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Abstract
In this paper, we investigate how local rules enforced at every node can influence the topology of a
network. More precisely, we establish several results on the diameter of trees as a function of the
number of nodes, as listed below. These results have important consequences on the landscape of
locally checkable labelings (LCL) on unbounded degree graphs, a case in which our lack of knowledge
is in striking contrast with that of bounded degree graphs, that has been intensively studied recently.

First, we show that the diameter of a tree can be controlled very precisely by a local checker
(that is, a distributed decision algorithm that accepts a graph iff all nodes accept locally), granted
that its checkability radius is at least 2 (and that the target diameter is not too close to n). As a
corollary, we prove that the gaps in the landscape of LCLs (in bounded-degree graphs) basically
disappear in unbounded degree graphs.

Second, we prove that for checkers at distance 1, the maximum diameter can only be trivial
(constant or linear), while the minimum diameter can in addition be Θ(log n) and Θ(n1/k) for k ∈ N.
These functions interestingly coincide with the known regimes for LCLs.

Third, we explore computational restrictions of local checkers. In particular, we introduce a
class of checkers, that we call degree-myopic, that cannot distinguish perfectly the degrees of their
neighbors. With these checkers, we show that the maximum diameter can only be O(1), Θ(

√
n),

Θ(log n/ log log n), Θ(log n), or Ω(n). Since gaps do appear in the maximum diameter, one can hope
that an interesting LCL landscape exists for restricted local checkers.

In addition to the LCL motivation, we hope that our distributed lenses can help give a new
point of view on how global structures, such as living beings, can be maintained by local phenomena;
understanding the trade-off between the power of the checking and the possible resulting shapes.
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1 Introduction

1.1 Questions and motivations
A general question in distributed computing is: how well can we control global parameters
of a system if we can only check it partially and in a distributed manner? Here, we are
interested in the following graph-oriented version of this question: How do local constraints
influence the shape of a network? More precisely, if we define a set of rules to be satisfied at
every node of the network, what are the networks that satisfy these rules? What properties
do they have? And conversely, if we want to ensure a given global property, can we obtain it
by only enforcing local constraints?
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28:2 How Local Constraints Influence Network Diameter

In this paper, we focus on a concrete version of the question, where the networks are
(colored) graphs, and in particular trees, and the global parameter studied is the diameter.
Before we discuss our motivations and how our perspective differs from previous work, let
us introduce some vocabulary. A local checker is a local algorithm run at every node of
the network, that outputs a binary decision accept/reject, only based on a neighborhood at
constant distance around itself. A network (or equivalently a graph) is globally accepted
if every node locally accepts. For example, a local checker that checks if the number of
neighbors of the node at hand is at most ∆ accepts exactly all the graphs of maximum degree
at most ∆.

Main motivation: Going beyond bounded-degree for LCLs

The most popular problems in the study of locality, in the sense of the LOCAL model, are
called locally checkable labelings or LCLs for short, introduced in the 90s [15]. The main
characteristic of these problems is that their outputs can be checked locally. For example, to
verify that a coloring is correct, every node simply checks that the color it has received as
output is different from the ones of its neighbors. There are also three finiteness requirements:
the number of possible outputs, of possible inputs, and the maximum degree ∆ must be
bounded by a constant (i.e. independent of the number of nodes n). Therefore, an LCL
can be described by a finite list of correct neighborhoods. In the case of coloring, this list is
made of the following neighborhoods: a node of color c with at most ∆ neighbors, each of
them being of a color different from c.

After a decade of intense research, we now have a good understanding of the complexity
of computing a solution of an LCL problem in the LOCAL model. More precisely, we know
the landscape of complexities for these problems: roughly, we know what are the functions f

for which there exists an LCL whose optimal algorithm has complexity f(n, ∆). For example,
we know that there is no LCL whose complexity in the LOCAL model lies between ω(log∗ n)
and o(log n) [8].

A natural question is: can we generalize this theory by relaxing the finiteness requirements?
The case of bounded degree and unbounded number of labels has been explored in [11], with
the fractional coloring problem1. Here we are interested in the other direction: going beyond
bounded degree. (This question was very recently tackled by [13] as we discuss later.)

Let us now illustrate why the diameter of the network plays a key role in the context
of LCL complexities. In the bounded-degree case, two key complexities for deterministic
algorithms are Θ(n) and Θ(log n). The problems of complexity Θ(n) are called global
problems; they are generally the ones where, in a path, the two endpoints have to coordinate
their outputs, which requires them to run for Ω(n) rounds (and O(n) is enough for any
problem in the LOCAL model). The problems of complexity Θ(log n) are typically the ones
where the hardest instances locally look like complete regular trees, and intuitively each node
needs to see a leaf to be able to decide its output. Therefore, what dictates the complexity
for these two cases is, respectively, the maximum and the minimum diameter of trees of
bounded degree, which are respectively order of n and log n. Note that for these observations,
restricting to trees is not problematic, since everything holds in trees. In general, trees are

1 There are actually two definitions of fractional coloring, the second one enforcing a bounded number of
labels, see e.g. [5, 4].
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essential in the LCL theory, which justifies why we focus on these graphs; for example, the
key technique of round elimination (see [17] and references therein) basically works only in
trees.2

By understanding the diameters of trees accepted by local checkers that are not simply
checking that the degree is below ∆, we want to pave the way of a complexity landscape
beyond bounded degree. Hence, the first type of questions we want to investigate is the
following.

▶ Question 1. For a given local checker, what is the minimum and maximum diameter of
the accepted graphs, as a function of n?

Also, since it seems too optimistic to hope for a nice landscape in general graphs, we
want to explore which restrictions are worth studying in the future. For example, restrictions
for which there are gaps in the possible maximum and minimum diameter.

▶ Question 2. What are natural classes of local checkers such that there are gaps in the
landscape of maximum and/or the minimum diameter of graphs accepted by such checkers
( e.g. diameters that are impossible to obtain)?

Let us now quickly summarize the approach and results of [13], on this question of
understanding complexity landscape beyond bounded-degree. First, the authors sketch how
one can create problems of arbitrary complexity between constant and Θ(log n), when the
degree is unbounded, by using a problem of complexity O(log∆ n) and then ignoring a specific
number of adjacent edges at each node to artificially reduce the degree ∆. Second, they
restrict the scope in two ways: (1) they study only binary labeling problems (that consist
in selecting edges, like in the matching problem), where (2) the constraints are structurally
simple (roughly, in a proper labeling, the number of selected (resp. non-selected) edges
around every node has to be either smaller than a constant, or polynomially large in the
degree). In this setting, they can characterize precisely what happens in the logarithmic
regime, thanks to a degree-aware variant of the rake-and-compress technique. Our approach
is quite orthogonal, as we study the structure of the graphs and do not discuss what are
the problems that are solved or the generic algorithms that could be used. Nevertheless,
the general story has a similar flavor: we will show in a different, more general and precise
way how arbitrary complexities can be obtained, and then restrict to a setting where gaps
reappear.

Second motivation: Maintaining global structure locally

Our second motivation is a more exploratory one. We would like to propose a new perspective
on how structures can be maintained without centralized monitoring. In other words, we
want to explore how simple local rules on small-scale entities shape larger-scale objects.
One can think of a crude modeling of living beings, or of self-organizing swarm of robots,
where every smaller scale entity checks that its neighborhood in the structure satisfies some
property.

From this perspective, our motivation for studying the diameter is that it is maybe the
most basic characteristic of a shape, and the one for studying trees is that these are simple
shapes that appear in Nature. Now, instead of starting from a checker and analyzing the

2 Another motivations for restricting to trees is that, under some restrictions, if some graph accepted by
our generalization of LCL’s contains cycles, then the resulting diameters are trivial, as proved at the
end of the paper.
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28:4 How Local Constraints Influence Network Diameter

possible diameters, we want to start from some target diameter (as a function of n), e.g. one
that would have benefits for the global entity, and ask whether we can have a local checker
that maintains this diameter.

▶ Question 3. Given some function f , can we design a local checker such that the accepted
n-vertex graphs have diameter f(n)?

If this is not possible for some f(n), we could conclude that either the object modeled
this way do cannot shape themselves to have this diameter, or that some form of global
communication/checking exists in this setting.

Since it is unrealistic in Nature or in robots to have unlimited local computation, we
refine Question 3, by considering the complexity of the local checking.

▶ Question 4. Given some function f , can we design a local checker with limited computa-
tional capabilities, such that the accepted n-vertex graphs have diameter f(n)?

The rest of the introduction is organized as follows: in Subsection 1.2 we introduce the
precise definitions, in Subsections 1.3 and 1.4 we review our results and techniques for general
and restricted checkers, respectively. In Subsection A, we review additional related work.

1.2 Model and definitions
The graphs/trees considered in this paper are simple and loopless. They can be vertex
colored, with a constant number of colors. Remember that the diameter of a graph is the
length of the largest shortest path between two nodes, in terms of number of edges. Inspired
by the definition of LCLs and by our biological motivation, we consider anonymous networks,
e.g. the nodes do not have identifiers.

▶ Definition 1 (View of a node). The view at distance d of a node v in a graph G is the
subgraph of G, that contains all nodes at distance at most d from v, and all the edges with at
least one endpoint at distance at most d − 1 from v, and where v is marked as the center.

▶ Definition 2 (Local checker ; Lc,d ; checkability radius). A local checker at distance d and
with c colors is a local algorithm that is used on a c-colored graph, such that, applied to a
vertex v, it takes the neighborhood at distance d around v and chooses an output: accept
or reject. We denote by Lc,d the set of all local checkers at distance d with c colors. The
distance d is called the checkability radius.

For short, we sometimes simply use checker instead of local checker. The definition of a
degree-myopic local checker is given in Subsection 1.4, along with the discussion of its origin.

