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Abstract
Sketches are commonly used in computer systems and network monitoring tools to provide efficient
query executions while maintaining a compact data representation. Switches and routers maintain
sketches to track statistical characteristics of the network traffic. The availability of such data is
essential for the network analysis as a whole. Consequently, being able to recover sketches is critical
following a switch crash.

In this paper, we explore how nodes in a network environment can cooperate to recover sketch
data whenever any of them crashes. In particular, we focus on frequency estimation linear sketches,
such as the Count-Min Sketch. We consider various approaches to ensure data reliability and explore
the trade-offs between space consumption, runtime overheads, and traffic during recovery, which we
point out as design guidelines. Besides different aspects of efficacy, we design a modular system for
ease of maintenance and further scaling.

A key aspect we examine is how nodes update each other about their sketch content as it evolves
over time. In particular, we compare between periodic full updates vs. incremental updates. We
also examine several data structures to economically represent and encode a batch of latest changes.
Our framework is generic, and other data structures can be plugged-in via an abstract API as long
as they implement the corresponding API methods.
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1 Introduction

Network monitoring is a crucial part of network management. Effective routing, load
balancing, as well as DDoS, anomaly and intrusion detection, are examples of applications
that rely on monitoring network flows’ frequencies [3, 10, 13, 14]. Internet flows are often
identified by the source and destination IP addresses. Yet, IPv4 5-tuple (src.ip, src.port,
dest.ip, dest.port, protocol) can be used, uniquely identifying each connection or session [17].

Monitoring tools track a significant amount of flows, updating the frequency count of
every flow upon each of its packets’ arrival [2]. Hence, maintaining exact counter-per-flow
is often not feasible due to the high line rates of modern networks as well as lack of space
of SRAM memory. To overcome these limitations, it is common to trade the accuracy for
memory space with sketching algorithms, that utilize hashing to summarize traffic data using
fewer counters and without explicitly storing flows’ identifiers, e.g., Count Sketch [4], Spectral
Bloom Filter [7], and Count-Min Sketch [8]. Count-Min Sketch (CMS) is a popular sub-linear
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23:2 Distributed Recoverable Sketches

space data structure for flow size estimation. It uses pairwise-independent hash functions to
map flows to frequencies, while sub-linear space is achieved at the expense of over estimating
some flows’ frequencies due to hash collisions. Given a stream of N items and accuracy
parameters (ϵ, δ), CMS guarantees that the estimation error for any flow (distinct item) is
bounded by ϵN , with probability at least (1− δ).

Switches and routers constantly produce statistics of the tracked traffic. The availability
of such data is essential for the network analysis as a whole, and to enable continuous as well
as long term survivability of its applications. The ability to recover the statistics after a crash
failure is therefore highly desirable. Obviously, ensuring such information durability requires
a certain level of redundancy and replication. However, tracing and processing information
at the high line rate of modern networks may consume significant networking, computation,
and storage resources. On the other hand, the fact that we specifically target sketches, may
offer opportunity to reduce these costs compared to direct utilization of common techniques
used for general data availability. To that end, in this work we explore various approaches
to ensure data survivability of fast updating sketches in terms of their computational costs,
communication cost under normal operation, recovery communication cost (after a failure),
and storage overhead.

Contributions. Our goal is to design a flexible distributed fault tolerant software system
consisting of fully functional switches, each maintaining its own local sketch (referred as
data node), while sharing different partitions of its sketch with other switches (referred as
redundant nodes) for backup. In case of switch’s crash failure, the others will contribute
to the recovery process, restoring the latest backup of failed sketch. One of our goals is to
provide a modular system having simple design, which is easy to maintain and further scale.
Modularity is inherent in our design, which relies on swapable building blocks, providing a
variety of configurations and settings, as well as extendability through API.

During the pre-processing stage, the global configuration is generated based on user-
specified parameters. Further, we assume that all nodes are globally configured with the
same parameters and same hash functions as well, resulting in identical sketch structure.
Additionally, we assume that all the nodes comply with the protocol. Given the physic
parameters associated with system topology, such as number of switches, our framework
enables tuning the necessary parameters for the preferred performance goals.

To enable self-configuration we are looking for algorithms that optimize the trade-offs
between space redundancy overhead, communication overhead during redundancy mainte-
nance, and the amount of recovery traffic after a node’s failure. To this end, we distinguish
between the redundant space required to store the redundant sketches, and the extra local
space required to represent a batch of delayed items, used for incremental updates.

Redundant information can be constructed by summing the sketches into a sum sketch,
having the same structure, but with longer counters to count up to the sum of items in data
streams it covers. Inspired by RAID [5] we introduce simple yet scalable method to generate
redundant sums to tolerate any number of concurrent failures, as described in 5.1.1. Our
generation method has a property of optimal erasure code, and its small coefficients imply
fast multiply operations. As pointed out in 2.2, since our work is sketch-aware, we are able
to use less space than required with RAID, while buffering the changes into a batch.

Paper organization. Section 2 shortly covers the related work, and the associated properties
we rely on. In Section 3 we formulate the model and its key entities, while Section 4 highlights
the key aspects of efficacy we focus on during the system design. Section 5 describes the two
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redundancy strategies and a trade-off between the redundant space and the recovery traffic.
In Section 6 we introduce several data structures to economically represent a batch of latest
changes. Finally, in Section 7 we conclude and discuss some future work.

