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Abstract
We study the reliability of the following simple mechanism for spreading information in a communi-
cation network in the presence of random message loss. Initially, some nodes have information that
they want to distribute throughout the network. Each node that has received the information tries
to broadcast it to all its neighbors. However, due to interference or communication failures, each
transmission between two nodes is broken independently with some fixed probability.

This transmission mechanism is the basis for the extrema propagation technique, proposed and
analyzed in [2, 3, 10]. Extrema propagation is a simple but powerful method of spreading the
extreme values stored by the nodes. In a fully reliable environment, only the number of rounds equal
to the network diameter is required for all nodes to be informed. It was shown empirically in [2]
that it also performs well in the presence of link failures and message loss. Extrema propagation
is an algorithmic framework that was adopted for designing efficient method for distributed data
aggregation, such as estimation of cardinalities, sums, and averages, estimation of data distribution
via histograms and random sampling (cf. [3, 19]).

In this paper, we propose a formal network model in which random transmission failures occur
and analyze the operation time of the extrema propagation technique for any connected network
graph. We provide new general probabilistic upper bounds on the number of rounds needed to
spread the extreme values that depend only on the number of nodes, the diameter of the network,
and the probability of successful transmission. For some special families of graphs, we also derive
specific, more accurate estimates. Our theoretical and experimental results confirm the reliability
and efficiency of the extrema propagation technique in faulty or noisy environments.
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1 Introduction

Extrema Propagation Technique (EPT), introduced in [3], is a simple but powerful method
to find the maximal or minimal value of observations stored in nodes of the network. Here
is a brief overview of this procedure. Assume that each node v ∈ V of a connected graph
G = (V, E) has some real number Xv and suppose that the edges E of the graph G describe
communication links between nodes. In the initial round of the considered algorithm, each
node copies the value Xv into the local variable Minv and sends it to all its neighbors.
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Then, in each subsequent round, each node stores all the values received from its neighbors,
calculates its minimum Mv and if Mv < Minv, then sends Mv to all its neighbors and makes
a substitution Minv = Mv. It is clear that after D rounds, where D denotes the diameter
of the graph G, the algorithm stabilizes (no messages are sent over the network) and that
Minv = M for all v ∈ V , where M = min{Xv : v ∈ V }.

The great advantage of this method is its ease of implementation. A trivial use of this
method is to determine extreme values in sensor networks. Less trivial applications involve
the use of systems of independent variables. For example, assume that the values (Xv)v∈V

are independent random variables that have a uniform distribution in the interval [0, 1]. Then
the expected value of the random variable min{Xv : v ∈ V } is 1/(N + 1), where N = |V |.
This fact can be used to derive an estimator of the number of vertices in the network.
Here is another observation: If (Xv)v∈V are independent random variables with exponential
distribution with parameters (λv)v∈V , then the random variable M = min{Xv : v ∈ V } is
also exponentially distributed with parameter λ =

∑
v∈V λv. This property can be used

to derive an estimator of the sum of observed parameters {λv : v ∈ V }. These interesting
applications were discussed and analyzed in [2, 6].

The upper limit on the EPT operation time given by the diameter of the communication
graph is true assuming full connection reliability. However, communication interference
may occur in real systems. The aim of this paper is to provide simple formulas for the
upper estimate of the EPT operation time, assuming that communication interruptions of
individual channels are independent and occur with the same probability. Our formulas
depend only on the number of nodes, the diameter of the graph, and the probability of
successful transmission.

EPT also has reasonable communication complexity. For example, in [10], it was shown
that in specific random settings the average number of messages sent by any node is O (log |V |).
However, it should be noted that these results are true assuming complete reliability of the
connections. We will briefly expand on this topic in the last section of this paper.

The results shown in this paper are applicable to each of the examples discussed in [2, 6]
in situations where random interferences may occur during message exchange.

1.1 Notation and basic facts
We say that a random variable X follows a geometric distribution (X ∼ Geo (p)) if X

takes values in the set of positive integers and Pr(X = k) = (1 − p)k−1p for each k ≥ 1.
If X ∼ Geo (p), then E (X) = 1

p and Var (X) = 1−p
p2 . A random variable Y follows an

exponential distribution with parameter λ > 0 (X ∼ Exp (λ)) if Y takes values in the set of
positive reals and for each x ∈ R, x ≥ 0, we have Pr(Y > x) = exp(−λx). If exp(−λ) = 1−p,
then Geo (p) can be regarded as a discrete version of the Exp (λ) distribution.

