-th component of its k-th estimate vector when this component is blank and
the result of a writeread operation on IShi contains some estimate vectors from some other
process, where the k′ -th component of its k-th estimate vector is not blank. After a process
ui has finished simulating A1, it modifies its first estimate vector to include its output of A1
as the input for A2 and then tries to finalize it. To finalize its ri-th estimate vector, for any
ri ≥ 1, the process repeatedly performs a writeread operation on the next IS object IShi

(to contain its first ri estimate vectors). The process updates its estimate vectors just as
it does when simulating A1. The process does not finalize its ri-th estimate vector in two
cases. The first case is that it sees some other process u′

i accessing IShi when that process
was simulating A1 or an earlier round of A2. This is to avoid process u′

i, which is simulating
an earlier round, from missing the finalized ri-th estimate vector of process ui. The other
case is that it changes its ri-th estimate vector using information from IShi

.
Otherwise, the process finalizes its ri-th estimate vector. When a process finalizes its

ri-th estimate vector, this vector will be used as the output of its writeread operation on IS′′

ri

in the simulation of A2. Note that it may take many rounds of the composed protocol for a
process to finalize its current estimate vector, i.e. to take a step in the simulated execution.
Based on the return values of its ri-th estimate vector, the process terminates its simulation
of A2 or modifies its (ri + 1)-th estimate vector to include its new state in the simulation of
A2 and continues to finalize its (ri + 1)-th estimate vector.

3.2 Some properties of the composition
Now we present some properties that are necessary in Section 4. The first property was
shown in [10].

▶ Lemma 1. The composed protocol A2 ◦A1 is wait-free if both A1 and A2 are wait-free.

The second property is about restrictions. Given an initial configuration Cini of A2 ◦A1,
the composed protocol simulates a schedule of A1 from Cini, followed by a schedule of A2,
where the output of the first schedule serves as input to the second schedule. Let γ be
a schedule of A2 ◦ A1 from Cini. The restriction of γ to A1 is defined as the schedule γ1
obtained from γ by removing all the occurrences of each process after simulating A1. Each
process ui finishes its simulation of A1 with output yi during the schedule γ of A2 ◦A1 from
Cini if and only if ui terminates with output yi during the schedule γ1 of A1 from Cini.

Let U be the set of processes that complete their simulation of A1 during γ and, for each
ui ∈ U , let yi be its simulated output from A1. Let C2 be any initial configuration of A2 in
which each process ui ∈ U has input yi. We have to prove that, for each l, the l-th estimate

OPODIS 2024

19:8 A General Class of Reductions and Extension-Based Proofs

Algorithm 1 The composition of two NIIS protocols A1 and A2.
Input : Decision functions δ1 and δ2 representing A1 and A2, input value Ii

Output : Output value Oi

1 Function Main(i, n):
2 IS1, IS2 · · · ← an infinite sequence of IS objects /* shared by processes */
3 Ei ← an infinite sequence of estimate vectors, each with n components
4 ri ← 0 /* current round, which is 0 when simulating A1, and is the round number in A2 when

simulating A2 */
5 si ← (ri, (i, Ii),⊥) /* current state of simulation, a class with three attributes: r(round

number), state1(state in the simulation of A1) and state2 (state in the simulation of A2)
*/

6 hi ← 1 /* next IS object to access */
7 while δ1(si.state1) ==⊥ do
8 states_of_processes← IShi

.writeread(si)
9 hi ← hi + 1

10 si.state1← {states_of_processes[k].state1|k ∈ [1, n]}
11 for i

′
← 1 to n do

12 update_ev(1, Ei, states_of_processes[i
′
])

13 end
14 end
15 /* End of the simulation of A1 */
16 ri ← 1
17 si ← (ri, si.state1, δ1(si.state1))
18 Ei[ri][i]← δ1(si.state1)
19 while δ2(Ei[ri][i]) ==⊥ do
20 while True do
21 can_finalize← true
22 states_of_processes← IShi

.writeread((ri, si.state1, [Ei[1], ...Ei[ri]]))
23 hi ← hi + 1
24 for i

′
← 1 to n do

25 if states_of_processes[i
′
] ̸=⊥ then

26 if states_of_processes[i
′
].r < ri then

27 can_finalize← false
28 else
29 if update_ev(ri, Ei, states_of_processes[i

′
]) then

30 can_finalize← false
31 end
32 end
33 end
34 end
35 if can_finalize then
36 break
37 end
38 end
39 ri ← ri + 1
40 Ei[ri][i]← Ei[ri − 1]
41 end
42 return δ2(Ei[ri][i])