▶ Definition 3 (Class accepted/recognized by a local checker). Given a local checker L, the
class of (colored) trees accepted (or equivalentaly recognized) by this checker, denoted by
C(L), is the set of trees such that on every node the checker L accepts.

▶ Definition 4 (Generalized-LCL). Let a generalized-LCL be a problem where each node
has to choose an output from a finite set, such that the correct output configurations can be
recognized by a local checker.

Intuitively, a checker has maximum (resp. minimum) diameter f(n) if all trees recognized
by this checker have diameter at most (resp. at least) f(n), when n is the number of nodes,
and this bound is tight. The proper definitions given below, use infimum/supremum instead
of maximum/minimum, but we keep the names maximum/minimum, since they are more
intuitive.
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▶ Definition 5 (Exact/minimum/maximum diameter of a checker). Let L be a local checker.
L has exact diameter f if for all n, ∀G ∈ C(L), |V (G)| = n, Diam(G) = f(n).
L has maximum diameter f if, for all n, supk≥n{Diam(G)/f(k) for all G such that
|V (G)| = k and G ∈ L} = 1.
L has minimum diameter f if, for all n, infk≥n{Diam(G)/f(k) for all G such that
|V (G)| = k and G ∈ L} = 1.

1.3 Discussion, results and techniques for general checkers
Let us first review our results about local checkers without restriction on the computation
power of the nodes.

Warm up for maximum and exact diameter

Let us start by introducing some basic intuitions for maximum and exact diameter. First,
let us consider a local checker L at distance 1, without colors. Such a checker is basically of
the following form: if the degree of the node belongs to some specific set of integers S, then
accept, otherwise reject. Necessarily, 1 belongs to S because we need to allow leaves, if we
want to accept finite trees. Let us informally prove that the maximum diameter of L is Ω(n).
Consider a tree T accepted by L, and two of its edges uv and wz. The deletion of these edges
leaves three connected components: Tmiddle which is the part of the tree between uv and
wz, and Tu and Tz, the connected components of u and z, respectively. Then, we can define
new trees by replacing Tmiddle by an arbitrary number of copies of Tmiddle organized into a
chain (identifying copies of wz in one copy with uv in the next one). The set of degrees in
the new tree is the same as in the original tree. Hence, all these new trees are also accepted,
and they have asymptotic linear diameter. The key point is that we can use the fact that
the neighborhoods were indistinguishable to make the graph path-like. We refer to this
“pumping” technique as grafting and will be formally defined in full generality in Section 2
for any possible distance and number of colors.

Now, for a positive result, consider a checker at distance 2 (again without colors). Such
a checker basically takes as input the multiset of the degrees of its neighbors, and can
manipulate these degrees arbitrarily to take its decision. With distance 2, it becomes possible
to have a checker that recognizes exactly the graphs of the following form: take a path of
length i, choose one endpoint u, and attach r leaves to the node of the path at distance
r from u. Indeed, the nodes can check that they are either leaves or that their non-leaf
neighbors follow the increasing degree sequence. This leads to a local checker that accept
trees that all have diameter Θ(

√
n).

Informally, the main difference between the argument of the first paragraph (for distance
1) and the construction of the second paragraph (for distance 2), is that in the second case,
all the degrees were different, which forbids pumping based on indistinguishability. We can
push the construction a bit further by avoiding repetitions of consecutive nodes having the
same pair of degrees, and get to n2/3 instead of

√
n. (In this construction, the sequence of

degrees follows a de Bruijn sequence.) But there is a limit: to avoid repetition, we need larger
and larger degrees, which implies that the length of the main path cannot be arbitrarily close
to linear without being linear (as we will see in more details later).

Now if we target a diameter f(n) smaller than
√

n, we can create a checker such that
the trees that are accepted are of the following form. We take the same tree as for the

√
n

construction, but truncate it at f(n), and add enough leaves to the last node to reach n.

OPODIS 2024



28:6 How Local Constraints Influence Network Diameter

These trees are locally checkable, because the last node can recover both the length of the
main path from the degree of its neighbor and the total number of nodes. We refer to this
technique as padding.

Our results on maximum and exact diameters, stated in the next paragraph, are general-
izations of these constructions.

Formal results and more techniques on maximum and exact diameter

Let us now review our formal results. First, we prove that, for each possible distance d and
every number of colors, there is a threshold function Sc,d(n) such that local checkers accept
trees of linear diameter or trees of diameter at most O(Sc,d(n)). In other words, not all
the maximum diameters can be obtained with local checkers. More formally, we prove in
Section 2 that the following holds:

▶ Theorem 6. Every local checker in Lc,d has maximum diameter at most (4d2+4d+1)·Sc,d(n)
or Θ(n), where: Sc,1(n) = c2/9, Sc,2(n) = (cnc)2/(2c+1), Sc,3(n) = 36n/ log2 n and Sc,d(n) =
4n/gd(log n) if d > 3, where gd is the inverse of the function x 7→ x/ log(d−3) x, where the
log is iterated d − 3 times.

Note that one can think of the growth of gd as slightly super-linear, so the last case of
the following theorem is roughly Θ(n/ log n).

We moreover provide constructions reaching these upper bounds. To do so, we generalize
the idea of paths with a prescribed degree sequence by defining a class of checkers that accept
only trees of specific shapes. This allows to get a correspondence between the accepted trees
and the strings over a given alphabet. In that correspondence, each checker is associated with
a language, where the membership of a string in the language depends only on bounded-size
infixes. We then use this machinery on languages to provide tight examples for Theorem 6.

We finally provide a generic construction that ensures that it is possible to build a local
checker that accept trees whose diameters is precisely any function which is a O(Sc,d(n)). In
other words, there is no gap in the set of diameters that can be recognized below Sc,d(n) by
local checkers since all the possible diameters can be recognized. More formally, we prove in
Section 3 that the following holds:

▶ Theorem 7. For every function f(n) = O(Sc,d(n)), there exists a local checker in Lc,d of
exact diameter f(n).

Note that Theorems 6 and 7 give fine-grained versions of the intuitions given in the
warm-up for distance 1 and 2. For distance 1, because of the colors, pumping works above
some constant depending on the colors, while for distance 2, the threshold is polynomial in
n. Then for larger distance we get nearly linear thresholds, which means that we can target
almost any diameter.

Using the general intuition of this theorem, we can prove that the landscape for generalized-
LCLs (as defined earlier) has no gaps, except possibly between very close to n and n.

▶ Theorem 8. For every function f(n) = O(Sc,d(n)), there exists a generalized-LCL at
distance d + 4 of complexity f(n).

We prove this theorem in Appendix D. The main idea consists in mixing the checkers of
Theorem 7 with a global problem, namely 2-coloring, forcing the complexity to be of the
same order as the diameter. This is more complicated than it looks at first sight, because
the very specific constructions we use for the theorem are such that the nodes can know
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exactly where they are in the path. In particular, they know the parity of their distance
to the first node of the path, hence 2-coloring is not a global problem in these graphs. We
modify slightly the construction by subdividing some edges to introduce some uncertainty,
which fixes this issue (which is possible only by increasing a bit the checking radius and with
a precise understanding on the local checkers of Theorem 7).

To finish this part on maximum diameter, let us mention that in Appendix G, we show
that if we were to allow cycles, then at distance 1, the behavior would be the same as for
trees: the maximum diameter is either constant or linear.

Results on minimum diameter

We now turn our attention to minimum diameter. Note that all the results obtained for exact
diameter also hold in the case of minimum diameter. In particular, Theorem 7 ensures that
for every d ≥ 2, we can construct a local checker accepting trees whose minimum diameter
is almost everything. Therefore, these results leave as open the behavior of the minimum
diameter in the range ω(Sc,d(n)) to o(n). We devote Section 4 to study the particular case
d = 1 where the dichotomy we obtained for maximum diameter leaves a wide range of
possibilities for minimum diameter. In this case, we show that the landscape is quite different
since the minimum diameter is either constant, logarithmic or Θ(n1/k) for some integers k

which are at most c2.

▶ Theorem 9. Let c be an integer. The minimum diameter of any L ∈ Lc,1 is either constant,
logarithmic or Θ(n1/k) for some integer k ⩽ c2.

We note that these are well-known regimes for (bounded-degree) LCLs. In particular, the
n1/k regime has been identified precisely in [9, 7] and the graphs at the core of both their
proof and our proof are the same. For example, for k = 2, these are the graphs made of a
path of length

√
n, where we attach a path of length

√
n to every node. For k = 3, we take

the same construction but with n1/3 instead of n1/2, and add one more level to the recursion
etc. In a nutshell, the graphs of the construction are recursive rake-like graphs, where all
the levels are balanced. Now the two proofs are pretty different. In [9, 7] the arguments
are algorithmic: they show that via rake-and-compress, that every tree can be framed as
such a rake-like graph, and that the hardest instances are the balanced ones. In our proof,
the spirit is that there is some underlying hierarchy of colors, that leads to the hierarchical
structure of the graph, and in order to get a minimum diameter we want to balance all the
levels, and we show this is always possible, by doing some subtle pumping argument (based
on a non-trivial partial order on the pair of colors). Intriguingly, we do not know whether
the results on LCLs and our minimum diameter result are related, in the sense that one
would imply the other. Clarifying this relation would be very interesting.

1.4 Discussion, results, and techniques on restricted checkers
From the viewpoint of our original motivations, the results we get for general checkers are
not very satisfying: they give a pessimistic answer for LCL generalization (no hope to find
gaps in the general unbounded-degree case) and the constructions are too contrived to give
insights about natural structures, such as living beings. Therefore, we want to consider a
restricted model, that will hopefully reveal some gaps for the maximum diameter (hence avoid
statements such as Theorem 8) and forbid unnatural constructions. We start by discussing
what conditions such a restricted model should satisfy and propose our model, degree-myopic
checkers. Then we discuss the maximum diameter landscape for these checkers, and our
proof techniques.

