
Fast, Fair and Truthful Distributed Stable
Matching for Common Preferences
Juho Hirvonen #

Helsinki Institute for Information Technology HIIT, Finland
Department of Computer Science, Aalto University, Espoo, Finland

Sara Ranjbaran #

Department of Computer Science, Aalto University, Espoo, Finland

Abstract
Stable matching is a fundamental problem studied both in economics and computer science. The
task is to find a matching between two sides of agents that have preferences over who they want
to be matched with. A matching is stable if no pair of agents prefer each other over their current
matches. The deferred acceptance algorithm of Gale and Shapley solves this problem in polynomial
time. Further, it is a mechanism: the proposing side in the algorithm is always incentivised to report
their preferences truthfully.

The deferred acceptance algorithm has a natural interpretation as a distributed algorithm (and
thus a distributed mechanism). However, the algorithm is slow in the worst case and it is known
that the stable matching problem cannot be solved efficiently in the distributed setting. In this
work we study a natural special case of the stable matching problem where all agents on one of the
two sides share common preferences. We show that in this case the deferred acceptance algorithm
does yield a fast and truthful distributed mechanism for finding a stable matching. We show how
algorithms for sampling random colorings can be used to break ties fairly and extend the results to
fractional stable matching.

2012 ACM Subject Classification Theory of computation → Algorithmic mechanism design; Theory
of computation → Distributed algorithms

Keywords and phrases stable matching, deferred acceptance, local algorithm, mechanism design

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.30

Funding Sara Ranjbaran: Supported by Helsinki Institute for Information Technology HIIT.

1 Introduction

In mechanism design the goal is to design optimisation algorithms that work when the input
is private information held by strategic agents. For example, in the case of auctions, each
agent has a private valuation for the item being sold and the goal is to find an auction
mechanism that incentivises the agents to reveal their true valuations while assigning the
item to the agent that values it the most.

Stable matching is one of the seminal problems studied in mechanism design [28]. There
is a bipartite matching graph where each node is an agent and each edge indicates a potential
match. The agents have a linear order over their neighbours that is initially only known
to them. Each agent reports some linear order and based on these an algorithm computes
a matching. The deferred acceptance algorithm of Gale and Shapley [18] finds a stable
matching: there is no pair of agents that would prefer each other over their assigned matches.
See Figure 1 for an illustration.

The algorithm of Gale and Shapley consists of rounds of proposals. One side of the
bipartition is the proposing side and one is the receiving side. In each round each unmatched
proposing-side agent proposes to its next most preferred match. Agents that receive proposals
accept the best proposal if they prefer it over their current match (deferred acceptance).

© Juho Hirvonen and Sara Ranjbaran;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 30; pp. 30:1–30:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:juho.hirvonen@aalto.fi
https://orcid.org/0000-0001-8268-1070
mailto:sara.ranjbaran@aalto.fi
https://orcid.org/0009-0002-3559-7292
https://doi.org/10.4230/LIPIcs.OPODIS.2024.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

2, 1, 3 1, 2 4, 2, 1, 3 1, 2, 3 3, 2, 1 4, 2, 1, 3 2, 1, 3 2, 1 1, 2

1, 2, 3 1, 2 2, 4, 1, 3 3, 4, 1, 2 3, 2, 1 2, 1, 3 4, 2, 1, 3 3, 2, 1

Figure 1 A matching instance and a stable matching in bold. The preferences are given as a
list for the neighbours from left to right, with 1 indicating the highest preference. The matching is
stable: there is no pair of unmatched agents connected by an edge such that they would prefer each
other over their current match. Since there are more agents on one side, some agents must remain
unmatched.

The deferred acceptance algorithm has the important property that, for the proposing
side, revealing their true preferences is a dominant strategy [11, 32]. This makes the deferred
acceptance algorithm one of the few examples of a mechanism without money. It is also known
that there is no mechanism that finds a stable matching and is truthful for all agents [32].

The deferred acceptance algorithm can be applied to any setting where two sides need
to be matched based on preference criteria held by the individual agents. The original
motivation of Gale and Shapley was college admission: how to match students to school
seats [18]. The algorithm naturally generalises to this kind of one-to-many matching, where a
single school can be matched to many students. Due to its simplicity and strategic properties,
the deferred acceptance algorithm has also been widely deployed in practice [28, 34], for
example in the National Resident Matching Program (NRMP) in the US [33] and New York
City and Boston public high schools [35].

The deferred acceptance algorithm has a natural interpretation as a distributed proposal
algorithm. However, its worst-case running time is O(n2) rounds [30] and computing a stable
matching requires Ω(n) rounds in the LOCAL model [17]. We study a special case of the
general stable matching problem where one of the two sides of agents has common preferences,
i.e. the preferences of the agents are restrictions of the same partial order [21]. This special
case corresponds to the case where the preferences of one side come from some objective
ranking, such as standardised tests in school choice. This is a common assumption when
studying matching between autonomous agents, for example in biology [3], economics [7],
game theory [12], and resource assignment in computer networks [19].

1.1 Our contribution
We present several extensions of the deferred acceptance algorithm in the setting where one
of the sides has common preferences. Our algorithms implement the deferred acceptance
algorithm as an efficient distributed mechanism [14], and thus can be applied in settings
where a single centralised entity running the mechanism is infeasible. They are simple and
retain the potential of the centralised deferred acceptance algorithm for practical applications.

We will next present informal versions of our main results. We show that for one-sided
common preferences, the deferred acceptance algorithm can be implemented efficiently as
a distributed algorithm. Preferences are represented as a score function with S different
preference classes, and let ∆C and ∆P denote the maximum degrees of the two sides in the
matching graph. Let n denote the number of agents on the proposing side.

J. Hirvonen and S. Ranjbaran 30:3

▶ Theorem 1 (Informal, Theorem 8). There is an incentive-compatible distributed implemen-
tation of the deferred acceptance algorithm in the CONGEST model for one-sided common
preferences, with running time min{O(∆C∆P S + log∗ n), O(n)}.

The formal version of this Theorem is given in Theorem 8 in Section 3.
Our algorithms are incentive-compatible, i.e. the agents on the proposing side are never

worse off by reporting their true preferences. The most interesting application for our
algorithms is in sparse graphs: We are not aware of any other incentive-compatible mechanisms
with efficient distributed implementations, even in this setting. The classic deferred acceptance
algorithm does run in O(S) rounds, but requires that there are no ties. Providing this fast
and fair tie-breaking procedure is one of our main contributions.

It should be noted that the distributed execution of our algorithm is not claimed to
be strategy-proof: we assume the standard mechanism design setting where the agents are
strategic in revealing their private information, but the mechanism itself is run faithfully.

The dependency on both ∆ and S is necessary, as we discuss in Section 2.3. First,
stable matching is at least as hard as maximal matching, which is known to require
Ω(min{∆, log n/ log log n}) rounds [5]. Second, we show that even for ∆ = 2, finding a
stable matching with common preferences requires Ω(S) rounds.

We also show how to extend the algorithm to the fractional case that we call capacitated
fractional stable matching. The matching itself can take fractional values and both sides have
a maximum capacity. This can be seen as a generalisation of stable matching to a setting
where the clients have divisible jobs that are assigned to the providers for completion.

For general preferences, this setting is not well defined, as one must first define how
agents preferences weight quality of match against the total amount of a match [8]. We
show that in the case of one-sided common preferences, this is not an issue and the natural
greedy extension of the deferred acceptance algorithm is incentive-compatible as the truth
maximises both the quality and the quantity of the matching.

▶ Theorem 2 (Informal, Theorem 13). There is an incentive-compatible distributed imple-
mentation of a generalised deferred acceptance algorithm for capacitated fractional stable
matching in the CONGEST model for one-sided common preferences, with running time
min{O(∆C∆P S + log∗ n), O(n)}.

We assume that the preferences may contain ties. This means that an algorithm must
break these ties in some way, and the procedure has implications on the properties of
the mechanism. For example, if the tie-breaking does not retain the commonness of the
preferences, then it may cause the deferred acceptance algorithm to become slow to converge.
We solve this issue by using graph coloring as a tie-breaking procedure. While any coloring
is incentive-compatible, we also want the coloring to be fair. We propose a simple and fast
algorithm for sampling a random coloring (Section 5.2) and also show how existing algorithms
for sampling random colorings can be used as a subroutine in our algorithm (Section 5.1).

The first algorithm samples an almost uniformly random coloring using an existing
subroutine [16]. Let δ > 0 denote the total variation distance from uniform random coloring.

▶ Theorem 3 (Informal, Theorem 17). There is an incentive-compatible, randomised dis-
tributed implementation of the deferred acceptance algorithm in the CONGEST model for
one-sided common preferences with a tie-breaking routine that has total variation distance
δ > 0 from random and running time O(∆C∆P S + log(n/δ)).