Algorithm 2 update estimate vectors.
1 Function update_ev(rmin, Ei, state_of_process):
2 if state_of_process.r < rmin then
3 return false
4 end
5 update← false
6 for k ← rmin to state_of_process.r do
7 for k

′
← 1 to n do

8 if Ei[k][k
′
] ==⊥ & state_of_process.state2[k][k

′
] ̸=⊥ then

9 Ei[k][k
′
]← state_of_process.state2[k][k

′
]

10 update← true

11 end
12 end
13 end
14 return update

15

Y. Shi and W. Liu 19:9

vectors that have been finalized by the processes in U correspond to the responses of the
writeread operations in some U -only schedule γ2 of A2 from C2. Each process ui finishes its
simulation of A2 with output zi during the schedule γ of A2 ◦A1 from Cini if and only if ui

terminates with output zi during the schedule γ2 of A2 from C2. The restriction of γ to A2
is defined as the schedule γ2. Note that we are using the same definition as in [10] except
that we are using the NIIS model rather than the NIS model.

▶ Lemma 2. The estimate vectors finalized by the processes during the schedule γ of A2 ◦A1
from Cini correspond to the responses of the writeread operations during the schedule γ2,
which is the restriction of γ to A2, starting from C2.

Proof. For any simulated IS object IS′′

r of A2, let Qh denote the set of processes that have
finalized their r-th estimate vectors after performing writeread operations to ISh of the
composed protocol A2 ◦ A1. For any indices j, j′ and k, if Ej [r][k] ̸=⊥ and Ej′ [r][k] ̸=⊥,
then Ej [r][k] = Ej′ [r][k]. This is because the value Ej [r][k] can only be defined on line 40
by the process with id k, and other processes are only allowed to copy this value into their
estimate vectors on line 9 of Algorithm 2. We can define a partial order on the r-th estimate
vectors. Given the indices j and j′ , if for any k, Ej [r][k] =⊥ or Ej [r][k] = Ej′ [r][k] ̸=⊥, then
Ej [r] is ordered before Ej′ [r] (i.e. Ej′ [r] contains each non-blank value in Ej [r]). If there is
a partial order defined on the set of finalized r-th estimate vectors, then these finalized r-th
estimate vectors can be seen as the result of writeread operations on IS

′′

r .
Suppose that the process ui is in Qh+1 but not in Qh, i.e. ui finalizes its r-th estimate

vector after accessing Qh. Consider the response of the writeread operation by a process
ui on ISh. According to our implementation (checks on can_finalize in Algorithm 1), the
r-th estimate vector of the process ui is ordered after or concurrently with the r-th estimate
vector of ui′ if states_of_processes[i′] ̸=⊥ (Line 25 in algorithm 1). For other index i

′

where states_of_processes[i′] =⊥, the process ui′ will see the r-th finalized estimate vector
of ui before finalizing its r-th estimate vector, since ui always includes Ei[r] in its written
value to ISh+1, ISh+2 · · · . This means that the r-th finalized estimate vector of ui is ordered
before that of ui′ . There exists a total order on the finalized r-th estimate vectors.

For each index r, we divide the processes that have finalized its r-th estimate vector into
a sequence SEQr of sets, where processes having the same r-th estimate vector are in the
same set. These sets are ordered using the partial order on the finalized r-th estimate vectors.
The restriction of γ to A2 is defined as the concatenation SEQ1 ◦ SEQ2 · · · . ◀

The last property is related to extension-based proofs. An assumption of the algorithm
to compose two NIIS protocols is that the two NIIS protocols are transparent i.e. the entity
that tries to compose them knows everything about the functions δ1, δ2. In the definition
of extension-based proofs, the protocol that claims to solve S is not transparent. We show
that if an entity is allowed to interact with NIIS protocols that are not transparent just as a
prover does, this entity can still compose two NIIS protocols.

▶ Lemma 3. When two NIIS protocols are not transparent protocols, if an entity are allowed
to submit queries to the protocols that are not transparent, the information obtained through
queries is sufficient for the composition of NIIS protocols.