2 Background and Related Work

2.1 Count-Min Sketch
Count-Min Sketch (CMS) [8], is a probabilistic data structure for summarizing data streams,
which can be used to identify heavy hitters (frequent items). Using several hash functions and
corresponding arrays of counters, it responds to a point query with a probably approximately
correct answer by counting first and computing the minimum next. This ensures that the
overestimation caused by hash collisions is minimal.

Given user-specified parameters (ϵ, δ), a CMS is represented by a matrix of initially
zeroed counters, Countd×w, where d =

⌈
ln 1

δ

⌉
and w =

⌈
e
ϵ

⌉
. Additionally, d hash functions

h1 . . . hd : {1 . . . n} → {1 . . . w} are chosen uniformly at random from a pairwise-independent
family, mapping each item to one cell, for each row of Count.

When an update (x, ct) arrives, meaning that item x is updated by a quantity of ct, then
ct is added to the corresponding counters, determined by hi(x) for each row i. Formally,
∀ 1 ≤ i ≤ d set Count[i, hi(x)]← Count[i, hi(x)] + ct.

The answer to a point query Q(x) is given by ĉx = mini Count[i, hi(x)]. The estimate
ĉx has the following guarantees: (i) cx ≤ ĉx, where cx is the true frequency of x within the
stream, and (ii) with probability at least (1− δ), ĉx ≤ cx + ϵN , where N =

∑n
x=1 |cx| is the

total number of items in the stream. Alternatively, the probability to exceed the additive
error ϵN is bounded by δ, i.e., Pr[ĉx > cx + ϵN ] < e−d ≤ δ.

2.2 RAID
Chen, Lee, Gibson, Katz and Petterson described in 1994 the seven disk array architectures
called Redundant Arrays of Inexpensive Disks, aka RAID levels 0-6 [5]. These schemes were
developed based on the two architectural techniques used in disk arrays: striping across
multiple disks to improve performance, and redundancy to improve reliability. Data striping
results in uniform load balancing across all of the disks, while redundancy in the form of
error-correcting codes (like parity, Hamming or Reed-Solomon codes) tolerates disk failure.
Parity information can be used to recover from any single disk failure. RAID 4 concentrates
the parity on dedicated redundant disk, while RAID 5 distributes the parity uniformly across
the disk array. Thinking of a redundant disk as holding the sum of all the contents in data
disks, when a data disk fails, all the data on non-failed disks can be subtracted from that
sum, and the remaining information must be the missing one. RAID 6, also called P + Q

redundancy, uses Reed-Solomon codes to tolerate up to two disk failures.
Our work is inspired by RAID, but optimized to the realm of sketches, which in networking

applications, must cope with extremely fast update rates across the network. In RAID, the
parity can be either reconstructed from scratch or updated incrementally by applying the
differences in parity between the new and old data. This general technique can be applied to
sketches that process data streams and send periodic updates in cycles. It can be further
optimized with compact encoding to reduce the communication cost when only few changes
occurred. Yet, two data sketches are required to compute the differences in parity: the
original sketch, whose content is updated during the normal execution, and the latest backup
from the prior update cycle, aka the new and old data.

OPODIS 2024



23:4 Distributed Recoverable Sketches

As our work is sketch-aware, we use simplified design focusing on integers instead of
parity bits. With linear sketches we are able to update the redundant nodes in incremental
manner, producing the sums as if were calculated from scratch. To this end, next to its
original sketch, each data node holds only the ongoing changes of a cycle.

2.3 Batching and Buffering

We consider the general message-passing model with send and receive operations1, and
assume that messages are sent over reliable communication links, similar to TCP/IP or
QUIC, that provide an end-to-end service to applications running on nodes. Data nodes
could update the redundant nodes on each item arrival by simply forwarding, as they process
their data streams. An IP packet is the smallest message entity exchanged via the Internet
Protocol across IP network. As each message consists of a header and data (payload), it is
reasonable to send updates whenever there are enough changes to fill an IP packet. This
would increase network throughput by reducing the communication overhead, associated
with transmitting a large number of small frames. Batching and buffering are commonly
used techniques, where the events are buffered first and sent as a batch operation next. With
batch publishing strategy, RabbitMQ publisher [12] batches the messages before sending
them to consumers, reducing the overhead of processing each message individually.

To maintain the redundant information efficiently, we consider periodic updates of
incremental changes and examine several data structures to economically represent and
encode a batch. Batch may contain only a small portion of overall flows, making it feasible
to maintain exact counter-per-flow (e.g., using a compact hash table [1]). We begin with
traditional buffering of items as they arrive, and then switch to flows, grouping the items by
their identifiers while maintaining their accumulated frequencies using key-value pairs.

2.4 Compact Hash Tables

Dictionaries are commonly used to implement sets, using an associative array of slots or
buckets to store key-value pairs, with the constraint of unique keys. The most efficient
dictionaries are based on hashing techniques [15], but hash collisions may occur when more
than one key is mapped to the same slot of a hash table. Different implementations exist
aiming to provide good performance at very high table load factors. A load factor of a
hash table is defined as the ratio between the number of elements occupied in a hash table
and its capacity, signifying how full a hash table is. A hash table has to rehash the values
once its load factor reaches the load threshold, i.e., the maximum load factor, which is an
implementation-specific parameter. To avoid collisions, some extra space is required in the
hash table, by having the capacity greater than the number of elements at all times.

