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Abstract
Synchronous Byzantine fault-tolerant (BFT) protocols have long been a reality in an academic setting,
yet their practicality remains debated. The main concern of skeptics of synchronous systems is that
the correctness of these protocols depends on the timely delivery of all messages within a predefined
synchronous bound, ∆. This dependency creates a challenging tradeoff between protocol correctness
and performance, as ∆ directly impacts both. In this paper, we examine this tradeoff in detail.
Specifically, we introduce BoundBFT, a new synchronous BFT consensus protocol. We analyze how
BoundBFT’s correctness can be compromised and use this analysis to design and implement the most
effective attack strategies that malicious processes could employ. Furthermore, we experimentally
determine the synchronous bound ∆ that provides sufficient confidence in maintaining protocol
correctness even in the presence of malicious replicas. Finally, we apply this discovered bound to
BoundBFT, evaluate its performance, and compare it to state-of-the-art synchronous and partially
synchronous protocols.
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1 Introduction

Synchronous consensus protocols have long been a topic of debate in robust distributed
systems. On the one hand, synchronous consensus protocols can tolerate f < n/2 Byzantine or
malicious processes out of n processes [17, 15, 26], an improvement over partially synchronous
consensus protocols, which require f < n/3 [13]. On the other hand, the correctness of a
synchronous protocol hinges on the timely delivery of messages within a fixed time bound,
∆. To ensure synchrony is not violated (i.e., messages are delivered within ∆), existing
synchronous consensus protocols set ∆ conservatively, as the 99.99-th percentile of sampled
communication [30] or as a 10-time factor of average latency [2]. This reliance on ∆ presents
a critical tradeoff: a more conservative ∆ minimizes the risk of synchrony violations, thus
favoring correctness, but comes at the cost of reduced protocol performance, since synchronous
protocols execute at the pace of ∆.

This paper offers a new perspective on synchronous systems by starting with the observa-
tion that some synchronous consensus protocols are resilient to synchrony violations; that is,
even if some messages are not delivered within ∆, correctness is not compromised. As we
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20:2 How Robust Are Synchronous Consensus Protocols?

now illustrate, resilience to synchrony violations happens due to communication diversity
and redundancy in a protocol. In Figure 1 (left), process p sends request mA to process q

and sets a 2∆ timeout for the answer from q. Even if p’s request violates synchrony (i.e., mA

takes longer than ∆ to arrive at q), q’s response (mB) makes up for the delay and arrives at
p within the expected 2∆. In Figure 1 (right), p sends request mA to q and r and sets a
3∆ timeout for their answer. Process q receives mA timely, replies to p (mB) and relays mA

to r. Although r receives mA from p after ∆, it receives mA from q timely and responds
to p (mC). As a result, p receives responses from q and r within the expected 3∆. These
communication patterns are at the core of BoundBFT, a novel Byzantine fault-tolerant
synchronous consensus protocol introduced in the paper.
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Figure 1 BoundBFT execution patterns where gray messages violate synchronous bound ∆ but
do not compromise protocol correctness.

Tolerating synchrony violations can provide substantial improvement in performance. To
understand why, consider Table 1, reproduced from [30], which compares the 99.99-th and
99.999-th percentile of communication across Amazon EC2 datacenters. While a protocol
that can tolerate one synchrony violation in every one hundred thousand messages exchanged
between US West and US East must set ∆ to at least 82190 milliseconds, a protocol that
tolerates a synchrony violation in every ten thousand transmitted messages can set ∆ to 1097
milliseconds. Since synchronous consensus protocols run at the pace of ∆, this represents a
75× improvement in performance!

Since BoundBFT tolerates Byzantine failures, synchrony violations should not introduce
vulnerabilities that could be exploited by malicious processes. In leader-based consensus
protocols that tolerate Byzantine failures, such as BoundBFT, the leader is the most
advantageous role for a malicious process as it can induce honest processes into inconsistent
decisions, possibly with help from other malicious processes. In a synchronous protocol, the
malicious leader can hope to get “additional help” from synchrony violations, as some honest
processes may be delayed with respect to other processes. The attack will work as long as
the deceived honest process does not find out about the trickery before deciding. But honest
processes communicate with many other honest processes, so there is ample opportunity to
find out about the attack even if some messages are delayed.

In this paper, we assess the robustness of BoundBFT, that is, its ability to maintain
correctness under synchrony violations, both in the presence and absence of malicious
processes. Leveraging BoundBFT’s leader-based execution model with signed messages, we
first characterize the range of potential attacks and examine their effects when combined
with synchrony violations. We then design and implement specific Byzantine attacks to
rigorously evaluate BoundBFT’s robustness. Namely, we conduct experiments to determine
an appropriate synchrony bound, ∆, that provides high confidence in preserving protocol
correctness, even under the attack. Finally, we apply this bound to evaluate BoundBFT’s
performance, enabling meaningful comparison with partially synchronous protocols.
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Table 1 Round-trip latency (in milliseconds) of hping3 across Amazon EC2 datacenters, collected
during three months [30].

US West (CA) Europe (EU) Tokyo (JP) Sydney (AU) Sao Paolo (BR)
99.99% 99.999% 99.99% 99.999% 99.99% 99.999% 99.99% 99.999% 99.99% 99.999%

US East (VA) 1097 82190 1112 85649 1226 81177 1372 95074 1214 85434
US West (CA) 1184 1974 1133 1180 1209 6354 1252 90980
Europe (EU) 1310 1397 1375 3154 1257 1382
Tokyo (JP) 1149 1414 2496 11399

Sydney (AU) 1496 2134

We have implemented BoundBFT and compared it to state-of-the-art synchronous (Sync
HotStuff [2, 3]) and partially synchronous consensus protocols (Tendermint [5] and HotStuff-
2 [32]). Our evaluation in an emulated geographically distributed system showed that
BoundBFT’s synchrony bounds can be in some cases more than one order of magnitude
smaller than usual conservative synchronous bounds [30]. As a result, BoundBFT achieves
latency comparable to partially synchronous consensus protocols, while offering higher
throughput, reliability, and availability.

The remainder of the paper is structured as follows. Section 2 defines the system model
and introduces background information on blockchain. Section 3 presents BoundBFT, a
new Byzantine fault-tolerant consensus algorithm designed for the synchronous system
model. Section 4 analyzes BoundBFT under synchrony violations and attacks. Section 5
experimentally evaluates BoundBFT and competing approaches. Section 6 overviews related
work and Section 7 concludes. The Appendix contains BoundBFT’s proof of correctness and
the full data of our experimental evaluation.

2 Background

2.1 System model

We consider a message-passing geographically distributed system consisting of a set of
processes (or replicas) that do not have access to a shared memory or a global clock. Each
process has its own local (hardware) clock, and while these clocks are not synchronized, they
all run at the same speed. Processes can be honest or faulty. An honest process follows its
specification; a faulty or Byzantine process presents arbitrary behavior. There are f faulty
processes out of n processes. Processes communicate using point-to-point reliable links: every
message an honest sender sends to an honest receiver is received.

We assume a synchronous system: there exists a known bound ∆ on maximal network
transmission delay in communication between honest processes. We do not assume lock-step
execution (e.g., [28, 12]); instead, we assume that all honest replicas start the execution
within ∆ time. We compare our proposed synchronous protocol to protocols that assume
partial synchrony: the system is initially asynchronous, without communication bounds, and
eventually becomes synchronous.

We use cryptographic techniques for authentication, and digest calculation. We assume
that adversaries (and Byzantine processes under their control) are computationally bound
so that they are unable to subvert the cryptographic techniques used. Adversaries can
coordinate Byzantine processes but cannot delay honest processes.

OPODIS 2024



20:4 How Robust Are Synchronous Consensus Protocols?

2.2 Blockchain
A blockchain is a distributed append-only log of transactions implemented by geographically
distributed processes. A blockchain (consensus) protocol forms a chain of blocks, where a
block’s position in the chain is the block’s height. A block Bk at height k has the following
format Bk := (bk, H(Bk−1)) where bk denotes a proposed value (i.e., a set of transactions)
and H(Bk−1) is a hash digest of the predecessor block. The first block, B1 = (b1, ⊥), has no
predecessor. Every subsequent block Bk must specify a predecessor block Bk−1 by including
a hash of it. A block is valid if (i) its predecessor is valid or ⊥, and (ii) its proposed value
meets application-level validity conditions and is consistent with its chain of ancestors (e.g.,
there are no double-spending transactions). If block Bk is an ancestor of block Bl (i.e.,
l ≥ k), we say Bl extends Bk. We say blocks Bl and B′l′ equivocate each other if they do not
extend one another.

We assume that a blockchain (consensus) protocol must satisfy the following properties:
Agreement: No two honest replicas commit different blocks at the same height.
Progress: All honest replicas keep committing new blocks.
External validity: Every committed block satisfies the predefined valid() predicate.