We say that a random variable X follows a distribution MGeo (n, p) if there exists a family
Y1, . . . , Yn of independent random variables such that Yi ∼ Geo (p) for each i ∈ {1, . . . , n} and
X = max{Y1, . . . , Yn}. Using elementary arguments it can be showed that if X ∼ MGeo (n, p)
then

E (X) =
n∑

k=1

(
n

k

)
(−1)k+1

1 − qk
, (1)

where q = 1 − p. The special case of this equation applied to n = 2 tells us that if
X ∼ MGeo (2, p), then E (X) = 1

p

(
2 − 1

2−p

)
. From Eq. (1) it is possible to determine the

asymptotics of E (X) for small values of n.
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Similarly, we define the distribution MExp (n, λ): it is a maximum of n independent copies
of random variables with distribution Exp (λ). It is quite easy to derive a closed formula for
the expected value of a random variable with MExp (n, λ) distribution: it equals Hn/λ, where
Hn denotes the n-th harmonic number. Formulas for expected values of random variables
with MGeo (n, p) for arbitrary n are much more complicated (see, for example, [24]). But
the above-mentioned connection between geometric distribution and exponential distribution
gives the following upper and lower bounds for a random variable X ∼ MGeo (n, p) (see [15]
for details):

Hn

ln 1
1−p

≤ E (X) ≤ Hn

ln 1
1−p

+ 1 , (2)

which will be sufficient for our purposes. Recall that Hn = log n + γ + O
( 1

n

)
, where

γ = 0.5772... is the Euler-Mascheroni constant. We also notice that (ln 1
1−p )−1 = 1

p − 1
2 +O (p)

is as p → 0.
The difference between the exact value of E (X) and the number Hn/ ln(1/(1 − p))

was investigated by several authors (see, e.g., [15, 28]). It appears that there are no limit
distributions for this difference and that it has an oscillatory behavior. Among others, it was
shown that asymptotically the difference is 1

2 + O
(
p2) as p → 0.

We will use the following version of the geometric-arithmetic mean inequality:

x1 · · · xn ≤ ((x1 + . . . + xn)/n)n , n ∈ N, x1, . . . , xn ≥ 0 (3)

as well as the Bernoulli inequality:

(1 + x)n ≥ 1 + nx if n ∈ N and x ∈ R, x > −1 . (4)

1.2 Related work
The extrema propagation technique (EPT), briefly described at the beginning of this section,
was proposed and analyzed in [2, 3]. It is a fast and robust probabilistic method for estimating
sums and cardinalities in distributed environments. It can be used in scenarios where neither
the network topology nor its size is known to the nodes. The extreme propagation technique
is efficient in terms of its message complexity. As shown in [10], the average number of
messages sent by any station in any network with n nodes is of order O (log n). EPT is
one of the main building blocks of algorithms for distributed calculation of approximate
histograms of sensory values, average estimation (including averaging of time-series data),
and distributed random sampling, as discussed in [9, 19, 25].

The authors in [3] show that appropriately adjusted variants of the basic EPT procedure
will also perform well in unreliable or noisy environments, where message loss, slow con-
nections, and link failures occur. In recent years, the problem of fault-tolerant distributed
data aggregation has received much attention. Many novel and efficient algorithms for both
synchronous and asynchronous settings that are resistant to transmission loss or changes in
network topology caused by node or link failures have been proposed and analyzed. The most
important techniques are surveyed, among others, in [21, 22]. Examples are flow-updating
[1, 23], the push-flow algorithm [16], some variants of the push-sum protocol for distributed
consensus and average estimation [17, 20], or methods for estimating the distribution of
sensory values [5, 27].

The probabilistic model of message loss or link failures proposed by us in Sect. 2 is closely
related to the concept of dynamic networks. That is, wireless networks or other distributed
systems whose topology varies over time, as nodes enter or leave the network, and some
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communication links are active only in some time intervals. There is a vast body of literature
on highly dynamic distributed systems, in which some formal models based on randomly
evolving graphs are introduced and protocols for fast information dissemination (including
variations of randomized rumor spreading) and efficient data aggregation are proposed and
analyzed; see, e.g., [4, 8, 12, 18, 26] and references therein. In [7] the authors surveyed
existing formal models for dynamic networks and introduced the concept of time-varying
graphs, which unifies many of the classical models. They also analyzed the most important
properties of this framework.

In [13, 14] the idea of edge-Markovian dynamic graphs was introduced and discussed.
This framework allows for modeling stochastic time dependence in communication networks.
In an edge-Markovian dynamic graph each edge follows an independent two-state Markov
chain switching between being active and non-active. The authors also analyzed the rate
at which the information is spread across such networks. The study in [14] considered only
complete graphs, resulting in tight asymptotic bounds for a wide range of parameters in such
graphs.