We consider an abstract compact hash table having α load threshold. High-performance
hash tables often rely on bucketized cuckoo hash table, due to featuring an excellent read
performance by guaranteeing that the value associated with some key can be found in less
than three memory accesses [16]. While the original Cuckoo hashing [15] requires the average
load factor to be kept less than 0.5, in Blocked cuckoo hashing [9], using four keys per bucket
increases the threshold to 0.98.

1 Alternatively, one can think of an RDMA-like write and read model.
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3 Model Description

We assume a collection of k nodes, each with a unique identifier known to all others, whose
goal is (possibly, among other things) to monitor streams of data items flowing through them.
For example, these nodes could be routers in a network, or servers in a decentralized scalable
web application. We also assume that the nodes are equipped with reliable memory and can
communicate with each other by exchanging messages over reliable communication links.
That is, each message sent by a non-failed node to another non-failed node is eventually
delivered at its intended recipient using an end-to-end communication service. Otherwise,
we detect it as failed node, and can initiate the recovery procedure to reconstruct its sketch
up to the latest restoring point. We focus on erasures only, due to reliable memory and
communication links, as well as error-correction and retransmissions provided by the lower
layer protocols, which are out of our scope.

Every stream Si, for i ∈ {1 . . . k}, is modeled as a sequence of items Si = (x(i)
1 , . . . , x

(i)
N ),

each carrying an identifier and possibly additional data that is irrelevant to our work, and
is therefore ignored from this point on. At any given point in time t, part of each stream
Si = (x(i)

1 , . . . , x
(i)
Nt

) has already arrived, while the rest of the stream is still unknown. To
avoid clatter, whenever i is clear from the context, we omit it. Within these streams, we
refer all items having the same identifier x as instances of a particular flow, denoted as fx, or
simply referred by its identifier x. The goal of each node i is to track the frequency of every
flow x within its stream Si, i.e., to “count” the number of items having identifier x that
flowed through it so far. To reduce the space overhead, nodes only maintain an estimation
of each flow’s frequency through Count-Min Sketches, which are configured with the same
global parameters (ϵ, δ) and the same hash functions as well. Upon a point query for a given
flow x, whose true frequency in a stream after Nt arrivals is cx, the CMS maintained by a
node i would return the estimate ĉx, such that cx ≤ ĉx + ϵNt with probability at least (1− δ).

Our goal is to share redundant information regarding each node’s sketch elsewhere, so
if that node fails, it would be possible to recover the missing data. To that end, from now
on we refer to nodes holding sketches capturing stream data flowing through them as data
nodes. In particular, we have k data nodes. We also introduce into the model redundant
nodes, whose goal is to store redundant information needed for recovery of failed sketches.

We consider two main use cases: (i) redundant nodes only store redundant information,
in which case we refer to them as dedicated redundant nodes, and assume that they too can
communicate reliably with each other as well as with all data nodes; alternatively, (ii) each
data node may serve as a redundant node too, in which case we have distributed redundancy,
where a set of redundant nodes is a subset of data nodes. In case (i), the roles are exclusive,
i.e., a node can be either data or redundant, but not both. Hence, a pure redundant node
can be realized as a centralized controller or backup server. In case (ii), in contrast to RAID
5, every node holds its own original sketch entirely, and may or may not provide backup
services for others. With this approach, the nodes perform as a distributed backup service
storing redundant sum sketches next to their original sketches. For ease of reference, Table 1
summarizes the notations presented here as well as later in this paper.

4 Design Guidelines

During the system design we explore some trade-offs, which among other savings might
reduce the total environmental impact, in terms of resource consumption.

OPODIS 2024
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Table 1 Notations.

Symbol Meaning Usage
(ϵ, δ) accuracy guarantees of CMS: ϵ ∈ (0, 1] and

δ ∈ (0, 1]
the error in answering a query is within an
additive factor of ϵ with probability (1− δ)

cx, ĉx true and estimated frequencies of a flow x cx ≤ ĉx and Pr[ĉx − cx > ϵN ] < δ
n, N number of flows (distinct items) in data

stream having N =
∑n

x=1 |cx| items
stream counters are ⌈log2 (N + 1)⌉ bits
long, we omit (+1) from now on

w number of counters-per-row in CMS w ←
⌈

e
ϵ

⌉
d number of CMS hash functions and corre-

sponding rows in Count
d ←

⌈
ln 1

δ

⌉
, hash functions h1 . . . hd map

flows’ ids [n] to counters’ indices [w]
k number of data nodes routers, switches or servers
f number of concurrent failures, f ≤ k set f ← 1 to tolerate any single failure
r number of redundant nodes, f ≤ r ≤ f · k with distributed redundancy f ≤ r ≤ k
p number of sketch’s partitions, each of

which is shared with f redundant nodes
balance the communication and space over-
head across the redundant nodes

B batch size – maximum number of items to
be delayed between consecutive shares

batch counters are shorter, 1 ≤ B ≤ N

α load threshold of data structure, 0 < α ≤ 1;
for array, α = 1

need to resize whenever its load factor
reaches α

Storage. Trade the recovery traffic for redundant space, using sum sketches instead of
full replicas. Following the approach from Section 1, redundant information can be
constructed by summing original (data) sketches into redundant sum sketches, requiring
less memory than storing full replicas.

