
Reliable Communication in Hybrid Authentication
and Trust Models
Rowdy Chotkan #

Delft University of Technology, The Netherlands

Bart Cox #

Delft University of Technology, The Netherlands

Vincent Rahli #

University of Birmingham, UK

Jérémie Decouchant #

Delft University of Technology, The Netherlands

Abstract
Reliable communication is a fundamental distributed communication abstraction that allows any
two nodes within a network to communicate with each other. It is necessary for more powerful
communication primitives, such as broadcast and consensus. Using different authentication models,
two classical protocols implement reliable communication in unknown and sufficiently connected
networks. In the former, network links are authenticated, and processes rely on dissemination
paths to authenticate messages. In the latter, processes generate digital signatures that are flooded
throughout the network. This work considers the hybrid system model that combines authenticated
links and authenticated processes. Additionally, we aim to leverage the possible presence of trusted
nodes (e.g., network gateways) and trusted components (e.g., Intel SGX enclaves). We first extend
the two classical reliable communication protocols to leverage trusted nodes. Then we propose
DualRC, our most generic algorithm that considers the hybrid authentication model by manipulating
dissemination paths and digital signatures, and leverages the possible presence of trusted nodes
and trusted components. We describe and prove methods that establish whether our algorithms
implement reliable communication on a given network.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computer
systems organization → Fault-tolerant network topologies

Keywords and phrases Reliable communication, Byzantine, Authentication models, Trust

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.25

Related Version Full Version: https://arxiv.org/abs/2408.08060

Funding Rowdy Chotkan: This work was partially supported by NWO/TKI grant BLOCK.2019.004.
Vincent Rahli: This work was partially supported by the Engineering and Physical Sciences Research
Council (EPSRC) grant number EP/W034514/1.

1 Introduction

Distributed systems involve autonomous computing processes (also called nodes) that com-
municate using a network to perform a cooperative task. Formalization efforts have led to
the definition of distributed computing abstractions defined by a set of properties [13]. In
particular, fault-tolerant distributed computing abstractions tolerate a limited number of
faulty nodes. The most general fault model is the Byzantine model, which allows processes
to deviate from a specified protocol in unrestricted ways, making such systems well-suited to
handle real-world scenarios. For example, protocols that implement the Byzantine consensus
abstraction are involved in Blockchain systems [15, 43].

© Rowdy Chotkan, Bart Cox, Vincent Rahli, and Jérémie Decouchant;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 25; pp. 25:1–25:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:R.M.Chotkan-1@tudelft.nl
https://orcid.org/0000-0001-9322-4131
mailto:B.A.Cox@tudelft.nl
https://orcid.org/0000-0001-5209-6161
mailto:vincent.rahli@gmail.com
https://orcid.org/0000-0002-5914-8224
mailto:J.Decouchant@tudelft.nl
https://orcid.org/0000-0001-9143-3984
https://doi.org/10.4230/LIPIcs.OPODIS.2024.25
https://arxiv.org/abs/2408.08060
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Reliable Communication in Hybrid Authentication and Trust Models

Table 1 Reliable communication protocols, their system models, and correctness conditions. The
three detached bottom rows are novel protocols discussed in this paper.

Protocol Auth.
links

Auth.
nodes

Trust.
nodes

Trust.
comp Correctness condition

DolevU [16] ✓ ✗ ✗ N/A 2f+1 vertex-connectivity
SigFlood [17] ✗ ✓ ✗ ✗ f+1 vertex-connectivity

DolevU-T (§3, Alg. 1) ✓ ✗ ✓ N/A DolevU-T-Verif (§3.3.1 and §3.3.2,
Alg. 5 or Alg. 6)

SigFlood-T (§4, Alg. 2) ✗ ✓ ✓ ✓
SigFlood-T-Verif (§4.2, Alg. 5 or
Alg. 6 with 2f+1 replaced by f+1)

DualRC (§5, Alg. 3) ✓ ✓ ✓ ✓ DualRC-Verif (§5)

Distributed computing abstractions can be built on top of each other, which simplifies
implementations and allows for simpler proofs of correctness. Arguably, the simplest distrib-
uted computing abstraction is reliable communication (RC) [16, 27, 35] because it allows two
processes to authenticate each other’s messages. In an unknown and incomplete network,
reliable communication relies on broadcast and requires that: (i) when a correct process
broadcasts a message, then the message is authenticated (or delivered) by all correct nodes;
and (ii) when a message originating from a correct process is delivered, it was indeed sent by
this correct process. Reliable communication is closely related to reliable broadcast [12] and
ensures the same properties when the original sender is correct. As a consequence, reliable
communication is sometimes referred to as reliable broadcast with an honest dealer.

State-of-the-art reliable communication protocols have either considered that all nodes
are authenticated (i.e., can generate and verify signatures) or, instead, that all nodes rely
on authenticated links [16]. However, with the recent development of complex systems that
involve a large variety of nodes – some using digital signatures and some using point-to-
point authenticated communication – there is a need to revisit the reliable communication
abstraction and consider hybrid models.

Several academic works have explored hybrid process models and additional trust assump-
tions, including trusted nodes [39, 40] and trusted components [14, 15, 25, 42], primarily in the
context of higher-level distributed computing abstractions such as consensus. The impact of
trusted nodes and trusted components on lower-level distributed computing abstractions, such
as reliable communication, has not been evaluated. In this work, we revisit state-of-the-art
reliable communication protocols and extend them to tolerate the simultaneous presence of
both authenticated and non-authenticated nodes, while also leveraging the possible presence
of trusted nodes or nodes equipped with a trusted component. Tab. 1 lists the state-of-the-art
RC protocols that we consider in this paper, along with the three novel protocols that we
introduce, and compares their system models and correctness conditions.
As a summary, this work makes the following contributions:

We extend the state-of-the-art reliable communication protocols to leverage trusted nodes
in unknown networks under the global fault model. First, we modify Dolev’s [16] reliable
communication protocol, which disseminates messages across authenticated links along
with their propagation paths, facilitating message authentication (§3). Second, we modify
the flooding-based reliable communication protocol [17] – referred to as SigFlood. This
protocol, which relies on authenticated nodes, ensures that the dissemination of a message
is accompanied by the digital signature of the original sender (§4).
We present DualRC: the first reliable communication protocol that supports the presence
of both authenticated and non-authenticated processes, and leverages trusted nodes and
trusted components (§5). This protocol disseminates messages that contain dissemination

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:3

(a) (b)

Figure 1 (a) In a network of 30 authenticated nodes with connectivity (3), both SigFlood and
DualRC ensure reliable communication when f = 1. (b) In a complex network with 10 authenticated
(red), 10 non-authenticated (gray), 5 authenticated trusted (green), and 5 non-authenticated trusted
(blue) nodes, only DualRC achieves reliable communication.

paths, signed payloads, and signed dissemination paths. DualRC aims at supporting the
largest possible range of network topologies where all authenticated and non-authenticated
nodes can communicate reliably. Interestingly, DualRC leverages the presence of trusted
components to translate signed dissemination paths into trusted signatures that vouch
for the authenticity of a message. Fig. 1 shows two networks to illustrate that DualRC
implements reliable communication in more generic networks than previous algorithms.
Finally, for each of our protocols, we establish the necessary and sufficient conditions
that the network topology must meet to enforce all reliable communication properties.
Additionally, we present algorithms that allow for the verification of these conditions and
evaluate their complexity.

2 Models and Problem Statement

Network. We consider a static set V ={p1, p2, . . . , pN } of N processes, which are assumed to
know the system size N . Processes are interconnected by a communication network, depicted
as an undirected graph G=(V, E) where each node pi∈V corresponds to a process, and each
edge eij∈E denotes a unicast communication channel between two processes. This paper
uses the terms “process” and “node” interchangeably, treating a process as equivalent to the
network process that hosts it. Furthermore, we assume that the network topology is not
known to nodes and remains static. However, processes are aware of their direct neighbors
and their identities. Two nodes that are not directly connected by an edge eij∈E must rely
on other, potentially Byzantine, nodes to relay their messages. Communication channels
are authenticated, ensuring that only the two nodes at their endpoints can use them for
message transmission. The channels are also reliable, meaning that messages are not altered
or lost during transmission. Finally, the channels are asynchronous, allowing for unbounded
transmission delays. Tab. 2 summarizes the graph-related notations we use in this paper.

Channels interface. We assume that processes have access to a virtual interface al1 that
abstracts their communication channels. The virtual interface al exposes two functions:
Send and Receive. A node pi can send a message m to a neighbor pj by calling function
⟨al, Send|pj , m⟩. Similarly, an incoming message m sent by a neighbor pj triggers the function
⟨al, Receive|pj , m⟩ that node pi executes.

1 al is an acronym for authenticated channel.

OPODIS 2024

25:4 Reliable Communication in Hybrid Authentication and Trust Models

Table 2 Notations and definitions.

Notation Definition
G An undirected graph.

ΓG(u) The neighbors of node u in graph G.
κG(u, v) Vertex-connectivity between two nodes u and v in graph G.

f(G) The graph whose vertices are G’s untrusted nodes and whose edges connect the
untrusted nodes of G that are neighbors in G or connected by a path of trusted nodes
in G (cf. Def. 2).

g(G, f(G), u) The graph f(G) to which node u ∈ G has been added along with its edges (direct
connections with nodes in f(G), or connection to them through a path of trusted
nodes in G) (cf. Def. 3).

∅p An empty path.
∅l An empty list.

σi(m, ps) Signature of process pi on payload data. m broadcast by process ps.
σi(pa, m, ps) Signature of process pi on a dissemination path pa, and payload data m broadcast

by process ps.
σT Ci

(m, ps) Signature of process pi’s trusted component on m broadcast by process ps.
isTrusted(pi) Utility function that indicates whether process pi is trusted.

isTC(σi(m, ps)) Utility function that indicates whether a signature σi(m, ps) was generated by process
pi’s trusted component on payload data m broadcast by ps.