1.3 Organization of the paper
The rest of this paper is organized as follows. The formal model of networks and com-
munication along with some illustrative examples is presented in Sect. 2. In Sect. 3 we
formulate and prove our main results that provide probabilistic upper bounds on the time
of information propagation and discuss their accuracy. In Sect. 4 we derive more precise
estimates for certain families of graphs. The results of the experimental evaluation of the
accuracy of proposed estimates are presented in Sect. 5. In Sect. 6 we conclude our work
and suggest some directions for future research.

2 Network Model

Let G = (V, E) be a graph, and p ∈ (0, 1). By Bin(G, p) we denote the discrete-time stochastic
process defined as a double-indexed sequence (Xe,t), where e ∈ E and t ∈ {1, 2, . . .}, of
pairwise independent Bernoulli random variables with probability of success p. Unless
otherwise stated, we assume that all network graphs considered in this paper are simple,
finite, and connected.

The process Bin(G, p) can be described as a sequence (Gt) of graphs where

Gt = (V, {e ∈ E : Xe,t = 1}) .

Fix a process H = Bin(G, p) and a non-empty subset A of V . We define the process of
flooding the information from the set A as follows: we put A0 = A and

At+1 = At ∪ {y ∈ V : (∃ x ∈ At)({x, y} ∈ E ∧ X{x,y},t = 1} .

The set At consists of nodes that have been informed (activated) up to time t (inclusive),
assuming that at each time instant each transmission between two nodes is successful
independently with probability p. We are interested in the probabilistic properties of flooding
time with source A, defined as the random variable

T (G, A, p) = min{t : At = V } ,

i.e. T (G, A, p) is the first moment when all nodes of the graph G are informed, given that at
time 0 the initially informed nodes form the set A (source).
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We will now discuss a certain property of the proposed model, which we will use repeatedly
in future considerations. That is, suppose that G = (V, E) is a graph. Let X = (Xe,t) be
a sequence of random binary variables from Bin(G, p). Let E′ ⊆ E and G′ = (V, E′). Let
X ′ = (X ′

e,t) be the restriction of X to the edges of E′. Let (At) be the flooding process
defined by X and let (A′

t) be the flooding process defined by X ′. Then, by an easy induction
argument we have A′

t ⊆ At for all t ≥ 1. Therefore, T (G, A, p) ≤ T (G′, A, p). So, for example,
if (V, E′) is a spanning tree of a connected graph (V, E), then the value of E (T (G′, A, p)) is
an upper bound on E (T (G, A, p)).

▶ Example 2.1. Fix a positive integer n. Consider the star graph S = (V, E) with V =
{0, . . . , n} and E = {{0, k} : k ∈ {1, . . . , n}}. Consider the process Bin(S, p) and the set
A = {0}. Notice that in this case we can look independently at the process of disseminating
information from vertex 0 to vertex k for each k ∈ {1, . . . , n} and that each such process has
a geometric distribution with parameter p. Therefore, the random variable T (S, A, p) has
the distribution MGeo (n, p), so

E (T (S, {0}, p)) = Hn

ln 1
1−p

+ ϵn

for some ϵn ∈ [0, 1]. From this formula, we deduce that when n is fixed and p → 0 then we
get E (T (S, {0}, p)) = Hn( 1

p − 1
2 ) + O (p) + ϵn.

▶ Example 2.2. Fix a positive integer n. Consider the following graph G = (V, E) where
V = {0, . . . , n, n + 1} and E = {{0, k} : k ∈ {1, . . . , n}} ∪ {{k, n + 1} : k ∈ {1, . . . , n}} (we
will call this graph a double star graph; see Fig. 1). Consider the process Bin(G, p) and
sets A = {0} and B = {0, n + 1}. We will estimate the expected flooding time E (T ), where
T = T (G, A, p).

Let T1 = min{t : X{1,n+1},t = 1 ∧ (∃s < t)(X{0,1},s = 1)}. It is clear that E (T1) = 2/p.
The random variable T1 can be interpreted as the first moment when node n+1 was informed
by node 1 (may be because this node was informed by another node before this time). From
time T1 our process behaves similarly to the process of flooding the information in G from
the set B, hence it is similar to the process of Example 2.1 with probability p replaced by
1 − (1 − p)2 (each of at most n uninformed nodes can be activated independently either by 0
or n + 1). Therefore

E (T ) =
∑
t≥2

E (T |T1 = t) Pr(T1 = t) ≤
∑
t≥2

(t + E (TB)) Pr(T1 = t)

= E (T1) + E (TB) = 2
p

+ E (TB)

from which we conclude that

E (T ) ≤ Hn

2 ln 1
1−p

+ 2
p

+ ϵn

for some ϵn ∈ [0, 1]. If n is fixed and p → 0 then E (T ) = Hn( 1
2p − 1

4 ) + 2
p + 1 + O (p).