Communication. Reduce maintenance traffic, using incremental updates organized in batches.
We generally prioritize to reduce unnecessary communication traffic during runtime. Thus,
we also embrace compact message encoding and early transmissions avoidance.

Runtime. Reduce the number of rehash operations and improve performance, providing a
data structure with an initial capacity upon memory allocation. Don’t forget to take into
account the load threshold of a data structure, 1.0 by default. Various data structures
can be used to represent a batch, and plugged-in to our framework via an abstract API.
A dynamic data structure starts with some default capacity, and might need to be resized
(e.g., the capacity of the Java HashMap is doubled each time it reaches the load threshold,
0.75 by default [11]). In case of hash tables, resizing also implies rehashing the elements,
which can be a computationally costly operation in stream processing.

Memory. Avoid memory reallocation. This can be done by over-allocating the memory in
advance, but we also need to take into account the space limitations, as detailed in 6.4.

Computation. Reduce overall computation and the total resource consumption, using the
strategy where a data node performs local computations once and encodes the share of
redundant content in an easy-to-consume manner, implying fast updates on the redundant
nodes. We note that to tolerate up to f concurrent failures, each data node must be
covered by at least f redundant nodes.

5 Redundancy Strategies

Redundancy is essential for recoverability of a failed sketch. Upon adding some redundancy
into the system, various solutions may differ in: (i) extra space they require to support
redundancy (beyond the space required to store the original sketches at data nodes); (ii) the
communication overhead they impose in order to maintain this redundant information; and,
(iii) the recovery traffic that is needed in order to restore failed data node’s sketch.
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Denote k the total number of data nodes in the system, f the number of concurrent
failures that we wish to be able to recover, and r the number of redundant nodes holding
redundant information. To recover from any f concurrent failures, each data node needs
to backup at least f copies of its sketch at different redundant nodes. Thus, at least2 f

redundant sketches are required to hold the redundant information of the entire system.
Considering the case of a fully replicated system as a sufficient upper bound, we derive the
range f ≤ space ≤ f · k, where space is the number of redundant sketches within a system.

For didactic reasons, we start with f = 1, i.e., our initial goal is to recover from any
single failure. Inspired by RAID, we consider two main strategies to maintain the redundant
sum sketches – dedicated and distributed redundancy.

System model in a vector space. In our model each data node holds its own original sketch.
Hence, the original sketch of a node i can be represented as a row-vector in Rk, containing
1 in its ith entry, while all other entries contain 0. In other words, in a system with data
nodes D⃗ = (D1, . . . , Dk), their original sketches are represented as vectors in the standard
basis of Rk, forming the identity matrix Ik. Similarly, redundant nodes are represented as
redundant vectors, indicating the linear combination of data nodes’ sketches that they cover.
To recover a failed data node j, a redundant vector with non-zero jth entry is essential.

Redundant Space vs Recovery Traffic trade-off. In 5.1.1 we introduce a method to generate
the bare minimum of f redundant sum sketches, at the expense of high recovery traffic,
requiring k nodes to recover each failed data node first, and all k data nodes to reconstruct
every failed redundant node next. In contrast, full replicas produce the lowest recovery traffic,
since only single sketch is sent during the recovery of a failed node.

5.1 Dedicated Redundancy
Using this strategy, in addition to k data nodes, r dedicated redundant nodes are allocated
as well, resulting in overall (k + r) nodes in the system. For f = 1, similar to RAID 4, a
single dedicated redundant node is sufficient to hold a sum of all k data nodes’ sketches.
Denote R =

∑k
i=1 Di the sum sketch held by the dedicated redundant node. To recover the

sketch of a failed data node i, we simply compute Di = R−
∑

j ̸=i Dj , where the plus and
minus operations are performed as matrix operations.

For any f , our goal is to be able to recover the sketches held by the k data nodes,
despite the failure of any f nodes, or less. Once the failed data nodes are recovered, the
failed redundancy can be reconstructed. Turning to linear algebra, this can be realized by
generating a system of (k + r) linear equations with k variables. For a unique solution to
exist, a set of vectors that span Rk is required, implying that any k linearly independent
vectors must be available at all times.

5.1.1 Extending RAID for f erasures
We now introduce our simple method to produce exactly f linearly independent redundant
vectors in Rk. These row-vectors construct a redundant matrix MRf ∈Mf×k(R), such that
every subset of f out of its k columns span Rf .

2 We do not use compression due to its computational overhead, which is too high for in-network stream
processing.

OPODIS 2024



23:8 Distributed Recoverable Sketches

Algorithm 1 Generate redundant matrix MR ∈Mf×k(R).

Inputs:
k - number of data nodes;
f - number of concurrent failures, f ≤ k;

procedure Init(f, k)
MR← new Matrix(f, k, 2k−1) ▷ f rows, k columns, each cell is k bits long
MR[1]← 1k ▷ First row is full of 1’s
for row ← 2 to f do

MR[row][1]← 1 ▷ First column is full of 1’s
for col← 2 to k do ▷ Fill cells inductively

MR[row][col]←MR[row − 1][col − 1] + MR[row][col − 1]

The first row and column are filled with 1s, holding the base case f = 1. Then, all other
entries are calculated inductively, depending on preceding column’s values of the current row
and the row above. Using one-based indices, we produce MR5 as an example for k = 5 and
compare it to a Vandermonde matrix V , where each entry [V ]i,j = ij−1.