Objective. We aim to implement reliable communication (RC). RC allows any two correct
processes to exchange messages and authenticate them. The interface of an RC protocol in-
cludes two functions, ⟨RC-broadcast|m⟩ and ⟨RC-deliver|m⟩, which respectively broadcast
a message m and transfer a message m to a higher-level application. In an unknown network,
RC is implemented through broadcasting to ensure that a message reaches all nodes, with
only the intended recipient delivering the message. We refer to the initial sender of a message
as broadcaster. Def. 1 defines the RC distributed computing abstraction.

▶ Definition 1. A reliable communication algorithm ensures the following three properties:
RC-No duplication: A correct process RC-delivers a message at most once.
RC-No creation: If a correct process RC-delivers a message, then it was
RC-broadcast.
RC-Validity: If a correct process RC-broadcasts a message, then all correct processes
eventually RC-deliver it.

Node categories. We divide the set of all nodes, V , into four subsets (Vauth, Vn.auth, Vt,
and Vtc), as illustrated in Fig. 2. The composition of these subsets is known to all nodes
and is defined as follows: Vauth contains the authenticated nodes, which are capable of
using digital signatures, whereas Vn.auth comprises non-authenticated nodes, which cannot.
Non-authenticated nodes rely on authenticated links to authenticate the messages they
receive and allow others to authenticate their messages. We define Vt⊆V as the set of
trusted nodes, which are known to be correct, i.e., they never deviate from the protocol
specification [1, 7, 34, 39]. However, they are not necessarily authenticated. Finally, we
define Vtc⊆V as the set of nodes that are equipped with a trusted component (TC). Note that
Vt∩Vtc is not necessarily empty, which means that a trusted node might also be equipped with
a trusted component. TCs can store data and execute code in a secluded area inaccessible to
their host operating system. However, TCs rely on their host to interact with the network
and obtain CPU cycles. TC-augmented nodes are strictly considered authenticated, i.e.,
Vtc⊂Vauth . This is in line with modern TCs, which are usually authenticated using a remote
attestation procedure that employs cryptographic primitives [31].

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:5

Fault model. We assume that up to f out of the N nodes are Byzantine. Faulty nodes
exclusively belong to V \Vt. Such nodes may deviate from protocol specifications in arbitrary
ways but cannot break cryptographic primitives. For example, a faulty node might modify
or drop messages it is expected to send. When equipped with a TC, a faulty node may not
interact with it as intended.

Figure 2 Taxonomy of processes.

Trusted component. In our final algorithm, DualRC, a trusted component – which could
be implemented with any off-the-shelf trusted execution environment (e.g., Intel SGX) –
assumes two functions. First, it can verify a broadcaster’s signature and generate a signed
message to attest that it authenticated it. Second, it can take f+1 signed dissemination
paths that relate to a given payload as input, verify that the paths are vertex-disjoint, and
then generate a signature to attest that the payload has been authenticated based on signed
paths. To conserve space, a formal definition of this trusted component interface is omitted.

3 DolevU-T: Reliable Communication in the Authenticated Link
Model with Trusted Nodes

We first consider the case where nodes only rely on authenticated links and do not use digital
signatures, i.e., Vauth=∅ and Vn.auth=V . In this model, Vtc=∅ because trusted components
typically require digital signatures, but Vt ⊆ Vn.auth is not necessarily empty (i.e., some
nodes might be trusted).

We present our first protocol, DolevU-T, which extends DolevU, the state-of-the-art
reliable communication protocol utilizing authenticated links, by leveraging trusted nodes.
Notably, DolevU requires a (2f+1)-connected network, whereas DolevU-T also functions
correctly on more generic networks in the presence of trusted nodes, as demonstrated by the
example in App. C. We, therefore, characterize the networks on which DolevU-T is correct
and provide two algorithms that take a network topology as input and indicate whether
DolevU-T allows any pair of nodes to receive and authenticate each other’s messages (i.e.,
whether it enforces RC).

3.1 Description of DolevU-T

Alg. 1 (in Appx. A) presents DolevU-T’s pseudocode. Messages contain two fields: the
payload data m that is being broadcast and the dissemination path path. To broadcast, a
node sends a given payload with an empty path to its neighbors (Alg. 1, l. 11), and delivers
it. Upon receiving a message, a process pi augments the received path variable with the
sender’s id (Alg. 1, l. 15). It then forwards the message to its neighbors that are not part

OPODIS 2024

25:6 Reliable Communication in Hybrid Authentication and Trust Models

of the received path (Alg. 1, l. 19). A process stores the paths it receives (Alg. 1, l. 17)
and delivers a message if it was either received directly from the initial broadcaster or if it
can identify f+1 vertex-disjoint paths among those it received (Alg. 1, l. 20). Receiving a
payload through f+1 vertex-disjoint paths authenticates it, as there are at most f faulty
nodes in the network. This implies that at least one of the f+1 disjoint paths through which
the message traveled involved only correct nodes.

DolevU-T removes trusted nodes from a received path (Alg. 1, l. 16), before storing it
in a paths set and attempting to identify f+1 vertex-disjoint paths. One should note that
trusted nodes are not removed from the path that a node transmits to its neighbors (Alg. 1,
l. 19) because it would make it possible for a node that receives a path to forward it to a
neighbor that has already received it and has been removed from it, in turn leading to an
unnecessary increase in the number of messages transmitted.

Removing trusted nodes from paths has interesting practical consequences. First, it
reduces the size and the number of paths a node stores and manipulates. This is beneficial
given that identifying disjoint paths has an exponential time complexity. Second, paths
containing a shared list of trusted nodes might become disjoint. Finally, it might also generate
an empty path from a path that contains only trusted nodes, which accelerates the delivery
of a message through a protocol optimization presented in the next section.

3.2 Optimizations
The worst-case complexity of the original DolevU protocol is high, both in terms of message
and computational complexity. Bonomi et al. presented five modifications to DolevU,
referred to as MD.1–5, which reduce the number and size of transmitted messages in practical
executions [9]:
MD.1 If a process p receives a message directly from the source s, then p directly delivers it.
MD.2 If a process p has delivered a message, then it discards all its related paths and relays

the message with an empty path to all its neighbors.
MD.3 A process p relays a path related to a message only to the neighbors that have not

delivered it (i.e., sent an empty path).
MD.4 If a process p receives a message with an empty path from a neighbor q, then p stops

relaying and analyzing any path for that message that contains q.
MD.5 A process p stops relaying further paths related to a message after it has delivered it

and has forwarded it with an empty path.
While DolevU-T can make use of MD.1–5, they are left out of Alg. 1 for simplicity. However,
they do appear in the pseudocode of DualRC, our final protocol. DolevU-T can also leverage
additional optimizations that prevent duplicate transmissions of a given message on a link
(MBD.1 in [8]), and allow nodes to ignore messages that contain a superpath of a previously
received path (MBD.10 in [8]), respectively.

3.3 Proofs
We start by proving that DolevU-T enforces RC-no duplication and RC-no creation.

▶ Lemma 1. DolevU-T maintains RC-no duplication and RC-no creation.

Proof. RC-no duplication is guaranteed by the use of the delivered variable. In DolevU,
a node delivers a message when it receives it through f+1 vertex-disjoint paths, which
guarantees that at least one of those paths only involves correct nodes. The presence of
trusted nodes in a path does not affect whether contained nodes are correct. Thus, trusted
nodes can be removed from a path used to attempt to authenticate a message, thereby
proving RC-no creation. ◀

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:7

Note that DolevU-T, like DolevU, does not guarantee RC-Validity on all graphs. While
it is known that DolevU requires a (2f+1)-connected communication graph, DolevU-T’s
requirements are more complex.

Sec. 3.3.1 and 3.3.2 provide algorithms that determine whether DolevU-T provides RC-
Validity on a given graph G = (V, E), and therefore implements reliable communication on it.
These algorithms rely on two functions f(·) and g(·) that we first define intuitively. Function
f(G), which is formally stated in Def. 2, takes a graph G as input and returns a new graph
containing only the untrusted nodes of G. Furthermore, an edge is added between any two
untrusted nodes if they are directly connected as neighbors in G or if they are connected by
a path of trusted nodes in G. Function g(G, G′, ut), defined as per Def. 3, inserts a trusted
node ut ∈ Vt in a subgraph G′ of a graph G and adds an edge in G′ between ut and a node
of G′ if they are neighbors or if they are connected by a path of trusted nodes in G.

▶ Definition 2. Let f be the function that takes a graph G = (V, E) as input and outputs
the graph f(G)=(V0, E0) such that:
• V0 = Vn.auth\Vt

• ∀(u, v) ∈ V 2
0 ,

(
(u, v) ∈ E

)
∨

(
∃ut0 , · · · , utn ∈ Vt.(u, ut0) ∈ E ∧ (utn , v) ∈ E

∧∀i < n.(uti , uti+1) ∈ E
)

⇔ (u, v) ∈ E0

In practice, the edges of a node u ∈ V0 can be computed with a breadth-first traversal in G

starting from u and following trusted edges. A faster approach determines E0 by computing
the connected components of a graph whose vertices correspond to those of G and whose
edges are the edges from G that connect two trusted nodes. In such a graph, two untrusted
nodes belong in the same connected component iff. they are connected in f(G).

▶ Definition 3. Let g be the function that takes as input a graph G, a subgraph
G′=(V ′⊆V, E′⊆V 2) of G, and a trusted node vt∈Vt, and outputs a graph g(G, G′, vt)=(V1, E1)
such that:

V1 = V ′ ∪ {vt}
∀(u, v) ∈ E′, (u, v) ∈ E1 (i.e., E′ ⊆ E1)
∀u ∈ V ′,

(
(u, vt) ∈ E

)
∨

(
∃ut0 , · · · , utn ∈ Vt, (u, ut0) ∈ E ∧ (utn , vt) ∈ E

∧∀i < n, (uti , uti+1) ∈ E
)

⇔ (u, vt) ∈ E1

3.3.1 Method 1: Max-Flow on Transformed Graph
We now describe our first method, which verifies whether DolevU-T ensures reliable com-
munication between any two nodes on a given network topology. Alg. 5 describes the
corresponding pseudocode. This algorithm leverages the fact that the maximum number of
edge-disjoint paths between any two nodes u and v is equal to the maximum flow between
them when edges have unitary weights. To do so, it transforms graph G into a graph dG

where a sufficient maximum flow between two nodes establishes their ability to communicate
reliably using DolevU-T (i.e., its RC-Validity).