3 BoundBFT

3.1 The protocol
BoundBFT is a synchronous BFT consensus protocol with a rotating leader [3]. It tolerates
up to f < n/2 Byzantine replicas. BoundBFT adopts the good-case execution of the
rotating-leader version of Sync HotStuff [3, 2], achieving optimal latency and responsive
leader rotations [3]. However, it introduces a different epoch synchronization mechanism
that reduces the waiting time for a new leader to propose from 9∆ to 5∆ when the previous
leader is silent.

Algorithm 1 presents BoundBFT’s pseudo-code that covers executions when leaders are
honest. BoundBFT’s execution evolves as a sequence of epochs, numbered 0, 1, 2, . . ., with
each replica tracking the last epoch it started, denoted as ep. Each epoch e has a designated
leader, computed using a deterministic function leader(e).

At the start of an epoch, the leader l broadcasts the proposal containing a new block
b that extends the most recently certified block it knows of, validBlockl (lines 14–18 in
Algorithm 1). Along with the new block, the leader includes the certificate for validBlockl,
validBCl.

Upon receiving a proposal (lines 19–25 in Algorithm 1), a replica verifies the proposal’s
validity and votes for it if the leader’s block certificate is at least as recent as the replica’s
lockedBCp. The replica votes by sending a signed vote message to all replicas. A vote
contains the current epoch number and the hash of the block, id(b).

When a replica receives a proposal and f + 1 votes for it, it forms a block certificate for
the proposed block. If the replica has no proof of leader l misbehaving, it locks on b and
triggers timeoutCommit(e, b) (lines 26–32 in Algorithm 1). The replica then updates its
validBlockp and validBCp variables (lines 33–36 in Algorithm 1) and starts epoch e + 1. To
ensure all honest replicas receive the proposal and its certificate, the replica forwards them
(lines 25 and 35 in Algorithm 1), allowing all honest replicas to start epoch e + 1 within ∆
time.

When timeoutCommit(e, b) expires and the replica has no evidence of leader misbehavior
for epoch e, it commits block b and all blocks b extends (lines 37–40 in Algorithm 1). In
other words, it directly commits block b and indirectly commits all its uncommitted ancestor
blocks.
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Algorithm 1 BoundBFT consensus algorithm: normal case.
1: Initialization:
2: ep := 0 ▷ the current epoch
3: hasV otedp := false ▷ has the replica voted in the current epoch?
4: validBCp := nil ▷ the most recent block certificate the replica is aware of and...
5: validBlockp := nil ▷ the block certified by validBCp

6: lockedBCp := nil ▷ the block certificate the replica is locked on and...
7: lockedBlockp := nil ▷ the block certified by lockedBCp

8: epochsStatep[] := nil ▷ an epoch can be in one of the states: active, committed, not-committed
9: when bootstrapping do StartEpoch(0) ▷ the execution starts in epoch 0
10: Procedure StartEpoch(e) : ▷ upon starting an epoch:
11: ep ← e ▷ the replica resets the current epoch variables
12: epochsStatep[ep]← active
13: hasV otedp ← false

14: if leader(ep) = p then ▷ if the replica is the leader in the current epoch...
15: block.txs← GetT xs() ▷ it gets new transactions to include in the new block
16: if validBlockp ̸= nil then ▷ then, if it knows of a previously certified block...
17: block.prev ← id(validBlockp) ▷ it links the new block with that block
18: broadcast ⟨propose, ep, block, validBCp⟩p ▷ lastly, it broadcasts the proposal with the new block...

▷ and the certificate for the block it is extending, validBCp

19: when receive ⟨propose, e, b, BC⟩l where valid(b) and ▷ upon receiving the valid proposal...
20: l = leader(e) and e = ep do ▷ from the leader of the current epoch:
21: if epochsStatep[e] = active ∧ hasV otedp = false ∧ ▷ if the epoch is still active, replica has not voted yet, and...
22: BC.epoch ≥ lockedBCp.epoch then ▷ proposal’s BC is at least as recent as replica’s lockedBC...
23: broadcast ⟨vote, ep, id(b)⟩p ▷ the replica votes for a proposal, vote message contains block’s hash
24: hasV otedp = true ▷ then, the replica sets hasV otedp so it does not vote twice, and...
25: forward ⟨propose, e, b, BC⟩l ▷ forwards the proposal message
26: when receive ⟨propose, e, b, BC⟩l and f + 1 distinct ⟨vote, e, id(b)⟩∗ ▷ when the replica receives a proposal and...
27: where e = ep do ▷ f + 1 votes from the current epoch:
28: cert← NewCert from f + 1 ⟨vote, e, id(b)⟩∗ ▷ it forms a block certificate
29: if epochsState[e] = active then ▷ if no misbehavior is noticed in the current epoch...
30: lockedBCp ← cert ▷ the replica locks on this block by setting lockedBCp to cert and...
31: lockedBlockp ← b ▷ lockedBlockp to b, and...
32: start timeoutCommit(ep, b) ▷ starts timeoutCommit

33: validBCp ← cert ▷ the replica always updates its validBCp and validBlockp...
34: validBlockp ← b ▷ to the most recent block
35: forward messages from cert ▷ lastly, the replica forwards the votes to other replicas and...
36: StartEpoch(e + 1) ▷ starts the next epoch
37: when timeoutCommit(e, b) expires do ▷ when timeoutCommit expires and...
38: if epochsState[e] = active then ▷ the replica did not observe any proof of misbehavior,
39: epochsState[e]← committed ▷ the replica commits the block b and...
40: CommitBlockAndItsAncestors(b) ▷ all its already uncommited ancestor blocks

The replica does not wait for timeoutCommit(e, b) to expire before starting the next
epoch. Instead, it begins epoch e + 1 immediately after receiving a block certificate in epoch
e (line 36 in Algorithm 1). This approach allows BoundBFT to change leaders without
waiting for the conservative network delay ∆ when we have a sequence of honest leaders,
a property known as optimistic responsiveness [32]. Additionally, BoundBFT implements
pipelining [39], enabling replicas to start working on the next block before committing the
previous one. Specifically, the leader in epoch e + 1 will propose a new block once it receives
a block certificate for a block in epoch e.

Algorithm 2 presents BoundBFT’s pseudo-code responsible for handling Byzantine leaders.
To detect a malicious leader, a replica r starts a timer, timeoutCertificate(e), when it enters
epoch e (line 2 in Algorithm 2). If timeoutCertificate(e) expires and r is still in epoch e,
it indicates that r did not receive a block certificate, which can only occur if the leader is
Byzantine. Consequently, replica r blames the leader and broadcasts a message ⟨blame, e⟩r

(lines 3–5 in Algorithm 2).
When a replica receives f + 1 blame messages for epoch e from distinct replicas, it

has proof that at least one honest replica blamed the leader and forms a blame certificate
Ce(blame) (lines 6–7 in Algorithm 2).
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Algorithm 2 BoundBFT consensus algorithm: handling malicious leaders.
1: upon starting the epoch e do ▷ when a replica enters a new epoch:
2: start timeoutCertificate(ep) ▷ it starts the timer used to detect a malicious leader

3: when timeoutCertificate(e) expires do ▷ when timeoutCertificate expires...
4: if e = ep ∧ epochsState[e] = active then ▷ in the current epoch that is still active
5: broadcast ⟨blame, ep⟩p ▷ the replica blames the leader by broadcasting a blame message
6: when receive f + 1 distinct ⟨blame, e⟩∗ do ▷ when receiving f + 1 distinct blame messages from an epoch:
7: cert← NewCert from f + 1⟨blame, e⟩∗ ▷ the replica forms a blame certificate and...
8: MissbehaviorDetected(cert, e) ▷ calls MissbehaviorDetected with the certificate and epoch as parameters
9: when receive ⟨propose, e, b, BC⟩p and ⟨propose, e, b′, BC′⟩p ▷ when replica receives two proposals...
10: where p = leader(e) and b ̸= b′ do ▷ from leader for two distinct blocks:
11: cert← NewCert from ⟨propose, e, b, BC⟩p and ⟨propose, e, b′, BC′⟩p ▷ the replica forms...
12: MissbehaviorDetected(cert, e) ▷ an equivocation certificate and calls MissbehaviorDetected

13: Procedure MissbehaviorDetected(cert, e) : ▷ when misbehavior is detected in an epoch:
14: if epochsState[e] = active then ▷ if the epoch is still active
15: epochsState[e]← not-committed ▷ the replica sets state to not-committed
16: if e = ep then ▷ if cert is the first certificate for the current epoch,
17: forward messages from cert ▷ the replica forwards the messages from certificate and...
18: start timeoutEpochChange(ep) ▷ triggers timeoutEpochChange

19: when timeoutEpochChange(e) expires do ▷ when timeoutEpochChange expires:
20: if e = ep then ▷ if the replica is in epoch e

21: StartEpoch(ep + 1) ▷ the replica starts the next epoch

Additionally, if an honest replica receives proposals for two distinct blocks signed by the
leader in the same epoch e, it has proof that the leader is misbehaving. The replica then
constructs an equivocation certificate Ce(equiv) (lines 9–11 in Algorithm 2).