OPODIS 2024
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Discussions of the flaws of general checkers

Three elements in our general checker construction feel unnatural. First, in many proofs
we use padding: the last node of a path-like structure can observe the neighborhood of the
preceding node to deduce the diameter-size ratio of the rest of the graph, and then check
that it has been given the right number of leaves to modify this ratio in the right way. One
expects that in a more natural construction, the graph is more homogeneous, and no node
should compute an explicit complicated function. Second, we map integers to neighborhoods
in some arbitrary way, using a generalization of De Bruijn words. To get the full power of
this construction, we need that adjacent nodes can have arbitrarily different degrees, and
that they can identify these degree perfectly. In some sense, the nodes should be able to
manipulate arbitrarily large and different numbers. Third, also needed for the integer to
neighborhood mapping: the checking of a node v depends on the full view of the nodes, and
cannot be decomposed as a series of simple checks between adjacent nodes. In some sense,
we are abusing the fact that we allowed constant checkability radius, instead of the radius 1.

Degree-myopic checkers

We propose a restricted setting for checkers, called degree-myopic. To define this, we do not
simply bound the computational power (in the spirit of Question 4), but instead fix a very
constrained shape. This is because our main goal is to avoid the three issues above, which is
difficult by a general limit on computation. But the degree-myopic checkers end up being
very frugal in terms of computation.

First, we enforce that a node cannot distinguish perfectly between all its possible neigh-
borhoods, by making some kind of equivalence classes. More precisely, since we will use
checkers at distance two (without colors), the crux is that a node is not able to distinguish
arbitrarily many possible degrees for its neighbors. We make this appear concretely by saying
that a node will first put its neighbors’ degree in a few categories, and later will only be
allowed to use these categories, not the actual degree. Here there is some freedom in how we
choose these categories.

We decide to consider that a node can only manage degrees that are close to its degree
and leaves, hence the name of degree-myopic. We have several justifications for our choice.
First, it is a kind of minimal setting to allow for our very first construction of

√
n diameter,

while ruling out all our other contrived constructions. Second, if we consider the degree as
representing some kind of energy in a system, it seems reasonable to say that a node should
be able to detect whether neighbors have the same energy, or whether there is a small or
large difference (leaves being again a special case). In this second motivation, it would make
sense to have additional categories for degrees in [2, d − 2] and larger than d + 2, but we
leave this for further work.

Formally, let d be the degree of the node at hand, and d′ the degree of the neighbor
considered. The types of the neighbors are:

Leaf : d′ = 1
Degree-1: d′ = d − 1
Equal-degree: d′ = d

Degree+1: d′ = d + 1

Hence, at that point, the knowledge that a node has of its neighborhood is a 4-tuple of
integers: how many neighbors are of each type. Note that the degree difference between
neighbors is very limited: graphs with two non-leaf neighbors of very different degree will be
rejected from the start.
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Second, we decide to restrict the model further, to avoid complex manipulations of the
integers of these 4-tuples. For example, we want to avoid checking that the number of leaves
is related to the number of neighbors of equal degree by an arbitrarily complicated function.
More precisely, the non-leaf nodes all check a property C of the following form is satisfied: for
every type i, we are given two quantities ai ∈ N and bi ∈ N∪ {∞} such that ai ≤ bi, and the
number of neighbors of type i is in [ai, bi]. (Also, for technical reasons, the nodes of degree
aDegree−1 or less are not required to have at least aDegree−1 neighbors of type Degree-1.)

By construction, this model avoids the three issues mentioned earlier (the use of padding,
comparison of arbitrarily different degrees, and using the full power of the distance d view,
without decomposing it). Indeed: thanks to the type equivalence, we cannot use padding
and only similar degrees can be compared, and thanks to the shapes of the property C, the
checking is very constrained and decomposable. (We will see that it is not useful to have
arbitrarily large ai, bi, hence there is no trick on this side either.)

Landscape result and technique

Our main result about degree-myopic checkers is the following.

▶ Theorem 10. The possible maximum diameter function for degree-myopic local checkers
are O(1), Θ(

√
n), Θ(log n/ log log n), Θ(log n) or Ω(n).

This result is nice from the viewpoint of our LCL motivation: it shows that for restricted
checkers, we do have an interesting landscape. In particular, we get Θ(log n/ log log n) which
does not appear in the LCL landscape for trees, since there is a gap between O(log∗ n) and
Ω(log n) [8]. This is also exciting from the viewpoint of our second motivation: we get that
simple maximum diameter functions can be obtained by relatively natural checkers.

The proof (deferred to Appendix F) consists in first showing that if a degree-myopic
checker does not accept trees of linear diameter, then the accepted trees must be very
well-behaved: roughly speaking, we can root the tree, in such a way that all paths from leaves
to root are monotone in terms of degrees. Then we do a short case analysis, where it appears
that basically the non-trivial extremal behaviors for trees can only be of the following types:

A caterpillar, where the i-th node of the path has degree i, which leads to Θ(
√

n).
A complete k-ary tree (for constant k), with some pending leaves, which leads to Θ(log n).
A tree, where if the depth is d, then the nodes at depth i have degree d − i + 1, which
leads to Θ(log n/ log log n).

Further related work

Relating local and global structures of graphs is obviously not a new topic. In Appendix A,
we review various research areas touching on this topic (network science, graph theory, and
distributed computing), and highlight the differences and similarities with our perspective.

2 Gap results for maximum diameter

The goal of this section is to prove that Theorem 6 holds.

▶ Theorem 6. Every local checker in Lc,d has maximum diameter at most (4d2+4d+1)·Sc,d(n)
or Θ(n), where: Sc,1(n) = c2/9, Sc,2(n) = (cnc)2/(2c+1), Sc,3(n) = 36n/ log2 n and Sc,d(n) =
4n/gd(log n) if d > 3, where gd is the inverse of the function x 7→ x/ log(d−3) x, where the
log is iterated d − 3 times.

OPODIS 2024



28:10 How Local Constraints Influence Network Diameter

Intuitively, we show that if a checker accepts a tree containing a sufficiently large path,
we can find very similar nodes, and fool them by “pumping” on the path to obtain more
trees that are still accepted by the checker, but with various diameters. This pumping relies
on an operation called grafting (illustrated on Figure 1).

u

v

T T ′

u′

v′

u

v′

T ′′

Tv′

Tv′

Figure 1 The tree T ′′ is the graft of T ′ in T at (uv, u′v′).

▶ Definition 11 (Grafting). Let T be a (colored) tree and uv be an edge of T . We denote by
T uv

u (or Tu when v is clear from context) the connected component of u in T \ uv. Consider
two trees T and T ′, with edges uv and u′v′ respectively. The tree T ′′ which is the graft of T ′

in T at (uv, u′v′) is the tree obtained from T by replacing the Tv by T ′
v. In other words, we

remove all the vertices of Tv and replace them by the vertices of T ′
v and the edge uv′.

Note that, given a tree T and two edges uv, u′v′ such that u′v′ belongs to T uv
v , we can

graft T into itself in two ways: graft T in T at (uv, u′v′) or in (u′v′, uv). These operations
are not the same: one of them will reduce the size and the diameter of the tree while the
other will increase them.

Let d ≥ 2. We first show that the grafting operation preserves acceptance by a local
checker provided that the graft happens on similar edges. More precisely, define the view at
distance d from an edge uv in a graph G as the subgraph of G, that contains all nodes at
distance at most d − 1 from at least one of the two vertices u or v and all the edges with at
least one endpoint at distance at most d − 2 from u or v, and where uv is marked as the
center. One can easily check that views are not modified when grafting on edges with the
same view. We prove the following in appendix.

▶ Lemma 12. Let L ∈ Lc,d accepting two trees T, T ′, each containing an edge uv ∈ E(T ),
u′v′ ∈ E(T ) with the same view at distance d. Then L also accepts the graft of T ′ in T at
(uv, u′v′).

If a local checker accepts a tree T containing two edges with the same view at distance
d, one can then graft T into itself at these edges and get a new tree, still accepted by L,
and with a third edge with the same view. Iterating this argument yields the following (the
formal proof being postponed to the appendix).

▶ Lemma 13. Let c, d be integers and L be a local checker in Lc,d. If L accepts a c-colored
tree T that contains a path going through two edges uv, xy (in this order) such that uv and
xy have the same view at distance d. Then, L has linear maximum diameter.

Observe that at distance 1, the view of an edge is intuitively just the color of its endpoints.
In other words, given an edge uv, the color of the neighbors of v has no impact on the fact
that u accepts or not. So if we can find a path with two edges colored alike, we will be able
to increase the diameter via grafting using Lemma 13.

▶ Corollary 14. Let c be an integer. The maximum diameter of any L ∈ Lc,1 is either at
most c2 or linear.
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Proof. Let L ∈ Lc,1 be a local checker accepting a tree T whose diameter is larger than c2.
Let P be a shortest path of T of length c2 + 1. By pigeonhole principle, P has two edges
colored similarly and we can apply Lemma 13 to conclude. ◀

At distance at least 2, the view of each edge consists in a pair of c-colored rooted trees of
height d. These may contain arbitrarily many vertices, leading to an unbounded number of
possible views. To overcome this issue, we adapt the proof technique by first finding a lot of
edges (on a path) whose views contain only few vertices. Denote by t(d, k) the number of
k-vertices trees of height d.

▶ Theorem 15 ([16]). The following holds:
log t(3, k) ∼ π

√
2k/3

for d > 3, log t(d, k) ∼ π2

6 · k
log(d−3)(k) .

We are now ready to conclude the proof of Theorem 6.