As we are interested in the number of vertex-disjoint paths between nodes, we must first
modify the input graph G. Indeed, max-flow algorithms require edges to have a capacity and
may use an edge up to its capacity, but several flows might cross a vertex. We, therefore,
transform the graph using the node-splitting technique [19], which leads to the creation of a
directed graph dG. More precisely, each node u ∈ G is first split into two nodes uin and uout,
which are connected by a directed edge (uin, uout) in dG. Then, an undirected edge (u, v)
of G leads to the creation of two directed edges (uout, vin) and (vout, uin) in dG. In addition,

OPODIS 2024

25:8 Reliable Communication in Hybrid Authentication and Trust Models

all directed edges of dG are initially given a unitary capacity. We say that a node in dG is
trusted if it has been created by splitting a trusted node of G. The capacity of all edges
in dG that originate from a trusted node is set to 2f+1.

▶ Theorem 4. DolevU-T ensures RC-Validity in G iff. any two nodes u, v ∈ G are either
neighbors in G or if the flow in dG from uout to vin is larger than 2f+1.

Proof. As the flow from uout to vin in dG is equal to the flow from vout to uin by construction,
we assume, w.l.o.g., that node u sends a message to node v.

(⇒ Part 1/2) The first delivery condition is node v receiving an empty path. This implies
that u and v are neighbors in G or connected through a non-empty path of trusted nodes in
G. In the second case, the flow from uout to vin is at least 2f+1 in dG because each edge
from a trusted node has capacity 2f+1.

(⇒ Part 2/2) Node v can also deliver a message if it obtains f+1 vertex-disjoint paths
after removing the trusted nodes from the paths it receives. In the presence of up to f faulty
nodes, there should be 2f+1 paths between u and v in G that become vertex-disjoint once
their trusted nodes are removed. These 2f+1 paths each have a capacity greater than or
equal to 1. They might share edges that originate from a trusted node and have a capacity
of 2f+1, but not their other edges, which have a capacity of 1. Nonetheless, the existence of
these 2f+1 paths implies that the flow from u to v is at least 2f+1 in dG.

(⇐ Part 1/2) If u and v are neighbors in G then they can communicate reliably.
(⇐ Part 2/2) If there is a flow larger than 2f+1 between uout to vin in dG then u and v

might first be connected by a path of trusted nodes in G. In that case, they can communicate
reliably. Otherwise, there are 2f+1 vertex-disjoint paths that may or may not contain
trusted nodes connecting uout to vin in dG. These paths correspond to paths in G since an
out node can only be reached by its corresponding in node in dG. In the presence of f faulty
nodes, at least f+1 paths in G will therefore allow v to receive and authenticate a message
sent by u. ◀

RC-Validity–Verification Algorithm (Alg. 5). To leverage Thm. 4, Alg. 5 determines
whether all pairs (u, v) of nodes in a graph G can communicate reliably with DolevU-T. The
algorithm first computes the directed graph dG from the input graph G. Each node u is split
into two nodes uin = 2u and uout = 2u+1 connected by a directed edge (uin, uout) of capacity
2f+1 if u is trusted, or 1 otherwise (Alg. 5, ll. 8–13). The weighted edges of dG are then
created from the edges of G: an edge (u, v) ∈ E leads to two edges (uout, vin) and (vout, uin)
in dG, and edges that originate from a trusted node are given capacity 2f+1 and 1 otherwise
(Alg. 5, ll. 15–19). Alg. 5 then studies all pairs of nodes (u, v) ∈ V and checks if v can always
authenticate a message sent by u. It first verifies whether u and v are neighbors in G or if
a path of trusted nodes connects them in G (Alg. 5, ll. 23–28). This verification requires
distinguishing between the various cases where u and/or v are trusted nodes, using functions
f and g (cf. §6). Note that because the reliable communication abstraction assumes the
broadcaster of a message to be correct, the weights of the outgoing edges of u need to be
temporarily set to 2f+1 (Alg. 5, l. 32) when u is considered the broadcaster (Alg. 5, l. 37).
Alg. 5 then verifies whether the maximum flow between u and v is at least 2f+1 in dG. If
any check fails, then nodes (u, v) are not able to communicate reliably in the presence of f

carefully chosen faulty nodes, and the algorithm returns False (Alg. 5, l. 34). If the checks
pass for all pairs of nodes in G, then Alg. 5 concludes that DolevU-T ensures RC-Validity
and therefore implements reliable communication in graph G.

Complexity. App. B.2 computes the complexity of Alg. 5, which is O(f ·|V |5).

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:9

3.3.2 Method 2: Eliminating Unnecessary Trusted Nodes from G and
Checking for 2f+1 Vertex-Connectivity

Our second correctness verification method improves upon the complexity of the previous
approach when there are sufficient trusted nodes in the network. This second method relies
on Thms. 5, 6 and 7 and also uses the aforementioned functions f(·) and g(·).

▶ Theorem 5 (RC-Validity–untrusted ↔ untrusted). Two untrusted nodes (u, v) ∈ (Vnauth\Vt)2

can communicate reliably using DolevU-T in G iff. u ∈ Γf(G)(v) or κf(G)(u, v) ≥ 2f+1.

Proof. (⇒) If u and v can communicate reliably using DolevU-T in G, then (i) they receive
empty paths alongside each other’s messages, implying they are neighbors in f(G), or (ii)
they are connected by 2f+1 paths, which become vertex-disjoint once their trusted nodes
are removed, and which connect them in f(G).

(⇐ Part 1/2) Let us assume that u and v are neighbors in f(G). By definition, either
they are also neighbors in G, or they are connected by a path of trusted nodes in G. In both
cases, they can communicate reliably in G using DolevU-T because they obtain empty paths
alongside each other’s messages and deliver them.

(⇐ Part 2/2) Let us now assume that u and v are connected through 2f+1 vertex-disjoint
paths in f(G). Each of these paths is a subpath of at least a path that exists in G and
may contain additional intermediary trusted nodes. DolevU-T removes trusted nodes from
received paths, which means that u and v can always collect at least f+1 vertex-disjoint
paths (that exist in f(G)) and authenticate each other’s messages. ◀

▶ Theorem 6 (RC-Validity–trusted ↔ untrusted). A trusted node ut ∈ Vt and an un-
trusted node v ∈ Vnauth\Vt can communicate reliably in G iff. ut ∈ Γg(G,f(G),ut)(v) or
κg(G,f(G),ut)(ut, v) ≥ 2f+1.

Proof. g
(
G, f(G), ut

)
inserts trusted node ut in f(G) and connects it with its untrusted

neighbors in G and with the untrusted nodes it can communicate with through a path of
trusted nodes in G. Substituting u by ut, and f(G) by g

(
G, f(G), ut

)
in the proof of Thm. 5

proves this theorem. ◀

▶ Theorem 7 (RC-Validity–trusted ↔ trusted). Two trusted nodes (ut, vt) ∈ V 2
t can commu-

nicate reliably in G iff. ut ∈ Γg(G,g(G,f(G),ut),vt)(vt) or κg(G,g(G,f(G),ut),vt)(ut, vt) ≥ 2f+1.

Proof. Once again the proof is immediate after substituting u by ut, v by vt and f(G) by
g
(

G, g
(
G, f(G), ut

)
, vt

)
in the proof of Thm. 5. ◀

RC-Validity–Verification Algorithm (Alg. 6). Alg. 6 directly leverages Thms. 5, 6, and 7
to verify whether DolevU-T ensures reliable communication between any pairs of nodes on a
given graph G, assuming a set Vt of nodes are trusted and knowledge of the value f . The
algorithm first verifies whether any two untrusted nodes can communicate reliably, which is
the case if they are at least 2f+1 vertex-connected or neighbors in f(G) (Alg. 6, ll. 8–10). If
so, Thm. 5 ensures that it will also be the case in G. Next, the algorithm similarly verifies
whether each trusted node ut can communicate reliably with all untrusted nodes, i.e., whether
they are neighbors or 2f+1 vertex-connected (Alg. 6, ll. 13–15) in Gut

= g(G, f(G), ut). If so,
Thm. 6 ensures that they can also communicate reliably in G. Finally, the algorithm verifies
that any two trusted nodes ut and vt can communicate reliably in Gut,vt

= g(G, Gut
, vt)

(Alg. 6, ll. 16–19). Thm. 7 then ensures that ut and vt can communicate reliably in G. If
False was not returned by the routine after executing all checks, the algorithm concludes
that reliable communication is enforced by DolevU-T on graph G and returns True.

OPODIS 2024

25:10 Reliable Communication in Hybrid Authentication and Trust Models

Complexity. App. B.3 computes the complexity of Alg. 6. When |Vt| is small, the complexity
is dominated by |V \Vt|5 ≈ |V |5. When |Vt| is sufficiently large, the complexity is dominated
by |Vt|2·|V | ≈ |V |3, and Alg. 6 becomes faster than Alg. 5.

4 SigFlood-T: Reliable Communication in the Authenticated Process
Model with Trusted Nodes

As a second stepping stone towards our final protocol, we now consider the system model
where all nodes can use digital signatures (i.e., Vauth=V and Vnauth=∅). The state-of-the-art
reliable communication protocol in unknown networks with authenticated processes uses
network flooding to disseminate a payload signed by the original broadcaster. In this protocol,
the sender of a broadcast signs its original message and sends it to all its neighbors. Upon
receiving a payload and a valid signature, nodes verify its authenticity and forward both to
all their neighbors that have not yet transmitted the message [26].

4.1 Description
We present the pseudocode of SigFlood-T, our reliable communication algorithm for the
authenticated process model that leverages trusted nodes in unknown topologies, in Alg. 2
(Appx. A). Note that we assume all signatures to be correct for simplicity. In SigFlood-T,
messages contain the payload data m that is being broadcast, the identity of the sender
ps and its signature σs(m) (Alg. 2, l. 14). A node that receives a message from a trusted
neighbor immediately delivers it, as it considers that its trusted neighbor authenticated it.
Trusted components are not leveraged by SigFlood-T, since they do not have direct network
access, which implies that their signature still needs verification.

