
Local Problems in Trees Across a Wide Range of
Distributed Models
Anubhav Dhar #

Aalto University, Espoo, Finland
Indian Institute of Technology Kharagpur,
India

Eli Kujawa #

Aalto University, Espoo, Finland
University of Illinois Urbana-Champaign,
IL, USA

Henrik Lievonen # Ñ

Aalto University, Espoo, Finland
Augusto Modanese # Ñ

Aalto University, Espoo, Finland

Mikail Muftuoglu #

Aalto University, Espoo, Finland
Jan Studený #

Aalto University, Espoo, Finland

Jukka Suomela #Ñ

Aalto University, Espoo, Finland

Abstract
The randomized online-LOCAL model captures a number of models of computing; it is at least as
strong as all of these models:

the classical LOCAL model of distributed graph algorithms,

the quantum version of the LOCAL model,

finitely dependent distributions [e.g. Holroyd 2016],

any model that does not violate physical causality [Gavoille, Kosowski, Markiewicz, DISC 2009],

the SLOCAL model [Ghaffari, Kuhn, Maus, STOC 2017], and

the dynamic-LOCAL and online-LOCAL models [Akbari et al., ICALP 2023].
In general, the online-LOCAL model can be much stronger than the LOCAL model. For example,
there are locally checkable labeling problems (LCLs) that can be solved with logarithmic locality in
the online-LOCAL model but that require polynomial locality in the LOCAL model.

However, in this work we show that in trees, many classes of LCL problems have the same
locality in deterministic LOCAL and randomized online-LOCAL (and as a corollary across all the
above-mentioned models). In particular, these classes of problems do not admit any distributed
quantum advantage.

We present a near-complete classification for the case of rooted regular trees. We also fully classify
the super-logarithmic region in unrooted regular trees. Finally, we show that in general trees (rooted
or unrooted, possibly irregular, possibly with input labels) problems that are global in deterministic
LOCAL remain global also in the randomized online-LOCAL model.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Distributed algorithms, quantum-LOCAL model, randomized online-LOCAL
model, locally checkable labeling problems, trees

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.27

Related Version Full Version: https://arxiv.org/abs/2409.13795 [13]

Funding This work was supported in part by the Research Council of Finland, Grants 333837 and
359104, the Aalto Science Institute (AScI), and the Helsinki Institute for Information Technology
(HIIT).

© Anubhav Dhar, Eli Kujawa, Henrik Lievonen, Augusto Modanese, Mikail Muftuoglu, Jan Studený,
and Jukka Suomela;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anubhavdhar@kgpian.iitkgp.ac.in
https://orcid.org/0009-0006-5922-8300
mailto:ekujawa2@illinois.edu
https://orcid.org/0009-0009-4183-7126
mailto:henrik.lievonen@aalto.fi
https://henriklievonen.fi/
https://orcid.org/0000-0002-1136-522X
mailto:augusto.modanese@aalto.fi
https://augusto.modanese.net/
https://orcid.org/0000-0003-0518-8754
mailto:mikail.muftuoglu@aalto.fi
https://orcid.org/0009-0008-7350-5372
mailto:jan.studeny@aalto.fi
https://orcid.org/0000-0002-9887-5192
mailto:jukka.suomela@aalto.fi
https://jukkasuomela.fi/
https://orcid.org/0000-0001-6117-8089
https://doi.org/10.4230/LIPIcs.OPODIS.2024.27
https://arxiv.org/abs/2409.13795
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Local Problems in Trees Across a Wide Range of Distributed Models

deterministic
LOCAL

randomized
LOCAL

quantum-
LOCAL

bounded-
dependence

randomized
LOCAL (shared)

quantum-
LOCAL (shared) non-signaling

deterministic
SLOCAL

randomized
SLOCAL

deterministic
dynamic-LOCAL

deterministic
online-LOCAL

randomized
online-LOCAL

Figure 1 Landscape of models, based on [1]. In this work we show that for many families of
LCL problems, the two extreme models – deterministic LOCAL and randomized online-LOCAL – are
equally strong, and hence the same holds for all intermediate models in this diagram.

1 Introduction

The randomized online-LOCAL model was recently introduced in [1]; this is a model of
computing that is at least as strong as many other models that have been widely studied in
the theory of distributed computing, as well as a number of emerging models; see Figure 1.
In particular, different variants of the quantum-LOCAL and SLOCAL models are sandwiched
between the classical deterministic LOCAL model and the randomized online-LOCAL model.

While the randomized online-LOCAL model is in general much stronger than the de-
terministic LOCAL model, in this work we show that in trees, for many families of local
problems these two models (and hence all models in between) are asymptotically equally
strong. Figure 2 summarizes the relations that we have thanks to this work; for comparison,
see Figure 3 for the state of the art before this work.

1.1 Models
We will define all relevant models formally in Section 3, but for now the following brief
definitions suffice:

In the deterministic LOCAL model, an algorithm A with locality T works as follows: The
adversary chooses a graph G and an assignment of polynomially-sized unique identifiers.
Algorithm A is applied to all nodes simultaneously in parallel. When we apply A to node
v, algorithm A gets to see the radius-T neighborhood of v and, using this information, it
has to choose the output label of node v.
In the randomized online-LOCAL model, an algorithm A with locality T works as
follows: The adversary chooses a graph G and a processing order σ. Then the adversary
presents nodes sequentially following the order σ. Whenever a node v is presented,
algorithm A gets to see the radius-T neighborhood of v and, using this information as
well as all information it has seen previously and a global source of random bits, it has
to choose the output label of node v.

This means that randomized online-LOCAL is stronger than deterministic LOCAL in at least
three different ways: (1) we have access to shared randomness, (2) the sequential processing
order can be used to break symmetry, and (3) there is global memory thanks to which we

A. Dhar et al. 27:3

Θ
(n
1/
2)

Θ
(n
1/
3)

Θ
(lo
g
n)

Θ
(lo
g
∗ n
)

Θ
(1
)

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

Θ
(n
)

Rooted Trees

. . .