Proof of Theorem 6. Let L ∈ Lc,d and T be a c-colored n-vertex tree accepted by L

with diameter more than (4d2 + 4d + 1) · Sc,d(n). Let P be a path of length more than
(4d2 + 4d + 1) · Sc,d(n) in T . Consider the collection of trees obtained when removing the
edges of P . Less than 2d · Sc,d(n) of them contain at least n/(2dSc,d(n)) vertices. Moreover,
each such tree intersects the view of at most 2d + 2 edges of P (the view of an edge being the
view of its vertices). In particular, P contains more than Sc,d(n) edges whose view consists
of 2d trees hanging from P , all of size less than n/(2dSc,d(n)). In particular, their views at
distance d contain at most n/Sc,d(n) vertices.

When d = 2, there are at most c choices for the color of each vertex v, and at most
degc(v) choices for the colors of its neighbors. In particular, we found more than Sc,2(n)
edges on P that can have c2 · n2c/Sc,2(n)2c = Sc,2(n) different views. We can thus find two
edges with the same view and conclude using Lemma 13.

When d > 2, the view of each endpoint of our edges is a tree of height d with k := n/Sc,d(n)
nodes, whose k nodes are colored with c colors, hence there are at most kc · t(d, k) such views.
Therefore, the number of views of our edges is at most k2c · t(d, k)2. Using Theorem 15,
we get (for large enough k) that k2c+1 · t(3, k)2 ⩽ e6

√
k ⩽ n since k = log2 n/36 in that

case. Similarly, for d > 3, we get k2c+1 · t(d, k)2 ⩽ n since k = gd(log n)/4 in that case.
Therefore, in both cases, we get k2c · t(d, k)2 ⩽ n/k = Sc,d(n), and we can again conclude
using Lemma 13. ◀

3 Construction of local checkers of prescribed exact diameter for
d ≥ 2

The goal of this section is to prove Theorem 7.

▶ Theorem 7. For every function f(n) = O(Sc,d(n)), there exists a local checker in Lc,d of
exact diameter f(n).

The case of distance 1 is very easy: one can easily construct a local checker in L2,1
recognizing stars, which have constant exact diameter. So in the rest of the section, we focus
on the case d ≥ 2. We will actually prove that the statement holds even restricted to a class
of local checkers that will allow to associate the trees they recognize with strings over some
alphabet. Then we will provide local checkers whose maximum diameter is precisely Sc,d(n).
We will finally explain how we can adapt our construction using a general tool to accept only
trees of diameter f(n) for any function f(n) = O(Sc,d(n)).
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3.1 Encoding sequences and locally testable languages

A caterpillar is a tree T such that the removal of the leaves of T yields a path P , called the
backbone of T . A d-caterpillar is a tree T such that if we iteratively remove all the leaves d

times then the remaining graph is a path. Equivalently, all the vertices of T are at distance
at most d from P . Note that a caterpillar is a 1-caterpillar.

Let us now explain how we can encode a word (with an infinite alphabet) into a d-
caterpillar and conversely. Let Σ = (an)n∈N be an infinite alphabet together with an ordering
on the letters. Let d be an integer and f be a bijection associating a colored rooted tree
of depth at most d to each letter. (One can make this bijection explicit, and simple to
compute, but in this part we do not worry about computational or memory limitations.)
Given a string s = s1 · · · sp over the alphabet Σ, the tree T [s] is obtained by taking the
trees f(s1), . . . , f(sp), adding an edge between the root of f(si) and the root of f(si+1)
for i ∈ [0, p], where by convention f(s0) and f(sp+1) are paths of length d + 1 (rooted at
a leaf). Note then that T [s] is a d-caterpillar whose backbone is formed by the roots of
f(s0) . . . , f(sp+1). For every vertex of the backbone, we say that ai is associated to it if f(ai)
is attached on it. Also note that every d-caterpillar can be seen as T [s] for some choice of
s since f is bijective, under the condition that the endpoints of the backbone are path of
length d + 1.

In order to fully control the word, we would like to enforce that we read it in the right
direction. And with the caterpillar defined above, both s and its mirror provide the same
caterpillar. Moreover, vertices of the middle of backbone of T have a priori no reason to
know in which direction they are supposed to “read” the word. To enforce one direction of
reading, we actually slightly change the definition of T [s]: instead of creating a copy of f(si)
for each si, we create three of them, identify their roots, and add i mod 3 pending leaves to
the root. (Note that this only changes the number of vertices by a constant multiplicative
factor, and the diameter is not affected since d ≥ 1). Now, the numbers of neighbors outside
the backbone of vertices in the backbone mod 3 yields the sequence 0, 1, 2, 0, 1, 2, . . .. We say
that a caterpillar is special if this property is satisfied and paths of length d + 1 are attached
to the first and last vertices of the backbone. In particular, since f is bijective, each special
caterpillar can be uniquely written as T [s] for some string s over A.

We are interested in local checkers, called special checkers (or d-special checkers), that
only accept special d-caterpillars. These can be easily enforced as shown by the following
lemma, whose proof is deferred to the appendix.

▶ Lemma 16. A local checker at distance d + 1 can check if a tree is a special d-caterpillar
and every vertex can determine:

if it is on the backbone or not as well as its neighbors on the backbone,
if it is an endpoint of the backbone,
the letter associated to it as well as the letter associated to its neighbors on the backbone.

We denote by L∗
c,d+1 the set of local checkers that only accept special d-caterpillars. We

may now associate with each L ∈ L∗
c,d+1 the language of strings s such that T [s] is accepted

by L. Observe that the membership of a string in such languages depends only on its set of
substrings of size at most 2d − 1. Such languages are said to be locally testable (or d-testable).
In particular, for every possible encoding f and every locally testable language, there is a
local checker in L∗

c,d accepting exactly the trees T [s] for s ∈ L. In the rest of this section
we will need two simple locally testable languages. Let Σ = (an)n∈N be a (possibly infinite)
alphabet where letters are ordered.
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Then one can easily check that the following language is locally testable for every d ≥ 2
(since a substring of 2d − 1 characters has to be a consecutive sequence of letters in Σ):

▶ Remark 17. The language L1 of prefixes of the infinite word a1a2 · · · is 2-testable.

Let us denote by W1 the word a1a2 and by Wi for every i ≥ 2 the word a1ai · · · ai−1ai.
We denote by L2 the language of all words W1 · · · Wp for every p (that is L2 contains the
concatenations of the p first words Wi for all integer p). Observe that strings in L2 are
exactly the ones starting with a1a2, ending with ap−1ap, and whose subsequences of length 3
are of the following shape: (1) ak−1aℓak for some k < ℓ, (2) aℓakaℓ for some 1 < k < ℓ, (3)
aℓ−1a1aℓ for some 1 < ℓ, or (4)ak−1aka1 for some 1 < k

▶ Remark 18. The language L2 is 2-testable.

3.2 Constructions reaching the bound Θ(Sc,d(n))

The goal of this part is to provide a local checker whose maximum diameter is exactly the
value Θ(Sc,d(n)). We distinguish two cases depending the value of d.

Case d ⩾ 3. We start with the easier case d ⩾ 3. Since L1 is locally testable, for every
possible encoding f , there is a special local checker in L∗

c,d accepting exactly the trees T [s]
for s ∈ L.

To obtain the bound of Theorem 7, it remains to describe f . Consider an enumeration of
all trees of height d−1 by increasing number of vertices, and define f(ai) as the i-th such tree.
By construction, the number of vertices of f(ai) is the smallest k such that i ⩽ t(d − 1, k).
By Theorem 15, the size of f(ai) is k = Θ(log2 i) if d = 3 and k = Θ(gd(log i)) otherwise.
Now let T be an accepted tree. By Lemma 16 it is a d-caterpillar and by construction of the
local checker, the nodes of the backbone are associated to the sequence of letters a1 . . . ap of
L1 for some integer p. Now observe that T [ai] has diameter at most d and contains at most
3 · f(ap) + 2 vertices (since we attach on each vertex three copies of the same tree plus at
most 2 leaves). Thus T has diameter Θ(p + d) and its number of vertices is Θ(p · |f(ap)|).
Plugging in the estimates for |f(ap)| concludes the proof.

Case d = 2. Since L2 is locally testable, and for every choice of f , there is a local checker
in L∗

c,2 accepting exactly the trees T [s] for s ∈ L2.
To obtain the bound from Theorem 7, it remains to describe the encoding f of each letter

and to prove that it gives the required bound.
We start with the colorless case c = 1 and define f(ap) as the star on p + 1 vertices,

rooted at its center. Consider the word sp = W1 · · · Wp. Observe that since sp has length
p(p − 1), T [sp] is a tree of diameter Θ(p2). Moreover, each letter ai appears (p − 1) times in
sp, hence T [sp] has Θ((p − 1) · (1 + · · · + p)) = Θ(p3) vertices. In particular, our local checker
has exact diameter n2/3.

To extend this result to the colored case c > 1, we just have to adapt the encoding of
each letter. We define f(ai) as a star whose center gets color 1, and with xj leaves of color j

for j ∈ [1, c], where (x1, . . . , xc) is the i-th (in lexicographic order) c-tuple whose entries are
non-increasing. Observe that the number of such tuples whose first element is at most p is(

p+c
c

)
= Θ(pc), hence each letter in spc is encoded with at most cp leaves. In particular, the

trees accepted by our local checker have diameter Θ(p2c) and Θ(cp · p2c) nodes, yielding the
bound Θ(n2c/(2c+1)) as required.
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3.3 Extension to exact diameter O(Sc,d(n))
The goal of this part is to prove Theorem 7 that is to obtain a checker of exact diameter
D(n) for every function D(n) = O(Sc,d(n)). The case d = 1 being trivial, we will assume in
the rest of this section that d ≥ 2.

Let D be any function such that D(n) = O(Sc,d(n)). We consider a slightly modified
version of the local checkers L ∈ L∗

c,d constructed in Section 3.2. Roughtly speaking, all the
nodes have exactly the same behavior but the last node of the backbone, corresponding to
the last letter of the word. This node will be allowed to have arbitrarily many leaves (as long
as the modulo 3 condition stays satisfied), and will carry an additional verification. Namely
it will check that we added the right amount of leaves to get the correct dependency between
diameter and number of nodes. Unfortunately, such a modification does not work directly,
and we need to slightly modify our checkers to make it work.