In Alg. 2, the broadcasting node initially sends its message along with its signature to all
its neighbors (Alg. 2, l. 9–13). When a node receives payload data along with a signature
and the broadcaster’s identity, it either verifies the correctness of the signature or accepts it
immediately if the message is received directly from a trusted neighbor (Alg. 2, l. 16). Upon
receiving and successfully verifying a message for the first time, a node forwards the message,
along with its signature and the sender’s id, to all its neighbors except the one from which
the message was originally received.

Termination of SigFlood-T is guaranteed since each correct node forwards a given
message at most once. SigFlood-T generates at most two messages per network link, which
occurs when two neighbors simultaneously send a message to each other. In practice, it
is therefore expected that SigFlood-T would generate significantly fewer messages than
DolevU-T on a given network topology, whose base version generates O(|V |!) messages.

4.2 Proofs
Lemmas 8 and 9 determine when SigFlood-T implements reliable communication.

▶ Lemma 8. SigFlood-T ensures RC-no duplication and RC-no creation.

Proof. RC-no duplication is guaranteed by the use of the delivered variable. RC-no creation
is ensured because a message is delivered only when the signature of its creator is verified. ◀

▶ Lemma 9. Network topologies on which SigFlood-T ensures RC-Validity can be identified
using either Alg. 6 or Alg. 5.

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:11

Proof. In the absence of trusted nodes, SigFlood-T requires the network to be at least
(f+1) connected to ensure that the broadcaster’s signature reaches every node. Conversely,
DolevU-T requires the network to be at least (2f+1) connected. Verifying the correctness
of SigFlood-T on a graph can be done using Alg. 6 or Alg. 5 by replacing all instances of
2f+1 with f+1 in those algorithms. ◀

5 DualRC: Reliable Communication in the Hybrid Authenticated
Links/Processes Model with trusted nodes and components

We now consider the most generic scenario that involves both non-authenticated and au-
thenticated nodes. Our final algorithm, DualRC, builds upon our two previous protocols,
DolevU-T and SigFlood-T, and therefore inherits their ability to leverage trusted nodes.
However, contrary to these two protocols, DualRC also uses specific optimizations that require
manipulation of both dissemination paths and signatures. In particular, DualRC leverages the
presence of trusted components by allowing them to transform a set of signed and disjoint
dissemination paths into a single trusted signature. Alg. 3 (Appx. A) lays out the pseudocode
of DualRC, where the blue text is specific to the presence of trusted components. Once again,
we omit the handling of incorrect signatures for simplicity.

5.1 Description
Message types. DualRC uses both dissemination paths and digital signatures to allow all
nodes to authenticate a message. DualRC manipulates the following two types of messages:

A signature message [m, s, σl(m, s)] contains a payload m, the id s of the original sender
ps and a signature generated by process pl over (m, s). All processes can manipulate and
interpret signature messages in order to deliver messages.
A path message [m, s, path, List(pa, σ(pa, m, s))] contains a payload m, the id s of the
original sender ps, an unsigned dissemination path path, and a possibly empty list of signed
subpaths List(pa, σ(pa, m, s)). Path messages can only be interpreted by authenticated
processes, but non-authenticated processes might have to forward them. Modifications
MD.1-MD.5 (cf. §3.2) are used when manipulating path messages. As an optimization, a
list of signed paths could be compressed into a single path with an onion signature.

Initialization. Each process maintains several variables. The delivered boolean indicates
whether the message has been delivered (init. False); the sets paths and signedPaths

contain, respectively, the received unsigned and signed dissemination paths (init. ∅); dN is
the set of nodes that are known to have delivered the message (init. ∅); sigs is a set that
contains the signatures that have been received (init. ∅).

Broadcasting a message. When a node pi broadcasts a payload m, it sends a path message
[m, i, ∅p, ∅l] to all its neighbors (Alg. 3, l. 25). This message carries an empty dissemination
path ∅p and an empty list ∅l of signed subpaths. If node pi is authenticated then it
additionally sends a signature message [m, i, σi(m, i)] to its neighbors (Alg. 3, l. 24). Node
pi then immediately delivers m. Upon reception, signature and path messages are handled
by distinct procedures, executed by all types of nodes.

Receiving a signature message [m, s, σl(m, s)] (Alg. 3, l. 32). A node signs a message
only after it has been delivered. Received signatures are stored in the locally maintained set
sigs and processed exactly once. A message is delivered without signature verification if it has

OPODIS 2024

25:12 Reliable Communication in Hybrid Authentication and Trust Models

been either received directly from the broadcaster or relayed by a trusted and authenticated
node (Alg. 3, l. 34). Authenticated nodes can also deliver m using signature σl(m, s) if it was
generated by the broadcaster (ps = pl), by a trusted node or component, or if they identify
f+1 disjoint signed paths in sPaths (a signature is interpreted as a single-node signed path,
except for the broadcaster’s signature, which is interpreted as an empty path) (Alg. 3, l. 42).
If so, a node then sends a signature to the subset dests = ΓG(pi) \ {ps, pl} of its neighbors,
which might not have delivered m. If σl(m, s) is a trusted signature then pi forwards it to
the nodes in dests and returns (Alg. 3, l. 46). Otherwise, if the process is equipped with a
trusted component, it verifies σl(m, s) and generates a trusted signature σT Ci

(m, s) that it
then forwarded to the nodes in dests and returns (Alg. 3, l. 50). If it is authenticated, and if
it has not forwarded or generated a trusted node’s or component’s signature, then node pi

sends its own signature to the nodes in dests (Alg. 3, l. 55). Finally, a node that has not
returned forwards the signature it received to the processes in dests (Alg. 3, l. 58).

Receiving a path message [m, s, path, List(pa, σ(pa, m, s))] (Alg. 3, l. 60). A node
might ignore a path message using MD.4 or MD.5 as in DolevU-T. If path is empty, then
node pj is added to dN , which tracks the nodes that delivered a path message.

If node pi is authenticated, then it tries to leverage each path pa and signed path
σl(pa, m, s) contained in List(pa, σ(pa, m, s)) (Alg. 3, ll. 65–76). First, the path pa ∪ {p} –
of which all trusted signatures are removed – is added to sPaths. If sPaths contains an
empty path (i.e., the broadcaster’s signature was received) or f+1 vertex-disjoint paths,
then node pi delivers m. Node pi then broadcasts its trusted component’s signature, if it is
equipped with one, and otherwise broadcasts its own signature in a signature message. More
precisely, node pi transfers the f+1 signed vertex-disjoint paths it identified to its trusted
component so that it can verify their signatures, check that they are disjoint, and if so return
a signature σT Ci

(m, s) (Alg. 3, ll. 50 and 71). Node i then also broadcasts a path message
with an empty path to all its neighbors in ΓG(pi) \ dN and returns.

If node pi has not delivered m using signed paths, it attempts to do so with dissemination
path path (Alg. 3, ll. 78–92). This path is obtained from the received path to which pj is
added and from which all trusted nodes are removed (Alg. 3, l. 79). Note that processes
equipped with a trusted component cannot be removed from unsigned dissemination paths
because they do not manipulate them. If node pi delivers m based on a dissemination path,
then it broadcasts its signature to all its neighbors in a signature message and broadcasts a
path message that contains an empty path and the list of signed paths it received to which
an appended signed path has been added to the nodes in ΓG(pi) \ dN . If node pi is not
authenticated then it only broadcasts a path message with an empty path and the received
list of signed paths. A node that delivers using path returns.

Finally, if node pi has not delivered payload m, it forwards the message it received with
up to two modifications: it sets path rpath = path ∪ {pj}, and if it is authenticated, it
appends σi(rpath, m, s) to the list of signed paths (Alg. 3, ll. 94–98).

Termination and Optimizations. A node stops processing and forwarding path messages
as soon as it delivers (as in DolevU-T). However, a node still has to forward signatures after
delivering to allow all authenticated nodes to deliver (App. D shows an example where this is
necessary). Termination is ensured because a node processes and relays a signature at most
once through the use of variable sigs.

Limiting further dissemination of signatures, particularly by non-authenticated nodes, is
more challenging, and the corresponding optimizations were omitted from Alg. 3 due to space
constraints. First, authenticated nodes can stop forwarding signature messages after relaying

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:13

the broadcaster’s signature, a trusted signature, or f+1 untrusted signatures, as transmit-
ting additional signatures provides no further information (the message is authenticated).
Conversely, a signature should not be forwarded to a neighbor that sent the broadcaster’s
signature, a trusted signature, or f+1 untrusted signatures. Non-authenticated nodes can
stop forwarding signatures after they have relayed f + 1 different signatures that they can
reliably trace back to f+1 different authenticated nodes that relayed them or emitted them.
Indeed, each of these untrusted signatures has been verified by f+1 nodes, and at least one
can be correctly assumed to have successfully and correctly verified it.

Another optimization involves encoding the list of signed paths within a message as a
single onion signature or an aggregate signature. This would reduce the bit complexity of
DualRC effectively. As a dissemination path should not be transferred to a neighbor that
delivered (MD.3), any node (i.e., authenticated or not) can avoid sending path messages to a
node that transmitted the broadcaster’s signature, a trusted signature, its own signature,
or f+1 untrusted signatures. Finally, it might be possible to avoid creating unsigned path
messages between authenticated nodes, but we believe that it would render DualRC’s code
significantly more complex.