Whenever a replica has proof of the leader’s misbehavior (i.e., a blame or equivocation
certificate), it calls the function MissbehaviorDetected(cert, e) and forwards the certificate
and epoch number to it (lines 8 and 12 in Algorithm 2). If a block is not committed in epoch
e, the replica marks the epoch state as not-committed (line 15 in Algorithm 2). Moreover,
if cert is the first certificate in epoch e, the replica forwards the certificate and triggers
timeoutEpochChange(e) (lines 16–18 in Algorithm 2). Forwarding the certificate ensures
that all honest replicas learn that the leader is Byzantine within ∆ time. Additionally, the
extra timeout allows the replica to learn if an honest replica r moved to the next epoch
before detecting leader misbehavior, i.e., r received a block certificate in epoch e, locked on
it, and moved to the next epoch.

When timeoutEpochChange(e) expires and the replica is still in epoch e, it moves to
epoch e + 1 (lines 19–21 in Algorithm 2). Replicas wait for timeoutEpochChange before
moving to the next epoch only in the case of a Byzantine leader. If the leader is honest,
replicas form a block certificate and move to the next epoch without waiting for any timeouts.

3.2 BoundBFT’s correctness
In this section, we provide the intuition behind BoundBFT’s correctness. The appendix
contains a detailed correctness proof of BoundBFT.

3.2.1 Intuition behind epoch synchronization
The epoch synchronization mechanism guarantees that honest replicas progress through each
epoch in a coordinated manner. Specifically, all honest replicas initiate each epoch within ∆
time, ensuring synchronization. Additionally, Byzantine replicas cannot disrupt or halt the
protocol during any epoch.

The epoch synchronization mechanism in BoundBFT relies on certificates: to start a new
epoch, a certificate (i.e., block, blame, or equivocation certificate) must be formed in the
previous epoch. BoundBFT ensures that, regardless of Byzantine behavior, a certificate is
created in each epoch.
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The mechanism BoundBFT employs to guarantee the existence of a certificate is as
follows: honest replicas initiate a timeoutCertificate upon entering a new epoch (line 2
in Algorithm 1). If the timeout expires without receiving a certificate, the replica blames
the leader. This results in two possible outcomes: (i) an honest replica forms one of the
certificates, or (ii) no honest replica receives a certificate before the timeoutCertificate

expires. In case (ii), all f + 1 honest replicas will blame the leader, resulting in the formation
of a blame certificate.

Once a certificate is ensured for an epoch, synchronizing replicas becomes straightforward:
each replica forwards the received certificate (lines 25 and 35 in Algorithm 1 and line 17 in
Algorithm 2). Within ∆ time, all honest replicas receive the certificate and start the next
epoch if they have not already done so.

3.2.2 Intuition behind agreement
BoundBFT ensures that no two honest replicas commit different blocks in the same blockchain
height. Consequently, the resulting blockchain remains consistent and does not have forks.

In epochs with a Byzantine leader, multiple certificates can be created. As a result,
different honest replicas may start the next epoch receiving different certificates. For instance,
one honest replica may receive a block certificate, while another may receive an equivocation
certificate. To account for this scenario, an honest replica commits a proposed block b in
epoch e only if it knows that the first certificate received by all honest replicas in e is a
certificate for b. This guarantees two properties: (i) all honest replicas vote for block b, and
(ii) all honest replicas lock on block b in epoch e. Property (i) ensures that no other block
can be certified and afterward committed in epoch e. Property (ii) guarantees that honest
replicas vote only for blocks extending b in the following epochs. As a result, only b and
blocks extending b will be certified and committed in epochs e′ ≥ e, and the agreement
property will be satisfied.

The mechanism BoundBFT uses to verify the commit condition is as follows. Upon
receiving a certificate for block b, Ce(b), as the first certificate in epoch e, r forwards
the certificate and triggers timeoutCommit(e) at time t (lines 32 and 35 in Algorithm 1).
Consequently, r knows that all honest replicas will receive Ce(b) by time t + ∆. If an
honest replica p received a different certificate before Ce(b), it must have received it at time
t1 < t + ∆. Since p also forwards its certificate, r will receive it by time t1 + ∆ < t + 2∆.
Therefore, setting timeoutCommit(e) to 2∆ ensures that r receives p’s certificate on time.
Ultimately, if timeoutCommit(e) expires and r has not heard about any other certificates, r

can be sure that the first certificate received by all honest replicas in e is Ce(b). In this case,
r commits block b.

3.2.3 Intuition behind progress
BoundBFT ensures that all honest replicas commit a new block in every epoch with an honest
leader. It does so by: (i) ensuring that all honest replicas vote for the leader’s proposal, and
(ii) preventing the creation of blame or equivocation certificates. Property (i) guarantees the
creation of a unique block certificate, while property (ii) guarantees that all honest replicas
must receive the block certificate, trigger timeoutCommit, and, when it expires, commit the
proposed block.

An honest leader of an epoch proposes a new block that extends its validBlock and sends
validBC together with the new block. Other honest replicas will vote for the new proposal
only if the validBC sent by the leader is at least as recent as their lockedBC. Consequently,
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BoundBFT ensures that whenever an honest replica locks on a block in epoch e, all honest
replicas update the validBlock and validBC to the block certified in epoch e. Therefore,
the validBCs on all honest replicas are always at least as recent as lockedBCs on all honest
replicas.

BoundBFT ensures that validBlock and validBC are always up to date by relying on a
mechanism that uses timeoutEpochChange. Namely, an honest replica r cannot start the
next epoch immediately if the first certificate it receives in the current epoch is a blame or
equivocation certificate. Instead, it must ensure no other honest replica locks on a block in
this epoch. Consequently, r forwards its certificate (line 17 in Algorithm 2), knowing that
in ∆ time, all honest replicas will receive it. If any honest replica p locked on a block, it
must have done so before receiving the forwarded certificate. As a result, upon forwarding
its certificate, r sets timeoutEpochChange(e) to expire in 2∆ time (line 18 in Algorithm 2).
Moreover, r starts the next epoch only when this timeout expires, or it receives the block
certificate for the current epoch. Since p also forwards the certificate after locking (line 35
in Algorithm 1), r knows it will receive it before timeoutEpochChange expires. Notably, r

will not lock on a block certificate if it receives the certificate after timeoutEpochChange is
initiated.

Lastly, BoundBFT must ensure that no equivocation or blame certificates are possible in
epochs with honest leaders. An equivocation certificate will not be formed since the honest
leader will not propose two different blocks. However, ensuring that no blame certificate
is possible requires that no honest replica blames the leader. In other words, every honest
replica must receive the block certificate before timeoutCertificate(e) expires. Consequently,
honest replicas set timeoutCertificate(e) to 3∆. The first ∆ accounts for epoch drift time,
the second ∆ for the time it takes for the leader’s proposal to reach all honest replicas, and
the last ∆ is for the reception of the votes broadcast by honest replicas. Since we already
showed that all honest replicas will vote for the honest leader, the block certificate is formed
on all honest replicas before the timeoutCertificate(e) expires, and no honest replica blames
the leader.

4 Debunking synchrony violations

BoundBFT relies on synchrony every time it uses one of its timeouts, expressed as a multiple
of a synchrony bound ∆. A synchrony violation may result in a scenario where the timeout
expires before a replica receives an expected message from some honest replica. We refer
to this phenomenon as a timeout violation. In this section, we first examine how malicious
replicas may attempt to compromise BoundBFT. We then consider the consequences of
timeout violations in the presence and absence of malicious replicas. We present a detailed
Byzantine protocol in the appendix.

4.1 Byzantine behavior
Listing possible faulty behaviors of Byzantine replicas is unusual since, by definition, a
Byzantine replica can behave arbitrarily. In the context of leader-based protocols where
messages are signed, however, the scope for deviation is limited, as we now explain.

In the case of a Byzantine leader, these are the possible faulty behaviors:
SILENCE: The leader does not send a proposal to a subset of replicas (possibly all).
EQUIVOCATION: The leader proposes multiple blocks in the same epoch.
AMNESIA: The leader does not extend the blockchain with a new block and proposes an
alternative block for one of the previously committed blocks.
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In addition, non-leader Byzantine replicas may misbehave as follows.
MULTI-VOTE: A Byzantine replica can choose to vote for any proposal it likes. It can
also vote for multiple proposals in the same epoch.
BLAME: A Byzantine replica can blame the leader by broadcasting a blame message at
any point in the execution, even if the leader is honest.

In addition, Byzantine replicas can always remain silent or discard messages selectively.

4.2 Timeout timeoutCommit

The timeoutCommit is the only timeout responsible for BoundBFT’s agreement. An honest
replica sets this timeout after locking on a block in an epoch (line 32 in Algorithm 1). The
replica then forwards the block certificate and waits for this timeout to receive certificates
from all other honest replicas.

