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Abstract
Byzantine reliable broadcast is a fundamental primitive in distributed systems that allows a set of
processes to agree on a message broadcast by a dedicated process, even when some of them are
malicious (Byzantine). It guarantees that no two correct processes deliver different messages, and if
a message is delivered by a correct process, every correct process eventually delivers one. Byzantine
reliable broadcast protocols are known to scale poorly, as they require Ω(n2) message exchanges,
where n is the number of system members. The quadratic cost can be explained by the inherent
need for every process to relay a message to every other process.

In this paper, we explore ways to overcome this limitation by casting the problem to the
probabilistic setting. We propose a solution in which every broadcast message is validated by a
small set of witnesses, which allows us to maintain low latency and small communication complexity.
In order to tolerate the slow adaptive adversary, we dynamically select the witnesses through a novel
stream-local hash function: given a stream of inputs, it generates a stream of output hashed values
that adapts to small deviations of the inputs.

Our performance analysis shows that the proposed solution exhibits significant scalability gains
over state-of-the-art protocols.
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1 Introduction

Modern distributed computing systems are expected to run in extremely harsh conditions.
Besides communicating over weakly synchronous or even purely asynchronous communication
networks, the processes performing distributed computations may be subject to failures:
from hardware crashes to security attacks or malicious (Byzantine) behavior. In these
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environments, ensuring that a system never produces wrong outputs (safety properties) and,
at the same time, makes progress by producing some outputs is extremely challenging. The
distributed computing literature reveals a plethora of negative results, from theoretical lower
bounds and impossibility results to empirical studies, that exhibit fundamental scalability
limitations.

Efficient protocols that tolerate Byzantine failures are in high demand. Let us consider
cryptocurrencies, by far the most popular decentralized application nowadays. Originally,
cryptocurrency systems were designed on top of consensus-based blockchain protocols [37, 43].
However, consensus is a notoriously hard synchronization problem [19, 16, 10, 11]. It came
as good news that we do not need consensus to implement a cryptocurrency [23, 24], which
gave rise to asynchronous, consensus-free cryptocurrencies [14, 4, 27] that exhibit significant
performance gains over the consensus-based protocols. At a high level, these implementations
replace consensus with (Byzantine) reliable broadcast [6], where a designated sender broadcasts
a message so that no two correct processes deliver different messages (consistency), either all
correct processes deliver a message or none does (totality), and if the sender is correct, all
correct processes eventually deliver the broadcast message (validity).

Starting from the classical Bracha’s algorithm [7], Byzantine reliable broadcast algo-
rithms [32, 34, 41] are known to scale poorly, as they typically have O(n) per-process
communication complexity, where n is the number of processes. This can be explained by
their use of quorums [33, 42], i.e., sets of processes that are large enough (typically more
than 2/3n) to ensure that any two such sets have at least one correct process in common.
By relaxing the quorum-intersection requirement to only hold with high probability, the
per-process communication complexity can be reduced to O(

√
n) [35]. Guerraoui et al. [22]

describe a probabilistic broadcast protocol that replaces quorums with randomly selected
samples. This gossip-based broadcast consists of three phases, where each phase involves
communication with a small (of the order O(log n)) randomly selected set of processes (a
sample), which would give O(log n) per-process communication cost. It can be shown that
assuming a static adversary and an underlying uniform random sampling mechanism, the
protocol can be tuned to guarantee almost negligible probabilities of failing the properties of
reliable broadcast.

In this paper, we take a step forward by introducing a probabilistic reliable-broadcast
protocol that tolerates an adaptive adversary, incurs an even lower communication overhead.
Our protocol replaces samples with witness sets: every broadcast message is assigned with a
dynamically selected small subset of processes that we call the witnesses of this message.