A formal version of this Theorem is given in Theorem 17, Section 5.1.

OPODIS 2024

30:4 Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

The second algorithm uses a simpler color sampling that only guarantees that some subset
of agents succeed in being properly colored. These agents have a tie-breaking rule that is
conditionally uniform, but the remaining agents have an arbitrary tie-breaking.

▶ Theorem 4 (Informal, Theorem 19). For any δ > 0 there is an incentive-compatible,
randomised distributed implementation of the deferred acceptance algorithm in the CONGEST
model for one-sided common preferences with a tie-breaking routine that is uniformly random
for a subset of (1− δ)n proposing-side agents and runs in time O(δ−1∆C∆P S + log∗ n).

The formal version is given in Theorem 19, Section 5.2. Both of these fair tie-breaking
procedures can also be applied to capacitated fractional stable matching, yielding algorithms
with the same running times and guarantees.

Since finding a stable matching with general preferences is hard in the distributed
setting [17], our results suggest a trade-off for market design: in certain scenarios, it might be
preferable to force one of the sides to use common preferences in order to make the matching
procedure more efficient.

1.2 Related work
The deferred acceptance or Gale-Shapley algorithm computes a stable matching: a matching
(i.e. a subset of edges such that each agent belongs to at most one edge) such that no
unmatched potential pair prefers each other over their assigned matches [18]. As a mechanism
it is incentive-compatible for the proposing side of the algorithm [11, 32]. There does not
exist a mechanism (without payments) that is incentive-compatible for both sides at the
same time [32]. We refer to surveys by Knuth [25] and by Roth [34] for more details.

Irving, Manlove, and Scott studied the stable matching problem with common preferences
(called master preference lists there) [21]. This setting was also studied by Scott [37] and
O’Malley [29]. Generalisations of this setting were studied by Kamiyama [22, 23].

In the distributed setting, Khanchandani and Wattenhofer studied a variant of stable
matching where preference lists are similar on one side [24]. The running time of their
algorithm is O((∆ + 1)n), where ∆ is the similarity parameter. When ∆ = 0 their setting
corresponds to ours, except that we consider incomplete matching graphs. They show that
in the CONGEST model computing a stable matching with ∆ = 0 requires Ω(n/ log n)
rounds. This is further support for restricting our attention to the sparse case. Amira, Giladi,
and Lotker studied a variant where the preferences are given as edge weights and gave an
algorithm that finds a stable matching in O(

√
n) rounds [4].

Floréen, Kaski, Polishchuk, and Suomela [17] showed that finding a stable matching
requires Ω(n) rounds in the LOCAL model. Kipnis and Patt-Shamir showed that solving
the stable matching problem, even in graphs of diameter Θ(n), requires Ω(

√
n/ log n) rounds

in the CONGEST model. Most variants of stable matching are at least as hard as finding
a maximal matching, and this is known to require Ω(∆) rounds, where ∆ is the maximum
degree of the graph [5].

Finding a stable matching is hard in the distributed setting, and there has been a lot of
interest in finding almost stable matchings. An edge is unstable if it is not in the matching
but both of its endpoints prefer each other to their current matches, and a matching M is
ε-stable if the number of unstable edges is at most ε|M |. Floréen, Kaski, Polishchuk, and
Suomela [17] showed that truncating the deferred acceptance algorithm after O(∆2/ε) rounds
results in an ε-stable matching. Ostrovsky and Rosenbaum present an O(log5 n)-round
deterministic algorithm and an O(log2 n)-round randomised algorithm for computing ε-stable

J. Hirvonen and S. Ranjbaran 30:5

matchings [30]. Hassidim, Mansour, and Vardi [20] study the problem in the centralised local
computation algorithm (LCA) model. None of these algorithms have the strategic guarantees
of the deferred acceptance algorithm, as we discuss in Section 2.3.

We also study fractional stable matchings, which have been studied in the literature due
to their connection to integral stable matchings [38, 36]. Caragiannis, Filos-Ratsikas, Kanel-
lopoulos, and Vaish [8] resolve the issue ill-defined utility by studying cardinal preferences.
See their work for further references on the subject.

Our algorithms can be seen as examples of distributed algorithmic mechanism design
(DAMD) [14]. In DAMD the goal is to design mechanisms that can be run by the participating
agents. Work in this field has typically dealt with distributed mechanisms for global problems
in distributed networks, such as multi-cast cost sharing [13], leader election [1], consensus,
and renaming [2]. We are not aware of any distributed mechanisms implemented by a
sublinear-time algorithm (even for sparse graphs) before our work.

2 Background and definitions

2.1 Distributed algorithms
We study distributed algorithms in the standard LOCAL and CONGEST models of dis-
tributed computing [31, 26]. The system is represented as a graph G = (V, E) where the
set of nodes V are the computational agents and the edges E are the communication links:
two nodes u and v can communicate directly if and only if {u, v} ∈ E. Nodes connected to
u are its neighbors and are denoted by N(u). The degree (number of neighbours) of node v

is denoted by deg(v). The maximum degree ∆ of a graph G is maxv∈V deg(v). We assume
that n and ∆ are known to all nodes. Each node has a unique identifier from [poly(n)].

Computation proceeds in synchronous rounds. In each round, each node can send a
message to each of its neighbors, receive the messages sent by its neighbors, and update its
state. In the LOCAL model these messages can be unbounded in size, and the CONGEST
model only differs from the LOCAL in that the size of the messages is O(log n) bits. Eventually
each node must stop and announce its own output. The running time of an algorithm is the
number of communication rounds until all nodes have stopped.

Unless otherwise stated, all algorithms are deterministic. In randomised algorithms, nodes
additionally have a uniformly random and sufficiently long string of bits as input.

2.2 Mechanism design
A mechanism M is a game: It consists of a set V of agents and each agent v ∈ V has a
private type t(v) representing its utility function. In the case of stable matching, the type
of the agent is its preference relation over its neighbours. For each agent there is a set of
possible actions A(v) representing the possible ways of reporting its type (preferences) to
the mechanism. The strategy a(v) of agent v is its chosen action. The mechanism has an
allocation function F that maps the strategies of the agents to a set O of possible outcomes.

A mechanism is incentive-compatible or truthful if reporting the truth (i.e. choosing
a(v) = t(v)) is a dominant strategy: agent is never worse off by reporting truthfully. For
randomised mechanisms, we say that a mechanism is (universally) incentive-compatible if
truth is a dominant strategy for all choices of randomness.

In this work we consider distributed mechanisms where the allocation function can be
implemented as a distributed algorithm. Each agent corresponds to a node in graph G. The
strategy of each agent is part of the input of the corresponding node. After the strategies

OPODIS 2024

30:6 Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

are revealed in the input, the agents can no longer affect the mechanism and we assume
that the algorithm implementing the allocation rule is run faithfully. Designing distributed
algorithms that are strategy-proof to run is a distinct hard problem, and even very simple
greedy algorithms can be difficult to analyse [10].

2.3 Stable matching and deferred acceptance
We study the graph-theoretic version of the stable matching problem. The agents form a
bipartite matching graph G = (C ∪P, E). We call the side C clients and the side P providers:
the clients correspond to the proposing side in the deferred acceptance algorithm. The edges
represent the possible matches of each agent, and these are all assumed to be preferable to
being unmatched. The goal is to compute a (weakly) stable matching: a matching where no
pair of agents strictly prefer each other to their current matches.

We assume that the communication network N = (C ∪ P, E′) is G with additional edges
between any pair of clients that are connected to the same provider. The modelling choice is
somewhat arbitrary, and for most parameter values it allows us to simplify the description of
the CONGEST algorithms. For some large values of ∆, the maximum degree of the network,
there is a difference between the running time of the best LOCAL and CONGEST algorithms
if the matching graph is the communication network. We discuss this in Section A.3.

When we refer to degrees, we mean the degrees of the matching graph unless otherwise
specified. We denote by ∆C the maximum degree among the clients and by ∆P the maximum
degree among the providers, and assume that these are known to the agents.

The type of each client and each provider is a linear order on its incident providers,
determining in which order it prefers to be matched with them. The basic deferred acceptance
algorithm can be implemented as a distributed algorithm as follows. Let >v denote the
announced preferences of agent v. Each client v initialises a list L(v) of its deg(v) neighbours
in the preference order, starting from the most preferred. Each client and provider v maintains
a match variable m(v) initially set to unmatched.

On odd rounds 2i− 1 for i = 1, . . . :
1. Each unmatched client v sends message proposal to its most preferred match in L(v) and

removes it from L(v).
2. Each matched client waits.
3. Each provider p that receives one or more proposals picks the one that is from the most

preferred client v, and checks if v >p m(p). If yes, set m(p)← v.