Unrooted Regular Trees

Unrooted Trees

Θ
(lo
g
log
log
n)

Rooted Regular Trees

Θ
(lo
g
log
n)

. . .

. . .

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

. . .

. . .

. . .

. . .

there are LCL problems in this

complexity class

a gap: no LCL problems in this range there are LCL problems somewhere in

this range

deterministic

LOCAL

randomized

online-LOCAL

deterministic

LOCAL

randomized

online-LOCAL

deterministic

LOCAL

randomized

online-LOCAL

deterministic

LOCAL

randomized

online-LOCAL

— — —

Figure 2 Landscape of LCL problems in trees after this work – compare with Figure 3 that shows
the state of the art before this work.

OPODIS 2024

27:4 Local Problems in Trees Across a Wide Range of Distributed Models

Θ
(n
1/
2)

Θ
(n
1/
3)

Θ
(lo
g
n)

Θ
(lo
g
∗ n
)

Θ
(1
)

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

Θ
(n
)

. . .Θ
(lo
g
log
log
n)

Θ
(lo
g
log
n)

. . .

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

. . .

. . .

. . .

deterministic

LOCAL

randomized

online-LOCAL

deterministic

LOCAL

randomized

online-LOCAL

deterministic

LOCAL

randomized

online-LOCAL

deterministic

LOCAL

randomized

online-LOCAL

Rooted Trees

Unrooted Regular Trees

Unrooted Trees

Rooted Regular Trees

there are LCL problems in this

complexity class

a gap: no LCL problems in this range there are LCL problems somewhere in

this range

— — —

Figure 3 Landscape of LCL problems in trees before this work – compare with Figure 2 to see
the impact of our new contributions.

A. Dhar et al. 27:5

can remember everything we have seen so far. A reader familiar with the SLOCAL model can
interpret it as randomized SLOCAL augmented with global memory. Note that the adversary
is oblivious; it cannot adapt G and σ based on the actions of A.

In general, online-LOCAL (with or without randomness) is much stronger than the classical
LOCAL model (with or without randomness). For example, leader election is trivial in online-
LOCAL, even with locality T = 0 (the first node that the adversary presents is marked as the
leader). However, what is much more interesting is whether online-LOCAL has advantage
over LOCAL for problems defined using local constraints, such as graph coloring.

1.2 Prior Work on LCL Problems
We will study here locally checkable labeling problems (LCLs) [21]; these are problems that
can be specified by giving a finite set of valid local neighborhoods. By prior work, we know
a number of LCL problems that can separate the models in Figure 1, for example:

Sinkless orientation has locality Θ(log n) in deterministic LOCAL, locality Θ(log log n) in
randomized LOCAL, and locality Θ(log log log n) in randomized SLOCAL [7, 8, 10,14,16].
One can construct an (artificial) LCL problem that shows that having access to shared
randomness helps exponentially in comparison with private randomness, and this also
gives a separation between e.g. randomized LOCAL and randomized online-LOCAL [6].
In 2-dimensional grids, 3-coloring has polynomial locality in e.g. randomized SLOCAL
and non-signaling models, while it can be solved with logarithmic locality in deterministic
online-LOCAL [2, 12].
In paths, 3-coloring requires Θ(log∗ n) locality in randomized LOCAL [19,20], while it can
be solved with O(1) locality in the bounded-dependence model [18].

However, we do not have any such separations in rooted trees outside the O(log∗ n) region.
Moreover, in general unrooted trees, all separations are in the sub-logarithmic region. In this
work we give a justification for this phenomenon.

1.3 Contributions
We study in this work LCL problems in the following three main settings, all familiar from
prior work:
1. LCL problems in trees in general,
2. LCL problems in unrooted regular trees (there are no inputs and we only care about

nodes with exactly d neighbors),
3. LCL problems in rooted regular trees (there are no inputs, edges are oriented, and we

only care about nodes with exactly 1 successor and d predecessors).
In all these settings, it is known that the locality of any LCL problem in deterministic
LOCAL falls in one of the following classes: O(1), Θ(log∗ n), Θ(log n), or Θ(n1/k) for some
k = 1, 2, 3, . . . [3, 4, 9, 11, 17]. Furthermore, in the case of rooted regular trees, we can
(relatively efficiently) also decide which of these classes any given LCL problem belongs to [3].

Our main contribution is showing that, in many of these complexity classes, deterministic
LOCAL and randomized online-LOCAL are asymptotically equally strong:
1. In general trees, the localities in randomized online-LOCAL and deterministic LOCAL are

asymptotically equal in the region ω(
√

n).
2. In unrooted regular trees, the localities in randomized online-LOCAL and deterministic

LOCAL are asymptotically equal in the region ω(log n).
3. In rooted regular trees, the localities in randomized online-LOCAL and deterministic

LOCAL are asymptotically equal in the region ω(log∗ n).

OPODIS 2024

27:6 Local Problems in Trees Across a Wide Range of Distributed Models

By prior work, the relation between deterministic LOCAL and randomized online-LOCAL was
well-understood in the o(log log log n) region for rooted (not necessarily regular) trees [1]; see
Figure 3 for the state of the art before this work. Putting together prior results and new
results, the landscape shown in Figure 2 emerges.

1.4 Roadmap
We give an overview of key ideas in Section 2. We formally define LCL problems and the
models of computing in Section 3, and then we are ready to analyze the sub-logarithmic
region in rooted regular trees in Section 4. For the remaining results, please refer to the full
version of the paper [13].

2 Key Ideas, Technical Overview, and Comparison with Prior Work

We keep the discussion at a high level but invite the interested reader to consult the formal
definitions in Section 3 as needed.