The witnesses are approached by the receivers to check that no other message has been
issued by the same source and with the same sequence number. The processes select the
witness set by applying a novel stream-local hash function to the current random sample.
The random sample is a set of random numbers that the participants periodically generate
and propagate throughout the system, and we ensure that “close” random samples induce
similar witness sets. To counter a dynamic adversary manipulating the random samples
and, thus, the witness sets in its favor, the random numbers are generated and committed
in advance using a secret-sharing mechanism [39, 15]. The committed random numbers are
revealed only after a certain number of broadcast instances, which is a parameter of the
security properties of our protocol. As a result, the protocol is resistant against a slowly
adaptive adversary. We model the evolution of the random samples as an ergodic Markov
process: the time for the adversary to corrupt a process is assumed to be much longer than
the mixing time of a carefully defined random walk in a multi-dimensional space. Intuitively,
even if the adversary introduces a biased value instead of a random one, by the time the
value is used, the distribution of the random sample is close to uniform and the benefits of
the bias are lost.
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We argue that the desired safety properties of Byzantine reliable broadcast can be achieved
under small, O(log n), witness sets. When the communication is close to synchronous,
which we take as a common case in our performance analysis, the divergence between
the random samples evaluated by different processes and, thus, the witness sets for the
given broadcast event, is likely to be very small. Thus, in the common case, our broadcast
protocol maintains O(n log n) communication complexity, or O(log n) per node, similar to
sample-based gossiping [22], by additionally exhibiting constant latency.

The current “amount of synchrony” may negatively affect the liveness properties of our
algorithm: the less synchronous the network becomes, the less accurate may the witness set
evaluation become and, thus, the longer it takes to deliver a broadcast message. Notice that we
do not need the processes to perfectly agree on the witnesses for any particular event: thanks
to the use of stream-local hashing, a sufficient overlap is enough. To compensate for liveness
degradation when the network synchrony weakens, i.e., the variance of effective message
delays increases, we propose a recovery mechanism relying on the classical (quorum-based)
reliable broadcast [6].

Our comparative performance analysis shows that throughput and latency of our protocol
scale better than earlier protocols [6, 22], which makes its use potentially attractive in
large-scale decentralized services [14, 4].

The rest of the paper is organized as follows. In Section 2, we describe the system model
and in Section 3, we formulate the problem of probabilistic reliable broadcast and present our
baseline witness-based protocol. In Section 4, we extend the baseline protocol to implement
probabilistic broadcast. In Section 5, we analyze the security properties of our protocol and
we present the outcomes of our performance analysis. In Section 6, we sketch a recovery
mechanism that can be used to complement our baseline witness-based protocol. We conclude
the paper in Section 7 with a discussion of related work. Proofs and technical details of the
secret-sharing and recovery schemes are provided in the appendix.

2 System Model

A system is composed of a set Π of processes. Every process is assigned an algorithm (we
also say protocol). Up to f < |Π|/3 processes can be corrupted by the adversary. Corrupted
processes might deviate arbitrarily from the assigned algorithm, in particular they might
prematurely stop sending messages. A corrupted process is also called faulty (or Byzantine),
otherwise we call it correct.

We assume a slow adaptive adversary: it decides which processes to corrupt depending
on the execution, but there is a delay before the corruption takes effect. When selecting
a process p to corrupt at a given moment in the execution, the adversary can have access
to p’s private information and control its steps only after every other correct process has
terminated ∆ protocol instances, where ∆ is a predefined parameter.1 In addition, we assume
that previously sent messages by p cannot be altered or suppressed.

Every pair of processes communicate through authenticated reliable channels: messages
are signed and the channel does not create, drop or duplicate messages. We assume that the
time required to convey a message from one correct process to another is negligible compared
to the time required for any individual correct process to terminate in ∆ instances.2

1 In this paper we consider broadcast protocols (Section 3), so that an instance terminates for a process
when it delivers a message.

2 The time to process ∆ instances can be in range of hours or days (see Section 5).
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We use hash functions and asymmetric cryptographic tools: a public-key/private-key pair
is associated with every process in Π [9]. The private key is known only to its owner and can
be used to produce a signature for a message or statement, while the public key is known by
all processes and is used to verify that a signature is valid. We assume that the adversary is
computationally bounded: no process can forge the signature for a statement of a benign
process. In addition, signatures satisfy the uniqueness property: for each public-key pk and
a message m, there is only one valid signature for m relative to pk. The hash functions are
modeled as a random oracle.