On even rounds 2i for i = 1, . . . :
1. Each provider p sends m(p) to its neighbours (as acknowledgement of proposal acceptance

or rejection).
2. Each client v that receives m(p) = v from a neighbour sets m(v)← p. Each client u with

m(u) = p that receives m(p) ̸= u from p sets m(u) = ⊥ (unmatch).

The algorithm runs in O(n2) rounds. For common preferences, this can be improved to
O(n): by using the unique identifiers to break ties consistently, we obtain common preferences
with n preference classes. In each round the client in the highest preference class becomes
matched.

It is known that computing a stable matching requires Ω(n) rounds [17].

▶ Theorem 5 (Floreen et al. [17]). Computing a stable matching in a system where each
client and provider has maximum degree 2 requires Ω(n) rounds in the LOCAL model.

J. Hirvonen and S. Ranjbaran 30:7

1 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2

1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2

1 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2

2, 1 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2

<latexit sha1_base64="ghx9Q6sbQneHHeWQLKMuPs6D4hE=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xkWPAi8cEzAOSJcxOepMxs7PLzKwQlnyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJYPZpKgH9Gh5CFn1FipkfZLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NWHVz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveTeW6cVWuVfM4CnAKZ3ABHtxCDe6hDk1ggPAMr/DmPDovzrvzsWhdc/KZE/gD5/MH4euM+Q==</latexit>u

<latexit sha1_base64="ghx9Q6sbQneHHeWQLKMuPs6D4hE=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xkWPAi8cEzAOSJcxOepMxs7PLzKwQlnyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJYPZpKgH9Gh5CFn1FipkfZLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NWHVz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveTeW6cVWuVfM4CnAKZ3ABHtxCDe6hDk1ggPAMr/DmPDovzrvzsWhdc/KZE/gD5/MH4euM+Q==</latexit>u

<latexit sha1_base64="bM8bnj+GmbmjxibbgQFwRuNNRmg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaND44kXjxCIo8ENmR2aGBkdnYzM0tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbG5t7+R3C3v7B4dHxeOTpo4SxbDBIhGpdkA1Ci6xYbgR2I4V0jAQ2ArG93O/NUGleSQfzTRGP6RDyQecUWOl+qRXLLlldwGyTryMlCBDrVf86vYjloQoDRNU647nxsZPqTKcCZwVuonGmLIxHWLHUklD1H66OHRGLqzSJ4NI2ZKGLNTfEykNtZ6Gge0MqRnpVW8u/ud1EjOo+CmXcWJQsuWiQSKIicj8a9LnCpkRU0soU9zeStiIKsqMzaZgQ/BWX14nzauyd1u+qV+XqpUsjjycwTlcggd3UIUHqEEDGCA8wyu8OU/Oi/PufCxbc042cwp/4Hz+AONvjPo=</latexit>v

<latexit sha1_base64="bM8bnj+GmbmjxibbgQFwRuNNRmg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaND44kXjxCIo8ENmR2aGBkdnYzM0tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbG5t7+R3C3v7B4dHxeOTpo4SxbDBIhGpdkA1Ci6xYbgR2I4V0jAQ2ArG93O/NUGleSQfzTRGP6RDyQecUWOl+qRXLLlldwGyTryMlCBDrVf86vYjloQoDRNU647nxsZPqTKcCZwVuonGmLIxHWLHUklD1H66OHRGLqzSJ4NI2ZKGLNTfEykNtZ6Gge0MqRnpVW8u/ud1EjOo+CmXcWJQsuWiQSKIicj8a9LnCpkRU0soU9zeStiIKsqMzaZgQ/BWX14nzauyd1u+qV+XqpUsjjycwTlcggd3UIUHqEEDGCA8wyu8OU/Oi/PufCxbc042cwp/4Hz+AONvjPo=</latexit>v

Figure 2 Two instances of stable matching that only differ in the preferences of agent v on the
left. This causes the unique stable matching to change, and therefore agent u on the right has to
learn the preferences of v in order to compute a stable matching.

The theorem follows from a simple argument: for any path, there exist two assignments
of preferences to the agents such that 1) they only differ at one agent at one end of the path
and 2) the resulting instances both have a unique stable matching and these matchings are
edge-disjoint. See Figure 2 for an illustration.

Stable matching does not become easy when preference lists of the providers are very
similar. Khanchandani and Wattenhofer [24] studied the setting where all clients and
providers can be matched (matching graph is the complete bipartite graph). Their results
cannot be directly compared with the incomplete case, as providers might not share more
than one client. We can show that even if all providers that share adjacent clients share at
least δ adjacent clients computing a stable matching requires Ω(n/δ) rounds in the LOCAL
model. The details are given in Appendix A.2.

We study a special case of the stable matching problem where the providers have common
preferences (also known as master lists): they always agree when comparing two clients.
We assume that the preferences of the providers can be expressed as a single score function
s : C → {1, . . . , S}. We call the value s(v) of agent v its preference class. This score function
assumption is necessary, as in the example of Theorem 5 no providers share a pair of adjacent
clients and thus trivially agree in their preferences.

We must bound S to have any hope of having a fast distributed algorithm, as any
distributed algorithm for finding a stable matching requires Ω(S) rounds, even when ∆ = 2.

▶ Theorem 6. Any distributed algorithm in the LOCAL model for computing a stable matching
when providers have common preferences with S preference classes requires Ω(S) rounds.

The theorem follows from a similar construction as Theorem5. It is possible to construct
two paths such that they only differ in the preferences of one client in one end, but the
output of another client at the other end depends on this difference. See Appendix A.1 for
details, and Figure 3 there for an illustration.

It is easy to see that if there are no ties among the neighbours of any provider then the
deferred acceptance algorithm also terminates in O(S) rounds: in each round of proposals,
the agents in the highest remaining preference class become matched and will stay matched.

If the preferences are represented in a more fine-grained manner, for example as real
numbers from an interval [7], then by discretising them into S intervals it is possible to
achieve a trade-off between solution quality and running time. While explicitly knowing the
possible range of values of preferences s is not important, an upper bound on the number of
distinct preference classes needs to be known.

OPODIS 2024

30:8 Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

2.3.1 Tie-breaking with common preferences
Several natural procedures for breaking ties fail, in particular when used in the distributed
setting. A first come, first served rule that prefers clients that are already matched fails
because it loses the truthfulness property: clients may be incentivised to propose in a different
order to affect the tie-breaker. Using the unique identifiers to break the ties fails because it
introduces too many preference classes: as shown in Theorem 6, finding a stable matching
requires Ω(S) rounds. Similarly, using the port numbering to break symmetry makes the
problem as hard as general case.

We use colorings to break ties in a consistent way. This approach has the disadvantage
that closing the gap to the lower bound of Ω(max{∆, S}) appears difficult, as the tie-breaking
graph has maximum degree O(∆C∆P). It is an interesting open question whether the tie-
breaking can be computed in a more efficient manner while retaining the truthfulness and
the fast running time of the deferred acceptance algorithm.

2.3.2 Variants of deferred acceptance
It is typically assumed that the preferences of the agents are strict. However, the deferred
acceptance algorithm generalises naturally to the case where there are ties by using a
suitable tie-breaking mechanism. It is important to note that, in order to maintain incentive-
compatibility, the procedure to break ties should not depend on the preferences of the agents.
For example, a tie-breaking rule preferring the existing match in case of a tie could incentive
agents to lie in order to obtain a match early.

The deferred acceptance algorithm also generalises to one-sided one-to-many matching.
For example, in the case of school choice, schools have multiple seats and can thus accept
multiple applicants. A simple reduction represents a provider with k seats as k identical
copies of a provider with unit capacity. It is also possible to modify the algorithm itself
so that the providers accept k best matches. This has the advantage of not increasing the
maximum degree of the graph.

However, the deferred acceptance algorithm does not generalise to the case of many-
to-many matching, for example clients having multiple jobs that need to be assigned to
providers for completion. In this case it is not clear what the utility function of a client is:
for example, how does it prefer match quality compared to match size? We show in Section 4
that in the case of common preferences, there is a natural generalisation that can be solved
efficiently.

2.3.3 Almost stable matching
Several existing algorithms solve the almost stable matching problem [17, 30] in the distributed
setting. An edge is unstable if it is not in the matching but both of its endpoints prefer
each other to their current matches. The goal is to find a matching M with at most ε|M |
unstable edges.

It is important to note that previous efficient algorithms for almost stable matching are
not incentive-compatible. For example, truncating the deferred acceptance algorithm leads
to an almost stable matching [17]. This algorithm, however, is not incentive-compatible. As
an example, it could be that in the last round, agent v becomes unmatched from u when
it accepts a better proposal. Since this was the last round, v will remain unmatched. Now
assume it had a neighbor u′ that also is unmatched: by lying that u′ >v u agent v could
have ensured that it is matched with u′.