5.2 Proofs
Delivery requirements. DualRC’s pseudocode (Alg. 3, Appx. A) allows a node to deliver a
message under two conditions (DR.1 & DR.2):

[DR.1]: A non-authenticated node v delivers a message from a broadcaster u if at least one
of subconditions NA.1 and NA.2 is met.
NA.1 Node v computes an empty path after removing the trusted nodes it may contain.
NA.2 Node v computes f+1 vertex-disjoint paths after removing all trusted nodes from

them.
[DR.2] An authenticated node v delivers a message from a broadcaster u if subconditions
NA.1 or NA.2 are met or if at least one of subconditions A.1 or A.2 is met.
A.1 Node v receives node u’s, a trusted node’s, or a trusted component’s signature.
A.2 Node v computes a combination of f+1 signatures or vertex-disjoint paths, after

removing all trusted nodes from them.
Note that A.2 generalizes NA.2 for authenticated nodes. Unfortunately, conditions NA.1,
NA.2. A.1, and A.2 do not directly lead to a correctness verification algorithm one could
apply on a given graph. To reach this objective, we formulate equivalent delivery conditions
in Thm. 10. These conditions assume a set S of nodes known to have delivered a message
broadcast by a process u and require manipulation of the directed graph dG, generated as
described in §3.3.1, so that max-flows can be computed. As a brief summary, graph dG is
obtained from g using the following steps: (i) nodes are split into two, and edges are added
between them with a capacity of 2f+1 if the original node is trusted or 1 otherwise, and
(ii) edges of the original graph G are transformed into two directed edges in dG of weight
2f+1 if their origin is trusted or 1 otherwise. We introduce synthetic root nodes that are
connected to different subsets of nodes in S in graph dG using weighted directed edges (from
a root to the nodes):

Node rootS is connected to all nodes in S ∩ V using edges of capacity 1 (for untrusted
nodes) or 2f+1 for trusted nodes.
Node rootn.auth is connected to all (non-authenticated) nodes in S ∩ Vn.auth with edges
of weight 1.

OPODIS 2024

25:14 Reliable Communication in Hybrid Authentication and Trust Models

▶ Theorem 10. A node v is guaranteed to always deliver a message that is broadcast by a
(correct) node u iff. at least one of the following conditions is verified.
5.1 Nodes u and v are neighbors in G.
5.2 The max flow from rootS to v in dG is at least 2f+1.
5.3 Nodes u and v are authenticated, and the max flow from u to v in dG is larger than f+1.
5.4 Node v is authenticated, and there is at least one trusted and authenticated node in S

whose max flow in dG to v is greater than or equal to f+1.

Proof. (⇒) Condition NA.1 can be met in two cases: (i) u and v are neighbors (condition
5.1), or (ii) they are connected by a path of trusted nodes (a subcase of condition 5.2).

Condition NA.2 can occur following several scenarios. First, if there are 2f+1 vertex-
disjoint paths from u to v. Second, if at least 2f+1 untrusted nodes deliver a message
and, therefore, send an empty path to their neighbors as a result of which eventually v

always receives f+1 disjoint paths. Third, if v is able to receive at least 2f+1 non-empty
dissemination paths that originate from trusted nodes. Finally, if v should be able to receive
a combination of 2f+1 vertex-disjoint paths and signatures, that are also used as single-node
paths. In each case, the flow from rootS to v in dG is at least 2f + 1 (condition 5.2), which
implies that f+1 nodes in S (possibly including u) are correct and will broadcast empty
paths. Node v will then always receive f+1 disjoint paths as a consequence of these delivering
nodes. As dissemination paths are not relayed by nodes that deliver a message, one could
wonder whether v will always receive these f+1 disjoint paths. This is indeed the case
because a delivering node located on one of the f+1 correct paths would still broadcast an
empty path that would reach v.

The first subcase of condition A.1 is condition 5.3, while the second one is condition
5.4. Note that the presence of trusted components in the network does not modify DualRC’s
connectivity requirement, as the host of a trusted component can still avoid sending messages.

(⇐) Two nodes that are neighbors can always reliably communicate (condition 5.1). If
condition 5.2 is verified, then v will receive f + 1 disjoint dissemination paths. If condition
5.3 is verified, then node v will receive the signature of node u. Finally, if condition 5.4 is
verified, then node v will receive a trusted signature. ◀

RC-Validity–Verification Algorithm. Our correctness verification algorithm relies on con-
ditions 5.1–5.4 to maintain the set of nodes S that are guaranteed to be able to deliver a
broadcaster’s message in the presence of up to f faulty nodes. Initially, S only contains the
broadcaster. The algorithm then successively attempts to extend S by identifying nodes
that will satisfy one of the conditions NA.1, NA.2, A.1, or A.2 until all nodes have been
added to it (in which case reliable communication is proven), or until it cannot grow anymore
(in which case there exists a set of f nodes that, if faulty, would prevent some nodes from
authenticating each other’s messages). Checking DualRC’s correctness on a given graph
requires executing our algorithm for each possible broadcasting node.

Complexity. The complexity of this verification algorithm is O(|V |5).

6 Related Work

Reliable communication (RC) in the global fault model. RC was first studied assuming
authenticated links in partially connected and unknown networks. Dolev showed that correct
processes can communicate reliably in the presence of f Byzantine nodes iff. the network
graph is (2f+1)-vertex connected [16]. Their algorithm that assumes an unknown network

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:15

topology, DolevU, propagates a message along all possible dissemination paths. A variant
of this algorithm leverages a routed dissemination in known networks. Beimel et al. [5, 6]
considered the routed version of Dolev’s algorithm, extending it to scenarios where node
pairs can authenticate each other’s messages. We consider that the topology is unknown,
where any authenticated node can authenticate any signed message. More recently, Bonomi
et al. improved the expected performance of DolevU using several optimizations [9]. In the
authenticated process model, processes can generate a signature for each message they send
and rely on network flooding to reach all possible destinations. In this work, we consider
a static network with the global fault model and leverage both the DolevU and network
flooding-based RC algorithms.

Reliable communication in the local fault model. Koo presented a broadcast algorithm
under the t-locally bounded fault model [27], which was later coined the Certified Propagation
Algorithm (CPA) [35]. Maurer and Tixeuil have also defined weaker reliable communication
primitives that benefit from higher scalability [29, 30]. Recently, Bonomi et al. [11] established
conditions for CPA’s correctness in dynamic communication networks.

Network requirements for reliable communication. In the authenticated link model,
DolevU requires a 2f+1 connected [16] communication network. This network connectivity
requirement in the authenticated process model is lowered to f+1. Several works identified
and refined graph-theoretic parameters for CPA to be correct in the local fault model [23,
28, 35, 38]. In this work, we observe that the presence of trusted processes, along with
both authenticated and non-authenticated processes, weakens the network connectivity
requirements for reliable communication in the global fault model. Additionally, we identify
sufficient conditions for this to occur.

Hybrid Byzantine-crash fault model. Hadzilacos proposed a model in which processes
may fail by either halting or omitting some messages [22]. Thambidurai and Park [36], and
Meyer and Pradhan [33] considered the agreement problem under a hybrid fault model that
involves crashing and Byzantine processes. Garay and Perry studied reliable broadcast and
consensus when up to f nodes are either Byzantine or fail by crashing [21]. Backes and
Cachin described a reliable broadcast protocol that considers a hybrid model where up to f

Byzantine nodes and t nodes can crash and recover [4].

Hybrid Byzantine-trusted fault model. More recently, Tseng et al. modified CPA to
leverage trusted nodes [39, 40]. Abraham et al. described an authenticated multivalued
consensus protocol in synchronous networks resilient to a mix of Byzantine and crash faults [2].
Differently, the hybridization approach equips nodes that run an algorithm with trusted
components to improve its resilience [41]. Several consensus algorithms consider hybrid
models that involve authenticated nodes that leverage a trusted component [14, 15, 25, 42].
Nowadays, trusted components have been implemented with technologies such as Intel
SGX [24], ARM TrustZone [3], or TPMs [37]. As far as we know, our work is the first to
leverage a trusted component for reliable communication.

7 Conclusion

We proposed novel reliable communication protocols for incomplete network topologies in the
global fault model. We first extended the state-of-the-art protocols that have respectively
been designed for the authenticated process and authenticated link models so that they

OPODIS 2024

25:16 Reliable Communication in Hybrid Authentication and Trust Models

can tolerate and leverage the possible presence of trusted processes. We then showed that
these protocols can be non-trivially combined into DualRC, our novel reliable communication
protocol that allows both authenticated and non-authenticated processes to communicate.
DualRC leverages the signatures of authenticated processes and the presence of trusted
components or trusted processes. DualRC provides reliable communication over a larger set
of network topologies than previous protocols. Last, we also described methods that one
can use to verify whether reliable communication is possible with our algorithms on a given
network topology and evaluated the complexity of these methods.

References
1 Waseem Abbas, Aron Laszka, and Xenofon Koutsoukos. Improving network connectivity and

robustness using trusted nodes with application to resilient consensus. IEEE Transactions on
Control of Network Systems, 5(4):2036–2048, 2017. doi:10.1109/TCNS.2017.2782486.

2 Ittai Abraham, Danny Dolev, Alon Kagan, and Gilad Stern. Authenticated consensus in
synchronous systems with mixed faults. Cryptology ePrint Archive, 2022.

3 ARM. Arm security technology: building a secure system using trustzone technology, 2009.
4 Michael Backes and Christian Cachin. Reliable broadcast in a computational hybrid model

with byzantine faults, crashes, and recoveries. In DSN, 2003.
5 Amos Beimel and Matthew Franklin. Reliable communication over partially authenticated

networks. Theoretical computer science, 220(1):185–210, 1999. doi:10.1016/S0304-3975(98)
00241-2.

6 Amos Beimel and Lior Malka. Efficient reliable communication over partially authenticated
networks. Distributed Computing, 18(1):1, 2005.

7 Kshipra Bhawalkar, Jon Kleinberg, Kevin Lewi, Tim Roughgarden, and Aneesh Sharma.
Preventing unraveling in social networks: the anchored k-core problem. SIAM Journal on
Discrete Mathematics, 29(3):1452–1475, 2015. doi:10.1137/14097032X.

8 Silvia Bonomi, Jérémie Decouchant, Giovanni Farina, Vincent Rahli, and Sébastien Tixeuil.
Practical byzantine reliable broadcast on partially connected networks. In 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS), pages 506–516. IEEE,
2021. doi:10.1109/ICDCS51616.2021.00055.

9 Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Multi-hop byzantine reliable broadcast
with honest dealer made practical. Journal of the Brazilian Computer Society, 25(1):9:1–9:23,
2019. doi:10.1186/S13173-019-0090-X.