Proof. When composing two NIIS protocols A1 ◦A2, updates and finalization of estimate
vectors are independent of the protocols A1, A2. The functions δ1, δ2 representing protocols
A1, A2 are only used when some estimate vector is finalized to determine whether to terminate
the simulation of A1, A2 on line 7, 19 of Algorithm 1. By assumption, this entity can submit
queries to the protocol to learn about this information. ◀

OPODIS 2024

19:10 A General Class of Reductions and Extension-Based Proofs

3.3 Composing multiple NIIS protocols

The composition of multiple NIIS protocols Am · · ·A2◦A1 can be derived from the composition
of two NIIS protocols. Inductively, Am · · ·A2 ◦A1 is the composition of A1 and Am · · ·A3 ◦A2.
Let γ be a schedule of Am · · ·A2 ◦A1 from some initial configuration C. Let γ(1) denote the
restriction of γ to A1, γ(2) denote the restriction of γ to Am · · ·A3 ◦A2. The restriction of γ
to Aj , where 2 ≤ j ≤ m, can be defined inductively as the restriction of γ(2) to Aj . The
properties proved in Section 3.2 also apply to the composition of multiple NIIS protocols.

4 Reductions and extension-based proofs

4.1 Simulation

In the following sections, we extend the proof in [10] to more general reductions. Suppose
that T reduces to S and PT is an augmented extension-based prover that can win against
any protocol that claims to solve T . Our goal is to construct an augmented extension-based
prover PS for task S that can also win against any protocol A that claims to solve S.

PS will simulate an interaction between PT and the composed protocol A′

l+1 ◦ Al ◦
A

′

l · · ·A1 ◦ A′

1, and will use restrictions to interact with multiple copies of A, as shown in
Figure 1. There is an interaction between PT and the composed protocol in Figure 1. But
at the same time, if we regard the elements within the black frame as a prover PS , the
interaction can be seen to happen between PS and multiple instances of A.

If the prover PT submits a query in the simulation, the prover PS will reinterpret this
query as queries to some instances of A and will use the responses of the instances of the
protocol A and its knowledge about the protocols A′

1, · · ·A′

l, A
′

l+1 to generate a response to
the original query. The most important idea of this section is that during the interaction
between PT and the composed protocol, PS interacts with each instance Ai to resume the
logical executions of the NIIS protocols. Since the prover PT is going to win against the
composed protocol, there must be something wrong within the workflow. This can only
happen in interactions between PS and some copy of A, which means that PS wins in the
interaction with some copy.

Figure 1 Simulation workflow.

Y. Shi and W. Liu 19:11

4.2 Multiple-instance extension-based proofs

The prover PS will independently interact with a constant number of instances of the protocol
A. Note that we are using a different definition of prover here. In the standard definition, an
extension-based prover interacts with a single instance of the protocol. A multiple-instance
extension-based prover interacts with multiple instances of the same protocol A and maintains
a separate set of arguments (i.e. all arguments an extension-based prover will maintain
during its interaction with a protocol) recording its interaction with each instance of A. For
example, ϕi and ϕj , representing the current phases of interactions with Ai and Aj can be
different.

A multiple-instances prover submits queries to each instance individually. It can use the
response from any query to decide what to do next (such as how to submit a query in the
interaction with another instance of A). But we do not allow a multiple-instance prover
to use responses from different instances to produce a conflict even when the protocol A
responds with different output values for a single schedule in its interaction with different
instances. A multiple-instance prover wins if it can win in the interaction with some instance
using only the information obtained from this instance. Otherwise, the protocol wins. It
is easy to see that a multiple-instance extension-based prover is at least as powerful as
an extension-based prover since a multiple-instance extension-based prover can choose to
interact with one instance only.

4.3 Construction of PS

Let γ be a schedule of the composed protocol A′

l+1 ◦ Al ◦ A′

l · · ·A1 ◦ A′

1 from some initial
configuration Cini to some configuration C. The restriction of γ to a protocol A′

i or Ai

is defined in Section 3.3, denoted by γ
′

i and γi. By Lemma 3, given a schedule γ of the
composed protocol, the prover PS can compute the restriction of γ to any A′

i or Ai.
An initial configuration Ci of Ai is defined as compatible with some configuration C

′

iγ
′

i

of A′

i if the output value of every process terminated in C
′

iγ
′

i is the input value of the same
process in Ci. An initial configuration C

′

i+1 of A′

i+1 is defined to be compatible with some
configuration Ciγi of Ai if the output value of every process terminated in Ciγi is the input
value of the same process in C