J. Hirvonen and S. Ranjbaran 30:9

3 Fast and fair deferred acceptance algorithm

3.1 Our basic algorithm
Since we assume that the clients are scored with a bounded number of values, we may have
ties among the clients connected to any provider. Since the original deferred acceptance
algorithm assumes that the preferences are distinct, these ties must be broken in a way that
preserves the truthfulness of the mechanism and does not create long dependencies that
would slow down the algorithm. We do this by computing a coloring of the virtual conflict
network formed by clients that share a preference class and a provider. These colors are
used to break ties: smaller color is preferred over a larger color if the preference classes are
equal. Since the tie breaking rule is precomputed, clients cannot affect it by lying about
their preferences, and the mechanism remains truthful. We note that tie-breaking can affect
the quality of the solution, in particular when the preference lists are not complete. We do
not attempt to optimise this.

The algorithm consists of three phases:
(1) Given the matching graph G = (C ∪ P, E), construct the virtual conflict network

H = (C, E′), with the set of clients C as nodes, where two clients v and u are connected
by an edge {v, u} ∈ E′ if and only if s(v) = s(u) and there exists w ∈ P such that
{v, w}, {u, w} ∈ E.

(2) Compute a c-coloring ϕ of H for some c. Create a new score function s ◦ ϕ defined as
(s ◦ ϕ)(v) = c(s(v)− 1) + ϕ(v).

(3) Run the distributed deferred acceptance algorithm with the provider-side common
preferences given by the score function s ◦ ϕ.

In step 2, any coloring that does not depend on the preferences of the clients preserves
truthfulness. In Section 5 we discuss how the coloring can be done in a fair way. Without
specifying the coloring algorithm, we get the following Lemma.

▶ Lemma 7. There exists a distributed mechanism in the CONGEST model for stable match-
ing when the providers have common preferences. The mechanism is incentive-compatible for
the clients and the algorithm implementing it runs in O(Tc(n, ∆H) + S · c) rounds, where
Tc(n, ∆) is the running time of a distributed c-coloring algorithm on networks of size n and
maximum degree ∆ and S is the number of common preferences.

The mechanism is deterministic unless the coloring algorithm is randomised. By using
the best deterministic (∆ + 1)-coloring algorithm we get the following.

▶ Theorem 8. There exists a deterministic distributed mechanism in the CONGEST
model for stable matching when the providers have common preferences. The mecha-
nism is incentive-compatible for the clients and the algorithm implementing it runs in
min{O(S∆H + log∗ n), O(n)} rounds.

Here, the maximum degree of the conflict graph is bounded by ∆H ≤ ∆C∆P .

Proof. Using the (∆ + 1)-coloring algorithm of Maus and Tonoyan [27] that runs in
O(

√
∆ log ∆ + log∗ n) rounds we can color H with ∆H + 1 colors in time O(

√
∆H log ∆H +

log∗ n). Using this in Lemma 7, the algorithm then runs in S(∆H + 1) rounds, giving a total
running time O(S∆H + log∗ n).

If running time of this algorithm is more than 2n, we can revert to another simple
algorithm: use the unique identifiers to break ties. There are at most n preference classes
among the clients and thus the running time will be O(n). ◀

OPODIS 2024

30:10 Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

We will now proceed to prove Lemma 7.

3.2 Proof of Lemma 7
If the providers have common preferences with S preference classes, then the deferred
acceptance algorithm runs in O(S) rounds in the CONGEST model.

▶ Lemma 9. If providers have common preferences s represented with at most S preference
classes and the preferences of each provider form a strict linear order over its adjacent clients,
then the distributed deferred acceptance algorithm runs in 2S − 1 rounds in the CONGEST
model of distributed computing.

Proof. This follows from the fact that in each proposal-answer iteration, consisting of 2
communication rounds, all clients with the highest preference class remaining become matched
and stop.

In the first round, the proposals of clients in preference class 1 are always accepted by
the providers, as the linear order is strict. They will therefore stop proposing and will not
participate in the algorithm further. In the third round, clients in the second preference class
either had their proposal accepted in the first round, or have their second proposal accepted
in the third round. The latter follows from the fact that all clients of (higher) preference
one have already stopped. By induction, by round 2i − 1, for i = 1, 2, . . . , S, all agents
with preference class at most i− 1 have stopped. In the final round no acknowledgement
is required, as by the strictness of the preferences the clients that are active before round
2S − 1 are the only such neighbours of their active adjacent providers. ◀

The score function s ◦ ϕ constructed in step 2 of the algorithm induces a strict linear
order for each provider over its adjacent clients, as required in Lemma 9. The total number
of preference classes is Sc.

▶ Lemma 10. Given a score function s and a c-coloring ϕ, the score function s◦ϕ, restricted
to the neighborhood of any single provider, forms a strict linear order. The number of
preference classes is Sc.

Proof. By construction, the new score function assigns values between 1 and Sc. If two
clients v and u have s(v) ̸= s(u), then by construction they also have (s ◦ ϕ)(v) ̸= (s ◦ ϕ)(u).
Finally, if they have s(v) = s(u) and share a neighbour, then {u, v} is in the conflict graph
and ϕ(v) ̸= ϕ(u) and therefore (s ◦ ϕ)(v) ̸= (s ◦ ϕ)(u). ◀

We also want the algorithm to be a mechanism, i.e. revealing the true preferences should
be a dominant strategy. To prove this in the special case of common preferences for providers,
we use the following technical lemma that states that the match of a client is its highest
preference after the matches of clients with a higher preference have been removed.

▶ Lemma 11. Assume that the providers have common preferences s such that the preferences
of each provider form a strict linear order over its adjacent clients. Let C(i) denote the set
of clients v with s(v) = i, and let M(i) denote the matching obtained by running the deferred
acceptance algorithm in the subgraph induced by ∪i

j=1C(j) ∪ P . For all i and each v ∈ C(i)
it holds that the match of v in G = (C ∪ P, E) under the deferred acceptance algorithm is its
most preferred match in the subgraph of G induced by (C ∪ P) \M(i− 1).

Proof. We note three facts about the deferred acceptance algorithm. First, each client
can only become matched with its kth preferred match if each of the k − 1 more preferred
providers 1) have already been proposed to by v, and those proposals were rejected, 2) have

J. Hirvonen and S. Ranjbaran 30:11

unmatched v due to a later more preferable proposal, or 3) have announced a match with a
client with a better priority (P1). Second, each provider only accepts proposals from more
preferred clients and therefore its match can only improve during the algorithm (P2). Third,
as in the proof of Lemma 9, all clients in C(1), . . . , C(j) have stopped after round 2j (P3).

The proof is by induction on i. For the base case i = 1, the first proposal of each v ∈ C(1)
is accepted. Therefore M(1) consists of the most preferred match of each client. Now assume
the claim holds up to some j. Consider v ∈ C(j + 1) and round 2j + 1. If v is matched to
some provider p, all higher priority providers are matched to a higher priority client by P1
and P2. By P3, v will remain matched to p until the end of the execution. If v is unmatched,
let p′ be the highest priority provider adjacent to v that has not announced that it is matched
to a client in ∪j

i=1C(i). Since v is unmatched, it has not yet proposed to p′ (P2). It will now
propose to it, and, since higher priority clients have stopped, become matched. If no p′ exists,
then by (P1) and (P2) all neighbours of v are matched to a more preferred client. ◀

Proof of Lemma 7. By Lemma 10, the score function s ◦ ϕ gives a partial linear order for
the providers with Sc classes such that the order is strict for any provider. By Lemma 9 the
distributed deferred acceptance algorithm then runs in 2Sc− 1 rounds. Constructing the
virtual conflict graph requires 1 round of communication (recall the modelling assumptions
from Section 2.3). The coloring algorithm, by definition, takes O(Tc(n, ∆H)) rounds. In
total the running time is O(Tc(n, ∆) + Sc) rounds.

The algorithm computes a stable matching by the combination of Lemmas 9 and 10. It
remains to argue that the algorithm is incentive-compatible for the clients. The first step,
where the conflict graph H is formed, depends on the preferences of the providers, but not
on the preferences of the clients. Therefore clients cannot affect the structure of H by lying.
In the second step, the coloring algorithm only depends on the structure of H and (possibly)
the unique identifiers of the clients. Since we assume that these are not part of the private
input, the clients cannot affect the coloring by lying. It is known that the final step, the
original deferred acceptance algorithm is incentive compatible for the clients [11, 32]. In the
case of common preferences we have a simpler argument for this. By Lemma 11, the match
of each client is its most preferred provider once the matches of higher priority clients have
been removed. Conversely, since the match of the higher priority clients is not affected by the
preferences of lower priority clients, the agents should always report their true preferences so
that they get matched to their most preferred remaining provider. ◀

4 Generalisation to fractional loads and capacities

In this section we show that our algorithm can be generalised to the case where each client v

has some load ℓ(v) and each provider u has some capacity ℓ(u), these have fractional values,
and the goal is to find a stable matching such that for each provider, the total load assigned
to it is at most its capacity. Note that this also captures the setting where clients have
discrete load that is matched to the providers.