Therefore, for large values of n, the considered process runs approximately twice as fast as
the process for the star graph.

3 Upper bounds

In this section, we prove the main results of our paper – new upper bounds on the time of
information propagation in any connected communication graph (Theorems 3.4 and 3.5).

OPODIS 2024
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Figure 1 A double star graph with n + 2 vertices from Example 2.2.

These bounds depend only on some global characteristics of the network, i.e., the number
of nodes, its diameter, and probability of successful transmission. We also discuss their
precision and applications. Before formulation of these results, we formulate two auxiliary
lemmas.

▶ Lemma 3.1. Let S be a star graph with vertices {0, 1, . . . , n} and root 0 (as in Example 2.1).
Let η, p ∈ (0, 1) and denote q = 1 − p. Then

Pr(T (S, {0}, p) ≤ t) ≥ 1 − η

if and only if

t ≥ 1
ln(1/q) ln 1

1 − (1 − η)1/n
.

Proof. Let E denote the event {T (S, {0}, p) ≤ t}, that is, “all the vertices are active after t

steps”. Then Pr(E) = (1 − qt)n. Therefore,(
(1 − qt)n ≥ 1 − η

)
⇐⇒

(
1 − qt ≥ (1 − η)1/n

)
⇐⇒

(
qt ≤ 1 − (1 − η)1/n

)
⇐⇒(

t ln q ≤ ln(1 − (1 − η)1/n)
)

⇐⇒
(

t ≥ 1
ln q

ln(1 − (1 − η)1/n)
)

. ◀

▶ Lemma 3.2. Let η ∈ (0, 1) and n ≥ 1 be an integer. Then
1

1 − (1 − η)1/n
≤ n

η
.

Proof. Let x = 1 − (1 − η)1/n. Observe that x ∈ (0, 1). Then η = 1 − (1 − x)n. From
the Bernoulli inequality (4) we get (1 − x)n ≥ 1 − nx, so 1 − (1 − x)n ≤ nx. Therefore
(1 − (1 − x)n)−1 ≥ 1/(nx), so

n

η
= n

1 − (1 − x)n
≥ n

nx
= 1

x
= 1

1 − (1 − η)1/n
. ◀

Directly from Lemmas 3.1 and 3.2 we get the following result.

▶ Corollary 3.3. Let S be the star graph with root 0 and vertices {0, 1, . . . , n} and let
η, p ∈ (0, 1). Then

t ≥ 1
ln(1/q) ln

(
n

η

)
=⇒ Pr(T (S, {0}, p) ≤ t) ≥ 1 − η ,

where q = 1 − p.
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We now formulate and prove our main results characterizing the probabilistic upper
bounds on the flooding time in any connected network graph with a single source node.

▶ Theorem 3.4. Suppose that G = (V, E) is a connected graph with n + 1 vertices, where
n > 0 and diameter D. Let a ∈ V . Then for every ε ∈ (0, 1) we have

Pr

T (G, {a}, p) ≤
D ln

(
n
ε

)
ln
(

1
1−p

)
 ≥ 1 − ε .

Proof. Fix a connected graph G = (V, E) with n + 1 vertices. Let d denote the distance
function in this graph (that is, the length of the shortest path between the vertices). Fix a
vertex a ∈ V and let L = max{d(a, v) : v ∈ V } be the eccentricity of a. Clearly L ≤ D.

Let Ei = {y ∈ V : d(a, y) = i} and ni = |Ei| for i = 0, . . . , L. Notice that
∑L

i=1 ni = n.
Fix ε ∈ (0, 1) and let η ∈ (0, 1) be such that

(1 − η)L = 1 − ε . (5)

From the Bernoulli inequality (4) we get

ε ≤ Lη . (6)

Consider the process Bin(G, p) that starts with A0 = {a} and assume that at time ti we
have Ei ⊆ Ati

(that is, all nodes at distance i from a have been informed up to time ti).
Letting q = 1 − p, from Corollary 3.3 we deduce that at time

ti+1 = ti + 1
ln(1/q) ln

(
ni+1

η

)
we have Pr(Ei+1 ⊆ Ati+1) ≥ 1 − η for any i = 1, . . . , L. In fact, each node in Ei+1 is
connected to some informed node in Ei, and the bound of the star graph carries over to this
case. Let

T =
L−1∑
i=0

1
ln(1/q) ln

(
ni+1

η

)
and notice that

Pr(T (G, {a}, p) ≤ T ) ≥ (1 − η)L = 1 − ε .