MR5 =


1 1 1 1 1
1 2 3 4 5
1 2 4 7 11
1 2 4 8 15
1 2 4 8 16

 V =


10 11 12 13 14

20 2 4 8 16
30 3 9 27 81
40 4 16 64 256
50 5 25 125 625


We note that [MR]i,j ≤ [V ]i,j and [MR]i,j ≤ [V ]j,i = [V ⊺]i,j , due to its small coefficients,
which are bounded by 2k−1, while with Vandermonde matrix the bound is fk−1. Small
coefficients are sufficient to our purpose, since we deal with erasures only, and not correction
codes. Thus, we expect quicker execution associated with hardware operations, though at
cost to longer counters since we use regular arithmetic, instead of over Galois field.

Denote G(k+f)×k the generation matrix of a system with data nodes D⃗ = (D1, . . . , Dk)
and dedicated redundant nodes denoting their sum sketches R⃗ = (R1, . . . , Rf ). Hence, the
sketches of a system are defined by GD⃗⊺ =

[
Ik

MRf

]
D⃗⊺ =

(
D1, . . . , Dk, R1, . . . , Rf

)⊺.
MRf ’s construction using shifted sums ensures that its f redundant row-vectors are

linearly independent of any subset of (k − f) data vectors, meaning that even after any f

erasures, we are left with k linearly independent vectors. Therefore, G holds the property of
optimal erasure codes, where any k out of (k + f) nodes are sufficient to recover all failed
data nodes first and reconstruct the redundancy next.

5.1.2 Data recovery

Recall that the generation matrix of a system with dedicated redundancy consists of Ik,
representing the data, and MRf representing the redundancy. When a redundant node fails,
its sum sketch is reconstructed according to a linear combination of data nodes, defined by the
corresponding redundant vector. However, when a data node fails, its row-vector becomes 0k,
i.e., erased. As shown for f = 1, when a redundant vector consists of all non-zero coefficients,
it can be used together with the other (k − 1) non-failed data vectors to recover the failed
one. Similarly, MRf consists of such redundant vectors, covering all the data. To recover
the failed data nodes, we replace each erased data vector with the first redundant vector
still available, and then we need to solve the equations left (e.g., by Gaussian elimination).
Notice that replacing the erased data vectors results in leading k independent vectors, which
form a k × k invertible matrix.
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Example scenario. Let (D1, . . . , D5) = I5D⃗⊺ the data nodes. For f = 3, we construct the
dedicated redundant sums sketches, according to the coefficients in MR3. Any 3 columns of
MR3 are linearly independent in R3, thus for any 3 erased variables, there exists a unique
solution to a corresponding system of linear equations. Suppose that D1, D2 and D3 failed,
i.e., their data vectors were erased. To recover these nodes, simply replace the erased rows
of I5 with the available redundant rows from MR3 and then, invert the resulting matrix,
revealing the solution for data recovery, e.g., D1 = (2R1 − 2R2 + R3 −D4 − 3D5).

1 1 1 1 1
1 2 3 4 5
1 2 4 7 11
0 0 0 1 0
0 0 0 0 1




D1
D2
D3
D4
D5

 =


R1
R2
R3
D4
D5

⇒


D1
D2
D3
D4
D5

 =


2 −2 1 −1 −3
−1 3 −2 3 8

0 −1 1 −3 −6
0 0 0 1 0
0 0 0 0 1




R1
R2
R3
D4
D5


5.2 Distributed Redundancy
With this strategy, the redundancy is distributed across the k data nodes, each of which can
additionally serve as a redundant node. This time, if a node goes down, both its original
sketch (aka data) and the redundant information, it held for others, fail. As before, we
recover the data first and reconstruct the redundancy next.

Since all the nodes are data nodes, we need more redundant sketches than with dedicated
redundancy, i.e., space ≥ (f + 1). For the base case, f = 1, in order to distinguish between
the roles of a node i, denote Di the original (data) sketch and Ri the redundant sketch held
by i. Ri may cover no more than the rest of (k − 1) data nodes. To be able to recover from
i’s failure as well, some other node j must cover Di in its redundant sketch Rj . Hence, using
this strategy, even for a single failure tolerance, at least two redundant sketches are required.

5.2.1 Sketch Partitioning
To enable fine grain redundant information sharing, we introduce the concept of sketch
partitioning, where data nodes divide their sketches into p non-overlapping partitions, another
global parameter derived during the pre-processing stage. Every data node is mapped3 to rc

redundant nodes, each of which covers some of its partitions, and together they cover f full
copies of its sketch. Each redundant node holds at least one partition and may serve up to k

data nodes. Also, each data node knows the partition every sketch counter is mapped to,
and which f redundant nodes cover it, while each redundant node knows which partitions of
which data nodes it covers.

Denote cpp the upper bound for consecutive cells-per-partition. Practically, the sketch
can be viewed as a one-dimensional array of d concatenated rows, where its partitions contain
exactly cpp cells each, except for the last partition containing the leftover cells. When p = 1,
the entire sketch is mapped to a single partition, as shown in Fig. 1a, and hence, there are
only rc = f covering nodes. With partitioning by cells (Fig. 1b) a data node is able to
spread out its sketch uniformly across its covering nodes. Thus, a sketch row may appear on
more than one partition. With partitioning by rows (Fig. 1c) the entire row (its first counter
through the last one) is a member of a particular partition, implying that p ≤ min{d, rc}.