10 Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Boosting the efficiency of byzantine-
tolerant reliable communication. In SSS, 2020.

11 Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Reliable communication in dynamic
networks with locally bounded byzantine faults. Journal of Parallel and Distributed Computing,
193:104952, 2024.

12 Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143,
1987. doi:10.1016/0890-5401(87)90054-X.

13 Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011. doi:10.1007/978-3-642-15260-3.

14 Miguel Correia, Lau Cheuk Lung, Nuno Neves, and Paulo Veríssimo. Efficient byzantine-
resilient reliable multicast on a hybrid failure model. In SRDS, 2002.

15 Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu. Damysus: streamlined
BFT consensus leveraging trusted components. In Yérom-David Bromberg, Anne-Marie
Kermarrec, and Christos Kozyrakis, editors, European Conference on Computer Systems,
pages 1–16. ACM, 2022. doi:10.1145/3492321.3519568.

16 Danny Dolev. Unanimity in an unknown and unreliable environment. In FOCS. IEEE, 1981.

https://doi.org/10.1109/TCNS.2017.2782486
https://doi.org/10.1016/S0304-3975(98)00241-2
https://doi.org/10.1016/S0304-3975(98)00241-2
https://doi.org/10.1137/14097032X
https://doi.org/10.1109/ICDCS51616.2021.00055
https://doi.org/10.1186/S13173-019-0090-X
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1145/3492321.3519568

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:17

17 Patrick T Eugster, Rachid Guerraoui, A-M Kermarrec, and Laurent Massoulié. Epidemic
information dissemination in distributed systems. Computer, 37(5):60–67, 2004. doi:10.1109/
MC.2004.1297243.

18 Lester Randolph Ford and Delbert Ray Fulkerson. Maximal flow through a network. Canadian
journal of Mathematics, 8:399–404, 1956.

19 Lester Randolph Ford and Delbert Ray Fulkerson. Flows in Networks. Princeton University
Press, Princeton, N.J., 1962.

20 Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm. Commun.
ACM, 7(5):301–303, 1964. doi:10.1145/364099.364331.

21 Juan A Garay and Kenneth J Perry. A continuum of failure models for distributed computing.
In International Workshop on Distributed Algorithms, pages 153–165. Springer, 1992. doi:
10.1007/3-540-56188-9_11.

22 Vassos Hadzilacos. Issues of fault tolerance in concurrent computations. Dissertation Abstracts
International, 46(7), 1986.

23 Akira Ichimura and Maiko Shigeno. A new parameter for a broadcast algorithm with locally
bounded byzantine faults. Information processing letters, 110(12-13):514–517, 2010. URL:
https://core.ac.uk/download/pdf/56648228.pdf, doi:10.1016/J.IPL.2010.04.003.

24 Intel SGX. URL: https://software.intel.com/en-us/sgx.
25 Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle, Seyed Vahid

Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel. Cheapbft: Resource-efficient
byzantine fault tolerance. In EuroSys, 2012.

26 Anne-Marie Kermarrec and Maarten van Steen. Gossiping in distributed systems. ACM
SIGOPS Oper. Syst. Rev., 41(5):2–7, 2007. doi:10.1145/1317379.1317381.

27 Chiu-Yuen Koo. Broadcast in radio networks tolerating byzantine adversarial behavior. In
PODC, pages 275–282, 2004. doi:10.1145/1011767.1011807.

28 Chris Litsas, Aris Pagourtzis, and Dimitris Sakavalas. A graph parameter that matches the
resilience of the certified propagation algorithm. In AdHoc-Now, 2013.

29 Alexandre Maurer and Sébastien Tixeuil. Byzantine broadcast with fixed disjoint paths.
Journal of Parallel and Distributed Computing, 74(11):3153–3160, 2014. doi:10.1016/J.JPDC.
2014.07.010.

30 Alexandre Maurer and Sébastien Tixeuil. Containing byzantine failures with control zones.
IEEE TPDS, 26(2):362–370, 2014. doi:10.1109/TPDS.2014.2308190.

31 Jämes Ménétrey, Christian Göttel, Anum Khurshid, Marcelo Pasin, Pascal Felber, Valerio
Schiavoni, and Shahid Raza. Attestation mechanisms for trusted execution environments
demystified. In DisCoTec, 2022.

32 Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10(1):96–115, 1927.
33 Fred J. Meyer and Dhiraj K. Pradhan. Consensus with dual failure modes. IEEE TPDS,

2(02):214–222, 1991. doi:10.1109/71.89066.
34 Tal Navon and David Peleg. Mixed fault tolerance in server assignment: Combining reinforce-

ment and backup. Theoretical Computer Science, 836:76–93, 2020. doi:10.1016/J.TCS.2020.
06.033.

35 Andrzej Pelc and David Peleg. Broadcasting with locally bounded byzantine faults. Information
Processing Letters, 93(3):109–115, 2005. doi:10.1016/J.IPL.2004.10.007.

36 Philip Thambidurai and You-Keun Park. Interactive consistency with multiple failure modes.
In SRDS. IEEE, 1988.

37 Trusted platform module, 2016. URL: https://trustedcomputinggroup.org/resource/
tpm-library-specification/.

38 Lewis Tseng, Nitin Vaidya, and Vartika Bhandari. Broadcast using certified propagation
algorithm in presence of byzantine faults. Information Processing Letters, 115(4):512–514,
2015. doi:10.1016/J.IPL.2014.11.010.

39 Lewis Tseng, Yingjian Wu, Haochen Pan, Moayad Aloqaily, and Azzedine Boukerche. Reliable
broadcast in networks with trusted nodes. In GLOBECOM. IEEE, 2019.

OPODIS 2024

https://doi.org/10.1109/MC.2004.1297243
https://doi.org/10.1109/MC.2004.1297243
https://doi.org/10.1145/364099.364331
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/3-540-56188-9_11
https://core.ac.uk/download/pdf/56648228.pdf
https://doi.org/10.1016/J.IPL.2010.04.003
https://software.intel.com/en-us/sgx
https://doi.org/10.1145/1317379.1317381
https://doi.org/10.1145/1011767.1011807
https://doi.org/10.1016/J.JPDC.2014.07.010
https://doi.org/10.1016/J.JPDC.2014.07.010
https://doi.org/10.1109/TPDS.2014.2308190
https://doi.org/10.1109/71.89066
https://doi.org/10.1016/J.TCS.2020.06.033
https://doi.org/10.1016/J.TCS.2020.06.033
https://doi.org/10.1016/J.IPL.2004.10.007
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://doi.org/10.1016/J.IPL.2014.11.010

25:18 Reliable Communication in Hybrid Authentication and Trust Models

40 Lewis Tseng, Yingjian Wu, Haochen Pan, Moayad Aloqaily, and Azzedine Boukerche. Reliable
broadcast with trusted nodes: Energy reduction, resilience, and speed. Computer Networks,
182:107486, 2020. doi:10.1016/J.COMNET.2020.107486.

41 Paulo E Veríssimo. Travelling through wormholes: a new look at distributed systems models.
ACM SIGACT News, 37(1):66–81, 2006. doi:10.1145/1122480.1122497.

42 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and
Paulo Veríssimo. Efficient byzantine fault-tolerance. IEEE Trans. Computers, 62(1):16–30,
2013. doi:10.1109/TC.2011.221.

43 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In Symposium on Principles of Distributed
Computing. ACM, 2019. doi:10.1145/3293611.3331591.

A Pseudocodes of DolevU-T, SigFlood-T and DualRC

In this section, we provide the pseudocodes for our reliable communication algorithms. For
both the authenticated channel model (DolevU-T) and the authenticated process model
(SigFlood-T) that leverage trusted nodes. Alg. 1 presents DolevU-T’s pseudocode, which is
discussed in Sec. 3. Alg. 2 presents SigFlood-T’s pseudocode, which we discuss in Sec. 4.
Alg. 3 presents DualRC’s pseudocode, which is discussed in Sec. 5.

Algorithm 1 DolevU-T: Reliable communication in (2f+1)-connected networks at process
pi with trusted processes in the authenticated link model.

1: Parameters:
2: f : max. number of Byzantine processes in the system.
3: Uses:
4: • Auth. async. perfect point-to-point links, instance al.
5: • ΓG(pj) returns the list of pj ’s neighbors.

6: upon event ⟨DolevU-T, Init⟩ do
7: delivered = False ◁ to deliver at most once
8: paths = ∅ ◁ received dissemination paths

9: upon event ⟨DolevU-T, Broadcast | m⟩ do
10: forall pj ∈ ΓG(pi) do
11: ⟨al, Send | pj , [m, ∅p]⟩
12: ⟨DolevU-T, Deliver | m⟩
13: delivered = True

14: upon event ⟨al, Receive | pj , [m, path]⟩ do
15: fwd_path = path + [pj]
16: path = remove_all_trusted(fwd_path)
17: paths.insert(path \ {pj})
18: forall pk ∈ ΓG(pi) \ path do
19: ⟨al, Send | pk, [m, fwd_path]⟩

20: upon event (paths contains [] (empty path) or f+1 vertex-disjoint paths)
and (not delivered) do

21: ⟨DolevU-T, Deliver | m⟩
22: delivered = True

https://doi.org/10.1016/J.COMNET.2020.107486
https://doi.org/10.1145/1122480.1122497
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1145/3293611.3331591

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:19

Algorithm 2 SigFlood-T: Reliable communication in (f+1)-connected networks at
process pi in the presence of trusted processes in the authenticated process model.

1: Parameters:
2: f : max. number of Byzantine processes in the system.
3: Uses:
4: • Auth. async. perfect point-to-point links, instance al.
5: • G = (V, E): network topology
6: • σi(m) is the signature of process pi over message m, and verif(σj(m)) verifies it.