More formally, we call the following problem the fractional capacitated stable matching
problem. The output is a fractional matching m : E → Q that assigns a rational number to
each edge. For agent v, let m(v) =

∑
e:v∈e m(e). We have a capacity constraint m(v) ≤ ℓ(v)

for all agents. We say that agents v ∈ C, u ∈ P : {v, u} ∈ E form a blocking pair if they
would prefer to assign more load to the matching between them. More formally, if 1) there
exist v′ ∈ N(u) such that m({v′, u}) > 0 and v >u v′, or m(u) < ℓ(u) and 2) there exists
u′ ∈ N(v) such that m({v, u′}) > 0 and u >v u′ or m(v) < ℓ(v).

OPODIS 2024

30:12 Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

With general preferences, it is not clear how utility should be defined: how does an agent
prefer x units of load matched at preference y against 2x units of load matched at preference
y + 1. A typical solution is to define a new utility function that fixes some relation between
these two. Here we will show that the natural greedy modification of the deferred acceptance
algorithm optimises both when one side has common preferences: the clients will maximise
both the quality and quantity of their matching by being truthful.

4.1 Modified deferred acceptance algorithm
To account for capacities (and fractional loads), we modify the original deferred acceptance
algorithm. We call this simple modification batch proposals. First, in each acknowledgement
round, all providers send their current loads with the associated preference scores to all of
their neighbours. Second, in each proposal round, each client proposes greedily based on the
available capacity of its neighbours.

We use the basic algorithm template given in Section 3.1, but use the following, modified
subroutine for deferred acceptance. For simplicity, we present the non-adaptive version of
this algorithm. It has the same worst-case running time as the adaptive version presented in
Section 3.1, but has slightly better message complexity.

Each client v holds a vector r(v) = (r1(v), r2(v), . . . , rd(v)), consisting of the remaining
capacities of its neighboring providers and where d = deg(v). On round 0, these are set to
the initial capacities of the neighbours. For a given vector r(v), the greedy batch proposal of
v to the ith preferred provider is calculated as p(v, i) = min{ri(v), l(v)−

∑i−1
j=1 p(v, j)}. That

is, go over the providers one by one in preference order and assign the maximum amount of
load that is feasible.

We assume the clients v know their own preference class s(v). If not, the providers can
use one round to send this value to the clients. On odd rounds 2t− 1 for t = 1, . . . , S:
1. For a client, if s(v) = t, for each neighbor ui send them the batch proposal p(v, i) and

stop with m({v, ui}) = p(v, i).
2. If a provider receives a non-zero proposal, accept it.

On even rounds 2t for t = 1, . . . , S:
1. Each provider, if it accepted a non-zero proposal in the previous round, sends its new

remaining capacity to all neighbours.
2. Each client v updates r(v) based on received messages.

▶ Lemma 12. There exists a distributed mechanism in the CONGEST model for fractional
capacitated stable matching when the providers have common preferences. The mechanism is
incentive-compatible for the clients and the algorithm implementing it runs in O(Tc(n, ∆H) +
Sc) rounds.

Analogous to Theorem 8, we have the following.

▶ Theorem 13. There exists a deterministic distributed mechanism in the CONGEST model
for fractional capacitated stable matching when the providers have common preferences. The
mechanism is incentive-compatible for the clients and the algorithm implementing it runs in
min{O(S∆H + log∗ n), O(n)} rounds.

While all fractional capacitated matchings are not comparable based on which an agent
would prefer, we show that in the case of common preferences, we can define a natural partial
order over fractional matchings the algorithm can compute such that agents will always
prefer the matching produced when the agent is truthful. This implies that in the case of
common preferences the deferred acceptance algorithm is incentive-compatible for the clients.

J. Hirvonen and S. Ranjbaran 30:13

For a fixed client v, let m(v, i) denote the load assigned by fractional matching m on the
edge between v and its ith most preferred provider. We define that m is preferable to m′

for client v if the following holds: for all i ∈ {1, . . . , deg(v)}, we have that
∑i

j=1 m(v, j) ≥∑i
j=1 m′(v, j). That is, assignment m always assigns at least as much load at at least as

high preference as m′.
To prove the truthfulness of the modified algorithm, we show that under the modified

deferred acceptance algorithm, the solution computed under true preferences is preferable to
the solution computed under any other reported preferences.
▶ Lemma 14. For each client v and each i in {1, . . . , deg(v)}, the modified deferred accep-
tance algorithm computes an assignment such that reporting the true preferences maximises∑i

j=1 m(v, j).
This lemma means that by truthful reporting of preferences a client maximises the total

matching assigned to any first i most preferred providers. In particular, it means that it also
maximises the total weight of its matching. The proof is given in Appendix A.4

Proof of Lemma 12. The score function s and a c-coloring ϕ work the same way for the
fractional version of the algorithm. Therefore, by Lemma 10, the score function s ◦ ϕ

provides a strict order for the providers with Sc preference classes. At each round 2t − 1
for t ∈ {1, . . . Sc}, the proposals of clients in preference class t make their proposals and
stop. Given the one round of additional preprocessing, the modified deferred acceptance
algorithm runs in 2Sc rounds. The coloring takes, by definition, O(Tc(n, ∆)) rounds and the
total running time is O(Tc(n, ∆) + S · c).

Since the s ◦ ϕ are strict, each provider receives at most one proposal in each round and
these are always accepted. The resulting matching is stable, as the clients compute the best
available matching with respect to existing matching. By Lemma 14 the algorithm is also
incentive-compatible, as the matching computed given true preferences is always preferred
by a client. ◀

Note that here we assumed that initially all capacities are values that can be sent in one
round in the CONGEST model. The operations performed are addition and subtraction,
and we assume that the values obtained this way can also be sent in the CONGEST model.

5 Fair tie-breaking

In this section we consider two fair ways of breaking ties in the deferred acceptance algorithm.
This does not affect the truthfulness of the algorithm, but the goal is to provide an additional
guarantee: despite having ties, from the perspective of each client, each way of breaking ties
is (almost) equally probable. This implies that the algorithm not biased against any of the
clients.

We define a tie-breaking rule as a function s′ that assigns a new preference class to each
client from some set S′ such that each pair of clients that are assigned the same preference
class by the original score function s and share an adjacent provider, are assigned a different
class. Further, it must respect the original order, i.e. if s(v) < s(u), then s′(v) < s′(u). The
tie-breaking rule given by a proper coloring of the conflict graphs, as described in Section 3.1
satisfies these properties.

Tie-breaking is uniformly random, if each legal tie-breaking is equally likely. A uniformly
random coloring ϕ of the conflict graph H, where all clients are colored from a palette of the
same size c, would give a uniformly random tie-breaking rule s◦ϕ, as described in Section 3.1.
Computing a uniformly random coloring in the distributed setting is hard [15], so we will
consider two different ways of computing almost random colorings.

OPODIS 2024

30:14 Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

5.1 Sampling an almost random coloring

The first approach is to use an existing sampling algorithm to find an almost random coloring.
The state of the art distributed sampling algorithm is due to Carlson et al. [9].

▶ Theorem 15 ([9], Theorem 1). For all ε > 0, all ∆ ≥ 2, all δ > 0, and any k > (11/6+ε)∆,
for any graph G = (V, E) of maximum degree ∆, a random k-coloring within total variation
distance ≤ δ from uniform can be generated in O(log(n/δ)) rounds.

Given two distributions µ, ν over the same space Ω, the total variation distance is defined
as d(µ, ν) =

∑
σ∈Ω |µ(σ) − ν(σ)|. It is essentially the total absolute distance between the

two distributions.
Fischer and Ghaffari present a simpler algorithm that finds a coloring with slightly more

colors, but can also be used (in our context) in the CONGEST model.

▶ Theorem 16 ([16], Theorem 1). A uniform proper q-coloring of an n-node graph with
maximum degree ∆ can be sampled within total variation distance δ > 0 in O

(
log(n

δ)
)

rounds,
where q = α∆ for any α > 2.

The disadvantage of using these algorithms compared to the algorithm we will present in
Section 5.2 is that almost uniform sampling is slower when maximum degree is low: finding a
coloring from a distribution with a total variation distance ≤ δ to a random coloring requires
Ω

(
(log(n

δ)
)

rounds [15].
Using the algorithm of Fischer and Ghaffari we get the following theorem.