If timeoutCommit is violated, an honest replica may miss a certificate from some honest
replicas. As a result, it may commit block b in epoch e thinking all honest replicas locked
on b, while in reality, some honest replicas received a different certificate and moved to
epoch e + 1 without locking on b. If enough honest replicas did not lock on b, the agreement
might be compromised as honest replicas may vote for an alternative block b′, create a block
certificate, and commit b′.

The likelihood of this situation in the absence of Byzantine replicas is low, as the following
conditions must be fulfilled:
1. A blame certificate must be formed in epoch e, meaning a majority of replicas must

have blamed the leader in epoch e (i.e., timeoutCertificate was violated in all of these
replicas).

2. A majority of replicas did not lock on b in epoch e, receiving a blame certificate before
receiving a block certificate for b.

3. The leader of epoch e+1 did not receive b’s block certificate in epoch e, thus not updating
its validBlock and validBC to b and b’s certificate (i.e., its timeoutEpochChange was
violated in epoch e).

Even though timeoutCertificate and timeoutEpochChange are responsible for BoundBFT’s
progress, in this scenario, they also play a role in guarding the protocol’s agreement.

Byzantine replicas can exploit timeoutCommit violations and potentially compromise
BoundBFT’s agreement through the following attacks:

AMNESIA-ATTACK : The Byzantine leader ignores the algorithm (line 17 in Algorithm
1) and does not propose a block that extends its validBlock. Instead, it proposes an
alternative block b for its validBlock (i.e., b.prev = validBlock.prev). Byzantine replicas
vote for this proposal. The agreement can be violated if an honest replica committed
validBlock while some honest replicas, due to timeoutCommit violations, did not lock
on validBlock. As a result, these replicas will vote for block b, and if their votes, together
with Byzantine votes, form a majority, block b will be certified and committed. To
increase the probability of this scenario, in epochs with an honest leader, Byzantine
replicas send votes for the block proposed by the honest leader to one subset of honest
replicas to help them form the block certificate faster and commit a block. At the same
time, they send blame messages to a different subset of honest replicas to help them
form a blame certificate before receiving a block certificate.
EQUIVOCATION-ATTACK : The Byzantine leader proposes two distinct proposals in
the same epoch, and Byzantine replicas vote for both. The first proposal and its votes are
sent to one subset of honest replicas, and the second proposal and its votes to another
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subset. As a result, two honest replicas may vote for, receive block certificates, and
commit different blocks if their timeoutCommits expire before they learn about the
equivocated proposal. In epochs when the leader is honest, Byzantine replicas remain
silent and update validBlock and validBC to stay aware of the most recently certified
block. This is important so that when they become the leader, Byzantine replicas can
generate new blocks that honest replicas will vote for.

4.3 Timeout timeoutCertificate

Honest replicas initiate this timeout upon starting an epoch (line 2 in Algorithm 2). Its
purpose is twofold. First, it ensures that an honest replica does not wait indefinitely for
a silent malicious leader. Second, when the leader is honest and proposes a block that all
honest replicas will vote for, timeoutCertificate should not expire before all honest replicas
receive the proposal and the votes from all other honest replicas. In other words, before they
receive a block certificate. Consequently, no honest replicas will blame an honest leader.

If timeoutCertificate is violated, an honest replica will incorrectly blame the honest
leader. If a majority of honest replicas blame the leader, a blame certificate can be formed,
and the decision might not be reached in the current epoch. However, the block will be
committed when the next honest leader proposes a block and other honest replicas receive
the block certificate on time.

The creation of a blame certificate is easier in the presence of Byzantine replicas:
BLAME-ATTACK : Byzantine replicas do not vote for the proposal sent by the honest
leader. Instead, they broadcast blame messages upon starting the epoch with an honest
leader. As a result, the blame certificate can be formed if a single honest replica blames
the leader. In epochs when the leader is Byzantine, the Byzantine replicas just remain
silent.

Apart from unconditionally blaming the leader and hoping that one of the honest
replicas will also blame the leader, there is no other way for Byzantine replicas to prevent
honest replicas from committing a block in epochs with honest leaders. timeoutCertificate

violations may slow down the execution but will not lead to violations in agreement (i.e.,
when two honest replicas decide on different blocks).

4.4 Timeout timeoutEpochChange

An honest replica r triggers this timeout when it receives a blame or equivocation certificate
as the first certificate in an epoch (line 18 in Algorithm 2). This timeout ensures that if
another honest replica receives a block certificate as the first certificate and locks on it in
the same epoch, r will receive this block certificate and update its validBlock and validBC

before starting the next epoch. Consequently, r starts the next epoch when it receives a
block certificate from the current epoch or when timeoutEpochChange expires.

If the timeoutEpochChange is violated, an honest replica will not hear about the locked
block. Consequently, if the replica is the next epoch leader, it will propose a block that locked
replicas will not accept. If the set of remaining honest replicas that vote for a proposed block
is less than the majority, the block certificate will not be formed, and a decision will not be
reached even though the epoch leader is honest. However, the new block will be committed
when one of the locked honest replicas becomes a leader.

Honest replicas rely on this timeout only in epochs when an equivocation or a blame
certificate is formed. In the absence of attacks, creating an equivocation certificate is
impossible. As a result, an honest replica uses timeoutEpochChange solely in case it receives
a blame certificate. This can happen only if timeout-Certificate is violated on a majority
of honest replicas, and they blame the honest leader.
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With Byzantine replicas, however, both equivocation and blame certificates are possible.
Byzantine replicas can exploit timeoutEpochChange violations as follows:

EQUIVOCATION-CERTIFICATE-ATTACK : The Byzantine leader broadcasts a pro-
posal for block b. Then, the Byzantine replicas send votes for block b to one subset of
honest replicas to help them create a block certificate and lock on b. At the same time,
the Byzantine leader sends a second proposal for block b′ ̸= b to the other subset of
honest replicas. These honest replicas will form an equivocation certificate and start
timeoutEpochChange. As a result, they will not lock on block b.
BLAME-CERTIFICATE-ATTACK : Similarly, Byzantine replicas impose locking on one
subset of honest replicas by sending a proposal and votes for block b. Instead of equivoc-
ating, the Byzantine leader remains silent and does not send any proposal to the other
subset of honest replicas. Moreover, all Byzantine replicas send blame messages to these
replicas. If these replicas did not receive a block certificate before the timeoutCertificate

expires,1 they will blame the leader and, together with blame messages from Byzantine
replicas, form a blame certificate and start timeoutEpo-chChange, without locking on
block b.

In both attacks, Byzantine replicas remain silent in epochs with an honest leader. By
remaining silent, these replicas ensure that if a timeoutEpochChange violation happened
and the next honest leader proposes a block that does not extend block b, a block certificate
will not be formed and a decision will not be reached.

Similarly to timeoutCertificate, violations of timeoutEpochChange can slow down the
execution but cannot lead to violations in agreement.

5 Evaluation

5.1 Experimental environment and setup
We conducted our experiments in a cluster with emulated wide-area latencies between 6
AWS zones (see Table 1). Latencies between nodes were configured using the Linux Traffic
Control kernel module [25]. The emulated WAN provided an affordable approximation of
the AWS environment since our evaluation required hundreds of hours of experiments (see
Appendix B). The cluster contains 60 nodes divided in two groups: (i) EPYC Zen 2 with two
16-Core AMD EPYC 2881 MHz and 32GB of RAM, and (ii) HP SE1102 with two Quad-Core
Intel Xeon 2.5GHz and 8GB of RAM. We implemented BoundBFT, all competing protocols,
and all proposed attacks (see the Appendix) in Go. The implementations use SHA256 hashes
and Ed25519 64-byte digital signatures. We rely on libp2p [1] for communication between
replicas.

5.2 BoundBFT’s synchrony bound
In this section, we experimentally determine the value for BoundBFT’s synchrony bound ∆:
We ran BoundBFT in the presence of malicious replicas and determined ∆ that gives enough
confidence that BoundBFT’s correctness will not be compromised. Initially, we set ∆ to
1250 ms (99.99%), the synchronous bound from [30], and gradually decreased it to the point

1 Even though the Byzantine replicas do not send the proposal and votes to these replicas, they can receive
the forwarded messages from other honest replicas and form a block certificate before timeoutCertificate
expires.
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where we started to observe BoundBFT’s agreement and progress violations. The complete
data for these experiments can be found in Appendix B. In the following, we comment on
the main takeaways.

When there is a single (f = 1) or no (f = 0) Byzantine replicas in the system, we did not
observe any agreement violations, even if we set ∆ as low as 50 ms – the average latency
between 80% of replicas in our system is higher than 50 ms. This shows that agreement
violations are highly unlikely if the number of Byzantine replicas is low, even if many messages
violate synchronous bounds. When the number of Byzantine replicas is f = 19 (i.e., the
maximum number of Byzantine replicas partially synchronous protocols can tolerate), the
agreement violations were observed only when we lowered the ∆ to 50 ms. Moreover, even
with ∆ = 50 ms, the BoundBFT’s agreement was violated in less than 10% of epochs in
which the attack was launched. However, to prevent agreement violations when the number
of Byzantine replicas is f = 29 (i.e., the maximum BoundBFT can tolerate), we needed to
increase ∆ to 150ms and 300ms, for 1KB and 32KB block sizes, respectively. This makes
sense since to create a block certificate an honest replica needs to receive a vote from itself,
Byzantine replicas, and one honest replica. Importantly, even in this case, the resulting ∆
was 8 and 4 times lower than the initial one. Notice that when f = 29, partially synchronous
protocols will halt if Byzantine replicas remain silent.