′

i+1.
In the simulation, PS maintains the following invariant. Suppose that PT has reached

the configuration C = Ciniγ of the composed protocol A′

l+1 ◦Al ◦A′

l · · ·A1 ◦A′

1. Then there
exist initial configurations C ′

1, C1, C
′

2, ..., Cl, C
′

l+1 of the protocols A′

1, A1, A
′

2, . . . Al, A
′

l+1
such that, for all 1 ≤ i ≤ l, Ci is compatible with C

′

iγ
′

i , C
′

i+1 is compatible with Ciγi, and
PS has reached configuration Ciγi in its interaction with Ai. Let ψ denote the current phase
of the simulated interaction, and let ϕi denote the current phase of Ai for each 1 ≤ i ≤ l.
αi(ϕi) is a prefix of γi for each 1 ≤ i ≤ l.

At the beginning of the simulation, PT starts with an empty schedule and has reached the
initial configurations of the composed protocol A′

l+1 ◦Al ◦A′

l · · ·A1 ◦A′

1. For each 1 ≤ i ≤ l,
the interaction between PS and Ai also starts with an empty schedule and has reached
the initial configurations of Ai. Since every initial configuration of A′

i is compatible with
every initial configuration of Ai, the invariant holds at the start of phase 1 of the simulated
interaction. We will discuss the strategy that the prover PS will use in interactions with
these instances of A when PT submits a query, submits an assignment query, or ends a phase
in the simulation.

OPODIS 2024

19:12 A General Class of Reductions and Extension-Based Proofs

4.3.1 Responding to queries
Suppose that the prover PT submits a query (C,U) in phase ψ of the simulated interaction,
where C is some configuration and U is a set of processes that are poised to access the
same IS object. The prover PS must respond with the δ values of the processes in U in the
configuration C{U} resulting from scheduling U from C in the composed protocol. We can
express the configuration C as Ciniα(ψ)β where Cini is an initial configuration since the
configuration C has been reached in phase ψ. Let γ = α(ψ)β. The invariant holds before
the query: Each interaction instance has reached some configuration Ciγi where Ci is an
initial configuration of Ai compatible with C

′

iγ
′

i . And C
′

i+1 is compatible with Ciγi.
The processes in U in the configuration C of the composed protocol A′

l+1◦Al◦A
′

l · · ·A1◦A′

1
can be simulating different protocols as described in Section 3.1. For each process u in
U , the NIIS protocol that u is simulating can be calculated. Therefore, we can separate
the processes in U into groups {U ′

1, U1, · · ·U ′

l , Ul, U
′

l+1}. For example, U ′

1 consists of the
processes that simulate A′

1. If some process u in some group Uj or U ′

j finalizes its current
estimate vector (or is simulating the first protocol A′

1) after accessing the new IS object, u
takes a step in its current simulated NIIS protocol. Otherwise, it will not take a step in its
current simulation. Let V ′

i and Vi be the set of processes that take a step in the simulated
protocol A′

i and Ai, respectively. It is easy to see that Vi ⊆ Ui and V ′

i ⊆ U
′

i . Let V ′

i,k be the
processes in V

′

i that are poised to access the k-th simulated IS object. And with the same
definition, we have Vi,k. There are several cases, depending on the steps that the processes
in V

′

i,k or Vi,k take in the simulation.
If processes in V ′

i,k simulate some A′

i and do not execute the last step, they still simulate
A

′

i after taking a step. Let C ′

res be the configuration resulting from scheduling V ′

i,k from
C

′

iγ
′

i . No more processes terminate in the simulated execution of A′

i, and Ci is compatible
with C

′

res. The invariant continues to hold. PS returns the states of V ′

i,k in C
′

res to PT .
If processes in V

′

i,k simulate some A′

i and execute the last step, each process will output
a value and terminate in the simulation of A′

i since processes terminate after accessing the
same number of IS objects in any execution of A′

i (argued in the beginning of Section 3). Let
C

′

res be the configuration resulting from scheduling V ′

i,k from C
′

iγ
′

i . PS returns the states of
V

′

i,k in C
′

res to PT . Ci has to be changed since more processes have been terminated in the
simulation of A′

i. We can choose a new initial configuration Ci of Ai in which each newly
terminated process p will use the output of A′

i as input and every other process has the
same input as the original Ci. The new initial configuration Ci is compatible with C ′

res. The
newly terminated processes do not appear in γi, so γi is a valid schedule from the new initial
configuration Ci. Invariant holds in this case.