Partitioning example. Figure 1 illustrates the three types of sketch partitioning and their
impact on the ability to engage as much other nodes as possible. It reflects a system with
k = 5 data nodes, using distributed redundancy to tolerate any single failure, p ≤ (k−f) = 4.

3 We introduce coverage mapping in 5.2.2
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(a) single partition. (b) partitioning by cells. (c) partitioning by rows.

Figure 1 Sketch partitioning types.

Given the parameters (ϵ, δ) = ( 1
4 , 1

10 ), the sketch capacity is defined by d←
⌈
ln 1

δ

⌉
rows and

w ←
⌈

e
ϵ

⌉
columns, i.e., CMS generates a matrix of 3× 11 counters. With partitioning by

cells, the sketch can be divided into p = 4 partitions, where the first 3 partitions contain
9 cells each, and the 4th one contains the remaining 6 cells. However, with partitioning by
rows, no more than 3 partitions can coexist.

5.2.2 Coverage Mapping
We now combine the sketch partitioning into distributed redundancy, and briefly describe
three coverage mapping types, which slightly differ in their preferences regarding space-
recovery trade-off. The mapping, or its generation algorithm, is given to a system, such that
all the nodes are globally configured with the same mapping.

Figure 2 reflects a system with k = 4 data nodes, using distributed redundancy to
tolerate any single failure, f = 1. Hence, for such a system, p ≤ 3 and space ≥ 2. The
mapping is illustrated using a single coverage matrix, which can be divided into a series of
partition-specific mappings, and respective matrices. The columns represent the partitioned
data, denoted Di for a node i, while the rows stand for redundant partitions a node covers.
The redundant space of a node is therefore proportional to the number of partitions it
actually covers, which are colored next to each Ri. When a node fails, its partition-rows
become invalid. To validate them back again and fully recover a node, we need to recover its
data and reconstruct the redundancy it held prior to failure.

(a) balanced traffic-oriented. (b) imbalanced space-oriented. (c) balanced space-oriented.

Figure 2 Coverage mapping types, all tolerate any single failure.

Mapping types. We begin with maximal p = 3 and aim to achieve balanced redundant
space. Using the clique topology, a node i covers some partitions of all other nodes, each of
which covers a different partition of Di. The redundant vectors of the first mapping in Fig. 2a
vary in the number of their non-zero coefficients (e.g., R12 = D32 + D42 but R13 = D23),
implying that the overall redundant space is not minimal, indeed 8

3 > 2. However, this type
is slightly better for recovery traffic, than space-oriented types, requiring only 8

3 < 3 sketches
to recover a failed node.
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Towards space-oriented mapping, we define all (non-zero) redundant vectors to contain
the same amount of non-zero coefficients. Minimal space = 2 is achieved in Fig. 2b, using
six redundant partitions in total. However, they cannot be divided equally across the four
nodes. As a result, the redundant space per node is imbalanced, implying slight variance in
recovery traffic, 3± 1

3 . Such a mapping can be useful in heterogeneous setting, where the
nodes differ in their capabilities (e.g., due to overlap period of storage replacement). Hence,
delegating more work to the capable ones suits fairness design.

Towards balanced space-oriented mapping, we tune p by reducing its value, and propose
final mapping in Fig. 2c, which consists of four redundant vectors, having exactly two non-zero
coefficients each. Besides its space properties, this mapping requires exactly 3 sketches to
recover any of the failed nodes.

6 Periodic Updates

We examine sharing the redundant information upon regular time intervals, and assume that
the maximum number of arrivals per time interval is bounded by a batch size B ≤ N .

The nodes operate in cycles, exchanging messages over reliable end-to-end communication
service, i.e., the time interval encapsulates the retransmissions performed by the lower-level
protocols we rely on. We assume timely delivery of messages, as well as that each node
is equipped with incoming message queue having large enough memory to buffer all the
messages that arrive during the cycle. In case a message from a certain data node fails to
arrive on time, we consider this to be a crash failure, and initiate the recovery procedure of
its sketch. If a data node has nothing to share, it sends the minimum message signalling
that it is still alive. On each cycle, a redundant node reads all the incoming messages and
updates its sum sketch accordingly. Let us note that in practice, when a message containing
a sketch update is delivered at a redundant node, handling this message temporarily takes a
corresponding extra space until the sketch data is consumed and its memory is freed.

6.1 Update policies
When B = 1, no delay is activated, and we update the redundant nodes on each item arrival.
Otherwise, to maintain the redundancy, we consider the following two update policies:

Full Share policy. With this policy, data nodes send their entire sketches causing the
redundant nodes to reconstruct their sum sketches from scratch, e.g., to sum all the data
sketches, which were delivered by the start of a cycle. Recall that each sketch counter is
associated with a particular partition. Given a coverage mapping from 5.2.2, a data node
encodes each partition by simply concatenating the relevant range of its d ·w sketch counters.
To do so, the counters are tested for membership. Yet, with partitioning by rows, all the
counters of a particular row are mapped to the same partition and hence, it’s enough to test
only one of them, reducing the number of membership tests. Moreover, with single partition,
no membership testing is required at all, since all the counters are mapped together. When
done encoding partitions, a data node constructs a message for each of its covering redundant
nodes, consisting of only the partitions it covers. In such a manner, data nodes are able to
send the bare minimum of f copies for each counter.