7: upon event ⟨SigFlood-T, Init⟩ do
8: delivered = False

9: upon event ⟨SigFlood-T, Broadcast | m⟩ do
10: forall pj ∈ ΓG(pi) do
11: ⟨al, Send | pj , [m, σi(m)]⟩
12: delivered = True
13: ⟨SigFlood-T, Deliver | m⟩

14: upon event ⟨al, Receive | pj , [m, σs(m)]⟩ do
15: if delivered then return
16: if isTrusted(pj) or verif(σs(m)) then
17: delivered = True
18: ⟨SigFlood-T, Deliver | m⟩
19: forall pk ∈ ΓG(pi) \ {pj , ps} do
20: ⟨al, Send | pk, [m, σs(m)]⟩

OPODIS 2024

25:20 Reliable Communication in Hybrid Authentication and Trust Models

Algorithm 3 DualRC: Reliable communication at process pi with trusted and TC-
augmented processes in the hybrid authenticated link and process model. Modifications
MD.1–5 are used with dissemination paths (cf. §3.2). Blue text is specific to the presence of
trusted components.

1: Parameters:
2: f : max. number of Byzantine nodes in the system.
3: Uses:
4: • Auth. async. perfect point-to-point links, instance al.
5: • G = (V, E): network topology
6: • ΓG(pj) returns the list of pj ’s neighbors.
7: • isTrusted(pj) indicates if pj is trusted.
8: • hasTC(pj) indicates if pj has a trusted component.
9: • isAuth(pj) indicates if pj is authenticated.

10: • isTC(σ) indicates if a signature was generated by a TC.
11: • (Auth. nodes only) σi(m) is the signature of process pi

12: over message m, and verif(σj(m)) verifies it.
13: • (Nodes equipped with a TC) σT Ci

(m) is the signature
14: of pi’s TC.

15: upon event⟨DualRC, Init⟩ do
16: delivered = False
17: paths = ∅ ◁ Received dissemination paths
18: sP aths = ∅ ◁ Received signed dissemination paths
19: dN = ∅ ◁ Set of nodes that delivered (for MD.3)
20: sigs = ∅ ◁ Set of received signatures

21: upon event ⟨DualRC, Broadcast | m⟩ do
22: forall pj ∈ ΓG(pi) do
23: if isAuth(pi) then
24: ⟨al, Send | pj , [m, i, σi(m, i)]⟩
25: ⟨al, Send | pj , [m, i, ∅p, ∅l]⟩
26: deliver(m)

27: function deliver(m)
28: if not delivered then
29: delivered = True
30: ⟨DualRC, Deliver | m⟩

31: ◁ Receive a single signature
32: upon event ⟨al, Receive | pj , [m, s, σl(m, s)]⟩ do
33: if σl(m, s) ∈ sigs then return; else sigs=sigs∪{σl(m, s)}
34: if pj == pl or (isTrusted(pj) and isAuth(pj)) then
35: dN = dN ∪ {pl}
36: deliver(m)

37: dests = ΓG(pi) \ {ps, pl}
38: if isAuth(pi) then ◁ try to deliver and broadcast own sig.
39: sP aths.insert({pl} \ {ps})
40: sP aths_cond=∃{f+1 vertex-disjoint paths}⊂sP aths
41: if (ps == pl or isTrusted(pl) or
42: isTC(σl(m)) or sP aths_cond) then
43: deliver(m)
44: if isTrusted(pl) or isTC(σl(m, s)) then
45: forall pk ∈ dests do
46: ⟨al, Send | pk, [m, s, σl(m, s)]⟩ ◁ fwd sender’s sig.
47: return
48: else if hasTC(pi) then
49: forall pk ∈ dests do
50: ⟨al, Send | pk, [m, s, σT Ci

(m, s)]⟩ ◁ send TC’s sig.
51: sigs = sigs ∪ {σT Ci

(m, s)}
52: return
53: else
54: forall pk ∈ dests do
55: ⟨al, Send | pk, [m, s, σi(m, s)]⟩ ◁ send own sig.
56: sigs = sigs ∪ {σi(m, s)}

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:21

Algorithm 4 DualRC (continued).

57: forall pk ∈ dests do
58: ⟨al, Send | pk, [m, s, σl(m, s)]⟩ ◁ forward (non-trusted) sig.

59: ◁ Receive a single path, with signatures on subpaths
60: upon event ⟨al, Receive | pj , [m, s, path, List(pa, σ(pa, m, s))]⟩ do
61: if delivered or path ∩ dN ̸= ∅ then return ◁ MD.5 and MD.4
62: if path == ∅p then dN = dN ∪ {pj} ◁ Check if dN is correct - MD.3

63: ◁ Try to identify f+1 signed vertex-disjoint paths.
64: if isAuth(pi) then
65: forall pa, σl(pa, m, s) ∈ List(pa, σ(pa, m, s)) do
66: sP aths.insert(rm_all_trusted_TCs(pa∪{pl}))
67: if ∅p ∈ sP aths or ∃{f+1 vertex-disjoint paths}⊂sP aths then
68: deliver(m)
69: forall pk ∈ ΓG(pi) do
70: if hasTC(pi) then
71: ⟨al, Send | pk, [m, s, σT Ci

(m, s)]⟩
72: else
73: ⟨al, Send | pk, [m, s, σi(m, s)]⟩
74: forall pk ∈ ΓG(pi)\dN do ◁ MD.2 + MD.3
75: ⟨al, Send|pk, [m, s, ∅p, σi(∅p, m, s)+List(pa, σ(pa, m, s))]⟩
76: return

77: ◁ pi is not authenticated or signed paths did not cause a deliver
78: rpath = path ∪ {pj} ◁ path to forward
79: path = remove_all_trusted(rpath)
80: paths.insert(path)

81: ◁ try to deliver using dissemination paths
82: if ∅p ∈ paths (MD.1) or ∃{f+1 vertex-disjoint paths}⊂paths then
83: if isAuth(pi) then
84: forall pk ∈ ΓG(pi) do ◁ MD.2-3
85: ⟨al, Send | pk, [m, s, σi(m, s)]⟩
86: forall pk ∈ ΓG(pi)\dN do ◁ MD.2-3
87: ⟨al, Send | pk, [m, s, ∅p, σi(∅p, m, s)+List(pa, σ(pa, m, s))]⟩
88: else
89: forall pk ∈ ΓG(pi)\dN do ◁ MD.2-3
90: ⟨al, Send | pk, [m, s, ∅p, List(pa, σ(pa, m, s))]⟩
91: deliver(m)
92: return

93: ◁ If not delivered, forward message with modified path
94: forall pl ∈ ΓG(pi) \ rpath do
95: if isAuth(pi) then
96: ⟨al, Send | pl, [m, s, rpath, σi(rpath, m, s)+List(pa, σ(pa, m, s))]⟩
97: else
98: ⟨al, Send | pl, [m, s, rpath, List(pa, σ(pa, m, s))]⟩

OPODIS 2024

25:22 Reliable Communication in Hybrid Authentication and Trust Models

B Correctness Verification of DolevU-T

In this section, we provide the pseudocodes for our two algorithms that verify whether
DolevU-T correctly implements the validity property of reliable communication on a given
graph. These two algorithms are discussed and proven in Sec. 3.3.1 and 3.3.2, respectively.
We then evaluate the complexity of our two algorithms.

B.1 Pseudocodes
Algorithm 5 Max-flow-based verification of DolevU-T’s RC-Validity on a graph

(DolevU-T-Verif, method 1).
1: Inputs:
2: G = (V, E): undirected network topology.
3: Vt ⊂ V : set of trusted nodes in G.
4: f : max. number of Byzantine nodes.
5: Output:
6: A boolean that indicates whether DolevU-T is correct on G.

7: ◁ Split and add all nodes to new directed graph
8: dG = DiGraph(∅) ◁ Init. empty unweighted directed graph
9: forall u ∈ V do

10: dG.add_vertex(2u) ◁ in node
11: dG.add_vertex(2u + 1) ◁ out node
12: if u ∈ Vt then dG.add_weighted_edge((2u, 2u + 1), 2f + 1)
13: else dG.add_weighted_edge((2u, 2u + 1), 1)

14: ◁ Add directed weighted edges to directed graph
15: forall (u, v) ∈ E do
16: if u ∈ Vt then dG.add_weighted_edge(2u + 1, 2v, 2f + 1)
17: else dG.add_weighted_edge(2u + 1, 2v, 1)
18: if v ∈ Vt then dG.add_weighted_edge(2v + 1, 2u, 2f + 1)
19: else dG.add_weighted_edge(2v + 1, 2u, 1)

20: ◁ Find out if any nodes u and v can communicate reliably
21: forall u ∈ V do
22: forall v ∈ V s.t. u < v do
23: ◁ a) Are u and v connected by an undirected trusted path?
24: if (u /∈ Vt ∧ v /∈ Vt ∧ v ∈ Γf(G)(u))
25: or (u ∈ Vt ∧ v /∈ Vt ∧ v ∈ Γg(G,f(G),u)(u))
26: or (u /∈ Vt ∧ v ∈ Vt ∧ u ∈ Γg(G,f(G),v)(v))
27: or (u ∈ Vt ∧ v ∈ Vt ∧ u ∈ Γg(G,g(G,f(G),u),v)(v)) then
28: continue

29: ◁ b) Otherwise, do they have enough vertex-disjoint paths?
30: if not isTrusted(u) then
31: forall w ∈ ΓG(u) do
32: dG.change_edge_weight(2u + 1, 2w, 2f + 1)

33: if max_flow(dG, 2u + 1, 2v) < 2f+1 then
34: return False

35: if not isTrusted(u) then
36: forall w ∈ ΓG(u) do
37: dG.change_edge_weight(2u + 1, 2w, 1)

38: return True

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:23

Algorithm 6 Verification of DolevU-T’s RC-Validity on a graph based on graph simplific-
ation and connectivity measurement (DolevU-T-Verif, method 2).

1: Inputs:
2: G = (V, E): undirected network topology.
3: Vt ⊂ V : set of trusted nodes in G.
4: f : max. number of Byzantine nodes.
5: Output:
6: A boolean that indicates whether DolevU-T is correct on G.