Suppose that the processes in Vi,k simulate some Ai. The prover PS can submit the
query (Ciγi, Vi,k) to the protocol Ai and return a response to PT . If no process terminates
in the simulation, the invariant holds, since γi{Vi,k} is the new restriction to Ai and will
not change the initial values of active processes in the simulation of Ai or A′

i+1. Otherwise,
some processes in Vi,k terminate in the simulation of Ai, and the initial configuration C

′

i+1
of A′

i+1 must be changed. For each terminated process u in Vi,k, the input of A′

i+1 is the
output of Ai. Let Cres be the configuration resulting from scheduling Vi,k from Ciγi. The
new initial configuration C

′

i+1 of A′

i+1 is compatible with Cres. The invariant still holds.
The prover PS may submit multiple queries (Ciγi, Vi,k) for different k to some protocol Ai.

Operations on different simulated IS objects will not affect each other. Therefore, submitting
these queries in different orders will not change the response of each query and the internal
variables (such as the set of configurations reached in phase ϕi) of the interaction between
PS and Ai. Therefore, the invariant holds after all these queries.

Y. Shi and W. Liu 19:13

4.3.2 Responding to assignment queries
Suppose that the prover PT submits an assignment query (C,U, f) in phase ψ of the simulated
interaction, where U is a set of processes and f is a function from a subset U ′ of U to the
output values. The prover PS has to reply to PT whether there exists a U -only schedule
from C to a configuration in which the output value of each process u in U ′ is f(u). We will
say that this resulting configuration satisfies the requirement of f . Since PT will not reach
any new configuration to respond to assignment queries, the invariant will continue to hold.

Let γ be the schedule from some initial configuration to C. By the invariant, for 1 ≤ i ≤ l,
PS has reached the configuration Ciγi in the i-th interaction with A, for some initial
configuration Ci of protocol Ai compatible with C ′

iγ
′

i , where γi and γ′

i are restrictions to Ai

and A
′

i. And C
′

i+1 is compatible with Ciγi.
The prover PS will treat all protocols A′

i and Ai as black boxes that allow assignment
queries. This is possible for each Ai since the prover PS can submit assignment queries to
protocol Ai. The prover PS knows everything about the protocol A′

i, so assignment queries
are also possible for A′

i. We regard protocols of both types as black boxes to simplify our
proof. At first, the prover PS computes a set of assignment queries to Al ◦ A′

l · · ·A1 ◦ A′

1
(note that A′

l+1 does not appear), denoted by F2l. The prover PS repeats this computation
by removing the last black box until only one black box remains. We define F2l+1 as the
original query (C,U, f).

First, PS computes F2l, which is the set of assignment queries to Al ◦ A′

l · · ·A1 ◦ A′

1.
In the following discussions, we emphasize that schedules for different protocols are used.
Whenever we talk about a schedule, we explicitly mention the protocol. Let Cc

2l+1 be some
initial configuration of the protocol A′

l+1 compatible with Clγl, where there is a U -only
schedule β of A′

l+1 from Cc
2l+1γ

′

l+1 to a configuration that satisfies the requirement of f . Let
U

′ denote the set of processes obtained from U by removing the processes that appear in
γ

′

l+1.
Let C ′ be the configuration of the composed protocol Al ◦A′

l · · ·A1 ◦A′

1 (note that A′

l+1 is
removed here), where the processes in Π − (U −U

′) are in the same state as the configuration
C and the processes in U − U

′ have terminated with their input values in C
′

l+1. Intuitively,
suppose that the configuration C is reached from some initial configuration Cini by a schedule
γ, then C

′ is also reached from Cini by γ, where terminated processes omit the additional
steps assigned by the schedule. Now we will prove that there exists a U ′-only schedule of
the composed protocol Al ◦A′

l · · ·A1 ◦A′

1 from C
′ to some configuration where the output

values of U ′ are the input values of Cc
2l+1 if and only if there exists a U -only schedule of

A
′

l+1 ◦Al ◦A′

l · · ·A1 ◦A′

1 from C to some configuration whose output values satisfy f .
Suppose that there is a U

′-only schedule β
′ of Al · · ·A′

1 from C
′ to a configuration

whose output values are the input values of Cc
2l+1. β′ can be used directly as a schedule of