We note that full share is essential for the recovery procedure of a failed sketch, which
subtracts the non-failed counts from the overall sum. However, sending the entire sketch every
time interval during the maintenance, over and over again, implies unnecessary communication
overhead, especially if only few changes occurred. Moreover, a redundant node must wait to
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receive the updates from all data nodes that under its cover, before an older sum can be
safely freed. To this end, as a communication-oriented solution, we consider sharing in an
incremental manner only the changes, caused by the items that arrived during the cycle.

Incremental Share policy. With this policy, a data node needs to encode the changes that
occurred during the cycle. This can be done by either (i) recording each item arrival, (ii)
capturing the identifiers of the items that arrived and the number of times each of them
arrived, or (iii) recording the counters that have been changed and by how much. In options
(i) and (ii), to reduce the space requirements, we consider capturing only the identifiers4

of arrived items. In options (ii) and (iii) we need counters, but these counters might be
much smaller than the regular sketch counters, as they only need to count up to a batch size.
Additional local data structure is required to host and manage the batch.

6.2 Framework API
We now introduce a generic framework for CMS, that besides its normal activity, supports
batching, as shown in Algo. 2. Then, we examine some batch representations in more details.

Algorithm 2 Abstract CMS with batch, code for data node.

Locals:
B′ - number of currently delayed items between consecutive shares;

procedure Init(d, w, N, B, mid) ▷ mid - maximum identifier
Count ← new Matrix(d, w, N) ▷ Original CMS
dt← GetBatchRespresentation ▷ Decide on local data type to represent a batch
ads← InitBatch ▷ Allocate memory and initiate the representation
ResetBatch

procedure ResetBatch
B′ ← 0 ▷ Reset counter of delayed items
ads.Reset ▷ Reset additional data structure

procedure FullShare ▷ Full share of original CMS
SendCounters

procedure IncShare ▷ Incremental share of batch representation
if B′ = 0 then Send minimum message to signal alive
else

ads.Send ▷ Send items or counters, depending on representation
ResetBatch ▷ Reset to reuse with next batch

procedure Update(x)
B′ ← B′ + 1 ▷ Count the items as they arrive
if ads.Update(x, B′) ̸= true then ▷ Only ads has been updated

for all i ∈ [1..d] do ▷ Update original CMS instantly
j ← hi(x)
Count[i, j]← Count[i, j] + 1

function Estimate(x) ▷ Original CMS estimation ĉx

return mini Count[i, hi(x)]
upon event Arrived(x) do

Update(x)
upon event T imeOut do

IncShare
Reset the timer

Define B′ to count the delayed items between the consecutive shares, B′ ≤ B. Initially,
as well as after sharing the batch, counter B′ is zeroed and batch representation is reset too.
When an item x arrives, in addition to the normal CMS execution, counter B′ is incremented
and an item is processed into a batch, where B′’s recent value can be used as an index, e.g.,
in Buffer representations.

4 In case of long identifiers, one can apply a cryptographic hash function to produce shorter fixed-length
fingerprints.
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The general scheme for send procedures is provided in Algo. 3. Representations that
record counters need to implement EncodeFixed and EncodeVar functions, while others
need to implement EncodeItems. When encoding rows of a fixed length, we can specify a
row-width (actual number of elements) into a message’s header. However, when encoding
variable-length rows, which is also the case when sketch is partitioned by cells, we need to
encode these rows such that a redundant node can recognize the sketch row, each decoded
element belongs to. For this purpose, besides the elements associated with a row, we first
specify the number of elements to appear on that row. We call this metadata encoding.

Algorithm 3 General scheme for send procedures.

function EncodePartitions ▷ Encode counters divided into partitions
if ptype = cells then return EncodeVar(B′) ▷ Encode variable-length rows with metadata
return EncodeFixed(ptype, B′) ▷ Encode fixed-length rows

procedure SendItems
msg ← EncodeItems(B′)
for all r ∈ {covering-nodes} do Send msg to r. ▷ Multi-cast to its rc covering nodes

procedure SendCounters
{Msg[1], . . . , Msg[p]} ← EncodePartitions
for all r ∈ {covering-nodes} do

msg ← {}
for part← 1 to p do ▷ Construct a message for r

if r covers a partition part then msg.Append(Msg[part])
Send msg to r, if covers any partition.

6.3 Batch Representations
We examine several data structures to economically represent and encode a batch of changes.
We consider two main categories – item-based vs counter-based data structures, each of
which can be implemented as a Buffer or a Compact Hash Table. Table 2 lists the main
aspects of their complexity, e.g., the extra local space they require, the amount of traffic they
produce on each cycle, and the extra computation they imply, while omitting O notation for
space saving. For further evaluation, these are expressed using hyper-parameters. We then
compare the representations to each other, and to the baseline option of a full share, as well.

Buffer of Items. The naïve approach for handling incremental shares is to record the arrived
items in a local buffer, ItemBuff . Upon filling the buffer with at most B items during
the cycle, simply send the content to all the covering redundant nodes, as defined by
coverage mapping. A receiving redundant node will then extract the identifiers and
execute an update procedure against its sum sketch, recalculating the hash functions for
each delivered item.
Buffer of Items is a simple and easy-to-implement, but also has some drawbacks:

Extra hash calculations must be performed by the redundant nodes on update.
All the buffered items must be sent to every covering redundant node, rc ≥ f .
No room for privacy, since items’ identifiers are openly shared.
Different instances of a flow are handled independently of each other – duplicates.