For a node of the backbone corresponding to a letter a, we create six copies of f(a)
instead of three. This at most doubles the total number of vertices. Now, we link the last
node u of the backbone with the center of three stars of the same size. (And we moreover
add 0, 1 or 2 leaves as before depending on the position on the backbone).

Note that all the nodes must have degree equal to 0, 1 or 2 modulo 6 except the last node
of the backbone which can have degree 3, 4 or 5 modulo 6. And all the nodes of the backbone
can check the validity of their degree. Moreover, all the nodes can indeed recover their own
letter as well as the letter of their neighbors as in the proof of Lemma 16. Indeed, since we
add to the last node of the backbone only three copies of the same star, this star will be
ignored by the penultimate node of the backbone when it reconstructs the subtree. In the
case d = 2, the argument is a bit more subtle: indeed the neighbor on the backbone does not
fully see the subtree attached on the last vertex of the backbone but sees that the number of
vertices attached to it is 3 more than what it should be and does not reject in that case.

To conclude, let us explain when the last vertex of the backbone accepts (the acceptance
rule is not modified for the other vertices). The goal is to artificially increase the number of
vertices of the trees T [w] for w ∈ L2, without changing their diameter, in order to reach the
target diameter D. Note that, in both languages L1 and L2, the last node of the path is
able to determine the length of the path by simply knowing the last two letters. So the last
node of the backbone computes the diameter δ of T [w] and the number k of vertices in the
tree before it. It then accepts when its number r of leaves satisfies D(r + k) = δ.

4 Minimum diameter at distance 1 – Proof of Theorem 9

▶ Theorem 9. Let c be an integer. The minimum diameter of any L ∈ Lc,1 is either constant,
logarithmic or Θ(n1/k) for some integer k ⩽ c2.

A first idea consists in just applying our pumping argument similarly to the proof of
Lemma 13, but in reverse, in order to shorten long enough paths until they get constant size.
However, this may actually decrease a lot the total number of vertices at the same time,
impeding us to construct an infinite family of trees with the claimed diameter. To solve this
issue, we have to get more control on which subtrees we remove while de-pumping. More
precisely, we will only de-pump subtrees that are almost paths. To ensure that long enough
paths exist, we first prove that local checkers accepting trees of arbitrarily large degree have
constant minimum diameter. We then consider local checkers L accepting trees of bounded
degree (which already have super-logarithmic diameter), and investigate the edges with a
given view to exhibit some structure in the trees accepted by L. We then use this structure
to show that L must accept trees with a very specific shape, namely that look like complete
binary trees or rakes (defined below).
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4.1 Constructions
Before diving into the proof, we will prove that Theorem 9 is essentially tight, meaning
that we can obtain local checkers that accept trees of constant diameter, linear diameter or
diameter Θ(n1/k) for every 2 ≤ k ≤ c/3.

Linear diameter. Consider the local checker where every node accepts when its degree is at
most 2. This checker accepts exactly the class of paths, hence has linear exact (and then
minimum) diameter.

Constant diameter. Consider the local checker where every node accepts regardless of its
neighborhood. This checker accepts some trees of diameter at most 2 for every possible size
of trees.

Logarithmic diameter. Consider the local checker in L1,1 where a node accepts if and
only if its degree is 1 or 3. This checker accepts exactly binary trees. Hence, its minimum
diameter is logarithmic, since the minimum diameter of such a tree is reached when the tree
is complete.

n1/3

n1/3

n1/3

Figure 2 A 3-rake on n vertices of diameter Θ(n1/3). The deletion of the top path leaves n1/3

2-rakes.

Polynomial diameter. For each integer k, let us introduce the class of k-rakes. The 1-rakes
are paths, and k-rakes are trees T containing a path P whose removal yields a forest whose
connected components are (k − 1)-rakes and such that each vertex of P is attached to at
most one connected component of T \ P (see Figure 2 for an illustration). We prove the
following in the appendix.

▶ Lemma 19. The class of k-rakes has minimum diameter Θ(n1/k) and is accepted by a
local checker in L3k,1.

4.2 Proof of Theorem 9
We now proceed with the proof of Theorem 9, and first take care of trees of arbitrary large
degree.

▶ Lemma 20. Let c be an integer and L ∈ Lc,1 accepting trees of arbitrary large degree.
Then the minimum diameter of L is constant.
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Proof. Given two colors a, b, define Ta,b as a minimum-sized tree accepted by L containing
an edge vavb such that va has color a and vb has color b (if such a tree exists). Denote by α

the largest size of Ta,b when a, b run across all possible colors. By hypothesis, L accepts an
infinite family of c-colored trees (Tr)r such that each Tr contains a vertex ur of degree at
least r. Root each Tr at ur. Now, for each edge uru of Tr, let a be the color of ur and b the
color of u, and successively graft Ta,b in Tr at (uur, vavb). By Lemma 12, the resulting tree
T ′

r is accepted by L. Moreover, every tree T ′
r has at least r nodes and diameter at most 2α,

which concludes the proof. ◀

We may now assume that each local checker accepts only graphs of bounded degree ∆.
In particular, each accepted tree T satisfies |T | ⩽ ∆diam(T ), hence the diameter is at least
logarithmic (and at most linear) with respect to the size.3 To prove the remaining parts
of Theorem 9, we study the structure of the edges with the same view, and get a criterion
proving that L accepts trees that look like complete binary trees or k-rakes for some k, and
thus must have minimum diameter O(log n) or O(n1/k).

Given a local checker L, we say that a pair of colors (c1, c2) is useful if L accepts some tree
containing a path u1, . . . , up (p ⩾ 4) where u1, up−1 have color c1 and u2, up have color c2.
We define the binary relation <L on the useful pairs of colors as follows: (c1, c2) <L (d1, d2) if
L accepts a c-colored tree T that can be rooted such that, when orienting the edges towards
the leaves, there are three arcs u1u2, v1v2 and w1w2 such that u2 is an ancestor of v1 and w1,
v2 and w2 are not ancestors one of the other, both ui, vi have color ci for i = 1, 2, and wi

has color di for i = 1, 2. When this condition is satisfied, we moreover say that the rooted
tree T witnesses that (c1, c2) <L (d1, d2). (In other words, it means that u1, u2 are ancestors
of the four other vertices while v1v2 and w1w2 lie in different subtrees and are incomparable
in T ) (see Figure 3).

(u1, c1)

(u2, c2)

(v1, c1)

(v2, c2)

(w1, d1)

(w2, d2)

Figure 3 A tree T witnessing (c1, c2) <L (d1, d2). Vertices are labeled with their name and color.

One can easily check that <L is transitive (a proof of this statement is given in Ap-
pendix E.2). To get the remaining cases of Theorem 9, we prove in Appendix E.3 that if <L

is not a strict partial order, then L has minimum diameter Θ(log n). Intuitively, if there is
no partial order, it means that we can get a configuration like the one of Figure 3, where all
pairs have colors (c1, c2), in which case we can reorganize the tree to be similar to a complete
balanced bounded degree graph.

Otherwise, we claim that L has minimum diameter Θ(n1/k) where k is the length of
the longest chain for <L (in particular k ⩽ c2). This is a consequence of the two following
results, whose proofs are deferred to the appendix, that conclude the proof.

3 Note that even if we restrict to the case of bounded degree, we cannot directly use the LCL machinery
since the context is not exactly the same. We are looking at possible diameters of accepted trees and
not looking at the checking of some property.
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▶ Lemma 21. If <L has a chain of size k, then the minimum diameter of L is O(n1/k).

▶ Lemma 22. If L accepts an n-vertex tree of diameter at most n1/k/∆(1+1/k)c2 , then <L

has a chain of size k + 1.
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A Further related work

Network science perspective

Network science has a long history of linking local and global properties of networks. A
typical example are scale-free networks where the power-law degree distribution is related
to clustering and small world phenomenon, and for which generative models have been
introduced (such as preferential attachment). We refer to the book [12] for an introduction
to the topic. In general, this perspective differs from ours in two ways: the properties
considered are global (e.g. the degree distribution) thus cannot be checked locally, and the
generative models are dynamic processes, while we study static processes (in other words,
we are interested in maintaining a structure, not in creating it). Papers outside of network
science also consider processes to “grow a graph”, see in particular [14].

Graph theory perspective

Graph theory also studies relations between local conditions and global behavior, in a more
combinatorial way. For example, there is a wealth of works showing that forbidding small
structures in a graph implies the existence of nice decompositions, of bounds on the coloring
number etc. Another related direction are theorems à la Dirac: if all nodes have degree at
least some function of the number of nodes, then the graph is Hamiltonian or connected.
Again, this is quite different from our direction, in particular the diameter is not a topic of
interest in this area.

Distributed computing perspective

We have already mentioned several works on LCLs, and how they are related to our paper.
For completeness, let us also mention that the complexity landscape has also been studied
in rooted trees [2] and in trees for node-averaged complexity [3]. The topic of checking the
configuration of a network is central in self-stabilization [1], where it is essential to be able to
detect inconsistencies in the computed data-structure, but not in the network topology, which
differs from our work. A related field, that does study the network itself is local certification,
where one considers labels helping the nodes to check given properties. (We refer to [10] for
an introduction to the topic, and to [6] for a recent paper surveying the works related to
graph structure.)