Table 2 shows the ∆s that resulted in no agreement violations and less than 5% of progress
violations for all considered setups. Namely, no two honest replicas committed on different
blocks for the same height and in less than 5% of epochs with an honest leader, some honest
replicas did not commit a new block. The progress violations can also be lowered to 0 %,
but this would require a slight increase in the ∆ chosen (see Appendix B). We believe this is
not necessary since progress violations can only lead to a slight decrease in performance and
do not affect agreement.

Table 2 The ∆ in ms BoundBFT must adopt to achieve 0% of Agreement and < 5% of Progress
violations under a specific attack. The table shows data for the setup of 60 replicas, 1KB and 32KB
block sizes and different number of Byzantine replicas (f). Additionally, for attacks that partition
honest replicas in two subsets, it shows results when Byzantine replicas divide honest replicas into
the two smallest subsets (k = kmin = 1) and the two largest subsets (k = kmax = n − f/2).

Attack type
1KB 32KB

f=29 f=19 f=1 f=29 f=19 f=1
kmin kmax kmin kmax kmin kmax kmin kmax kmin kmax kmin kmax

EQUIVOCATION 150 150 100 100 100 100 150 300 150 150 100 100
AMNESIA 150 150 150 150 100 100 300 300 150 150 100 100

EQUIVOCATION-CERTIFICATE 150 150 150 150 100 100 300 300 150 150 100 100
BLAME-CERTIFICATE 150 150 150 150 100 100 150 150 150 150 100 100

BLAME 150 150 100 300 150 100
NO ATTACK 100 100

5.3 Performance
In this section, we compare BoundBFT to state-of-the-art partially synchronous and syn-
chronous protocols. In the partially synchronous model, we choose Tendermint [5] and
HotStuff-2 [32], the most recent protocol of the HotStuff family [39]. In the synchronous
system model, we consider Sync HotStuff [2, 3]. We limited our evaluation to Byzantine
consensus protocols with a rotating leader: a new leader is elected when the protocol changes
epoch (or round or view) as part of the normal execution, not only when the leader fails.
These protocols are preferred in blockchain systems since they provide better fairness and
censorship resistance than protocols with a stable leader (e.g., PBFT) [3].
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To generate a load in our experiments, we equip every replica with a built-in client that
generates transactions in advance and stores them in a local pool. When a replica is a leader
in an epoch, it takes transactions from the pool and forms a block. The block size defines
the number of transactions taken from the pool. This design leaves the mempool (i.e., the
part of a blockchain responsible for propagating client transactions across the system) out of
the discussion as different systems may implement it in different ways. Consequently, the
latencies we report in the paper represent consensus latencies (i.e., the time the leader of an
epoch needs to commit a block). Throughput is computed as the rate of committed blocks
per time unit. Every point in the graphs is an average of 3 runs. We ran each experiment for
5 minutes.

5.3.1 Latency
BoundBFT and Sync HotStuff wait for 2∆ (BoundBFT’s timeoutCommit(e)) before com-
mitting a block in epoch e. Consequently, their latency is directly affected by the chosen
synchrony bound. For BoundBFT, we adopt the synchrony bound based on the experiments
from the previous section (see Table 2). Conversely, for Sync HotStuff, we use the ∆ from [30].
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Figure 2 Latency (left) and throughput (right) comparison for all protocols for 1 KB and 32 KB
block sizes in a system with 60 replicas.

We measured latencies in a system with 60 replicas with 1KB and 32KB block sizes.
Figure 2 (left) shows the average latency computed by epoch leaders. First, we notice the
significant impact of BoundBFT’s synchrony bound on latency. Namely, BoundBFT achieves
5.4× and 3.4× lower latency than Sync HotStuff with 1KB and 32KB block sizes, respectively.
Second, BoundBFT’s latency is in between the latencies of partially synchronous protocols. It
is 1.3× and 1.8× lower than HotStuff-2’s latency and 1.4× and 2× higher than Tendermint’s
for small and large blocks, respectively. HotStuff-2 has higher latency due to its linear
communication pattern, which requires five communication steps, while Tendermint has
quadratic communication and commits a block in only three communication steps. We can
also see that HotStuff-2 has the most significant standard deviation; we attribute this to the
lower redundancy due to its linear communication pattern.

5.3.2 Throughput
BoundBFT and Sync HotStuff [2, 3] use pipelining to limit the impact of ∆ on throughput,
which allows the leader to propose a block Bk+1 that extends block Bk after receiving
Ce(Bk), i.e., before committing block Bk. This way, protocols can order multiple blocks in
parallel, and the throughput is unaffected by ∆. This technique was initially introduced in
HotStuff [39], and we implemented a pipelined version of HotStuff-2. Adapting pipelining to
Tendermint is more complex and out of the scope of this paper. Moreover, notice that we
compare BoundBFT a pipelined partially synchronous protocol, HotStuff-2.
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We evaluated throughout in a system with 60 replicas and various block sizes (see Figure 2
(right)). BoundBFT and Sync HotStuff have similar throughout, as they both start ordering
the next block after receiving a certificate for the previous block. Moreover, they outperform
partially synchronous protocols for all block sizes cosidered, reaching throughput more than
2× higher than Tendermint’s for all block sizes. The reason behind this is that Tendermint
does not use pipelining. They also perform better, from 1.4× to 3×, than HotStuff-2, a
partially synchronous protocol with pipelining. This is because even though both protocols
start ordering the next block after collecting a certificate for the previous block, the certificate
in HotStuff-2 requires votes from a two-third majority of replicas, while in BoundBFT the
votes from the majority are enough.

5.4 Summary
In this section, we summarize the main takeaways of our evaluation.

We did not observe any agreement violations when the number of Byzantine replicas
was 0 and 1. Synchrony violations combined with a minority or one-third of colluded
Byzantine replicas resulted in agreement violations.
BoundBFT can use a ∆ that is 4× to 8× smaller than the conservative 99.99% ∆ [30],
allowing it to improve latency from ≈ 3.4× to 5.4×.
BoundBFT’s ∆ is big enough to ensure correctness with high probability when the system
is under attack.
BoundBFT achieves from 1.4× to 3× higher throughput and comparable latency to
state-of-the-art partially synchronous protocols.

6 Related work

The synchronous system model in its purest form requires that every message sent in the
system be delivered within some known synchrony bound ∆. Some protocols have been
designed for this model such as Dfinity [24] and Sync HotStuff [2, 3]. These protocols are
optimal in terms of resilience [15, 26] as they can tolerate up to a minority of faulty processes
(i.e., f < n/2, where f is the number of Byzantine processes out of n). However, deploying
these protocols in a blockchain environment usually comes with conservative ∆ that should
ensure with high probability that the system is synchronous. Consequently, these protocols
perform poorly. BoundBFT belongs to this family of protocols and is similar to the rotating
version of Sync HotStuff [3]. The two protocols share similar behavior in the common-case
but they have different epoch synchronization mechanisms. In this paper, we show that we
do not need to use conservative bounds when deploying BoundBFT and as a consequence it
can deliver reasonably good performance.

Many deterministic consensus protocols assume the partially synchronous system model
[13]. The model allows consensus protocols that need synchrony only for liveness but not for
safety. More precisely, the partially synchronous system model ensures that after some point,
usually referred to as GST (Global Stabilization Time), messages exchanged among honest
processes will be delivered within an unknown synchrony bound. A fundamental limitation
of the partially synchronous system model is that any consensus protocol designed for this
model can tolerate up to one third of faulty processes (i.e., f < n/3) [13]. The first practical
representative of these protocols is PBFT [7], and more recently, in the blockchain context,
Tendermint [5], HotStuff [39], HotStuff-2 [32] and ICC [6], to name a few.
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Guo et al. [23] introduced the “weak synchronous model” (called mobile sluggish model
in [2] for consistency with other works in the literature). The idea is to distinguish between
prompt processes, those that respect synchrony bounds, from sluggish processes, those for
whom messages may violate synchrony bounds. Moreover, the set of sluggish processes may
change over time. The mobile sluggish model weakens the synchronous model and may result
in more practical protocols. However, this is true only in situations when the actual number
of faulty processes in the system is less than the minority (e.g., [2, 8]).