▶ Theorem 17. There exists a randomised distributed mechanism in the CONGEST model
that computes a stable matching with high probability when the providers have common
preferences. The mechanism is incentive-compatible for the clients, for any δ > 0, the
tie-breaking is within total variation distance δ from the uniformly random tie-breaking, and
the algorithm implementing it runs in O(∆HS + O(log(n/δ)) rounds.

We note that this theorem has an analogous variant for the fractional stable matching as
well, as the computation of the fractional matching is independent of how the tie-breaking
rule was obtained.

Proof. The running time and the incentive-compatibility follow from Lemma 7 and The-
orem 16 by using c = 2∆ + 1. Similarly, the bound on the total variation distance of
the coloring implies directly a corresponding bound on the total variation distance of the
tie-breaking rule, as each order is produced by the same number of colorings.

The algorithm runs in the CONGEST model, even if the matching graph is the com-
munication graph. Initially each node v starts with some color ϕ(v). In each round, each
node samples a new color ϕ′(v) ∈ [c] uniformly at random. Then it sends its current color
ϕ(v) and new color ϕ′(v) to each of its neighbours. If for all neighbors u it holds that
ϕ′(v) /∈ {ϕ(u), ϕ′(u)}, then v sets ϕ′(v) as its new color. Otherwise there is a potential
conflict, and it keeps its old color. To implement this in the CONGEST model, the providers
function as intermediaries: for each neighbor u, each provider v checks whether there is a
conflict with any of u’s neighbours in H through v and reports this back to u. If no provider
of u reports a conflict, u assumes new color ϕ′(u). ◀

J. Hirvonen and S. Ranjbaran 30:15

5.2 Fast random coloring with failures

The second approach is to sample a coloring once and to fix any improperly colored parts
arbitrarily. The sampling takes constant time, but the bias for the agents that fail to be
properly colored is arbitrarily bad. Additionally the error probability is inversely related to
the number of colors, and thus requiring high fairness slows down the matching step. We
prove the following lemma.

▶ Lemma 18. For any 0 < δ < 1 there exists a randomised distributed coloring algorithm
with the following properties:
(P1) The running time is O(

√
∆ log ∆ + log∗ n) rounds.

(P2) There is a subset F ⊆ V such that each node is in F with probability at least 1− δ (and
thus the expected size of F is (1− δ)n) and F is colored u.a.r. with ⌈δ−1⌉∆ colors.

(P3) Remaining nodes are colored with ∆+1 colors from {⌈δ−1⌉∆+1, . . . , (⌈δ−1⌉+1)∆+2}.

Recall that in Section 3 the algorithm requires that the conflict graph of clients is colored.
In what follows, let H = (V, E) denote the conflict graph and let ∆ denote the maximum
degree of the conflict graph. As input, the algorithm takes parameter δ: this is the target
probability for failure at a single node. Our first coloring algorithm consists of two steps:
1. Each node v picks a color ϕ(v) uniformly at random from {1, . . . , ⌈δ−1⌉∆}. Here assume

that ⌈δ−1⌉∆ ≥ ∆ + 1.
2. Let X denote the set of nodes with coloring conflicts: if v ∈ X then there exists u such

that ϕ(v) = ϕ(u). Color nodes in X with ∆ + 1 colors from the palette {⌈δ−1⌉∆ +
1, . . . , (⌈δ−1⌉+ 1)∆ + 2}.

The idea behind this simple algorithm is that all nodes that are either properly colored in
step 1 are colored completely at random. The fraction of nodes colored properly in step 1 is
at least (1− δ). The remaining nodes are colored in a way that does not affect the matching
computed by nodes colored in step 1. The proof of Lemma 18 is given in Appendix A.5.

Using this algorithm for the template given in Lemma 7 we get the following. The
tie-breaking rule guarantees that there is a large set of agents that have fair tie-breaking in
the sense that 1) the tie-breaking is completely random among them, and 2) the remaining
agents have worse tie-breaking. The trade-off is that the size of the fair set affects the number
of colors and thus the running time of the deferred acceptance algorithm.

▶ Theorem 19. For any δ > 0, there exists a randomised distributed mechanism in the
LOCAL model for stable matching when the providers have common preferences. The
mechanism is incentive-compatible for the clients, there exists a subset F of clients of
expected size (1− δ)n such that the tie-breaking is uniformly random when restricted to F ,
and C \ F has arbitrary tie-breaking at lower preference than F . The running time of the
algorithm is O(δ−1S∆H + log∗ n).

Proof. The properties of the algorithm follow from Lemma 7 and Lemma 18. ◀

Again, this theorem has an analogous variant for the fractional stable matching as the
modification to the deferred acceptance algorithm is unaffected.

OPODIS 2024

30:16 Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

References
1 Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. Distributed protocols for leader election:

A game-theoretic perspective. ACM Trans. Economics and Comput., 7(1):4:1–4:26, 2019.
doi:10.1145/3303712.

2 Yehuda Afek, Yehonatan Ginzberg, Shir Landau Feibish, and Moshe Sulamy. Distributed
computing building blocks for rational agents. In Magnús M. Halldórsson and Shlomi Dolev,
editors, Proc. 2014 ACM Symposium on Principles of Distributed Computing (PODC 2014),
pages 406–415. ACM, 2014. doi:10.1145/2611462.2611481.

3 Steve Alpern and Diane Reyniers. Strategic mating with common preferences. Journal of
Theoretical Biology, 237(4):337–354, 2005. doi:10.1016/j.jtbi.2003.09.021.

4 Nir Amira, Ran Giladi, and Zvi Lotker. Distributed weighted stable marriage problem. In
Proc. 17th Internation Colloquium on Structural Information and Communication Complexity
(SIROCCO 2010), pages 29–40, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-13284-1_4.

5 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. J. ACM,
68(5):39:1–39:30, 2021. doi:10.1145/3461458.

6 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (∆ +
1)-coloring and applications. J. ACM, 69(1):5:1–5:26, 2022. doi:10.1145/3486625.

7 Ken Burdett and Melvyn G. Coles. Marriage and class. The Quarterly Journal of Economics,
112(1):141–168, 1997. URL: http://www.jstor.org/stable/2951279.

8 Ioannis Caragiannis, Aris Filos-Ratsikas, Panagiotis Kanellopoulos, and Rohit Vaish. Stable
fractional matchings. In Proc. 2019 ACM Conference on Economics and Computation (EC
2019), pages 21–39. ACM, 2019. doi:10.1145/3328526.3329637.

9 Charlie Carlson, Daniel Frishberg, and Eric Vigoda. Improved Distributed Algorithms for
Random Colorings. In Proc. 27th International Conference on Principles of Distributed
Systems (OPODIS 2023), volume 286 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 13:1–13:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.OPODIS.2023.13.

10 Simon Collet, Pierre Fraigniaud, and Paolo Penna. Equilibria of games in networks for
local tasks. In Proc. 22nd International Conference on Principles of Distributed Systems
(OPODIS 2018), volume 125 of LIPIcs, pages 6:1–6:16. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.OPODIS.2018.6.

11 Lester E. Dubins and David A. Freedman. Machiavelli and the gale-shapley algorithm. The
American Mathematical Monthly, 88(7):485–494, 1981. doi:10.2307/2321753.

12 Kimmo Eriksson and Olle Häggström. Instability of matchings in decentralized markets with
various preference structures. Int. J. Game Theory, 36(3-4):409–420, 2008. doi:10.1007/
S00182-007-0081-6.

13 Joan Feigenbaum, Christos H. Papadimitriou, and Scott Shenker. Sharing the cost of multicast
transmissions. J. Comput. Syst. Sci., 63(1):21–41, 2001. doi:10.1006/JCSS.2001.1754.

14 Joan Feigenbaum, Michael Schapira, and Scott Shenker. Distributed Algorithmic Mechanism
Design, pages 363–384. Cambridge University Press, 2007.

15 Weiming Feng, Yuxin Sun, and Yitong Yin. What can be sampled locally? In Proc. 2017
ACM Symposium on Principles of Distributed Computing (PODC 2017), pages 121–130, 2017.
doi:10.1145/3087801.3087815.

16 Manuela Fischer and Mohsen Ghaffari. A simple parallel and distributed sampling technique:
Local glauber dynamics. In Proc. 32nd International Symposium on Distributed Computing
(DISC 2018), volume 121 of LIPIcs, pages 26:1–26:11. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPICS.DISC.2018.26.