To overcome these, we may (i) turn to counter-based representations, and/or (ii) avoid
duplicates through aggregation.

Buffer of Counters. Turning to counter-based representation, only a data node performs
CMS hash calculations. The resulting indices are captured in a buffer of counters
CntBuff d×B. For each counter, a data node knows exactly which f redundant nodes
cover it, so the bare minimum of f copies can be sent. A receiving redundant node will

OPODIS 2024



23:14 Distributed Recoverable Sketches

then extract the indices and increment the corresponding counts of its sum sketch. As all
the nodes are identically configured, we cannot guarantee that the privacy is protected
with counters. Yet, it’s clearly better preserved than if sharing items.

Hash Table of Flows. FlwHash tries to improve ItemBuff through duplicate avoidance, but
it requires longer elements to additionally store the corresponding frequencies, using
key-value pairs, as well as additional capacity due to the load threshold α of a hash table.

Hash Table of Counters. Similarly, CntBuff can be replaced by d hash tables of counters,
where CntiHash is associated with a sketch row i.

Hosting a batch. Recall that within a stream of N items, there are only n ≤ N flows
(distinct items). Splitting the stream’s timeline by regular time intervals would result in q

cycles, each having associated batch. For ease of reference we assume the batches are full,
i.e., contain B items each. With incremental share we zoom into a given cycle.

Denote b the number of flows that arrived during that particular cycle, and c ≈ b · d the
number of modified sketch counters. Throughout the stream’s timeline,

∑q
i=1 Bi = N , but∑q

i=1 bi ≥ n, since the same flow contributes to every batch it appears on. Denote β = B
b

the average frequency-per-flow within a given batch, then 1 ≤ β ≤ N
n . Although the true

values can be discovered in retrospect, but we need to decide on batch’s representation and
allocate the memory in advance. To that end we could use some estimations on β̂. For this
purpose, we measure some statistics among different known large Internet traces.

Table 2 Batch representations.

Type Local space Payload of a share Extra computation
Count d · w · ⌈log2 N⌉ f · d · w · ⌈log2 N⌉ (none)
ItemBuff B · ⌈log2 mid⌉ rc ·B · ⌈log2 mid⌉ r. hash (CMS): f ·B · d
CntBuff d ·B · ⌈log2 w⌉ f · d ·B · ⌈log2 w⌉

FlwHash
⌈

b̂
α

⌉
· (⌈log2 mid⌉+ ⌈log2 B⌉) rc ·b·(⌈log2 mid⌉+⌈log2 B⌉) l. hash (HT): B

r. hash (CMS): f · b · d

CntHash d ·
⌈

b̂
α

⌉
· (⌈log2 w⌉+ ⌈log2 B⌉) f · d · ⌈log2 B⌉+

f ·d ·b ·(⌈log2 w⌉+⌈log2 B⌉)
l. hash (CMS+HT): B · d
sort: d · (b · log2 b)

6.4 Evaluating Compact Hash Table
In this paper, we evaluate the usage of compact hash tables through a comparison between
FlwHash and ItemBuff . We generally prioritize to reduce the communication traffic and
avoid early transmissions, but space efficiency is also desired. To evaluate the traffic produced
by these representations, we need to compare ⌈log2 mid⌉+⌈log2 B⌉

⌈log2 mid⌉ = θ vs B
b = β. We measured

the traces using various batch sizes and hence, we consider the results as the range for any
smaller Internet trace, e.g., within campus. The source code for measuring β and generating
the plots, as shown in Fig. 3 and Fig. 4, is now available at GitHub [6]. Given β̂ we further
estimate the number of unique flows b̂ =

⌈
B
β̂

⌉
, and derive the initial capacity for

⌈
b̂
α

⌉
buckets.

Over-allocation vs early transmission trade-off. With low β percentile we reduce the
probability of early transmission, but the cost is space over-allocation. To choose the right β̂

for a given batch size B, we look for the lowest percentile that holds: (i) β̂ ≤ βavg and β̂ ≥ θ

for communication traffic efficiency (colored in yellow), and (ii) β̂ > 1
α · θ for space efficiency.

From the plots we learn additional approach to gain both space and traffic efficiency
simultaneously (colored in magenta), by increasing the batch size. However, we need to keep
in mind that upon recovery of a failed sketch, the batch size has a significant impact on the
estimation error.
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Figure 3 Internet traces with 80-bit identifiers, load factor α = 0.8.

Figure 4 Internet traces with 64-bit identifiers, load factor α = 0.8.

7 Conclusions

In this paper we have presented the motivation for recoverable sketches in a network
environment, where each data node holds its own local sketch while the redundant nodes
provide backup services for data nodes. Our distributed redundancy approach is based on the
combination of these two roles, which can be implemented as independent services running
on the same node. We introduced sketch partitioning into the model for load balancing,
described how this parameter can be tuned, and provided different mappings to define the
relations between the nodes.

We discovered an interesting imbalanced mapping, which can be useful in heterogeneous
setting, and suit fairness design. An interesting direction for future work is to implement
our design, and test the variety of settings in real-world datasets, exploring the potential of
industry use.
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