XFT [30] is based on the observation that typical BFT consensus protocols assume a
powerful adversary that fully controls malicious processes and the network between honest
processes, which is unrealistic. We share this view, and consider an adversary that cannot
control the network between honest processes. XFT differentiates between three types of
faulty processes: crash, Byzantine, and partitioned (i.e., processes that cannot exchange
messages with other honest processes within the known synchrony bound). It ensures progress
as long as the total number of faulty processes in the system is lower than f < n/2. In
other words, XFT assumes a majority of honest replicas that can communicate timely. Since
selecting a quorum of f + 1 responsive replicas out of n replicas requires an exponential
number of attempts, the solution is practical when f is small.

An alternative way to increase the resilience of consensus protocols while assuming
a partially synchronous system is to rely on trusted hardware (e.g., Trusted Execution
Environment). This idea was introduced in A2M [9] and explored in many works (e.g, [10,
29, 37, 29, 38, 11]). These techniques have the disadvantage of requiring blockchain servers
to be equipped with special hardware, which is not the case with BoundBFT.

The consensus protocols presented above assume some synchrony to circumvent the FLP
impossibility result [16]. Alternatively, there are many asynchronous consensus protocols that
rely on randomization to solve consensus [4, 34, 14, 20, 36, 33, 22, 18, 21]. Asynchronous
protocols are robust since they do not assume any synchrony, but they provide probabilistic
guarantees and perform worse than partially synchronous and synchronous protocols. Con-
sequently, some protocols use a simpler leader-based deterministic protocol to improve the
latency in good cases [19, 27, 35, 31].

7 Conclusion

In this paper, we have shown how we can circumvent major performance drawbacks of
synchronous consensus protocols by choosing protocol-specific time bounds instead of con-
servative model-specific bounds. Instead of ensuring that all messages are received within
synchronous bounds with high probability, we have analyzed protocol semantics and potential
correctness violations in case of synchrony violations and Byzantine attacks, and have shown
how to select a time bound that does not hurt correctness. As a showcase, we designed
BoundBFT, a new Byzantine fault-tolerant synchronous consensus protocol, and have shown
experimentally that BoundBFT withstands synchrony bound violations under attack and
outperforms traditional synchronous consensus protocols. Furthermore, BoundBFT achieves
similar latency and better throughput than state-of-the-art partially synchronous protocols,
offering higher resilience.
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17 and 21 in Algorithm 2). Messages with certificates will arrive within ∆ time. Consequently,
in the former case, all honest replicas receive Ce−1(Bk) by time t + ∆ and start epoch e.
In the latter case, all honest replicas receive Ce−1(blame) or Ce−1(equiv) by time t − ∆
and within 2∆ they start epoch e, ensuring that all honest replicas start epoch e by time
t + ∆. ◀

▶ Theorem 3. (Epoch synchronization) All honest replicas continuously move through
epochs, with each replica starting a new epoch within ∆ time of any other honest replica.

Proof. We prove this theorem by combining Lemma 1 and Lemma 2.
First, from Lemma 1, we know that every honest replica always moves to the next epoch.

This ensures that no honest replica remains stuck in any epoch indefinitely.
Second, from Lemma 2, we know that if an honest replica starts epoch e at time t, then

all honest replicas start epoch e by time t + ∆. This guarantees that all honest replicas start
each epoch within ∆ time of each other.

Combining these two results, we can conclude that all honest replicas continuously move
through epochs, with each replica initiating a new epoch within ∆ time of any other honest
replica. ◀

▶ Lemma 4. If an honest replica directly commits block Bk in epoch e, then (i) no block
different than Bk can be certified in epoch e, and (ii) every honest replica locks on block Bk

in epoch e.

Proof. Suppose an honest replica r directly commits Bk in epoch e at time t (line 40 in
Algorithm 1). This means that at time t − 2∆, r received Ce(Bk), locked on it, and started
timeoutCommit(e) (lines 26–32 in Algorithm 1). Moreover, replica r forwarded all messages
representing Ce(Bk) (lines 25 and 35 in Algorithm 1) so all honest replicas received these
messages in ∆ time, by time t − ∆.

For part (i), assume for a contradiction that some honest replica p received and voted
in epoch e for the block Bl ≠ Bk. Since every honest replica votes only once, p must have
received a proposal for Bl before receiving a proposal message for Bk, at some time t1 < t−∆.
As a result, p forwards the propose message for Bl at time t1 (line 25 in Algorithm 1). Replica
r will receive this message by time t1 + ∆, that is, before t. Since these two propose messages
lead to a Ce(equiv) certificate, p would not commit (lines 9–12 and 15 in Algorithm 2), a
contradiction. Therefore, property (i) holds since no honest replica votes for a block different
than Bk; otherwise replica r would not commit.

For part (ii), we know by (i) that if replica r directly commits in epoch e, there is not any
possible Ce(Bl) ̸= Ce(Bk). So, we need to prove that every honest replica p receives Ce(Bk)
before receiving Ce(blame) or Ce(equiv). For a contradiction, assume that p receives
Ce(blame) or Ce(equiv) before receiving Ce(Bk). This must happen at time t1 < t − ∆ as
p receives Ce(Bk) by time t − ∆. After receiving Ce(blame) or Ce(equiv), p broadcasts
them (line 17 in Algorithm 2). So, p broadcasts Ce(blame) or Ce(equiv) at time t1 and r

receives them by time t1 + ∆. Since t > t1 + ∆ replica r will not commit Bk, a contradiction.
◀

▶ Lemma 5. If Bk is the only certified block in epoch e and f + 1 honest replicas lock on
block Bk in epoch e (lockedBlock = Bk and lockedBC = Ce(Bk)), then in all epochs e′ > e,
they vote only for blocks extending Bk, or they blame the proposer.

Proof. The proof proceeds by induction on the epoch number.
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Base step (e′ = e + 1). Let C denote the set of f + 1 honest replicas. The replicas in set
C do not vote for proposals that do not extend blocks certified in epochs higher than or
equal to their lockedBC (line 22 in Algorithm 1). As a result, when timeoutCertificate(e′)
expires, no block certificate will be formed since no honest replica has voted, causing honest
replicas to blame the proposer by sending ⟨blame, e′⟩∗ message. Therefore, the lemma holds
for the base step since honest replicas vote only for a block if it extends lockedBlock.

Induction step (e′ → e′ + 1). Assume that no replica in set C has voted for a block not
extending Bk until epoch e′ + 1. We now show that the lemma holds for epoch e′ + 1.
Since replicas from the set C vote for blocks extending Bk or blame the proposer in epochs
e ≤ e′′ ≤ e′, no block Bl not extending Bk can receive f + 1 votes in those epochs. Therefore,
for all processes in set C, lockedBlock = Bk′ and lockedBC.epoch ≥ e, where Bk′ = Bk or
Bk′ extends Bk. Assume, for the sake of contradiction, that a process p in set C votes in
epoch e′ + 1 for a block not extending Bk. An honest replica will not vote for a block not
extending its lockedBlock (line 22 in Algorithm 1), leading to a contradiction. Hence, the
lemma holds for epoch e′ + 1 as well. ◀

▶ Lemma 6. If an honest replica directly commits block Bk in epoch e, then any block Bl

that is certified in epoch e′ > e must extend Bk.

Proof. The proof follows directly from Lemmas 4 and 5. More precisely, if an honest replica
directly commits block Bk in epoch e, by Lemma 4, we know that f + 1 honest replicas (set
C) lock on block Bk in epoch e and Bk is the only certified block in epoch e. Consequently,
by Lemma 5, replicas from C vote only for the blocks extending block Bk in epochs e′ > e.
Therefore, no block Bl that does not extend Bk can collect f + 1 votes and thus cannot be
certified in any epoch e′ > e. ◀

▶ Theorem 7 (Agreement). No two honest replicas commit different blocks at the same
height.

Proof. Suppose, for the sake of contradiction, that two distinct blocks Bk and B′k are
committed for the same height k. Assume that Bk is committed as a result of Bl being
directly committed in epoch e and B′k is committed as a result of Bl′ being directly committed
in epoch e′. Without loss of generality, assume l < l′. Note that all directly committed
blocks are certified. This is true because in order to start timeoutCommit(e) for block Bk,
a replica needs to receive Ce(Bk) (lines 26–32 in Algorithm 1). By Lemma 6, Bl′ extends Bl.
Therefore, Bk = B′k, which contradicts the assumption that Bk and B′k are distinct. Hence,
no two honest replicas can commit different blocks at the same height. ◀

▶ Lemma 8. If an honest replica r locks on a block Bk in epoch e, no honest replica starts
epoch e + 1 before updating validBC to Ce(Bl), where Bl does not need to be equal to Bk.

Proof. Assume that an honest replica r locks on a block Bk in epoch e at time t. This
implies r receives Ce(Bk) at time t and does not receive Ce(blame) or Ce(equiv) before
that. Since all messages representing Ce(Bk) are broadcast (lines 25 and 35 in Algorithm 1),
all honest replicas receive these messages by time t + ∆.