We have

T = 1
ln(1/q)

L∑
i=1

ln
(

ni

η

)
= 1

ln(1/q) ln
(

L∏
i=1

ni

η

)

≤ 1
ln(1/q) ln

(
L∑

i=1

ni

Lη

)L

= L

ln(1/q) ln
(

n

Lη

)
≤ L

ln(1/q) ln
(n

ε

)
≤ D

ln(1/q) ln
(n

ε

)
(we used the geometric-arithmetic mean inequality (3) in the second line and inequality (6)
in the third line). Therefore,

Pr
(

T (G, {a}, p) ≤ D

ln(1/q) ln
(n

ε

))
≥ Pr (T (G, {a}, p) ≤ T ) ≥ 1 − ε . ◀
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▶ Theorem 3.5. Suppose that G = (V, E) is a connected graph with n + 1 vertices, where
n > 0. Let a ∈ V and L = max{d(a, v) : v ∈ V }. Then

E (T (G, {a}, p)) ≤
L ln ne

L

ln 1
1−p

+ L .

Proof. The proof is based on a similar reasoning as in the case of Theorem 3.4. Let
Ti = min{t : Ei ⊆ At}, Ri = Ti − Ti−1 and T =

∑L
i=1 Ri. From Example 2.1 we can deduce

that E (Ri) ≤ Hni

ln(1/(1−p)) + 1. Using the inequality Hn ≤ ln n + 1 and letting q = 1 − p, we
have

E(T ) ≤
L∑

i=1

(
Hni

ln(1/q) + 1
)

≤ 1
ln(1/q)

L∑
i=1

(ln ni + 1) + L

= 1
ln(1/q)

(
ln
(

L∏
i=1

ni

)
+ L

)
+ L ≤ 1

ln(1/q) (L ln
∑L

i=1 ni

L
+ L) + L

= 1
ln(1/q) (L ln n

L
+ L) + L =

L ln ne
L

ln(1/q) + L . ◀

The upper bound on the expected flooding time given by Theorem 3.5 depends on the
eccentricity L of the initially informed vertex a. However, one can easily derive a generalized
version that holds for all vertices in a given graph.

▶ Corollary 3.6. Suppose that G = (V, E) is a connected graph with n + 1 vertices, where
n > 0, and diameter D. Then for any a ∈ V

E (T (G, {a}, p)) ≤
D ln ne

D

ln 1
1−p

+ D . (7)

Proof. The eccentricity L of any given vertex a ∈ V is bounded above by the diameter D.
Since the function f(x) = x ln(ne

x ) is monotonically increasing on the interval (0, n], the
bound (7) holds for every a ∈ V . ◀

▶ Example 3.7. Let us consider once again the star graph S from Example 2.1 with n + 1
vertices and the source A = {0}. We then have L = 1, so from Theorem 3.5 we get

E (T (S, {0}, p)) ≤ ln(n) + 1
ln 1

1−p

+ 1 .

As shown in Example 2.1, E (T (S, {0}, p)) = Hn

ln(1/(1−p)) + ϵn for some ϵn ∈ [0, 1], thus the
upper bound is almost tight in this case.

▶ Example 3.8. Let Pn be the path graph with n + 1 vertices {0, 1, . . . , n} and edges
{{i, i + 1} : 0 ≤ i ≤ n − 1}. The upper bound from Theorem 3.5 gives

E (T (Pn, {0}, p)) ≤ n

ln 1
1−p

+ n .

Using the inequality ln(1/(1 − p)) ≥ p (when p ∈ [0, 1)) we obtain the formula n
p + n which

is consistent with the exact value n
p of the expectation of a random variable with a negative

binomial distribution with parameters n and p up to a constant factor n.

The above examples confirm that the upper estimate of the expected flooding time is
relatively accurate. However, the next example shows that in some cases this bound is quite
far from the actual value.
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▶ Example 3.9. Let Kn denote the complete graph with n vertices. Let Gn = Kn+1 and let
a be some fixed vertex. From Theorem 3.5 we get

E (T (Gn, {a}, p)) ≤ ln n + 1
ln 1

1−p

+ 1 ,

but in Theorem 4.1 we will show that limn→∞ E (T (Gn, {a}, p)) = 2.