A
′

l+1 ◦Al · · ·A′

1. We cannot concatenate the schedule β′ and β, since β (a schedule of the
protocol A′

l+1) cannot be used directly as a schedule of A′

l+1 ◦ Al · · ·A′

1. However, we can
construct a U -only schedule βc of A′

l+1 · · ·Al ◦A
′

l · · ·A1 ◦A′

1 whose restriction to A′

l+1 is γ′

l+1β.
Let β = {U1}{U2} · · · {Ue}, then βc is defined as β′{U1} · · · {U1}{U2} · · · {U2}{Ue} · · · {Ue}
such that for each set of processes Ui in β, processes in Ui concurrently access IS objects
until they all finalize their i-th estimate vectors when they are poised to access the i-th
IS object in the simulation of A′

l+1. Their estimate vectors are the same according to the
checks performed when an estimate vector is finalized. β′

βc is a U -only schedule from C to
a configuration that satisfies the requirement of the function f .

OPODIS 2024

19:14 A General Class of Reductions and Extension-Based Proofs

If there is a U -only schedule β
′′ from C to some configuration Cd that satisfies the

requirement of f , Cd can be seen as an output configuration of the last protocol A′

l+1.
Therefore, there exists an initial configuration Cc

2l+1 of the protocol A′

l+1 compatible with
Clγl, and there is a U -only schedule β of A′

l+1 from C
′

l+1γ
′

l+1 to Cd. Consider the U -
only schedule β′′ = c1 ◦ c2 · · · cm from C to Cd of the composed protocol, where each ci

is a set of processes. We will construct a U
′-only schedule based on β

′′ by stopping the
processes that simulate A′

l+1 from taking actions. Let E = e1 ◦ e2 · · · em be a sequence,
where ei is the set of processes that simulate A′

l+1 in the configuration reached from C by
the schedule c1 ◦ c2 · · · ci. The processes in U − U

′ already simulate the protocol A′

l+1, so
U −U

′ ⊆ e1 ⊆ e2 · · · em. The schedule c1 − e1, c2 − e2 · · · cm − em is a U ′ -only schedule of the
composed protocol. Deleting the processes in ei will not change the estimate vectors finalized
by processes that do not simulate A′

l+1, since the processes in ei write only information
about the simulation of A′

l+1, which will not affect the simulation of previous NIIS protocols.
Therefore, c1 − e1, c2 − e2 · · · cm − em is a U ′ -only schedule from C

′ to a configuration where
the output values are the input values of Cc

2l+1.
For each such initial configuration Cc

2l+1, we can submit an assignment query (C ′
, U

′
, f

′)
to the composed protocol Al ◦ A′

l · · ·A1 ◦ A′

1 in which f
′ is defined as a function from the

processes in U ′ to their output values in configuration Cc
2l+1. If a U ′ -only schedule is returned,

there is a U -only schedule for the assignment query (C,U, f) to A′

l+1 ◦ Al ◦ A′

l · · ·A1 ◦ A′

1.
Otherwise, the prover PT receives the response NULL. F2l consists of all these assignment
queries (C ′

, U
′
, f

′).
We continue to trace back: Suppose that Fi+1 is already calculated. For each assignment

query (C ′
, U

′
, f

′) in Fi+1, the prover PS computes each initial configuration Cc
i+1. Cc

i+1 has
two requirements. It must be compatible with Ceγe where Ce is the initial configuration
(some Cj or C ′

j in the invariant) of the i-th black box and γe is the restriction (some γj

or γ′

j in the invariant) to this black box, and there must exist a U ′-only schedule β of the
(i+ 1)-th black box from Cc

i+1γe+1 to a configuration that satisfies the function f
′ , where

γe+1 is the restriction of γ to the (i + 1)-th black box. To decide whether such a U ′-only
schedule β exists, the prover PS can submit assignment queries to the (i+ 1)-th black box.
Let U ′′ denote the set of processes obtained from U

′ by removing the processes in γe+1. For
each initial configuration Cc

i+1, there is an assignment query (C ′′
, U

′′
, f

′′) in which f
′′ is

defined as a function from the processes in U
′′ to the values in the configuration Cc

i+1. As
proved in the above example, there is a U ′′ -only schedule from C

′′ to a configuration whose
output values are the input values of Cc

i+1 if and only if there is a U ′ -only schedule that can
serve as a response to the assignment query (C ′

, U
′
, f

′). Fi consists of all these assignment
queries (C ′′

, U
′′
, f

′′).
This procedure ends when F0 is computed. If F0 is not empty, there exists a U -only

schedule from C to some configuration that satisfies the requirement of f . Otherwise, the
prover PT gets a response of NULL.