B Proofs of Section 2

B.1 Proof of Lemma 12
Using the notations of the definition, suppose that T and T ′ are accepted by L, and consider
the graft T ′′ of T ′ in T at (uv, u′v′). We claim that each node w of T ′′ has the same view
as its copy in T or T ′. Assume by symmetry that w was in T , and root T ′′ at w. Then its
neighborhood at distance d in T ′′ consists in a copy of its neighborhood at distance d in T ,
except if it contains v′. In that case, the subtree rooted at v′ is T ′

v′ . Recall that uv (in T )

https://doi.org/10.1145/3427361.3427374
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and u′v′ (in T ′) have the same view at distance d, hence the view of v′ in T ′
v′ and of v in Tv

at distance d − 1 are the same. Thus, the view of w in the subtree rooted at v′ (in T ′′) is the
same as the view of subtree rooted at v (in T ), hence it accepts. Therefore, T ′′ is accepted
by L.

B.2 Proof of Lemma 13

Let us denote by C1, C2 and C3 the connected components of T \ {uv, xy} containing
respectively u for C1, v and x for C2 and y for C3.

Let us now define an infinite collection of trees (Ti)i∈N such that, for every i, the diameter
of Ti+1 is larger than the one of Ti and the size of Ti+1 is the size of Ti plus the size of C2.

We set T1 = T . We define T2 as the tree obtained by grafting T in T at (xy, uv). Note
that, abusing notations, the resulting tree T2 contains the three following edges: uv (in one
of the trees T ), xv (corresponding to x in the first T and v in the second) and xy (in the
second tree). We denote by x2y2 the edge xy. Now let i ≥ 3. and we define Ti+1 as the tree
obtained by grafting T in Ti at (x2y2, uv). Observe that this operation creates a new copy
of xy in Ti+1 that we denote by xi+1yy+1 (lying in the part of T that is added to Ti). By
Lemma 12, each Ti is accepted by L.

The conclusion follows from the fact that Ti has at most |T | + (i − 1) · |C2| nodes and
diameter at least i · dT (x, v).

C Proof of Lemma 16

Consider a local checker that can see at distance d + 1. In particular, a vertex u can see all
the neighbors of all its neighbors at distance at most d. The vertex u can then iteratively
remove all the leaves d times. After all these deletions, if the vertex is not eliminated, it
should have at most 2 neighbors (otherwise it rejects) which are its (at most) two neighbors
on the backbone. This proves the first and second points.

Let us denote by Tu the view of u rooted at u where the subtrees rooted on the neighbors
of u in the backbone are removed. The vertex u first checks its degree in Tu and checks that
it is coherent with the degree of its neighbors on the backbone (if it has degree 1 mod 3, its
two neighbors must have degree 0 and 2).

After removing leaves attached to u in Tu in order to reach a degree 0 mod 3, the vertex
u can check that its pending subtrees can be partitioned into three copies of the same forest
in order to determine its letter. Since it sees at distance d + 1 it can run a similar process to
determine the letter of its neighbor. Note that this is not completely immediate since, even
if it sees the trees of depth d rooted on its neighbors, it cannot check that leaves are indeed
leaves. However, after the removal of 0, 1 or 2 attached leaves on its neighbor, the attached
trees must consist of three times the same forest plus an additional tree that corresponds to
the beginning of the subtree attached on the neighbor at distance 2 on the backbone. In
particular, the degree is equal to 1 modulo 3. So after grouping the trees three by three, it
only remains one tree which corresponds to the rest of the backbone. Removing it allows u

to know the tree associated with its neighbor, and thus its letter, which completes the proof
of the fourth point.

For the endpoints of the backbone, there is only one long path attached to them, which
can indeed be easily determined. This proves the third point.
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D Consequences on generalized LCL – Proof of Theorem 8

▶ Theorem 8. For every function f(n) = O(Sc,d(n)), there exists a generalized-LCL at
distance d + 4 of complexity f(n).

Let us first discuss slight modifications of the checkers we have manipulated to get our
upper bounds in Section 3.3. We will prove that we can modify checkers to ensure that if our
original special checker L accepts a tree T [w], then the modified checker accepts all the trees
T [w′] where w′ is obtained from w by repeating a constant number of times some letters.

Let k ≥ 1. A word W ′ is a k-subdivision of W = a1 · · · an if it is a subword of ak
1 · · · ak

n

and it contains W as a subword. The k-subdivision of a language S is the language of all the
k-subdivisions of words of S. (Note that S is the 1-subdivision of S). Theorem 8 relies on
the fact that k-subdivision preserves recognition by special local checkers, up to increasing
the checkability radius.

▷ Claim 23. Let r ≥ k ≥ 2 and L ∈ L∗
c,d accepting a r-testable language S such that no

word of S has identical consecutive letters. Then there is a special local checker L∗ in L∗
c,d+rk

accepting the k-subdivision of S.

Proof. We consider the same checker L with slight modifications. Each node u now can
recover all letters at distance kr −1, and remove all the repetitions it sees. Since no word of S

has identical consecutive letters, and each can be repeated at most k times in the subdivision,
u now has access to the letters at distance r − 1 from it in the un-subdivided word and run
the verification process from L (since S is r-testable). ◁

We may now proceed with the proof of Theorem 8.

Proof of Theorem 8. Let us now consider the languages L1 and L2 of the previous sections
which are 2-testable. Note that there is no repetition of letters in neither L1 nor L2. By
Claim 23, there is a special checker that can recognize their 2-subdivisions.

Now, we define a generalized-LCL, which is a generalization of 2-coloring, in the following
way. Each node must choose an output that is either 0, 1, or empty. The verification
algorithm checking the correctness of the output is the following. On a node v,

The output of all the vertices that are not in the backbone is empty while all the vertices
in the backbone should output 0 or 1.
If v outputs 0 or 1, it cannot have a neighbor with the same output (i.e. the non-empty
output labels define a 2-coloring.)

We claim that in the trees accepted by the modified local checker, this is a global problem.
Consider two nodes at the endpoints of the maximum path, and suppose they have a view
asymptotically smaller than the diameter. Now, these nodes cannot recover the middle of
the word encoded by the tree. In this middle part of the word, either delete a letter that
was repeated or delete a repetition. This leads to a new tree, where the endpoints of the
backbone have still the same view, hence should output the same. The 2-colorings of one of
the two trees must be incorrect, which is a contradiction. ◀

Finally note that in the proof above, we have decided to increase a bit the checkability
radius of the local checker. If we allow oursleves to have two input colors, then we can keep
the same radius. In the instances we consider, all nodes will have input 0, except possibly
the first node of the backbone which can have either 0 or 1. Then we enforce that first node
should have the same input and output label. Since the nodes on the other side of the tree
do not know about this input, 2-coloring is again a global problem.
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E Proofs of Section 4

E.1 Proof of Lemma 19
Constructing inductively a k-rake by choosing each time a path P on ℓ vertices, we obtain a
k-rake with ℓk vertices and of diameter kℓ. Hence the class of k-rakes has minimum diameter
O(n1/k). This bound is actually tight: this is clear for 1-rakes. For k ≥ 2, let R be a k-rake
and P be a path whose deletion leaves a collection of (k − 1)-rakes. If P has length at least
n1/k, the conclusion follows. So we can assume that |P | < n1/k. Since R \ P contains at
most |P | connected components, one of the (k − 1)-rakes has size at least n(k−1)/k. And by
induction hypothesis, such a (k − 1)-rake has diameter at least n1/k.

Let us now prove that for every k > 0, there exists a local checker L ∈ L3k,1 accepting
exactly the class of k-rakes as long as c ≥ 3k. The 3k colors will be represented as pairs of
integers (i, j) with 1 ⩽ i ⩽ k and j ∈ {1, 2, 3}. Each node checks that it has degree at most
three. Moreover each node of color (i, j) checks that it has a neighbor (i + 1, 1) (if i < k) and
that its other neighbors have colors either (i, j − 1 mod 3) and (i, j + 1 mod 3), or (i, j + 1
mod 3) and (i − 1, ∗) or only (i, j − 1 mod 3).

E.2 <L is transitive
Assume that (c1, c2) <L (d1, d2) and (d1, d2) <L (e1, e2). Denote by T, T ′ the (rooted) trees
that witness the relation (c1, c2) <L (d1, d2) (resp. (d1, d2) <L (e1, e2)). In particular, T

contains two arcs u1u2, v1v2 of colors (c1, c2) and an arc w1w2 of colors (d1, d2), and T ′

contains the arcs x1x2, y1y2 of colors (d1, d2) and z1z2 of color (e1, e2) with the ancestor
relation of the definition of <L.

Construct the tree T ′′ by grafting T ′ in T at (x1x2, w1w2). By Lemma 12, T ′′ is accepted
by L. Moreover, by construction of T ′′, the copy of u2 is an ancestor of z1 but not v2, hence
(c1, c2) <L (e1, e2).

E.3 The logarithmic case
If <L is not a strict partial order, since it is transitive, there must be a pair of colors
(c1, c2) such that (c1, c2) <L (c1, c2). In particular there is a rooted tree T with three arcs
u1u2, v1v2, w1w2, all of colors (c1, c2) such that u2 is an ancestor of v1 and w1 but v2, w2 are
not ancestors of each other.

From T , we construct a sequence of trees (Ti)i that look like binary complete trees. Each
Ti will contain 2i copies of the subtrees of T rooted at u2. Let T1 = T and define Ti+1
by successively grafting T in Ti at (xy, u1u2), where xy runs across all 2i copies of v1v2 or
w1w2 in Ti. Observe that L accepts each Ti by Lemma 12 (see Figure 4 for an illustration).
Moreover, the diameter of Ti increases by a constant (at least one and at most the diameter
of T ) compared to Ti−1 and the number of nodes increases by at least 2i and at most |T |2i.
Thus Ti has diameter Θ(i) and Θ(2i) nodes, which concludes the proof.

E.4 Proof of Lemma 21
We basically show that if <L has a chain of size k, then L accepts trees with a k-rake-like
structure, hence its minimum diameter is O(n1/k).