Our results heavily build on prior work that has studied LCL problems in deterministic
and randomized LOCAL models. In essence, our goal is to extend its scope across the entire
landscape of models in Figure 1.

For example, by prior work we know that any LCL problem Π in trees has locality either
O(

√
n) or Ω(n) in the deterministic LOCAL model [5]. Results of this type are known as

gap results. For our purposes, it will be helpful to interpret such a gap result as a speedup
theorem that allows us to speed up deterministic LOCAL algorithms:

If one can solve Π with locality o(n) in deterministic LOCAL, then one can solve
the same problem Π with locality O(

√
n) in deterministic LOCAL.

In essence our objective is to strengthen the statement as follows:

If one can solve Π with locality o(n) in randomized online-LOCAL, then one can
solve the same problem Π with locality O(

√
n) in deterministic LOCAL.

The critical implication would be that a faster randomized online-LOCAL algorithm results not
only in a faster randomized online-LOCAL algorithm, but also in a faster deterministic LOCAL
algorithm – we could not only reduce locality “for free” but even switch to a weaker model. As
a consequence, the complexity class Θ(n) would contain the same problems across all models –
since Ω(n) in randomized online-LOCAL trivially implies Ω(n) in deterministic LOCAL (which
is a weaker model), the above would give us that o(n) in randomized online-LOCAL implies
o(n) in deterministic LOCAL.

If we could prove a similar statement for every gap result for LCLs in trees, we would
then have a similar implication for each complexity class: the complexities across all models
in Figure 1 would be the same for every LCL problem in trees. Alas, such a statement cannot
be true in full generality (as we discussed above, there are some known separations between
the models), but in this work we take major steps in many cases where that seems to hold.
To understand how we achieve this, it is useful to make a distinction between two flavors of
prior work: classification- and speedup-style arguments; we will make use of both techniques.

2.1 Classification Arguments for Regular Trees
First, we have prior work that is based on the idea of classification of LCLs, see e.g. [3]. The
high-level strategy is as follows:

A. Dhar et al. 27:7

1. Define some property P so that, for any given LCL Π, we can decide whether Π has
property P .

2. Show that, if Π can be solved with locality o(n) in deterministic LOCAL, then this
implies that Π must have property P .

3. Show that any problem with property P can be solved with locality O(
√

n) in deter-
ministic LOCAL.

Such a strategy not only shows that there is a gap in the complexity landscape, but it also
usually gives an efficient strategy for determining what is the complexity of a given LCL (as
we will need to check some set of properties P1, P2, . . . and see which of them holds for a
given Π in order to determine where we are in the complexity landscape). For such results
our key idea is to modify the second step as follows:
2’. Show that, if Π can be solved with locality o(n) in randomized online-LOCAL, then

this implies that Π must have property P .
Note that we do not need to change the third step; as soon as we establish property P , the
pre-existing deterministic LOCAL algorithm kicks in. This is, in essence, what we do in the
technical section: we take the prior classification from [3] for rooted regular trees in the
sub-logarithmic region and show that it can be extended to cover the entire range of models
all the way from deterministic LOCAL to randomized online-LOCAL.

Log-star certificates. One key property that we make use of are certificates of O(log∗ n)
solvability for rooted regular trees, introduced in [4]. In Section 4, we show that the existence
of an o(log n)-locality randomized online-LOCAL algorithm implies that the LCL problem
has such a certificate; in turn, as the name suggests, the certificate of solvability implies
that the problem can be solved with O(log∗ n) locality in both CONGEST and LOCAL. This
then extends to an O(1) upper bound in SLOCAL [15] and in deterministic online-LOCAL [2],
which then directly implies the same upper bound also for randomized online-LOCAL model.
Hence we obtain the following:

▶ Theorem 2.1. Let Π be an LCL problem on rooted regular trees. If Π can be solved with
o(log n) locality in randomized online-LOCAL, then it can be solved in LOCAL with O(log∗ n)
locality. Consequently, Π can be solved with O(1) locality in SLOCAL, and thus also with the
same locality in online-LOCAL, even deterministically.

Depth. Another key property that we make use of is the depth of an LCL (see the full
version of the paper [13]): to every LCL problem Π on regular trees there is an associated
quantity dΠ called its depth that depends only on the description of Π and which allows us
to classify its complexity in the deterministic LOCAL model [3]. We show that depth also
captures the complexity in randomized online-LOCAL. We analyze the case of rooted regular
trees and show the following:

▶ Theorem 2.2. Let Π be an LCL problem on rooted regular trees with finite depth k = dΠ > 0.
Then any algorithm A solving Π in randomized online-LOCAL must have locality Ω(n1/k).

The high-level strategy is as follows: Assume we have an algorithm with locality o(n1/k).
We construct a large experiment graph and run the algorithm on that. If the algorithm fails,
then it contradicts the assumption that we have such algorithm. If the algorithm succeeds,
then it also produces a certificate showing that dΠ > k, which again is a contradiction. We
prove an analogous statement for unrooted regular trees:

▶ Theorem 2.3. Let Π be an LCL problem on unrooted regular trees with finite depth
k = dΠ > 0. Then any randomized online-LOCAL algorithm for Π has locality Ω(n1/k).

OPODIS 2024

27:8 Local Problems in Trees Across a Wide Range of Distributed Models

Putting things together. Combining the new results with results from prior work [3,4, 9,
11, 17], we extend the characterization of LCLs in both unrooted and rooted regular trees all
the way up to randomized online-LOCAL:

▶ Corollary 2.4. Let Π be an LCL problem on unrooted regular trees. Then the following
holds:

If dΠ = 0, the problem is unsolvable.
If 0 < dΠ < ∞, then Π has locality Θ(n1/dΠ) in both deterministic LOCAL and randomized
online-LOCAL.
If dΠ = ∞, then Π can be solved in CONGEST– and hence also in online-LOCAL, even
deterministically – with locality O(log n).