4.3.3 Ending phases
Suppose that the prover PT decides to end its current phase ψ by choosing a configuration
C = Ciniγ of the composed protocol A′

l+1◦Al◦A
′

l · · ·A1◦A′

1. By the invariant, PS has reached
configuration Ciγi in the i-th interaction with protocol A, for some initial configuration Ci

of Ai.

Y. Shi and W. Liu 19:15

For Ai that does not have an interaction with PS during the phase ψ of the simulation,
the prover PS does nothing. For a protocol instance Ai in which at least one process has
taken a simulation step during the schedule γ of the composed protocol, the prover PT has
reached the configuration Ciγi. The prover PS ends phase ϕi by choosing configuration Ciγi,
sets αi(ϕi + 1) = γi and proceeds to the next phase in the interaction with Ai.

4.3.4 The prover PS will win
The prover PT will finally win in the simulated interaction with the composed protocol
A

′

l+1 ◦Al ◦A′

l · · ·A1 ◦A′

1. We will analyze all possible circumstances and show that PS will
win against one of the instances of the protocol A.

The first case is that the prover PT finds a configuration, C, in which the output values
violate the specification of the task T . For example, the processes in C output different values
when T is the consensus task. By the invariant, the prover PS has reached configuration Ciγi

in the interaction with Ai. Suppose that for each interaction instance, the output values of
the processes in Ciγi satisfy the task specification of S. The output values in configuration C
will satisfy the task specification of T as T reduces to S, which is a contradiction. Therefore,
there exists an interaction with some Ai that reaches a configuration with incorrect output
values. The prover PS finds a violation of the task specification and wins.

The second case is that the prover PT constructs an infinite chain of queries in the
interaction. Each protocol A′

i is wait-free, so an infinite schedule is not possible in it.
Estimation vectors will not cause an infinite schedule of the composed protocol, as proved in
[10]. Therefore, there must be an interaction with some A instance in which the prover PS

also constructs an infinite chain of queries. In this situation, the prover PS wins.
The last case is that the prover PT constructs infinite phases in the simulation. By

definition, PT can submit finitely many queries or assignment queries in one phase. Each
time the prover PT ends its phase by choosing a schedule, at least one step is taken by some
set of processes. Since each protocol A′

i is wait-free, the prover PT can only end a finite
number of phases by simulating only these protocols. For other phases, there must be some
protocol Ai that will make progress and, therefore, end its current phase after the prover
PT ends a finite number of phases (because an estimate vector can take several rounds to
finalize). The number of A protocol instances is finite, so there must be an interaction with
some A instance in which the prover PS also constructs infinite phases. The prover PS still
wins.

▶ Theorem 4. If a task T reduces to a task S using multiple instances of task S and there
is an augmented extension-based proof of the impossibility of solving the task T in a wait-free
manner in the NIIS model, then there is an multiple-instance extension-based proof of the
impossibility of solving the task S in a wait-free manner in the NIIS model.

5 Conclusions

In this paper, we partially solve an open question proposed in [10]. If there is a reduction
using multiple instances of S from T to S and there is no multiple-instance extension-based
proof for S, then there is no augmented extension-based proof for T . Although many
reductions that appear in the literature reduce to a single instance of a problem, our result
applies to reductions that reduce to a constant number of different instances of that problem.
An open problem that remains is to extend our results to more general reductions (such
as Turing reductions). Another open problem is whether multiple-instance extension-based
provers are strictly more powerful than extension-based provers.

OPODIS 2024

19:16 A General Class of Reductions and Extension-Based Proofs

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. J. ACM, 40(4):873–890, September 1993. doi:10.1145/153724.
153741.

2 Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-based
proofs fail. Proceedings of the 51’st Annual ACM Symposium on Theory of Computing (STOC),
pages 986–996, 2019. doi:10.1145/3313276.3316407.

3 Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-based
proofs fail. SIAM Journal on Computing, 52(4):913–944, 2023. doi:10.1137/20M1375851.

4 Dan Alistarh, Faith Ellen, and Joel Rybicki. Wait-free approximate agreement on graphs.
In Structural Information and Communication Complexity: 28th International Colloquium,
SIROCCO 2021, Wrocław, Poland, June 28 – July 1, 2021, Proceedings, pages 87–105, Berlin,
Heidelberg, 2021. Springer-Verlag. doi:10.1007/978-3-030-79527-6_6.