7: compute f(G)
8: forall (u, v) ∈ V \ Vt and u < v do ◁ Pairs of untrusted nodes
9: if κf(G)(u, v) < 2f+1 and u /∈ Γf(G)(v) then

10: return False

11: forall ut ∈ Vt do
12: compute Gut = g(G, f(G), ut)
13: forall v ∈ V \ Vt do ◁ Pairs of trusted-untrusted nodes
14: if κGut

(ut, v) < 2f+1 and ut /∈ ΓGut
(v) then

15: return False
16: forall vt ∈ Vt \ {ut} s.t. ut < vt do ◁ Pairs of trusted nodes
17: compute Gut,vt = g(G, Gut , vt)
18: if κGut,vt

(ut, vt) < 2f+1 and ut /∈ ΓGut,vt
(vt) then

19: return False

20: return True

B.2 Complexity of the first correctness verification method for
DolevU-T– Max-flow on transformed graph (Alg. 5)

The algorithm first requires (i) computing f(G) once, which has complexity O(|V |), (ii)
computing g(G, f(G), ut) for each trusted node ut, which has complexity O(|Vt|·|V |), and
computing g(G, g(G, f(G), vt), ut) for each pair of trusted nodes (ut, vt), which has complexity
O(|Vt|2·|V |.

The graph dG has 2|V | vertices and contains less than (2|V |)(2|V | − 1) + 2|V | = 2|V |2

edges. The max flow between any two nodes in dG is bounded by (2f+1)·2(|V | − 2 + 1) =
(2f+1)·2(|V | − 1). Computing the max flow in dgUV , therefore, is O(8·f ·|V |3), which has
to be done at most for all pairs of nodes that are not neighbors in G or connected through a
path of trusted nodes. The complexity of this procedure is bounded by O(8·f ·|V |5).

B.3 Complexity of the second correctness verification method for
DolevU-T– Eliminating unnecessary trusted nodes and checking for
2f+1 vertex-connectivity (Alg. 6)

Complexity Analysis. We analyze the complexity of the main steps of Alg. 6 in the following.
Identifying the edges of f(G) (Alg. 6, l. 7) requires computing connected components,

which can be done using a union-find data structure [20]. This data structure is initialized
with sets that each contain one vertex of G=(V, E) and is modified by considering all edges
of the trusted nodes in E and merging the sets that contain their extremities. Let Et ∈ E

contain the edges of G’s trusted nodes. Intuitively, a set in the final union-find data structure
contains the nodes that can communicate using a (possibly empty) path of trusted nodes.
Computing the union-find data structure in a simple way and computing the edges of f(G)
based on it has a linear complexity O(|V |).

The neighbors of a node in f(G) are its untrusted neighbors in G and the untrusted nodes
in the union-find sets that contain at least one of its trusted neighbors in G. Determining the
neighbors of all (untrusted) nodes in f(G) based on the union-find data structure therefore
has linear complexity O(|V |).

OPODIS 2024

25:24 Reliable Communication in Hybrid Authentication and Trust Models

The number of edge-disjoint paths between two nodes is equal to the maximum flow
between them when all edges have unitary capacity (Menger’s theorem [32]). To compute the
lowest maximum flow between two nodes in graph f(G)=(V0, E0) one can use the classical
Ford-Fulkerson algorithm [18] by setting all edge capacities to 1. Computing the maximum
flow between two nodes in f(G) has a complexity bounded by O(|E0|·maxFlow(f(G))), where
maxFlow(f(G)) is the maximum flow in f(G). Evaluating whether two given untrusted
nodes can communicate reliably in f(G) (Alg. 6, l. 9) therefore has overall complexity
O(|V \Vt|2·maxFlow(f(G))). Because the number of distinct pairs of edges in f(G) is
|V \Vt|((|V |\Vt|−1)

2 = O(|V \Vt|2), and because the maximum flow in f(G) is lower than
|V \Vt|−2, an upper-bound complexity to check that all pairs of untrusted nodes have a
sufficient flow is therefore O(|V \Vt|5).

Adding a trusted node ut in f(G) to compute Gut
=g(G, f(G), ut) (Alg. 6, l. 12) requires

merging some connected components of f(G) by considering ut’s edges (O(|V |) cost), and
recomputing the neighbors of each node in Gut

by going through these connected components
(O(|V |) cost). These steps need to be executed for every trusted node, which results in
O(|Vt|·|V |) complexity.

Computing the vertex connectivity between two nodes in Gut
(Alg. 6, l. 14) has complexity

O(|V \Vt|3). This step is executed |Vt| · |V \Vt| times (all pairs of trusted-untrusted nodes),
which leads to an overall complexity of O(|Vt| · |V \Vt|4).

Building Gut,vt from Gut (Alg. 6, l. 17) has linear complexity O(|V |). Building such
graphs is repeated O(|Vt|2) times, for a complexity O(|Vt|2·|V |.

Evaluating the connectivity between two nodes in Gut,vt (Alg. 6, l. 18) has complexity
O(|V \Vt|3) (using Ford-Fulkerson’s algorithm [18]). This step is repeated O(|Vt|2) times,
which leads to an overall complexity of O(|Vt|2 · |V \Vt|3).

The overall complexity of Alg. 6 is bounded by the sum of all terms that appear inside
boxes in this section:

O(2|V | + |V \Vt|5 + |Vt|·|V | + |Vt| · |V \Vt|4 + |Vt|2·|V | + |Vt|2 · |V \Vt|3).

When |Vt| is small, |V \Vt|5 ≈ |V |5 dominates. When |Vt| is large, then it is |Vt|2·|V | ≈ |V |3
that dominates.

C Intuition: Leveraging Trusted Nodes in the Authenticated Links
Model

1

2

4

3

5 6

7

9

8

Figure 3 A network of 9 non-authenticated nodes (gray) that includes 3 trusted nodes (blue)
where DolevU-T enforces reliable communication while DolevU does not.

Fig. 3 illustrates a network of non-authenticated nodes that contains 9 nodes, including 3
trusted (i.e., nodes 4, 5, and 6). In this network, reliable communication would be ensured
by DolevU-T with at most one faulty node (i.e., f=1), but not by DolevU.

To motivate DolevU-T, it is interesting to observe how a message broadcast by node 1
could be authenticated by node 9, assuming that node 1 is correct. The message would first
eventually be authenticated by node 4 (directly or through both untrusted nodes 2 and 3).

R. Chotkan, B. Cox, V. Rahli, and J. Decouchant 25:25

As node 4 is trusted, it would then vouch for its authenticity to node 5. Later on, node 5
would do the same with node 6, and node 6 would then directly disseminate the message to
all its neighbors, including node 9. Since node 6 is trusted, node 9 is able to authenticate
the message.

This example illustrates the fact that an uninterrupted path of trusted nodes is equivalent
to a reliable link, which DolevU-T leverages. In particular, a message that only goes through
trusted nodes is authenticated. However, DolevU-T also relies on the most general observation
that trusted nodes can be removed from any position in the paths that DolevU manipulates
to decide whether a message can be delivered.

D Counter-example: in DualRC, a node must keep forwarding
signatures even after it delivers using dissemination paths

11

3

4

5

6

2

7

8

10

9

Figure 4 Example of a network where not forwarding signatures after delivering a message based
on dissemination paths would prevent some nodes from authenticating it.

Without knowing the network topology, it is generally not possible for a node that delivers a
message based on message paths to stop forwarding all signatures it might receive later. Fig. 4
shows a graph where doing so can prevent a correct node from authenticating a message
from another correct node. In this example, nodes 1, 2, 3, and 7 are not authenticated and,
therefore, do not manipulate signatures (but can relay them) and authenticate messages only
based on their dissemination paths. Nodes 4, 5, 6, 8, 9 and 10 are authenticated. Additionally,
7 is trusted, and 8 is faulty. Node 1 aims at sending a message m to node 10. Let us consider
the following execution:

Message m arrives at nodes 2 and 3 that both deliver the message and forward it to their
neighbors, including node 7.
Message m arrives at node 7 through node 2 with an empty path. At this moment, node
7 is not able to authenticate m using only path [2], but it forwards m with a modified
path.
Message m arrives at node 7 through node 3 with an empty path. Node 7 authenticates
m using paths [2] and [3], and forwards it with an empty path to nodes 8 and 9. After
delivering m, node 7 ignores all messages it might receive from nodes 4, 5, and 6 that
contain their signature on m.
Node 8 is faulty and does not forward m further.
Node 9 forwards m with an empty path to node 10, which cannot authenticate it based
solely on [9] and subsequently never authenticates m.

Instead, if 7 keeps forwarding the signatures on m it receives after delivering it based on
paths, then 10 would receive the signatures of nodes 4, 5, and 6 and would authenticate m.

OPODIS 2024

25:26 Reliable Communication in Hybrid Authentication and Trust Models

▶ Remark. Note that nodes do not have to keep forwarding paths after they have delivered
a message using signatures. Indeed, upon delivering a message based on signatures, it is
sufficient for a node to forward an empty path to all its neighbors and ignore the paths it
might receive afterwards [10].

	1 Introduction
	2 Models and Problem Statement
	3 DolevU-T: Reliable Communication in the Authenticated Link Model with Trusted Nodes
	3.1 Description of DolevU-T
	3.2 Optimizations
	3.3 Proofs
	3.3.1 Method 1: Max-Flow on Transformed Graph
	3.3.2 Method 2: Eliminating Unnecessary Trusted Nodes from G and Checking for 2f+1 Vertex-Connectivity

	4 SigFlood-T: Reliable Communication in the Authenticated Process Model with Trusted Nodes
	4.1 Description
	4.2 Proofs

	5 DualRC: Reliable Communication in the Hybrid Authenticated Links/Processes Model with trusted nodes and components
	5.1 Description
	5.2 Proofs

	6 Related Work
	7 Conclusion
	A Pseudocodes of DolevU-T, SigFlood-T and DualRC
	B Correctness Verification of DolevU-T
	B.1 Pseudocodes
	B.2 Complexity of the first correctness verification method for DolevU-T– Max-flow on transformed graph (Alg. 5)
	B.3 Complexity of the second correctness verification method for DolevU-T– Eliminating unnecessary trusted nodes and checking for 2f+1 vertex-connectivity (Alg. 6)

	C Intuition: Leveraging Trusted Nodes in the Authenticated Links Model
	D Counter-example: in DualRC, a node must keep forwarding signatures even after it delivers using dissemination paths