17 Patrik Floréen, Petteri Kaski, Valentin Polishchuk, and Jukka Suomela. Almost stable
matchings by truncating the gale-shapley algorithm. Algorithmica, 58(1):102–118, 2010.
doi:10.1007/s00453-009-9353-9.

https://doi.org/10.1145/3303712
https://doi.org/10.1145/2611462.2611481
https://doi.org/10.1016/j.jtbi.2003.09.021
https://doi.org/10.1007/978-3-642-13284-1_4
https://doi.org/10.1007/978-3-642-13284-1_4
https://doi.org/10.1145/3461458
https://doi.org/10.1145/3486625
http://www.jstor.org/stable/2951279
https://doi.org/10.1145/3328526.3329637
https://doi.org/10.4230/LIPIcs.OPODIS.2023.13
https://doi.org/10.4230/LIPIcs.OPODIS.2018.6
https://doi.org/10.2307/2321753
https://doi.org/10.1007/S00182-007-0081-6
https://doi.org/10.1007/S00182-007-0081-6
https://doi.org/10.1006/JCSS.2001.1754
https://doi.org/10.1145/3087801.3087815
https://doi.org/10.4230/LIPICS.DISC.2018.26
https://doi.org/10.1007/s00453-009-9353-9

J. Hirvonen and S. Ranjbaran 30:17

18 David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962. doi:10.2307/2312726.

19 Zihan Gao, Wanming Hao, and Shouyi Yang. Joint offloading and resource allocation for multi-
user multi-edge collaborative computing system. IEEE Trans. Veh. Technol., 71(3):3383–3388,
2022. doi:10.1109/TVT.2021.3139843.

20 Avinatan Hassidim, Yishay Mansour, and Shai Vardi. Local computation mechanism design.
ACM Trans. Economics and Comput., 4(4):21:1–21:24, 2016. doi:10.1145/2956584.

21 Robert W. Irving, David F. Manlove, and Sandy Scott. The stable marriage problem
with master preference lists. Discrete Applied Mathematics, 156(15):2959–2977, 2008. doi:
j.dam.2008.01.002.

22 Naoyuki Kamiyama. Stable matchings with ties, master preference lists, and matroid con-
straints. In Martin Hoefer, editor, Algorithmic Game Theory (SAGT 2015), pages 3–14, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg. doi:10.1007/978-3-662-48433-3_1.

23 Naoyuki Kamiyama. Many-to-many stable matchings with ties, master preference lists,
and matroid constraints. In Proc. 18th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2019), pages 583–591, 2019. URL: http://dl.acm.org/
citation.cfm?id=3331743, doi:10.5555/3306127.3331743.

24 Pankaj Khanchandani and Roger Wattenhofer. Distributed stable matching with similar
preference lists. In Proc. 20th International Conference on Principles of Distributed Systems,
(OPODIS 2016), volume 70 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPICS.OPODIS.2016.12.

25 Donald Ervin Knuth. Stable marriage and its relation to other combinatorial problems: An
introduction to the mathematical analysis of algorithms, volume 10. American Mathematical
Soc., 1997.

26 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

27 Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In Hagit
Attiya, editor, Proc. 34th International Symposium on Distributed Computing (DISC 2020),
volume 179 of LIPIcs, pages 16:1–16:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPICS.DISC.2020.16.

28 Economic Sciences Prize Committee of the Royal Swedish Academy of Sciences. Scientific
background on the sveriges riksbank prize in economic sciences in memory of alfred nobel 2012:
Stable allocations and the practice of market design. https://www.kva.se/app/uploads/2012/
10/globalassets-priser-ekonomi-2012-scibackeken12.pdf, 2012. Accessed:15-02-2024.

29 Gregg O’Malley. Algorithmic aspects of stable matching. PhD thesis, University of Glasgow,
2007.

30 Rafail Ostrovsky and Will Rosenbaum. Fast distributed almost stable matchings. In Proc.
2015 ACM Symposium on Principles of Distributed Computing (PODC 2015), pages 101–108.
ACM, 2015. doi:10.1145/2767386.2767424.

31 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

32 Alvin E. Roth. The economics of matching: Stability and incentives. Mathematics of Operations
Research, 7(4):617–628, 1982. doi:10.1287/moor.7.4.617.

33 Alvin E. Roth. The evolution of the labor market for medical interns and residents: A case study
in game theory. Journal of Political Economy, 92(6):991–1016, 1984. doi:10.1086/261272.

34 Alvin E. Roth. Deferred acceptance algorithms: history, theory, practice, and open questions.
Int. J. Game Theory, 36(3-4):537–569, 2008. doi:10.1007/S00182-008-0117-6.

35 Alvin E. Roth. What have we learned from market design? The Economic Journal,
118(527):285–310, 2008. doi:10.1111/j.1468-0297.2007.02121.x.

36 Alvin E. Roth, Uriel G. Rothblum, and John H. Vande Vate. Stable matchings, optimal
assignments, and linear programming. Mathematics of Operations Research, 18(4):803–828,
1993. URL: http://www.jstor.org/stable/3690124, doi:10.1287/MOOR.18.4.803.

OPODIS 2024

https://doi.org/10.2307/2312726
https://doi.org/10.1109/TVT.2021.3139843
https://doi.org/10.1145/2956584
https://doi.org/j.dam.2008.01.002
https://doi.org/j.dam.2008.01.002
https://doi.org/10.1007/978-3-662-48433-3_1
http://dl.acm.org/citation.cfm?id=3331743
http://dl.acm.org/citation.cfm?id=3331743
https://doi.org/10.5555/3306127.3331743
https://doi.org/10.4230/LIPICS.OPODIS.2016.12
https://doi.org/10.1137/0221015
https://doi.org/10.4230/LIPICS.DISC.2020.16
https://www.kva.se/app/uploads/2012/10/globalassets-priser-ekonomi-2012-scibackeken12.pdf
https://www.kva.se/app/uploads/2012/10/globalassets-priser-ekonomi-2012-scibackeken12.pdf
https://doi.org/10.1145/2767386.2767424
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1287/moor.7.4.617
https://doi.org/10.1086/261272
https://doi.org/10.1007/S00182-008-0117-6
https://doi.org/10.1111/j.1468-0297.2007.02121.x
http://www.jstor.org/stable/3690124
https://doi.org/10.1287/MOOR.18.4.803

30:18 Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

37 Sandy Scott. A Study Of Stable Marriage Problems With Ties. PhD thesis, University of
Glasgow, 2005.

38 John H. Vande Vate. Linear programming brings marital bliss. Operations Research Letters,
8(3):147–153, 1989. doi:10.1016/0167-6377(89)90041-2.

A Additional details

A.1 Proof of Theorem 6

2, 1 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2

1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2

<latexit sha1_base64="ghx9Q6sbQneHHeWQLKMuPs6D4hE=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xkWPAi8cEzAOSJcxOepMxs7PLzKwQlnyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJYPZpKgH9Gh5CFn1FipkfZLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NWHVz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveTeW6cVWuVfM4CnAKZ3ABHtxCDe6hDk1ggPAMr/DmPDovzrvzsWhdc/KZE/gD5/MH4euM+Q==</latexit>u

<latexit sha1_base64="ghx9Q6sbQneHHeWQLKMuPs6D4hE=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xkWPAi8cEzAOSJcxOepMxs7PLzKwQlnyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJYPZpKgH9Gh5CFn1FipkfZLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NWHVz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveTeW6cVWuVfM4CnAKZ3ABHtxCDe6hDk1ggPAMr/DmPDovzrvzsWhdc/KZE/gD5/MH4euM+Q==</latexit>u<latexit sha1_base64="bM8bnj+GmbmjxibbgQFwRuNNRmg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaND44kXjxCIo8ENmR2aGBkdnYzM0tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbG5t7+R3C3v7B4dHxeOTpo4SxbDBIhGpdkA1Ci6xYbgR2I4V0jAQ2ArG93O/NUGleSQfzTRGP6RDyQecUWOl+qRXLLlldwGyTryMlCBDrVf86vYjloQoDRNU647nxsZPqTKcCZwVuonGmLIxHWLHUklD1H66OHRGLqzSJ4NI2ZKGLNTfEykNtZ6Gge0MqRnpVW8u/ud1EjOo+CmXcWJQsuWiQSKIicj8a9LnCpkRU0soU9zeStiIKsqMzaZgQ/BWX14nzauyd1u+qV+XqpUsjjycwTlcggd3UIUHqEEDGCA8wyu8OU/Oi/PufCxbc042cwp/4Hz+AONvjPo=</latexit>v

<latexit sha1_base64="bM8bnj+GmbmjxibbgQFwRuNNRmg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaND44kXjxCIo8ENmR2aGBkdnYzM0tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbG5t7+R3C3v7B4dHxeOTpo4SxbDBIhGpdkA1Ci6xYbgR2I4V0jAQ2ArG93O/NUGleSQfzTRGP6RDyQecUWOl+qRXLLlldwGyTryMlCBDrVf86vYjloQoDRNU647nxsZPqTKcCZwVuonGmLIxHWLHUklD1H66OHRGLqzSJ4NI2ZKGLNTfEykNtZ6Gge0MqRnpVW8u/ud1EjOo+CmXcWJQsuWiQSKIicj8a9LnCpkRU0soU9zeStiIKsqMzaZgQ/BWX14nzauyd1u+qV+XqpUsjjycwTlcggd3UIUHqEEDGCA8wyu8OU/Oi/PufCxbc042cwp/4Hz+AONvjPo=</latexit>v

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Figure 3 Two instances of stable matching that only differ in the preferences of agent v on the
left. For each client (bottom, red) their preferences are indicated below them in the order of the
adjacent providers and their preference class on their right. The change causes the unique stable
matching to change, and therefore agent u on the right has to learn the preferences of v in order to
compute a stable matching.