▶ Corollary 2.5. If Π is a solvable LCL problem in rooted regular trees, then it belongs to
one of the following four classes:
1. O(1) in both deterministic LOCAL and randomized online-LOCAL
2. Θ(log∗ n) in deterministic LOCAL and O(1) in randomized online-LOCAL
3. Θ(log n) in both deterministic LOCAL and randomized online-LOCAL
4. Θ(n1/k) in both deterministic LOCAL and randomized online-LOCAL where k = dΠ > 0

Comparison with prior work. There is prior work [2] that took first steps towards classifying
LCL problems in rooted regular trees; the main differences are as follows:
1. We extend the classification all the way to randomized online-LOCAL, while [2] only

discusses deterministic online-LOCAL. While this may at first seem like a technicality,
Figure 1 highlights the importance of this distinction: randomized online-LOCAL captures
all models in this diagram. This includes in particular the quantum-LOCAL model and
the non-signaling model. Note that it is currently open if deterministic online-LOCAL
captures either of these models.

2. We build on the classification of [3], while [2] builds on the (much simpler and weaker)
classification of [4]. This has two direct implications:
a. Our work extends to unrooted trees; the results in [2] only apply to rooted trees.
b. We get an exact classification also for complexities Θ(n1/k). Meanwhile [2] essentially

only shows that, if the complexity is Θ(n1/k) in deterministic LOCAL, then it is Θ(n1/ℓ)
in online-LOCAL for some ℓ ≤ k; hence it leaves open the possibility that these problems
could be solved much faster (i.e., ℓ ≫ k) in online-LOCAL.

2.2 Speedup Arguments for General Trees
Second, we have also prior work based on speedup simulation arguments, see e.g. [5]. The
high-level strategy there is as follows:

Assume we are given some algorithm A that solves Π with locality o(n) in determin-
istic LOCAL. Then we can construct a new algorithm A′ that uses A as a black box
to solve Π with locality O(

√
n) in deterministic LOCAL.

Unlike classification-style arguments, this does not (directly) yield an algorithm for deter-
mining the complexity of a given LCL problem. In essence, this can be seen as a black-box
simulation of A. For speedup-style arguments, the key idea for us to proceed is as follows:

Assume we are given some algorithm A that solves Π with locality o(n) in randomized
online-LOCAL. Then we can construct a new algorithm A′ that uses A as a black
box to solve Π with locality O(

√
n). Moreover, we can simulate A′ efficiently in the

deterministic LOCAL model.

A. Dhar et al. 27:9

Here a key challenge is that we need to explicitly change models; while in general deterministic
LOCAL is not strong enough to simulate randomized online-LOCAL, we show that in this case
such a simulation is possible. Starting with the argument from [5], we show that sublinear-
locality randomized online-LOCAL algorithms not only admit speedup inside randomized
online-LOCAL, but also a simulation in deterministic LOCAL. Formally, we prove the following
in the full version of this paper [13]:

▶ Theorem 2.6. Suppose Π is an LCL problem that can be solved with o(n) locality in
online-LOCAL (with or without randomness) in unrooted trees. Then Π can be solved in
unrooted trees in LOCAL with O(

√
n) locality (with or without randomness, respectively).

3 Preliminaries

We denote the set of natural numbers, including zero, by N. For positive integers, excluding
zero, we use N+. For a set or multiset X and k ∈ N+, we write

((
X
k

))
for the set of multisets

over X of cardinality k.
All graphs are simple. Unless stated otherwise, n always denotes the number of nodes in

the graph. An algorithm solving some graph problem is said to succeed with high probability
if, for all graphs except finitely many, it fails with probability at most 1/n.

3.1 Locally Checkable Labeling Problems
In this section we define locally checkable labeling (LCL) problems. We first recall the most
general definition due to Naor and Stockmeyer [21]:

▶ Definition 3.1 (LCL problem in general graphs). A locally checkable labeling (LCL) problem
Π = (Σin, Σout, C, r) is defined as follows:

Σin and Σout are finite, non-empty sets of input and output labels, respectively.
r ∈ N+ is the checkability radius.
C is the set of constraints, namely a finite set of graphs where:

Each graph H ∈ C is centered at some node v.
The distance of v from all other nodes in H is at most r.
Each node u ∈ H is labeled with a pair (i(u), o(u)) ∈ Σin × Σout.

For a graph G = (V, E) whose vertices are labeled according to Σin, a (node) labeling of a
graph G = (V, E) is a solution to Π if it labels every node v ∈ V with a label from Σout such
that the r-neighborhood of v in G is identical to some graph of C (when we place v at the
center of the respective graph in C). Every node for which this holds is said to be correctly
labeled. If all nodes of G are labeled with a solution, then G itself is correctly labeled.

We use this definition to refer to problems in the case of general, that is, not necessarily
regular trees. For regular trees, we use two other formalisms, one for the case of rooted and
one for that of unrooted trees. These are simpler to work with and require checking only
labels in the immediate vicinity of a node or half-edge. We note there is precedent in the
literature for taking this approach (see, e.g., [3]).

▶ Definition 3.2 (LCL problem on regular rooted trees). An LCL problem on regular rooted
trees is a tuple Π = (∆, Σ, V) where:

∆ ∈ N+ and Σ is a finite, non-empty set.
The (node) constraints form a set V of pairs (σ, S) where σ ∈ Σ and S ⊆

((Σ
∆

))
.

OPODIS 2024

27:10 Local Problems in Trees Across a Wide Range of Distributed Models

For a rooted tree T = (V, E) with nodes having degree in {1, ∆}, a solution to Π is
a labeling ℓ : V → Σ such that, for each node v with ∆ children u1, . . . , u∆, we have
(ℓ(v), {ℓ(u1), . . . , ℓ(u∆)}) ∈ V. Again, this requirement allows us to speak of correctly
labeled nodes and thus also correctly labeled trees.