5 Hagit Attiya, Armando Castañeda, and Sergio Rajsbaum. Locally solvable tasks and the
limitations of valency arguments. Journal of Parallel and Distributed Computing, 176:28–40,
2023. doi:10.1016/j.jpdc.2023.02.002.

6 Hagit Attiya, Pierre Fraigniaud, Ami Paz, and Sergio Rajsbaum. One Step Forward, One
Step Back: FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks. In
Rotem Oshman, editor, 37th International Symposium on Distributed Computing (DISC
2023), volume 281 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–
4:23, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.DISC.2023.4.

7 Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asynchron-
ous computations. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. Association for Computing
Machinery. doi:10.1145/167088.167119.

8 Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and fast renaming. In
Proceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’93, pages 41–51, New York, NY, USA, 1993. Association for Computing Machinery.
doi:10.1145/164051.164056.

9 Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of
wait-free computation (extended abstract). In Proceedings of the Sixteenth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’97, pages 189–198, New York,
NY, USA, 1997. Association for Computing Machinery. doi:10.1145/259380.259439.

10 Kayman Brusse and Faith Ellen. Reductions and extension-based proofs. In Proceedings of the
2021 ACM Symposium on Principles of Distributed Computing, PODC’21, pages 497–507, New
York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3465084.3467906.

11 Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally asyn-
chronous systems. Inf. Comput., 105(1):132–158, July 1993. doi:10.1006/inco.1993.1043.

12 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985. doi:10.1145/3149.
214121.

13 Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus tasks: Renaming is weaker
than set agreement. In Proceedings of the 20th International Conference on Distributed
Computing, DISC’06, pages 329–338, Berlin, Heidelberg, 2006. Springer-Verlag. doi:10.1007/
11864219_23.

14 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858–923, November 1999. doi:10.1145/331524.331529.

15 Gunnar Hoest and Nir Shavit. Towards a topological characterization of asynchronous com-
plexity. In Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’97, pages 199–208, New York, NY, USA, 1997. Association for Computing
Machinery. doi:10.1145/259380.259440.

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/3313276.3316407
https://doi.org/10.1137/20M1375851
https://doi.org/10.1007/978-3-030-79527-6_6
https://doi.org/10.1016/j.jpdc.2023.02.002
https://doi.org/10.4230/LIPIcs.DISC.2023.4
https://doi.org/10.4230/LIPIcs.DISC.2023.4
https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/164051.164056
https://doi.org/10.1145/259380.259439
https://doi.org/10.1145/3465084.3467906
https://doi.org/10.1006/inco.1993.1043
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/11864219_23
https://doi.org/10.1007/11864219_23
https://doi.org/10.1145/331524.331529
https://doi.org/10.1145/259380.259440

Y. Shi and W. Liu 19:17

16 Shihao Liu. The Impossibility of Approximate Agreement on a Larger Class of Graphs. In
Eshcar Hillel, Roberto Palmieri, and Etienne Rivière, editors, 26th International Conference
on Principles of Distributed Systems (OPODIS 2022), volume 253 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 22:1–22:20, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.OPODIS.2022.22.

17 Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The to-
pology of public knowledge. SIAM J. Comput., 29(5):1449–1483, March 2000. doi:
10.1137/S0097539796307698.

18 Yusong Shi and Weidong Liu. Colorless tasks and extension-based proofs, 2024. arXiv:
2303.14769.

OPODIS 2024

https://doi.org/10.4230/LIPIcs.OPODIS.2022.22
https://doi.org/10.1137/S0097539796307698
https://doi.org/10.1137/S0097539796307698
https://arxiv.org/abs/2303.14769
https://arxiv.org/abs/2303.14769

	1 Introduction
	1.1 Our contribution

	2 Preliminaries
	2.1 NIIS model
	2.2 Extension-based proofs
	2.3 A class of reductions in the NIIS model

	3 Composing NIIS protocols
	3.1 Composing two NIIS protocols
	3.2 Some properties of the composition
	3.3 Composing multiple NIIS protocols

	4 Reductions and extension-based proofs
	4.1 Simulation
	4.2 Multiple-instance extension-based proofs
	4.3 Construction of P_{S}
	4.3.1 Responding to queries
	4.3.2 Responding to assignment queries
	4.3.3 Ending phases
	4.3.4 The prover P_{S} will win

	5 Conclusions