4 Fast transmission kernel

The upper bound from Eq. (7) for the flooding time for some dense graphs is poor. In fact,
it was derived by splitting the graph into layers Ei consisting of vertices at distance i from
the source, 1 ≤ i ≤ L, and summing up the times required to inform all nodes from Ei+1
after all nodes from Ei have been informed, as if none of them had received the information
up to that time and was connected to only one node from Ei (as mentioned in Sect. 2, the
analysis can be restricted to some spanning tree rooted at the source node). This is an
overestimate, especially in dense graphs, in which the information is disseminated much faster.
In the extreme case, for the complete graph Kn+1, it gives E (T (Kn+1, {a}, p)) ≤ ln n+1

ln 1
1−p

+ 1.
However, it can be shown that for fixed p and large n we have E (Kn, {a}, p) ≈ 2.

▶ Theorem 4.1. Let Kn+1 denote the complete graph with vertices V = {0, . . . , n} and let
p ∈ (0, 1). Then

lim
n→∞

E (T (Kn, {0}, p)) = 2 .

Here is an imprecise explanation of the above result: notice that E (|A1|) = 1 + np and that
E (|A2| | |A1| = k) = (n+1)(1−(1−p)k)+k(1−p)k; moreover if k = np then (1−p)k ≤ e−np2 ,
so if np2 → ∞ then E (|A2|) ≈ n + 1. Notice that this result can be summarized as follows:
for fixed p and large n, the graph Kn behaves like the cycle graph C3. Now we will present
a refinement of the above heuristic.

Proof. Let Vn = {1, . . . , n}, Tn = E (T (Kn+1, {0}, p)) and denote q = 1 − p. Let X0 = {0},
X1 = {y : X{0,y},1 = 1} and X2 = {y : (∃x ∈ X0 ∪ X1)(X{x,y},2 = 1)} \ (X0 ∪ X1). We will
use the inequality E (Tn) ≤ Hn

ln(1/q) + 1. It holds because a complete graph contains a star
graph and we can use the bound from Eq. (2). We will bound expected values from two sides.

Notice that Pr(X1 = Vn) = pn, so Pr(Tn = 1) = pn, hence

E (Tn) = E (Tn | X1 = Vn) Pr(X1 = Vn) + E (Tn | X1 ̸= Vn) Pr(X1 ̸= Vn)
= pn + E (Tn | X1 ̸= Vn) (1 − pn) ≥ pn + 2(1 − pn) = 2 − pn ,

hence lim infn→∞ E (Tn) ≥ 2.
Next, we note that

E (Tn) = E
(

Tn | |X1| ≤ np

2

)
Pr
(

|X1| ≤ np

2

)
+ E

(
Tn | |X1| >

np

2

)
Pr
(

|X1| >
np

2

)
.

For the first term of this formula, we see E (|X1|) = np. From the Chebyshev inequality
applied to the binomial distribution, we get Pr(|X1| ≤ 1

2 np) ≤ 4q
np . Thus, we get

lim
n→∞

E
(

Tn | |X1| ≤ np

2

)
Pr
(

|X1| ≤ np

2

)
≤ lim

n→∞

((
Hn

ln(1/q) + 1
)

4q

np

)
= 0 .
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For the second term we notice that

E
(

Tn | |X1| >
np

2

)
Pr
(

|X1| >
np

2

)
=

∑
k>(np)/2

E (Tn | |X1| = k) Pr(|X1| = k) .

Fix k > np
2 and suppose that |X1| = k. Then |X2| follows the binomial distribution

Bin
(
n − k, 1 − (1 − p)k+1). Let Zk = n − k − |X2|. Then E (Zk) = (n − k)(1 − p)k+1. The

function f(x) = (n − x)(1 − p)x+1 decreases on the interval [0, n], so for k > np
2 we have

E (Zk) ≤ n(1 − p/2)(1 − p)(np/2)+1 ,

so from the Markov inequality we get

Pr(Zk > 0) = Pr(Zk ≥ 1) ≤ n(1 − p/2)(1 − p)(np/2)+1 .

Notice that if Zk = 0 then Tn = 2. Hence,

E (Tn | |X1| = k) =
E (Tn | |X1| = k ∧ Zk = 0) Pr(Zk = 0) + E (Tn | |X1| = k ∧ Zk > 0) Pr(Zk > 0) ≤

2 Pr(Zk = 0) +
(

Hn

ln(1/q) + 1
)

Pr(Zk > 0) ≤ 2 +
(

Hn

ln(1/q) + 1
)

n(1 − p/2)(1 − p)np/2 ,

which implies that∑
k>(np)/2

E (Tn | |X1| = k) Pr(|X1| = k) ≤

∑
k>(np)/2

(
2 +

(
Hn

ln(1/q) + 1
)

n(1 − p/2)(1 − p)np/2
)