Under this formalism, leaves may be labeled arbitrarily. When Π is clear from the context,
we refer to the elements of

((Σ
∆

))
as node configurations.

Meanwhile, in the case of unrooted trees, we work with LCL problems where the labels
are placed on half-edges (instead of nodes) and are subject to node and edge constraints.

▶ Definition 3.3 (LCL problem on regular unrooted trees). An LCL problem on unrooted
trees is a tuple Π = (∆, Σ, V, E) where:

∆ ∈ N+ and Σ is a finite, non-empty set.
The node constraints form a set V ⊆

((Σ
∆

))
.

The edge constraints form a set E ⊆
((

Σ
2
))

.
For an unrooted tree T = (V, E) with nodes having degree in {1, ∆}, a solution to Π is a
labeling of half-edges, that is, a map ℓ : V × E → Σ such that the following holds:

For every node v ∈ V with degree ∆ that is incident to the edges e1, . . . , e∆, we have
{ℓ(v, e1), . . . , ℓ(v, e∆)} ∈ V.
For every edge e = {u, v} ∈ E, {ℓ(u, e), ℓ(v, e)} ∈ E.

As before, if T is labeled with a solution, then it is correctly labeled. In light of these two
types of requirements, it is also natural to speak of correctly labeled nodes and edges.

As in the preceding definition, leaves are unconstrained and may be labeled arbitrarily. As
before, if such an LCL problem Π on regular unrooted trees is clear from the context, we refer
to the elements of

((Σ
∆

))
as node configurations and to those of

((
Σ
2
))

as edge configurations.

3.2 Models of Distributed Computing
Next we formally define the LOCAL model and its extensions.

▶ Definition 3.4 (Deterministic LOCAL model). The deterministic LOCAL model of distributed
computing runs on a graph G = (V, E) where each node v ∈ V represents a computer and
each edge a connection channel. Each node is labeled with a unique identifier. All nodes
run the same distributed algorithm in parallel. Initially, a node is only aware of its own
identifier and degree. Computation proceeds in synchronous rounds, and in each round a node
can send and receive a message to and from each neighbor and update its state. Eventually
each node must stop and announce its local output (its part of the solution, e.g. in graph
coloring its own color). The running time, round complexity, or locality of the algorithm is
the (worst-case) number of rounds T (n) until the algorithm stops in any n-node graph.

▶ Definition 3.5 (Randomized LOCAL model). The randomized LOCAL model is defined
identically to the (deterministic) LOCAL model, with the addition that each node has access
to a private, infinite stream of random bits. Additionally, a randomized LOCAL algorithm is
required to succeed with high probability.

▶ Definition 3.6 (Deterministic online-LOCAL model [2]). In the (deterministic) online-LOCAL
model, an adversary chooses a sequence of nodes, σ = (v1, v2, . . . , vn), and reveals the nodes
to the algorithm one at a time. The algorithm processes each node sequentially. Given an
online-LOCAL algorithm with locality T (n), when a node vi is revealed, the algorithm must
choose an output for vi based on the subgraph induced by the radius-T (n) neighborhoods of
v1, v2, . . . , vi. In other words, the algorithm retains global memory.

A. Dhar et al. 27:11

▶ Definition 3.7 (Randomized online-LOCAL model [1]). In the randomized online-LOCAL
model, an adversary first commits to a sequence of nodes, σ = (v1, v2, . . . , vn), and reveals
the nodes to the algorithm one at a time, as in the online-LOCAL model. The algorithm
runs on each vi and retains global memory, as in the online-LOCAL model. Additionally,
the algorithm has access to an infinite stream of random bits unbeknownst to the adversary;
that is, the adversary cannot change the order they present the remaining nodes based on the
intermediate output of the algorithm. As in the randomized LOCAL, the algorithm is required
to succeed with high probability.

4 Sub-logarithmic Gap for LCLs in Rooted Regular Trees

In this section, we show that there are no LCL problems on rooted trees with locality in the
range ω(1)—o(log n) in the randomized online-LOCAL model. Moreover, the problems that
are solvable with locality O(1) in randomized online-LOCAL are exactly the same problems
that are solvable with locality O(log∗ n) in the LOCAL model.

▶ Theorem 2.1. Let Π be an LCL problem on rooted regular trees. If Π can be solved with
o(log n) locality in randomized online-LOCAL, then it can be solved in LOCAL with O(log∗ n)
locality. Consequently, Π can be solved with O(1) locality in SLOCAL, and thus also with the
same locality in online-LOCAL, even deterministically.

We show this by showing that a locality-o(log n) randomized online-LOCAL algorithm
solving LCL problem Π implies the existence of a coprime certificate for O(log∗ n) solvability
(see Definition 4.6) that then implies that Π is solvable with locality O(log∗ n) in the LOCAL
model [4], and hence with locality O(1) in the randomized online-LOCAL model.

Throughout this section, we consider an LCL problem Π = (∆, Σ, V) and a randomized
online-LOCAL algorithm A that solves Π with locality T (n) = o(log n) with high probability.
We start by constructing a family of input instances and then argue that A solving these
instances produces a canonical labeling regardless of the randomness. Finally, we show how
we this canonical labeling yields the coprime certificate for O(log∗ n) solvability.

4.1 Construction of Input Instances
Let d be a depth parameter that we fix later, and let ∆ be the number of children of internal
nodes. We now construct the input instance as follows:

▶ Definition 4.1 (Family of input instances). To construct the family of input instances:
1. Construct (|Σ|+1) chunks of trees, each containing ∆d+1 complete rooted trees of height 2d.