Suppose for a contradiction that some honest replica p starts the epoch e + 1 before
receiving Ce(Bk) or some other Ce(Bl), in other words at time t1 < t + ∆. This means it
had received Ce(blame) or Ce(equiv) and broadcast messages representing them at time
t1 − 2∆ (line 17 in Algorithm 2). Consequently, replica r receives Ce(blame) or Ce(equiv)
by time t1 − ∆ and as t > t1 − ∆, it does not lock on Bk, a contradiction. ◀
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▶ Corollary 9. Every honest replica starts epoch e with validBC that is at least as recent as
any certificate any honest replica locks on in any epoch e′ < e.

Proof. Suppose that the last epoch in which some honest replica locks on a block is epoch
e′ < e. By Lemma 8, we know that all honest replicas update their validBC to some
certificate from the same epoch (e′), before starting epoch e′ + 1. From this and the fact
that no honest replica, in any of the following epochs (e′ < e′′ < e), updates its validBC to
an older certificate (lines 33–34 in Algorithm 1), we see that this corollary holds. ◀

▶ Theorem 10 (Progress). All honest replicas keep committing new blocks.

Proof. From Lemmas 1 and 2, we see that replicas proceed through epochs, each epoch
having a dedicated leader. If the leader of an epoch is Byzantine and does not propose any
block or proposes equivocating blocks, honest replicas will collect Ce(blame) or Ce(equiv)
and move to the next epoch. Due to the round-robin leader election, there will be epochs
with honest leaders.

Consider an epoch e with an honest leader l. Let t be the time when the first honest
replica starts epoch e. By Lemma 2, all honest replicas enter epoch e by the time t + ∆.
Therefore, by the time t + ∆ at the latest, an honest leader l broadcasts the proposal
⟨propose, e, Bk, validBCl⟩l. All honest replicas receive proposal by time t + 2∆. Since by
the Corollary 9, validBCl is at least as recent as any lockedBC of any honest replica, all
honest replicas vote for the proposal. As a result, all honest replicas receive Ce(Bk) by
time t + 3∆. Since timeoutCertificate(e) > 3∆, no honest replica will send a ⟨blame, e⟩∗
message in epoch e, and Ce(blame) cannot be formed. Furthermore, considering that replica
l is honest, it does not equivocate, so no Ce(equiv) will be formed in epoch e. Consequently,
all honest replicas start timeoutCommit(e), and when it expires, they commit Bk and all
its ancestors. This scenario will occur in every epoch with an honest leader, ensuring that all
honest replicas consistently commit new blocks across all such epochs. ◀

▶ Theorem 11 (External validity). Every committed block satisfies the predefined valid()
predicate.

Proof. This follows directly from the requirement that every committed block must first be
certified (lines 26, 32, and 40 in Algorithm 1). This implies that at least one honest replica
accepted the block, meaning that valid() returned true for this block on at least one honest
replica (line 19 in Algorithm 1). ◀

A.2 The Byzantine protocol
Algorithm 3 presents the Byzantine replica protocol. Byzantine replicas proceed through

epochs in the same way as honest replicas. Namely, if they receive a block certificate, they
start the next epoch immediately (lines 23–28 in Algorithm 3), while if they receive a blame
or equivocation certificate they wait for timeoutEpochChange before starting the next epoch
(lines 29–36 in Algorithm 3). They do this to be synchronized with honest replicas so they
can launch the attack at the moment that maximizes the attack’s effectiveness. Moreover,
a Byzantine replica waits for timeoutEpochChange to update its validBlock and validBC

to the most recent values. As a result, when leader in an epoch, a Byzantine replica can
propose a valid block (i.e., an invalid block would be easily dismissed by honest replicas).

Algorithms 4 and 5 present the logic for attacks on BoundBFT’s agreement and progress,
respectively. We empower the attacks by assuming that Byzantine replicas know each other
and collude (Section 2.1): each Byzantine replica has private keys of all Byzantine replicas.
Therefore, a Byzantine replica can sign and send messages on behalf of other Byzantine
replicas.
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Algorithm 3 The Byzantine protocol.
1: Initialization:
2: ep := 0 ▷ the current epoch
3: validBCp := nil ▷ the most recent block certificate the replica is aware of and...
4: validBlockp := nil ▷ the block certified by validBCp

5: C := getAllHonestReplicas() ▷ the set of honest replicas
6: f := getNumberOfByzantineReplicas() ▷ the number of Byzantine replicas
7: attackT ype := getAttackT ype() ▷ the attack type the Byzantine replica launches
8: k := getT argetSize() ▷ the size of the two random sets of honest replicas that are under the attack
9: when bootstrapping do StartEpoch(0) ▷ the execution starts in epoch 0

10: Procedure StartEpoch(e) : ▷ upon starting the epoch...
11: ep ← e ▷ the replica sets the current epoch, and...
12: switch attackT ype : ▷ invokes the specific attack and pass the necesarry arguments to it
13: case EQUIVOCATION-ATTACK :
14: LaunchEquivocationAttack(e, validBlock, validBC, C, k, f)
15: case AMNESIA-ATTACK :
16: LaunchAmnesiaAttack(e, validBlock, C, k, f)
17: case BLAME-ATTACK :
18: LaunchBlameAttack(e, C, f)
19: case EQUIVOCATION-CERTIFICATE-ATTACK :
20: LaunchEquivocationCertificateAttack(e, validBlock, validBC, C, k, f)
21: case BLAME-CERTIFICATE-ATTACK :
22: LaunchBlameCertificateAttack(e, validBlock, validBC, C, k, f)
23: when receive ⟨propose, e, b, BC⟩l and f + 1 distinct ⟨vote, e, id(b)⟩∗ ▷ when replica receives a proposal...
24: where e = ep do ▷ and f + 1 votes for it in the current epoch...
25: cert← NewCert from f + 1 ⟨vote, e, id(b)⟩∗ ▷ it forms a block certificate,...
26: validBCp ← cert ▷ updates its validBCp and validBlockp...
27: validBlockp ← b ▷ to the most recent block, and...
28: StartEpoch(e + 1) ▷ starts immidiately the next epoch
29: when receive ⟨propose, e, b, BC⟩p and ⟨propose, e, b′, BC′⟩p ▷ upon receiving two different proposals...
30: where e = ep and p = leader(e) and b ̸= b′ do ▷ from the leader in the current epoch:
31: start timeoutEpochChange(ep) ▷ the replica triggers timeoutEpochChange

32: when receive f + 1 distinct ⟨blame, e⟩∗ where e = ep do ▷ upon receiving a blame certificate in the...
33: start timeoutEpochChange(ep) ▷ current epoch the replica triggers timeoutEpochChange

34: when timeoutEpochChange(e) expires do ▷ when timeoutEpochChange expires and...
35: if e = ep then ▷ the replica is stil in epoch e...
36: StartEpoch(ep + 1) ▷ the replica starts the next epoch

Upon starting an epoch, a Byzantine replica launches a specific attack, which is a
parameter of an algorithm:

EQUIVOCATION-ATTACK ,
AMNESIA-ATTACK ,
BLAME-ATTACK ,
EQUIVOCATION-CERTIFICATE-ATTACK , or
BLAME-CERTIFICATE-ATTACK .

All Byzantine replicas launch the same attack, not only the current epoch leader. This
ensures that messages arrive at their destinations as fast as possible. So, if the malicious
leader is far from some honest replica, the honest replica will receive attack messages from
its closest Byzantine replica. For example, if the attack is EQUIVOCATION-ATTACK, each
Byzantine replica will generate two proposals and votes for these proposals and send one
proposal and its votes to one subset of honest replicas and another proposal and its votes to
the other subset of honest replicas.

In attacks where Byzantine replicas divide honest replicas into two subsets and send
different messages to them, the subsets are picked randomly. The size of these subsets is a para-
meter of the algorithm, defined by k. If k is set to 2, function getTwoRandomSets(e, k, set)
will return two different subsets, each containing two random elements. Byzantine replicas
ensure they have the same subsets by using the current epoch number as a random number
generator seed.
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Algorithm 4 Byzantine attacks on BoundBFT’s agreement.
1: Procedure LaunchEquivocationAttack( ▷ ***EQUIVOCATION-ATTACK***
2: e, validBlock, validBC, honestReplicas, k, f)
3: if isByzantineLeader(e) then ▷ if the epoch leader is a Byzantine replica:
4: p1, p2 ← generateT woDifferentP roposals(e, validBlock, validBC) ▷ the replica creates two distinct...

▷ proposals
5: v1 ← generateV oteMessages(p1, f) ▷ then, the replica generates f vote messages for p1, and...
6: v2 ← generateV oteMessages(p2, f) ▷ f vote messages for p2, one for each Byzantine replica
7: set1, set2 ← getT woRandomSets(e, k, honestReplicas) ▷ lastly, the replica divide honest replicas...

▷ in two random sets of size k
8: send p1 and v1 to set1 ▷ then, it sends the first proposal and votes for it to the first set, set1,
9: send p2 and v2 to set2 ▷ while, sending the second proposal and its votes to the second set, set2

10: Procedure LaunchAmnesiaAttack( ▷ ***AMNESIA-ATTACK***
11: e, validBlock, honestReplicas, k, f)
12: if isByzantineLeader(e) then ▷ if the epoch leader is a Byzantine replica:
13: p← generateAlternativeP roposal(e, validBlock) ▷ the replica generates...