Pr(|X1| = k) =

(
2 +

(
Hn

ln(1/q) + 1
)

n(1 − p/2)(1 − p)np/2
)

Pr
(

|X1| >
np

2

)
,

so

lim sup
n→∞

E (Tn) = lim sup
n→∞

E
(

Tn | |X1| >
np

2

)
Pr
(

|X1| >
np

2

)
≤

lim
n→∞

(
2 +

(
Hn

ln(1/q) + 1
)

n(1 − p/2)(1 − p)np/2
)

Pr
(

|X1| >
np

2

)
= 2 . ◀

The stochastic process from Theorem 4.1 can be modeled as a Markov chain with the
absorbing state as the state in which all nodes are informed. Using a formula for the expected
number of steps before absorption, we calculated exact numerical values for p = 0.1. The
results are shown in Fig. 2.

▶ Example 4.2. Fix L > 1 and consider a graph G with vertices divided into L blocks
B1, . . . , BL, each of cardinality 2, and one additional vertex s. We add two edges between s

and the vertices in B1 and connect each vertex in Bi with each vertex in Bi+1, i = 1, . . . , L−1.
This graph, which we call a double path graph, has n = 2L + 1 vertices and diameter L (see
Fig. 3). From Eq. (7) we get the following bound:

E (T (G, {s}, p)) ≤ L (1 + ln 2)
ln 1

1−p

+ L .

Notice that for fixed L and small p this is close to 1.69L/p. However, in this case, we can
easily get a much better upper bound. That is, the time T0 needed to spread the information
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Figure 2 Values of E (T (Kn, {0}, 0.1)) for n from 2 to 1500. The results converge to 2, as stated
in Theorem 4.1. The first three values are 10, 10.2493 and 9.62651.

from node s to both nodes of the first block B1 is bounded above by a random variable with
distribution MGeo (2, p), so from Eq. (1) we get E (T0) = 1

p (2 − 1
2−p ). Next, assuming that

both nodes in Bi are informed, the time Ti needed to spread the information to both nodes
in Bi+1 is bounded above by a random variable with distribution MGeo

(
2, 1 − (1 − p)2), so

E (Ti) ≤ 1
p(2−p) (2 − 1

1+(1−p)2 ). Putting all this inequalities together we get

E (T (G, {s}, p)) ≤ 1
p

(
2 − 1

2 − p

)
+ L − 1

p(2 − p)

(
2 − 1

1 + (1 − p)2

)
.

This upper bound for large L and small p is close to 3
4 (L + 1)/p.

s

B1 B2 B3 BL

· · ·

Figure 3 A double path graph with n = 2L + 1 vertices from Example 4.2.

▶ Example 4.3. For the process from Example 2.2, Eq. (7) gives us the following bound:

T (G, A, p) ≤ 2 ln((n + 1)e/2)
ln(1/(1 − p)) + 2 .

For small p this is close to 2 ln((n + 1)e/2)/p − ln((n + 1)e/2) + 2, whereas the bound from
Example 2.2 is close to (Hn/2 + 2)/p + 1 − Hn/4.
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The examples given above show that in many cases we are able to derive upper bounds
on the time of information propagation in a graph better than those that are formulated in
the universal Theorems 3.4 and 3.5.

In many natural examples of communication graphs, dense fragments can be distinguished,
in which the transfer of information, even in the presence of interference or random faults, is
relatively fast. Such fragments can be complete graphs or, for example, fairly dense subsets
similar to the graph in Example 4.2. They can be called fast communication kernels. In
the following, we formulate a theorem that makes it easier to estimate the flooding time of
information in such graphs.

▶ Theorem 4.4. Let G = (V, E) be a connected graph with diameter D, V = V1 ∪ V2,
n1 = |V1| and V1 ∩ V2 = ∅. Let G2 = (V2, E ∩ [V2]2). Suppose that
1. (∀v ∈ V1)(d(v, V2) ≤ l)
2. (∀v ∈ V2)(E (T (G2, {v}, p)) ≤ T ∗)

Then for all v ∈ V we have

E (T (G, {v}, p)) ≤ D

p

(
2 + ln

(n1e

D

))
+ T ∗ .