Give the trees in each chunk an ordering. Let M be the set of nodes in these trees at
distance d from the root; we call these nodes middle nodes.

2. Choose a bit b, and choose a node u which is at depth d in any of the trees created in the
previous phase. Choose a chunk C such that node u is not contained in chunk C.

3. The subtree rooted at u has ∆d leaf descendants.
If b = 0: Identify the roots of the first ∆d trees of chunk C with the leaf descendants of

u in a consistent order (see bottom-left of Figure 4).
If b = 1: Make the roots of the first ∆d+1 trees of chunk C the children of the leaf

descendants of u in a consistent order (see bottom-right Figure 4).

Note that trees constructed in this way have n = (|Σ|+1)·∆d+1 · ∆2d+1−1
∆−1 nodes. Moreover,

choosing (b, u, C) uniquely fixes the construction. Let P be the set of choices for (b, u, C).

OPODIS 2024

27:12 Local Problems in Trees Across a Wide Range of Distributed Models

u

T1 T2 T3 T4

T5 T6 T7 T8

T9 T10 T11 T12

C =

{T5, T6, T7, T8}

2d

|Γ| + 1

δd+1

u

T1
T2 T3 T4

T5

T6 T7

T8

T9 T10 T11 T12

2d

u

T1 T2 T3 T4

T5 T6

T7 T8

T9 T10 T11
T12

2d

The instance (0, u, C) The instance (1, u, C)

b = 0 b = 1

Figure 4 Visualization of two trees in the family of input instances. At the top we have |Σ| + 1
chunks of complete trees of depth 2d, each containing ∆d+1 trees. The green trees in the middle row
represent the chosen chunk C. On the bottom-left, we have b = 0, in which case we identify the
roots of the first ∆d trees of C with the leaf descendants of node u. On the bottom-right, we have
b = 1, in which case we make all trees in chunk C the children of the leaf descendants of node u.
See Definition 4.1 for full construction.

▶ Observation 4.2. The number of instances is less than the number of nodes in each
instance. In particular, |P| = 2|Σ|(|Σ| + 1)∆2d+1 < n.

We can now fix depth parameter d such that d > log∆(2|Σ|) and d > T (n). Recall that
T (n) = o(log n), and hence such d exists.

4.2 Randomness of the Algorithm
Throughout this discussion, we let PrR(·) denote the probability of an event when the
randomness is over some source R for which the probability is being defined.

For each instance (b, u, C), we fix the order middle nodes M such that it is consistent across
all instances. We then reveal these middle nodes to A in this order. Let S ∈ Σ = Σ∆2d+1(|Σ|+1)

be the random sequence of labels generated by A for the middle nodes M . Since the locality

A. Dhar et al. 27:13

of A is T (n) < d, the algorithm does not get to see the roots or the leaves of these height-2d

trees. In particular, the algorithm does not get to know which instance (b, u, C) we have
chosen. Hence S must be independent of the choice of (b, u, C).

▶ Observation 4.3. For every choice σ ∈ Σ of labeling middle nodes M , and every instance
(b, u, C) ∈ P, we must have PrS(S = σ) = PrS(S = σ | (b, u, C)) where PrS(S = σ) denotes
the probability that A produces output σ for nodes M , and PrS(S = σ | (b, u, C)) denotes the
same given that the input instance was (b, u, C).

Note that while the output S for nodes M is independent of (b, u, C), the output that A
produces for the rest of the nodes of the input may be dependent of (b, u, C). We denote
this random variable by A+(b, u, C).

We now analyze the failure probability of A to show that there exists a fixed labeling σ∗
for middle nodes M such that the labeling is still completable for each input instance (b, u, C).
Let F denote the event that algorithm A fails to solve the problem. By assumption, A
succeeds with high probability; hence PrS,A+(b,u,C)(F) ≤ 1

n for all choices of (b, u, C) ∈ P.
We can now pick a labeling of the middle nodes that minimizes the average failure probability:

▶ Definition 4.4. Let σ∗ be defined as follows:

σ∗ ∈ arg min
σ∈Σ,PrS(S=σ)>0

∑
(b,u,C)∈P

Pr
A+(b,u,C)

(F | (b, u, C), S = σ)

where ties are broken deterministically.

This definition ensures the following: Give that the algorithm labels nodes M with σ∗,
the total probability of failure over all instances (b, u, C) is minimized. In some sense, σ∗ is
the best labeling for M when the algorithm know nothing about the instance. Note that σ∗
is a concrete element of Σ and hence does not depend on the randomness of the algorithm.
We can formalize this idea:

▶ Lemma 4.5. Regardless of the instance (b, u, C) ∈ P, if the labeling S of nodes M is σ∗,
there exists a valid way to label the remaining nodes of the instance.

Proof. We start by noting that 1
n ≥ PrS,A+(b,u,C)(F) since A works correctly with high

probability. We can now expand the probability to be conditional over the initial labeling S:

Pr
S,A+(b,u,C)

(F) =
∑
σ∈Σ

Pr
A+(b,u,C)

(F | (b, u, C), S = σ) Pr
S

(S = σ | (b, u, C)).

Next, we apply Observation 4.3 to get

1
n

≥
∑
σ∈Σ

Pr
A+(b,u,C)

(F | (b, u, C), S = σ) Pr
S

(S = σ),

and then we sum over all choices of (b, u, C) on both sides to get

|P|
n

=
∑

(b,u,C)∈P

1
n

≥
∑

(b,u,C)∈P

∑
σ∈Σ

Pr
A+(b,u,C)

(F | (b, u, C), S = σ) Pr
S

(S = σ)

Exchanging the order of summation and noting that σ∗ minimizes∑
(b,u,C)∈P

Pr
A+(b,u,C)

(F | (b, u, C), S = σ),

OPODIS 2024

27:14 Local Problems in Trees Across a Wide Range of Distributed Models

we get

|P|
n

≥
∑

(b,u,C)∈P

Pr
A+(b,u,C)

(F | (b, u, C), S = σ∗).