Consider a chain of k pairs of colors (c1, c′
1) <L · · · <L (ck, c′

k). Denote by T (i) a rooted
tree and u

(i)
1 u

(i)
2 , v

(i)
1 v

(i)
2 , w

(i)
1 w

(i)
2 its vertices witnessing that (ci, c′

i) <L (ci+1, c′
i+1). Finally,

let T (k) be a tree witnessing that (ck, c′
k) is useful, that is T (k) contains a path between two

edges u
(k)
1 u

(k)
2 and v

(k)
1 v

(k)
2 of colors (ck, c′

k).
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u1

u2

v1

v2

w1

w2

T1 = T T2

u1
u2

v1 w1

u2 u2

v1 v1w1 w1
v2 v2w2 w2

Figure 4 Illustration of the proof of Appendix E.3. The trees T1 and T2 are depicted.

u1

u2

v1

u2

v1

u2

v1
v2

T (i)

U (i)

u1
u2

v1
v2

U
(i)

u
(i)
1

Figure 5 The construction of U (i) from T (i) (some exponents have been removed for readability).
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Let N > 0. For every i, we start by grafting T (i) in T (i) at (v(i)
1 v

(i)
2 , u

(i)
1 u

(i)
2 ) N times, as

in the proof of Lemma 13 (see Figure 5). This yields a tree U (i) containing a copy of the
edge u

(i)
1 u

(i)
2 of T (i) and N copies of w

(i)
1 w

(i)
2 , that is still accepted by L by Lemma 12.

U (k−1)

u1

u2

v1

v1

v1

v1
v2

u2

u2

u2

w1

w1

w1

w2

w2

w2

w2w1

S(k−1)

u1

u2

v1

v1

v1

v1
v2

u2

u2

u2

w1

w1

w1

w1

U
(k)

u
(k)
1

u
(k)
1

u
(k)
1

u
(k)
1

u
(k)
1

U
(k)

u
(k)
1

U
(k)

u
(k)
1

U
(k)

u
(k)
1

Figure 6 The graph S(k−1) built from S(k). The graph U
(k)
u

(k)
1

is the one of Figure 5.

Set S(k) := U (k) and for i = k−1 down to 1 define S(i) as the tree obtained by successively
grafting S(i+1) in U (i) at (u(i+1)

1 u
(i+1)
2 , xy) where xy ranges across the N copies of w

(i)
1 w

(i)
2

in U (i) (see Figure 6. By Lemma 12, all these trees are accepted by L.
For large enough N , each U (i) has diameter and size Θ(N). Therefore, when constructing

S(i) from S(i+1), the number of nodes is multiplied by Θ(N) while the diameter increases
by an additional Θ(N). In particular, S(i) has diameter Θ((k − i + 1) · N) and contains
Θ(Nk−i+1) vertices. Taking i = 1 proves that L has minimum diameter at most O(n1/k).

E.5 Proof of Lemma 22
We prove by induction a slightly stronger and technical statement: if L accepts an arbitrarily
tree with an n-vertex (possibly non-rooted) subtree T of diameter less than n1/k/∆(1+1/k)c2 ,
then T contains an edge whose pair of colors is smaller than k other useful pairs (for <L).

Assume that there is a tree accepted by L with an n-vertex subtree T of diameter less
than n1/k/∆(1+1/k)c2 . Root T arbitrarily. We construct an auxiliary tree Tf , starting with
Tf := T and successively modifying it as follows. For each pair of colors (c1, c2) (by increasing
order of <L), while there exists a branch going through two arcs u1u2 and v1v2 with ui, vi

colored with ci, we assume that u1u2 and v1v2 are respectively the closest and furthest to
the root among all arcs of the branch with these colors, and we graft at u1 in T the subtree
of T rooted at v1. Observe that each time this operation is applied, some vertices, namely
the descendants of u1 but not of v1, are deleted from T . Denote by Tf the tree obtained
after this process is finished, and observe that Tf has height at most c2 since no two pairs of
colors can repeat on edges of the same branch. In particular, Tf has at most ∆c2 nodes.

OPODIS 2024
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Since we considered the pairs of colors by increasing order of <L, due to the choice of
u1u2 as closest to the root, all the vertices chosen as u1 and u2 at some point during this
process are chosen only once, and moreover they cannot be deleted afterwards. In other
words, each deleted vertex of T can be associated with an arc u1u2 of Tf . By the pigeonhole
principle, there is one arc u1u2 associated with at least n/∆c2 deleted nodes.

Consider the branch b and its arc v1v2 chosen when u1u2 was selected. Observe that the
distance between u2 and v1 is less than n1/k/∆(1+1/k)c2 , hence one of the trees T ′ pending
from b whose root is between u2 and v1 has size more than n′ = n1−1/k · ∆c2/k.

First assume that k > 1. Note that T ′ has diameter less than n1/k/∆(1+1/k)c2
⩽

n′1/(k−1)
/∆(1+1/(k−1))c2 . By induction, T ′ contains an arc w1w2 whose pair of colors (d1, d2)

is smaller than k − 1 other pairs. Denoting by (c1, c2) the colors of u1u2, we get that
(c1, c2) <L (d1, d2), hence (c1, c2) is smaller than k other useful pairs, which concludes the
induction.

We may thus assume that k = 1. Since n′ ⩾ ∆c2 , T ′ must have depth at least c2. On a
longest branch, some pair of colors (d1, d2) must be repeated. Hence (d1, d2) is useful and
(c1, c2) <L (d1, d2), which concludes the proof.

F Restricting the expressivity: degree-myopic local checkers

This section is devoted to the proof of Theorem 10.

▶ Theorem 10. The possible maximum diameter function for degree-myopic local checkers
are O(1), Θ(

√
n), Θ(log n/ log log n), Θ(log n) or Ω(n).

The proof follows a two-step approach: first, we restrict the possible values for the
parameters ai, bi’s, by discarding values that either yield degree-myopic checkers with constant
or linear maximum diameter or can be modified without changing the maximum diameter.
For example, each tree contains leaves, hence we must have bleaves ≥ 1. Then, we classify
the possible diameter depending on the remaining free parameters.

F.1 Structural properties
First, we note that similarly to what happened earlier in the paper, the regimes O(1) and
Ω(n) are uninteresting. It is easy to find degree-myopic local checkers in these regimes: a
checker where non-leaf nodes can only see leaves leads to stars; and a checker where every
non-leaf node accepts only two neighbors of equal-degree leads to paths. Therefore, we focus
on the set of degree-myopic local checkers whose maximum diameter lies between ω(1) and
o(n), that we denote by M. And prove a series of claims on that set.

▷ Claim 24. For any local checker in M, we must have aDegree+1 = 0.

Proof. Consider a tree accepted by a local checker with aDegree+1 > 0. Since it is finite, then
there is a node v of maximum degree ∆. If ∆ = 1, then the tree has only leaves, thus it has
one or two nodes. Since the local checker is in M there must be trees with ∆ > 1. In that
case, v should have at least aDegree+1 ≥ 1 neighbors of degree ∆ + 1, a contradiction. ◁

The following results make great use of the grafting operation (Definition 11 in Section 2).
In our restricted setting, Lemmas 12 and 13 still hold, where the view of an edge is given by
the degrees of its endpoints. Note that in particular, the trees recognized by local checkers
in M cannot contain any path between edges with the same view. We first use this idea to
get rid of the equal-degree type.
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▷ Claim 25. There cannot be a path u1, u2, . . . , v1, v2 with deg(u1) = deg(u2) and deg(v1) =
deg(v2) in a tree accepted by some L ∈ M.

Proof. Assume that a tree T accepted by L contains such a path. Now graft T in T at
(v1v2, v2v1). By Lemma 12, the new tree T ′ is accepted by L. Moreover, T ′ contains two
copies of the edge u1u2, call the second one u′

1u′
2. These two edges have the same view, hence

one can apply Lemma 13 to construct trees of linear diameter accepted by L, a contradiction.
◁

Using this result, we can already restrict the study to checkers L ∈ M with aEqual−degree =
bEqual−degree = 0. Indeed, by Claim 25, all accepted trees only use the equal-degree case
at most once, hence necessarily aEqual−degree = 0. Then for every such tree T , we cut the
equal-degree edge, keep only half of the tree (the one with largest diameter), and fix it in the
following way. We replace the cut edge by an edge to a leaf, and create T ′. Observe that T ′

is accepted by the checker L′ which is the same as L, except that bleaves is increased by 1,
and bEqual−degree = 0. It is thus sufficient to prove Theorem 10 for L′.

From now on, we consider only checkers in M with aEqual−degree = bEqual−degree = 0.

▷ Claim 26. For any local checker in M, bDegree−1 ≥ 1 and bDegree+1 ≥ 1.

Proof. Since the checker is in M, there must be at least two non-leaf nodes in at least one
accepted tree. Consider two such non-leaf nodes u and v, and w.l.o.g. take them to be
adjacent. Since in our restricted setting, we only allow two adjacent non-leaf nodes to have
a degree difference of exactly 1, it must be that, up to symmetry, v is categorizing u as
Degree+1, and u is categorizing v as Degree-1. Hence, we must allow at least one neighbor
of each type. ◁

Let a zigzag in a tree be six nodes u1, u2, u3 and v1, v2, v3, such that there exists a path
in which they appear in this order, and deg(u1) = deg(u3) = deg(u2) − 1 and deg(v1) =
deg(v3) = deg(v2) + 1. See Figure 7.

u1

u2

u3

v1

v2

v3 Incresing degree

Figure 7 A zigzag in a (not fully depicted) tree, where the nodes are ordered by increasing degree
from left to right. The curvy line represents a path in the tree. On this picture the degree of the vi

is smaller than the degrees of the ui, but this is not necessary. Note that the path in the middle
could itself contain zigzags.

Working similarly as Claim 25, we prove that zigzags cannot appear.