We show that even when ∆ = 2, providers have common preferences, and there are no
ties among the neighbours of any provider, finding a stable matching requires Ω(S) rounds
in the LOCAL model. The construction is illustrated in Figure 3.

Fix any S. We can construct a pair of matching graphs on n = 2S nodes such that a
node must see distance Ω(S) to decide its output. Denote by C = {c1, c2, . . . , cS} the set
of clients and by P = {p1, p2, . . . , pS} the set of providers. Each client ci is connected to
providers pi and pi+1 (except cS is connected only to pS). The preference class of each ci is
i. In the first matching graph each client ci has the preference relation pi > pi+1. In the
second graph we have the same preference relation, except for c1 these are flipped: p2 > p1.

Clearly client cS has to see receive information from distance Ω(S) to see the difference
between these two instances. In the first instance the most preferable client c1 prefers p1
and therefore the only stable matching consists of edges {ci, pi} for i ∈ {1, . . . , S}. In the
second instance c1 prefers p2, and therefore {c1, p2} is in any stable matching. This means
that c2 is matched to p3, and so on: the unique stable matching consists of edges {ci, pi+1}
for i ∈ {1, . . . , S − 1}.

A.2 Similar preferences
In this section we show that the similarity of preference lists does not help in computing a
stable matching.

▶ Theorem 20. Assume that all pairs of providers that share a neighbor share at least
δ neighbours and agree on their relative preference order. Computing a stable matching
requires Ω(n/δ) rounds in the LOCAL model.

https://doi.org/10.1016/0167-6377(89)90041-2

J. Hirvonen and S. Ranjbaran 30:19

Proof. The construction is a simple modification of the lower bound from Theorem 5. Fix
any odd k = 2l + 1. We construct a pair of matching graphs G and G′ as follows. Denote by
C = {c1, c2, . . . , cl+1} the set of clients and by P = {p1, p2, . . . , pl} the set of providers. Each
provider pi is connected to clients ci and ci+1. Additionally, for each pair pi, pi+1 create a set
Ci of δ−1 additional clients connected to both pi and pi+1. In both instances the preferences
of the clients in C are such that client ci prefers pi over pi+1. In the first instance provider
p1 prefers c1 over c2, and in the second instance these are flipped. All other providers pi

prefer ci over ci+1. Providers always prefer clients in C over the clients in the sets Ci.
It is easy to see that a similar argument as in the proof of Theorem 5 applies. The

providers ignore clients in sets Ci when computing the stable matching. The unique stable
matching in the first instance consists of edges {ci, pi} and in the second instance of edges
{pi, ci+1}. To decide wheter it is matched, client ck+1 must see Ω(k) hops away. Since for
each provider there are δ clients, we have that k = Ω(n/δ). ◀

A.3 Coloring in the CONGEST model

In Section 2 we assumed that the the communication network has edges between clients
that are connected to the same provider (specifically we need edges between clients who are
also in the same preference class under s). Removing this assumption has two effects: first,
simulating the coloring algorithm in the conflict graph slows down by a factor of 2, as the
messages have to be relayed through the providers, and second, providers form bottlenecks
since, in the worst case, all connected clients want to send a message to each other connected
client. This causes a potential slowdown by a factor of ∆.

First, it should be noted that in this case it is impossible to form the explicit conflict
graph in constant time. However, since we need Ω(∆H) time to run the deferred acceptance
algorithm, we can spend O(∆P) = O(∆H) rounds to do this.

The most suitable coloring algorithm depends on the maximum degree of the conflict
graph. When ∆H = Ω(log n), we can use a simple variant of Luby’s coloring algorithm to
color with 2∆ colors. In each round, each uncolored node tries to pick a free color uniformly
at random. Since there are 2∆ possible colors, the probability to choose a color that is
not picked by others is at least 1/2. Providers can be used to verify whether a trial was
successful: each client sends its color to each provider and each provider indicates whether a
neighbor in the conflict graph chose the same color. If no provider indicates a conflict, the
color can be chosen safely. This algorithm runs in O(log n) rounds with high probability. We
note that greedy color reduction does not work in this setting: simulating one round requires
sending O(∆P) colors.

For fast (∆ + 1)-coloring, we can use the additive-group coloring algorithm of Barenboim
and Elkin [6] combined with the O(∆2)-coloring algorithm of Linial [26]. For sufficiently
small values of ∆H = O(log / log log n) there is no overhead (as again, we must spend Ω(∆H)
rounds to compute the stable matching). For ∆H larger than this, there is a slowdown in
the algorithm, at least without further optimisation.

A.4 Proof of Lemma 14

Proof of Lemma 14. By Lemma 10, the score function s ◦ ϕ provides a strict linear order
for each provider. Therefore when client v makes its proposal, the adjacent providers receive
no other proposals. At the beginning of each round 2t− 1 for t = 1, . . . , S, the clients (in
preference class t) know the available capacities rt(v) of connected providers. Denote the
capacity of the ith preferred provider u by rt(v, i).

OPODIS 2024

30:20 Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

By round 2t− 1, all clients in preference classes i < t have finalised their matches. It is
important to note that a client cannot influence its preference class (s ◦ ϕ)(v), determined
by the coloring algorithm, nor can it affect the resources assigned to higher priority classes.
Further, since the lower priority clients do not replace any of the load assigned in round t,
the best v can do is to optimise its matching given the current remaining capacities rt(v).

Now let >v denote the true preferences of v and let >′
v denote some different preference

order. Let m and m′ denote the assignments computed under >v and >′
v, respectively (with

other preferences remaining constant). For each provider in N(v), there are exactly two
possibilities: either the provider becomes saturated (v assigns m({v, ui}) = rt(v, i)), or v

assigns its remaining load (and therefore assigns 0 load to remaining providers).
Now consider the matchings m and m′. Again, there are two cases: either all providers

become saturated, or not. In the first case, the assignments m and m′ agree, and the claim
holds trivially. In the second case, m saturates some first k most preferred providers, and
then assigns some load to the k + 1th most preferred provider. This directly implies that for
all i ∈ {1, . . . , k}, we have that

∑i
j=1 m(v, i) ≥

∑i
j=1 m′(v, i) (as m saturates these edges,

but m′ may assign partial or no load on some). However, since
∑k+1

j=1 m(v, i) = ℓ(v) (it
assigns all of its load), we also must have

∑k+1
j=1 m(v, i) ≥

∑k+1
j=1 m′(v, i). ◀

A.5 Proof of Lemma 18
Proof of Lemma 18. The running time of the algorithm is dominated by step 2, as step 1
requires no communication (we assume that the value ∆ or an upper bound for it is common
knowledge). Computing a (∆ + 1)-coloring of the nodes that fail in step 1 can be computed
in O(

√
∆ log ∆ + log∗ n) rounds [27]. This establishes P1.

Next, we establish property 2. In step 1, each node v picks a random color from
{1, . . . , ⌈δ−1⌉∆}. For each neighbor, the probability of a conflict is 1/(⌈δ−1⌉∆). By a union
bound, the total probability of a conflict over at most ∆ neighbors is bounded by 1/⌈δ−1⌉ ≤ δ.

The coloring is uniformly random for nodes in F = V \X, as conditioned on having no
conflicts, each color is equally likely. This establishes P2.

Finally, P3 follows from the fact that subgraph induced by X has maximum degree ∆
and can therefore be colored with ∆ + 1 colors. ◀

	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 Background and definitions
	2.1 Distributed algorithms
	2.2 Mechanism design
	2.3 Stable matching and deferred acceptance
	2.3.1 Tie-breaking with common preferences
	2.3.2 Variants of deferred acceptance
	2.3.3 Almost stable matching

	3 Fast and fair deferred acceptance algorithm
	3.1 Our basic algorithm
	3.2 Proof of Lemma 7

	4 Generalisation to fractional loads and capacities
	4.1 Modified deferred acceptance algorithm

	5 Fair tie-breaking
	5.1 Sampling an almost random coloring
	5.2 Fast random coloring with failures

	A Additional details
	A.1 Proof of Theorem 6
	A.2 Similar preferences
	A.3 Coloring in the CONGEST model
	A.4 Proof of Lemma 14
	A.5 Proof of Lemma 18