Recalling that |P|
n < 1 by Observation 4.2 and that all probabilities are non-negative numbers,

we complete our calculation:

1 > Pr
A+(b,u,C)

(F | (b, u, C), S = σ∗) for each (b, u, C) ∈ P.

Hence for each instance (b, u, C), the algorithm fails with probability strictly less than 1.
Thus it succeeds with non-zero probability, and hence a correct labeling must exist. ◀

4.3 Getting a Coprime Certificate as a Subset of All Such Instances
We are now ready to extract from algorithm A a coprime certificate for O(log∗ n) solvability.
The idea is to pick a subset of input instances P that – along with the labeling σ∗ – form
the pairs of sequences of trees of the certificate. We defer the proof of why this implies the
existence of a locality-O(log∗ n) LOCAL algorithm to previous work [4].

▶ Definition 4.6 (Coprime certificate for O(log∗ n) solvability [4]). Let Π = (∆, Σ, C) be an LCL
problem. A certificate for O(log∗ n) solvability of Π consists of labels ΣT = {σ1, . . . , σt} ⊆ Σ,
a depth pair (d1, d2) and a pair of sequences T 1 and T 2 of t labeled trees such that
1. The depths d1 and d2 are coprime.
2. Each tree of T 1 (resp. T 2) is a complete ∆-ary tree of depth d1 ≥ 1 (resp. d2 ≥ 1).
3. Each tree is labeled by labels from Σ correctly according to problem Π.
4. Let T̄ 1

i (resp. T̄ 2
i) be the tree obtained by starting from T 1

i (resp. T 2
i) and removing the

labels of all non-leaf nodes. It must hold that all trees T̄ 1
i (resp. T̄ 2

i) are isomorphic,
preserving the labeling. All the labels of the leaves of T̄ 1

i (resp. T̄ 2
i) must be from set ΣT .

5. The root of tree T 1
i (resp. T 2

i) is labeled with label σi.

Let ΣT = {σ1, σ2, . . . , σt} ⊆ Σ be the set of labels appearing in σ∗, and let (u1, u2, . . . , ut)
be some middle nodes in the input instances such that node ui has label σi according to
σ∗. Note that there are |Σ| + 1 chunks whereas t = |ΣT | < |Σ| + 1. Therefore, we get the
following result by the pigeonhole principle:

▶ Observation 4.7. There is a chunk C0 which does not contain any node in {u1, . . . , ut}.

With these definitions of labels ΣT = (σ1, . . . , σt), chunk C0, and nodes (u1, . . . , ut), we
are ready to prove our main result:

▶ Theorem 4.8. For an LCL problem Π without inputs on rooted regular trees, if there is
a randomized online-LOCAL algorithm A with locality T (n) = o(log n), then there exists a
coprime certificate of O(log∗ n) solvability for Π, with ΣT as the subset of labels.

Proof. For each i ∈ {1, . . . , t}, consider the instance (0, ui, C0) with S = σ∗ and some valid
way to label the remaining nodes; such a labeling exists due to Lemma 4.5. The subtree
rooted at ui contains the first ∆d trees of the chunk C0. Let the depth-2d subgraph rooted
at ui be tree T 1

i . See Figure 5a for a visualization.

A. Dhar et al. 27:15

ui

First δd trees of C0

T 1
i

(a) Trees T 1
i of depth 2d for certificate

from instance (0, ui, C0).

ui

Trees of the chunk C0

T 2
i

(b) Trees T 1
i of depth 2d + 1 for certificate from instance

(1, ui, C0).

Figure 5 Construction of trees of coprime certificate for O(log∗ n) solvability. The blue shaded
region represents the tree of the sequence and extends from the labeled middle node ui to the middle
nodes of the trees hanging from its leaf descendants.

Note that for each i ∈ {1, . . . , t}, tree T 1
i has a root labeled with σi, and the leaves are

labeled with labels from set ΣT in an identical way. Hence T 1 form the first sequence of
the certificate. Similarly, we consider (1, ui, C0) for all i ∈ {1, . . . , t}. This time we let the
depth-(2d + 1) subtree rooted at ui be tree T 2

i . See Figure 5b for a visualization. The
sequence T 2 forms the second sequence of the certificate, again by similar arguments.

It is easy to check that ΣT , 2d and 2d + 1 and sequences T 1 and T 2 indeed form a
coprime certificate for O(log∗ n) solvability for problem Π. ◀

We can now proof the main result of this section:

▶ Theorem 2.1. Let Π be an LCL problem on rooted regular trees. If Π can be solved with
o(log n) locality in randomized online-LOCAL, then it can be solved in LOCAL with O(log∗ n)
locality. Consequently, Π can be solved with O(1) locality in SLOCAL, and thus also with the
same locality in online-LOCAL, even deterministically.

Proof. A locality-o(log n) randomized online-LOCAL algorithm for problem Π implies the
existence of certificate of O(log∗ n) solvability of Π by Theorem 4.8. This further implies
existence of LOCAL algorithm solving Π with locality O(log∗ n) [4], which in turn implies
the existence of SLOCAL algorithm solving Π with locality O(1) [15]. Since the randomized
online-LOCAL is stronger than the SLOCAL model [1], this implies the existence of a locality-
O(1) randomized online-LOCAL algorithm that solves Π. Therefore, there can be no LCL
problem on rooted regular trees where the optimal algorithm has a locality of T (n) which is
both o(log n) and ω(1). ◀

OPODIS 2024

27:16 Local Problems in Trees Across a Wide Range of Distributed Models

References
1 Amirreza Akbari, Xavier Coiteux-Roy, Francesco D’Amore, François Le Gall, Henrik Lievonen,

Darya Melnyk, Augusto Modanese, Shreyas Pai, Marc-Olivier Renou, Václav Rozhon, and
Jukka Suomela. Online locality meets distributed quantum computing, 2024. doi:10.48550/
arXiv.2403.01903.