▷ Claim 27. Let L be a checker in M. The trees accepted by L have no zigzag.
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Proof. By contradiction, suppose we have a checker in M accepting a tree T with a zigzag
u1, u2, u3, v1, v2, v3 as in the definition. By Lemma 12, the tree T ′ obtained by grafting Tv1

in T at (v2v3, v2v1) is still accepted by L.
The new tree T ′ contains the original vertices u1, u2, u3 from T and also a copy of those

from the grafted copy of Tv1 , that we call u′
1, u′

2, u′
3. In particular, T ′ contains a path

u1, u2, . . . , u′
3, u′

2, where u1u2 has the same view as u′
3u′

2. We can thus apply Lemma 13 to
construct trees of linear diameter accepted by L and reach a contradiction. ◁

Forbidding zigzags basically proves that paths in accepted trees can be split in two parts,
each monotonous in degree (up to vertices of degree at most aDegree−1). This allows us to
restrict the values of aleaves and bDegree+1 without changing much the maximum diameter.

▷ Claim 28. Let L be a myopic local checker with aleaves > 0 and maximum diameter D(n).
Let L′ be the same checker except that aleaves = 0. The maximum diameter function D′(n)
for L′ is at most D(aleaves · n).

Proof. Let T ′ be an n-vertex tree of diameter D′(n) accepted by L′. By adding aleaves

pending leaves to each non-leaf vertex, we get a tree T accepted by L, with at most aleaves · n

nodes and whose diameter is still D′. In particular, we get D′(n) ⩽ D(aleaves · n). ◁

Since every tree accepted by L is also accepted by L′, we also get D ⩽ D′. Therefore,
given the diameter functions D we target, we have D′(n) = Θ(D(n)), hence we can assume
that aleaves = 0 in the context of the theorem. Using slightly more involved arguments, we
get that we may also assume that bDegree+1 = 1.

▷ Claim 29. Let L be a myopic local checker with bDegree+1 > 1 and maximum diameter D.
Let L′ be the same checker except that bDegree+1 = 1. The maximum diameter function D′

for L′ is at least D/2.

Proof. Consider an n-vertex tree T accepted by L. And take a path P that is maximum,
that is, its length is D(n). Because of Claim 27, this path either is monotone in terms of
the degree of the nodes visited, or the degree sequence changes slope at most once. If it
is monotone or is minimum on the endpoints, then for every node having more than one
neighbor of larger degree, we prune all such neighbors except the ones used by the path P .
This is possible because aDegree+1 = 0 by Claim 24. This tree is accepted by L′ and it has
the same diameter as T ′, and at most the same number of nodes. If the degree sequence
is maximum on both endpoints, then we do the same operation, leaving exactly one node
with two neighbors of larger degree. Then, we take this node and prune its shortest “forward
branch”. The diameter has at most halved, while the number of nodes has not increased.

In both cases, we obtained a tree accepted by L′ with n′ ⩾ D(n) vertices and diameter
at least D(n)/2 ⩾ D(n′)/2. In particular, we get an infinite sequence of trees accepted by L′

with diameter at least D/2, which proves the claim. ◁

F.2 Establishing the classification
The claims above show that we may only prove Theorem 10 for degree-myopic local checkers
in M satisfying:

aleaves = 0 and bleaves ≥ 1
bDegree−1 ≥ 1
aEqual−degree = bEqual−degree = 0
aDegree+1 = 0 and bDegree+1 ≥ 1
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We now proceed to the proof of Theorem 10, by distinguishing some cases based on the
values of bleaves and aDegree−1. In each case, we provide a lower bound on the maximum
diameter by constructing trees with a specific shape that are accepted. Then we provide a
complementary upper bound by proving that the same kind of structure necessarily appears
in the accepted trees.

▷ Claim 30. If L ∈ M satisfies bleaves = ∞ and aDegree−1 ≤ 1, then its maximum diameter
is Θ(

√
n).

Proof. Let L ∈ M such that bleaves = ∞ and aDegree−1 ≤ 1. For every integer i, consider
the caterpillar Ti whose backbone has i nodes, and its degree sequence is 1, 2, · · · , i. Observe
that Ti is accepted by L and moreover, Ti has diameter Θ(i) and Θ(i2) vertices. Therefore,
L has maximum diameter at least Ω(

√
n).

To conclude, we show that every n-vertex tree T accepted by L has diameter at most
O(

√
n). Take a maximum path P in T , of length D. Since there is no zigzag in the tree,

the degree sequence of any maximum path changes slope at most once, so up to halving P

(similarly to Claim 29), one can assume that P has a monotone degree sequence, from a
vertex of degree aDegree−1 to a vertex of degree aDegree−1 + D/2. In particular, there are at
least

∑D/2
i=0 (aDegree−1 + i) = Θ(D2) vertices at distance at most one from P , so D = O(

√
n).
◁

▷ Claim 31. If L ∈ M satisfies bleaves = ∞ and aDegree−1 ≥ 2, then its maximum diameter
is Θ(log n).

Proof. Let L ∈ M such that bleaves = ∞ and aDegree−1 ≥ 2. For every integer i, denote
by Ti the complete aDegree−1-ary tree of height i (where each internal node has aDegree−1
children). Construct T ′

i from Ti by attaching j leaves to every vertex at distance j + 1 from
the leaves. Observe that T ′

i is accepted by L, because (1) all the leaves and their parents
(which have degree aDegree−1) accept, and (2) all the other nodes have aDegree−1 children
(whose degree is precisely one less).

The tree T ′
i has diameter Θ(i) and a number of nodes Θ(

∑i
j=0(j + 1) · ai−j

Degree−1) =
Θ(ai

Degree−1) vertices, hence L has maximum diameter Ω(log n).
Let T be an n-vertex tree of diameter D accepted by L. Orient its edges from u to v

if deg(v) > deg(u). One can easily prove by induction on k that if T contains a vertex u

of degree k + aDegree−1, then the subtree rooted at u contains at least ak
Degree−1 nodes (it

actually contains a copy of Tk). Since any maximal path of T contains a vertex of degree at
least D/2, T has at least a

D/2−1
Degree−1 nodes so D = O(log n). ◁

▷ Claim 32. If L ∈ M satisfies bleaves < ∞, then its maximum diameter is Θ(log n/ log log n).

Proof. Let L ∈ M with bleaves < ∞. Let us prove that necessarily bDegree−1 = ∞. Suppose
that this is not the case, then L accepts only trees of maximum degree ∆ at most bleaves +
bDegree−1 + 1. If T is accepted by L, it contains no zigzag, hence any path in T has length
at most 2∆. Hence, L has maximum diameter O(1), a contradiction with the definition of
M. From now on, assume that bDegree−1 = ∞.

For every integer i ≥ aDegree−1−1, we define inductively a rooted tree Ti. Let TaDegree−1−1
be the subdivided star whose root has degree aDegree−1 − 1 and each branch is subdivided
once. Then, construct Ti+1 by attaching i + 1 copies of Ti to a new root. Note that Ti has
diameter Θ(i) and Θ(i!) nodes. We check that L accepts all the trees Ti, and has maximum
diameter Ω(log n/ log log n) (the asymptotic inverse function of factorial).
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Let T be an n-vertex tree of diameter D accepted by L, so in particular T contains a
vertex of degree at least D/2. Orient each edge of T towards its endpoint of largest degree.
Again, one can easily show by induction on k that each vertex u with k + bleaves children
has at least k! descendants. In particular, T contains at least (D/2 − bleaves)! nodes, hence
D = O(log n/ log log n). ◁

G Towards graphs with cycles

Up to now, we have focused on trees, because they are central for LCLs, and make sense for
our second motivation. A natural question at that point is what happens if we go beyond
trees. We leave this for further work. We just prove now that if there is a cycle in the graph,
but no node can see it (i.e, the girth is large in comparison with the checkability radius)
the maximum diameter is linear. Basically, we show that we can do pumping via a crossing
argument.

Consider a local checker that accepts some graph with a cycle. We claim that it also
accepts arbitrarily large graphs of linear diameter, relying on the so-called duplication
operation. Given a colored graph G and an edge uv ∈ E(G), the duplication of G along uv

is the colored graph Guv obtained by taking two copies of G, deleting the two copies u1v1
and u2v2 of uv and adding u1v2 and u2v1. It is easy to see that if u and v are at distance at
least 2d from each other in G \ uv, then u1 and u2 (resp. v1 and v2) both have the same
view at distance d in Guv as u (resp. v) in G. In particular, we get the following.

▶ Lemma 33. Let c, d be integers, G be a c-colored graph containing two adjacent vertices
u, v at distance at least 2d in G \ uv. Then every L ∈ Lc,d accepting G also accepts Guv.

The following structural result shows that this operation creates long paths, which is the
main ingredient for constructing graphs of linear diameter.

▶ Lemma 34. Let uv be an edge of a graph G. Denote by u′v′ the edge between copies of u

and v in Guv. Then dGuv\u′v′(u′, v′) = 2dG\uv(u, v) + 1.

Using these two results, we can conclude that iterating this duplication operation starting
from a nice enough graph G yields an infinite sequence of graphs of linear diameter, all
accepted by every local checker accepting G.

▶ Theorem 35. Let c, d be integers and L ∈ Lc,d accepting a c-colored graph G containing
two adjacent vertices u, v at distance at least 2d in G \ uv. Then L has maximum diameter
Θ(n).

Proof. Consider the sequence defined by G0 = G, u0 = u, v0 = v and for every i, Gi+1 =
Guivi

i , and ui+1vi+1 is an edge in Gi+1 between the copies of ui and vi. By Lemma 33, all
the graphs Gi are accepted by L. Moreover, |Gi| = 2i · |G| and by Lemma 34, the distance
between ui and vi in Gi \ uivi is at least 2i · d. Therefore, there are two vertices in Gi at
distance at least 2i−1 · d hence diam(Gi) = Θ(|Gi|), which concludes the proof. ◀
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