▷ an alternative proposal for validBlock
14: v ← generateV oteMessages(p, f) ▷ then, the replica generates f vote messages for p,...

▷ one for each Byzantine replica
15: send p and v to honestReplicas ▷ the replica sends the proposal and...

▷ votes for it to the all honest replicas
16: else ▷ else, if the leader is an honest replica:
17: set1, set2 ← getT woRandomSets(e, k, honestReplicas) ▷ the replica divides honest replicas...

▷ in two random sets of size k
18: upon receiving p = ⟨propose, e, b, BC⟩l ▷ then, when it receives the proposal...
19: where l = leader(e) do ▷ from epoch leader...
20: v ← generateV oteMessages(p, f) ▷ it generates f vote messages for received proposal and...
21: b← generateBlameMessages(e, f) ▷ f blame messages for epoch e, one for each Byzantine replica
22: send v to set1 ▷ then, it sends votes to one subset of honest replicas, set1,...
23: send b to set2 ▷ while sending blames to the second subset of honest replicas, set2

Algorithm 5 Byzantine attacks on BoundBFT’s progress.
1: Procedure LaunchBlameAttack( ▷ ***BLAME-ATTACK***
2: e, honestReplicas, f)
3: if isHonestLeader(e) then ▷ if the epoch leader is honest:
4: b← generateBlameMessages(e, f) ▷ the replica generates f blame messages,...

▷ one for each Byzantine replica, and...
5: send b to honestReplicas ▷ send them to all honest replicas
6: Procedure LaunchEquivocationCertAttack( ▷ ***EQUIVOCATION-CERT-ATTACK***
7: e, validBlock, validBC, k, honestReplicas, f) :
8: if isByzantineLeader(e) then ▷ if the epoch leader is Byzantine:
9: p1, p2 ← generateT woDifferentP roposals(e, validBlock, validBC) ▷ the replica generates...

▷ two different proposals, and...
10: v1 ← generateV oteMessages(p1, f) ▷ f vote messages only for p1, one for each Byzantine replica
11: set1, set2 ← getT woRandomSets(e, k, honestReplicas) ▷ then, the replica divides honest replicas...

▷ in two random sets of size k
12: send p1 and v1 to set1 ▷ finally, it sends the first proposal and votes for it...

▷ to the first set of honest replicas, set1,...
13: send p1 and p2 to set2 ▷ while sending both proposals to the second set of honest replicas, set2

14: Procedure LaunchBlameCertAttack( ▷ ***BLAME-CERT-ATTACK***
15: e, validBlock, validBC, k, honestReplicas, f) :
16: if isByzantineLeader(e) then ▷ if the epoch leader is Byzantine:
17: p← generateNewP roposal(e, validBlock) ▷ the replica generates new proposal for epoch e,...
18: v ← generateV oteMessages(p, f) ▷ f vote messages for proposal, and...
19: b← generateBlameMessages(e, f) ▷ f blame messages, one for each Byzantine replica
20: set1, set2 ← getT woRandomSets(e, k, honestReplicas) ▷ then, replica divides honest replicas...

▷ in two random sets of size k
21: send p and v to set1 ▷ finally, it sends the proposal and votes for it...

▷ to the first set of honest replicas, set1,...
22: send b to set2 ▷ while sending blame messages to the second set of honest replicas, set2

B Determining BoundBFT’s synchrony bound

This section presents the complete data of the experiments we used to determine BoundBFT’s
synchronous bound (see Section 5.2). Namely, we implemented all proposed attacks (see
Algorithm 3 and Figures 4 and 5). Then, we ran BoundBFT in our cluster while varying
the number of Byzantine replicas f . As a starting point, we set ∆ to 1250 ms (99.99%),
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the synchronous bound from [30], and gradually decreased it to the point where we started
to observe BoundBFT’s agreement and progress violations. More than 300 hours worth of
experiments were conducted in total. Tables 3 and 4 below show data for 1KB and 32KB
block sizes, respectively.

Table 3 Percentage of Agreement and Progress violations when running BoundBFT under
different attacks while using different values as its ∆. The table shows data for the setup of 60
replicas, 1KB block size and different number of Byzantine replicas (f). Additionally, for attacks
that parition honest replicas in two subsets, it shows results when Byzantine replicas divide them in
two minimal subsets (k = kmin = 1) and two maximal subsets (k = kmax = n − f/2).

1250
600
300
150
100
50

Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 1% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0%
100 5% 36% 6% 6% 0% 5% 0% 0% 0% 0% 0% 0%
50 19% 80% 31% 60% 2% 73% 8% 54% 0% 65% 0% 65%

Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
100 4% 19% 0% 18% 0% 14% 0% 8% 0% 0% 0% 0%
50 26% 90% 0% 80% 9% 81% 0% 97% 0% 66% 0% 67%

1250
600
300
150
100
50

Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
100 0% 16% 0% 12% 0% 17% 0% 12% 0% 0% 0% 0%
50 2% 88% 0% 90% 0% 86% 0% 80% 0% 63% 0% 66%

Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
100 0% 21% 0% 25% 0% 15% 0% 17% 0% 0% 0% 0%
50 2% 90% 0% 92% 0% 92% 0% 99% 0% 63% 0% 64%

65%
0%

N = 60, block size = 1KB

kmax kmin kmax

Δ (ms) Agreement Progress
0%
0%
0%
0%
0%
0%

0%
0%
0%
0%

kmin kmax

Δ (ms)

Amnesia attack
f=29 f=19 f=1

kmin kmax kmin

Δ (ms)

Equivocation attack
f=29 f=19 f=1

kmin

kmax kmin kmax

f=29 f=19 f=1
kmin

0%
Agreement Progress

0%
0%
0%
0%
0%

0%
0%
0%
0%
84%
100%

0%
0%
46%
100%

Agreement Progress

Δ (ms)

Blame certificate attack
f=29 f=19 f=1

No attack

kmin kmax kmin kmax kmin kmax

kmax kmin kmax kmin kmax

Δ (ms)
Blame attack

f=29 f=19 f=1

Δ (ms)

Equivocation certificate attack

Agreement Progress
0%
0%

0%
0%

0%
0%

0%
0%

0%
0%
0%
0%
0%
0%

0%
0%
0%
0%
0%
67%
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Table 4 Percentage of Agreement and Progress violations when running BoundBFT under
differentattacks while using different values as its ∆. The table shows data for the setup of 60
replicas, 32KBblock size and different number of Byzantine replicas (f). Additionally, for attacks
that parition honestreplicas in two subsets, it shows results when Byzantine replicas divide them in
two minimal subsets(k = kmin = 1) and two maximal subsets (k = kmax = n − f/2).

1250
600
300
150
100
50

Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0%
150 2% 0% 0% 15% 0% 0% 0% 0% 0% 0% 0% 0%
100 5% 34% 0% 67% 0% 13% 0% 9% 0% 0% 0% 0%
50 27% 91% 5% 85% 1% 94% 0% 97% 0% 66% 0% 66%

Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 3% 26% 1% 10% 0% 1% 0% 0% 0% 0% 0% 0%
100 6% 42% 0% 44% 0% 22% 0% 0% 0% 0% 0% 0%
50 27% 81% 10% 88% 9% 74% 0% 37% 0% 67% 0% 67%

1250
600
300
150
100
50

Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 0% 0% 18% 0% 0% 0% 0% 0% 0% 0% 0%
100 0% 31% 0% 61% 0% 13% 0% 17% 0% 0% 0% 0%
50 3% 86% 0% 83% 0% 95% 0% 95% 0% 67% 0% 67%

Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress Agreement Progress
1250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
600 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
150 0% 2% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0%
100 0% 30% 0% 32% 0% 17% 0% 12% 0% 0% 0% 0%
50 1% 90% 0% 96% 0% 95% 0% 99% 0% 66% 0% 66%

66%

0%
0%
0%
0%
0%

0%
0%
0%
0%
0%
0%

Δ (ms)

Blame certificate attack
f=29 f=19 f=1

kmin kmax kmin kmax kmin kmax

Δ (ms)

Equivocation certificate attack
f=29 f=19 f=1

kmin kmax kmin kmax kmin kmax

Δ (ms)
Blame attack

f=29 f=19 f=1
Agreement Progress Agreement Progress Agreement Progress

Δ (ms)

Amnesia attack
f=29 f=19 f=1

kmin kmax kmin kmax kmin kmax

Δ (ms)

Equivocation  attack
f=29 f=19 f=1

kmin kmax kmin kmax kmin kmax

N = 60, block size = 32KB

Δ (ms) No attack
Agreement Progress

43%
99%

0%
0%
0%
0%
0%
0%

0%
0%
0%
25%
85%
100%

0%
0%
0%
0%
0%
0%

0%
0%
0%
0%
0%
79%

0%
0%
0%
0%
0%
0%

0%
0%
0%
0%
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