2 Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi, and
Jukka Suomela. Locality in online, dynamic, sequential, and distributed graph algorithms. In
Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium
on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn,
Germany, volume 261 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.ICALP.2023.10.

3 Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, and Jukka
Suomela. Efficient classification of locally checkable problems in regular trees. In Christian
Scheideler, editor, 36th International Symposium on Distributed Computing, DISC 2022,
October 25-27, 2022, Augusta, Georgia, USA, volume 246 of LIPIcs, pages 8:1–8:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.DISC.2022.8.

4 Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, Jukka Suomela,
and Aleksandr Tereshchenko. Locally checkable problems in rooted trees. Distributed Comput-
ing, 36(3):277–311, 2023. doi:10.1007/S00446-022-00435-9.

5 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost global prob-
lems in the LOCAL model. Distributed Computing, 34(4):259–281, 2021. doi:10.1007/
S00446-020-00375-2.

6 Alkida Balliu, Mohsen Ghaffari, Fabian Kuhn, Augusto Modanese, Dennis Olivetti, Mikaël
Rabie, Jukka Suomela, and Jara Uitto. Shared randomness helps with local distributed
problems, 2024. doi:10.48550/arXiv.2407.05445.

7 Alkida Balliu, Janne H. Korhonen, Fabian Kuhn, Henrik Lievonen, Dennis Olivetti, Shreyas
Pai, Ami Paz, Joel Rybicki, Stefan Schmid, Jan Studený, Jukka Suomela, and Jara Uitto.
Sinkless orientation made simple. In Telikepalli Kavitha and Kurt Mehlhorn, editors, 2023
Symposium on Simplicity in Algorithms, SOSA 2023, Florence, Italy, January 23-25, 2023,
pages 175–191. SIAM, 2023. doi:10.1137/1.9781611977585.CH17.

8 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed lovász local lemma.
In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 479–488. ACM, 2016. doi:10.1145/2897518.2897570.

9 Yi-Jun Chang. The complexity landscape of distributed locally checkable problems on trees.
In Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020,
October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 18:1–18:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.DISC.2020.18.

10 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between ran-
domized and deterministic complexity in the LOCAL model. SIAM Journal on Computing,
48(1):122–143, 2019. doi:10.1137/17M1117537.

11 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM
Journal on Computing, 48(1):33–69, 2019. doi:10.1137/17M1157957.

12 Xavier Coiteux-Roy, Francesco d’Amore, Rishikesh Gajjala, Fabian Kuhn, François Le Gall,
Henrik Lievonen, Augusto Modanese, Marc-Olivier Renou, Gustav Schmid, and Jukka Suomela.
No distributed quantum advantage for approximate graph coloring. In Proceedings of the 56th
Annual ACM Symposium on Theory of Computing, STOC 2024, pages 1901–1910, New York,
NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3618260.3649679.

13 Anubhav Dhar, Eli Kujawa, Henrik Lievonen, Augusto Modanese, Mikail Muftuoglu, Jan
Studený, and Jukka Suomela. Local problems in trees across a wide range of distributed
models, 2024. doi:10.48550/arXiv.2409.13795.

https://doi.org/10.48550/arXiv.2403.01903
https://doi.org/10.48550/arXiv.2403.01903
https://doi.org/10.4230/LIPICS.ICALP.2023.10
https://doi.org/10.4230/LIPICS.DISC.2022.8
https://doi.org/10.1007/S00446-022-00435-9
https://doi.org/10.1007/S00446-020-00375-2
https://doi.org/10.1007/S00446-020-00375-2
https://doi.org/10.48550/arXiv.2407.05445
https://doi.org/10.1137/1.9781611977585.CH17
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.4230/LIPICS.DISC.2020.18
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1157957
https://doi.org/10.1145/3618260.3649679
https://doi.org/10.48550/arXiv.2409.13795

A. Dhar et al. 27:17

14 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 662–673. IEEE
Computer Society, 2018. doi:10.1109/FOCS.2018.00069.

15 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 784–797. ACM, 2017. doi:10.1145/3055399.3055471.

16 Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and orientations.
In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 2505–2523. SIAM, 2017. doi:10.1137/1.9781611974782.166.

17 Christoph Grunau, Václav Rozhon, and Sebastian Brandt. The landscape of distributed
complexities on trees and beyond. In Alessia Milani and Philipp Woelfel, editors, PODC ’22:
ACM Symposium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022,
pages 37–47. ACM, 2022. doi:10.1145/3519270.3538452.

18 Alexander E. Holroyd and Thomas M. Liggett. Finitely dependent coloring. Forum of
Mathematics, Pi, 4, 2016. doi:10.1017/fmp.2016.7.

19 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

20 Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM
Journal on Discrete Mathematics, 4(3):409–412, 1991. doi:10.1137/0404036.

21 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

OPODIS 2024

https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1145/3519270.3538452
https://doi.org/10.1017/fmp.2016.7
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571

	1 Introduction
	1.1 Models
	1.2 Prior Work on LCL Problems
	1.3 Contributions
	1.4 Roadmap

	2 Key Ideas, Technical Overview, and Comparison with Prior Work
	2.1 Classification Arguments for Regular Trees
	2.2 Speedup Arguments for General Trees

	3 Preliminaries
	3.1 Locally Checkable Labeling Problems
	3.2 Models of Distributed Computing

	4 Sub-logarithmic Gap for LCLs in Rooted Regular Trees
	4.1 Construction of Input Instances
	4.2 Randomness of the Algorithm
	4.3 Getting a Coprime Certificate as a Subset of All Such Instances