Proof. Let us consider v ∈ V1 and let T1 be the random variable denoting the time needed
to reach the set V2 by a process of spreading information from the source v. Let P be a path
from v to some node from V2. The expected time to send the information only along the path
P is equal to l/p, where l is the length of P . So E (T1) ≤ l/p ≤ D/p. The time T2 needed
to spread the information throughout the whole set V2 from the reached node is bonded by
T ∗. At time T1 + T2 we may treat all nodes of V2 as a single node, so for the bound on the
remaining time T3 we may use Theorem 3.5, getting E (T3) ≤ D( ln(n1e/D)

ln(1/(1−p)) + 1). Finally,
using the inequality ln(1/(1 − p)) ≥ p we obtain the final inequality. ◀

▶ Example 4.5. Consider the graph which consists of a complete graph Kn with k disjoint
path of length bounded by D connected by a single vertex with Kn. If k = 1 then this graph
is called a lollipop graph. From Theorem 4.1 and Theorem 4.4 we deduce that for large n

the upper bound is close to D
p (3 + ln k) + 2.

5 Experiments

We conducted a series of experiments that exemplify our results. We compare the estimate
of expected value of the flooding time acquired from experiments with general bounds from
Theorem 3.5 and specific bounds derived for a given problem. To compare bounds, we used
the relative error of the bound and the estimate of the expected value of the flooding time,
defined as the ratio of the difference between them to the estimate of the expected value of
the flooding time. We choose a small value of p as 0.1 to simulate a noisy environment in
which a significant fraction of messages are lost.

For the path graph from Example 3.8 we can compare the bound from Theorem 3.5 with
the exact value of E(T ). In Figure 4 we see that the bound as well as E(T ) grow linearly as
the number of nodes n. The relative error is independent of n and reaches a maximum at
p = 0.833587 of δ = 0.298426.

For the double path graph from Example 4.2 we set the value of p to 0.1 and average over
1000 simulation runs for values of n from 2 to 1000, the results are shown in Figure 5. We
compare two bounds, the first from Theorem 3.5 and the second from the theoretical analysis
presented in Example 4.2. We can observe in Fig. 4a that both estimates grow linearly as
the number of nodes n increases, but the specific upper bound acquired in Example 4.2 has
a lower slope. Relative errors stabilize for larger n.
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(a) Expected value of flooding time(p = 0.1). (b) Relative error of bound.

Figure 4 Comparison of the bounds from Theorem 3.5, the analysis from Example 3.8 and the
expected value of flooding time for the path graph for n from 2 to 1000. The Relative error of bound
is independent of n.

(a) Expected value of flooding time. (b) Relative error of bounds.

Figure 5 Results of experiments for the double path graph; simulation was run 1000 times for
each n from 2 to 1000. Value of p was set to 0.1.

We performed similar experiments for the double star graph from Example 2.2 (the
average is taken over 10 000 runs). The results are shown in Fig. 6. In this case, the estimate
from Theorem 3.5 is worse than the upper bound derived in Example 2.2. However, note
that both bounds capture the logarithmic asymptotic of the experimental data.

6 Conclusions and future work

In this work, we showed simple upper bounds for the necessary number of rounds needed to
broadcast information in the connected graph in the case when the transmission disruption
probabilities are the same and independent. These formulas are easy to use because they
depend only on the diameter of the graph, the number of its vertices, the probability of
error-free transmission, and the desired accuracy. We also showed in Sect. 4 how in some
situations it is possible to obtain better upper bounds in non-uniform networks.

The upper bounds given in Sect. 3 use very little information about the graph structure.
The examples considered by us suggest that the quality of these constraints depends on the
density of the graphs. One of the goals of further research is to find simple formulas, similar
to those in Section 3, that take into account another characteristic of the graph such as the
minimum and maximum degrees of vertices.

OPODIS 2024
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(a) Expected value of flooding time. (b) Relative error of bounds.

Figure 6 Results of experiments for the model described in Example 2.2. Simulation was
conducted 10 000 times for each n from 2 to 1000. Value of p was set to 0.1.

The basic implementation of EPT-based algorithms is very simple for interference-free
communication. It is based on the following simple idea: If in one round you hear a number
smaller than the minimum observed so far, then in the next round send it to all your neighbors.
This approach obviously fails if the communication is not completely error-free. A trivial but
correct solution to this problem is to broadcast the observed minimum to all neighbors until
the last round of the algorithm. The sufficient number of rounds can be determined using
Theorem 3.4. We plan to use methods from [11] to improve this elementary idea.

Another possible direction of future research is to consider more complex models of
transmission failures that, e.g., do not assume the full independence of communication errors
or allow different probabilities of successful transmission for different edges. Such models
can be better-suited for describing real-world systems, in which interference may occur in
some fragment of the network at the same time (so transmission failures are spatially or
temporally correlated), or different parts of the system may have different physical properties
(e.g., certain areas may be affected by stronger disturbances). We expect that the methods
from this paper can also be applied to these situations.
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