3 Probabilistic Reliable Broadcast

The Byzantine reliable broadcast abstraction [6, 9] exports operation broadcast(m), where m

belongs to a message set M, and produces callback deliver(m′), m′ ∈M. Each instance of
reliable broadcast has a dedicated source, i.e., a single process broadcasting a message. In
any execution with a set F of Byzantine processes, the abstraction guarantees the following
properties:

(Validity) If the source is correct and invokes broadcast(m), then every correct process
eventually delivers m.
(Consistency) If p and q are correct and deliver m and m′ respectively, then m = m′.
(Totality) If a correct process delivers a message, then eventually every correct process
delivers a message.
(Integrity) If the source p is correct and a correct process delivers m, then p previously
broadcast m.

In a long-lived execution of reliable broadcast, each process maintains a history of delivered
messages and can invoke broadcast an unbounded number of times, but correct processes
behave sequentially, i.e., wait for the output of a broadcast invocation before starting a new
one. The abstraction can easily be implemented using an instance of reliable broadcast for
each message, by attaching to it the source’s id and a sequence number [6].

Instances of reliable broadcast can also be probabilistic [22], in which case there is a
probability for each instance that the protocol does not satisfy some property (e.g. violates
Consistency). If one uses instances of probabilistic reliable broadcast for building a long-lived
abstraction, the probability of failure converges to 1 in an infinite run (assuming processes
broadcast messages an infinite number of times). We therefore consider the expected failure
time of a long-lived probabilistic reliable broadcast (L-PRB) as the expected number of
broadcast instances by which the protocol fails.

▶ Definition 1 (Long-lived Probabilistic Reliable Broadcast). An ϵ-Secure L-PRB has an
expected time of failure (average number of instances until some property is violated) of at
least 1/ϵ instances.

3.1 Protocol Description
We first present an algorithm that implements Byzantine reliable broadcast using a distributed
witness oracle ω. Intuitively, every process pi can query its local oracle module ωi to map
each event e = (id, seq) (a pair of a process identifier and a sequence number) to a set of
processes that should validate the seq-th event of process id. The oracle module ωi exports
two operations: getPotWitnesses(id, seq), which returns a set Vi of processes potentially
acting as witnesses for the pair (id, seq), and getOwnWitnesses(id, seq), that returns a set
Wi ⊆ Vi of witnesses particular to pi, referred to as pi’s witness set.
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We now describe an algorithm that uses w to implement Byzantine reliable broadcast,
a variation of Bracha’s algorithm [6] that instead of making every process gather messages
from aquorum, we delegate this task to the witnesses.3 Each process waits for replies from a
threshold k of its witnesses in Wi to advance to the next protocol phase. However witness
sets can differ, so messages are sent to Vi to guarantee that every process acting as a witness
can gather enough messages from the network. The protocol maintains correctness as long
as for each correct process pi, there are at least k correct witnesses and at most k − 1 faulty
witnesses in Wi. Moreover, Vi should include the witness set of every other correct process.
In Section 4, we describe a method to select k and a construction of ω that satisfies these
with very large expected failure time.

The pseudo-code for a single instance of Byzantine reliable broadcast (parameterized
with a pair (id, seq)) is presented in Algorithm 1. Here we assume the set of participants Π
(|Π| = n) to be static: the set of processes remains the same throughout the execution. f

denotes the number of faulty nodes tolerated in Π (see 3.2).

Algorithm 1 Witness Based Broadcast.

1 [Π] upon init - (id, seq):
2 Vi ← ωi.getPotWitnesses(id, seq);
3 Wi ← ωi.getOwnWitnesses(id, seq);

4 [S] operation broadcast(m):
5 send ⟨NOTIFY, m, S⟩ to every p ∈ Π;

6 [Π] upon receiving ⟨NOTIFY, m, S⟩:
7 send ⟨ECHO, m, Π⟩ to every w ∈ Vi;

8 [W ] upon receiving ⌊n+f
2 ⌋+ 1 ⟨ECHO, m, Π⟩ or f + 1 ⟨READY , m, Π⟩ messages:

9 send ⟨READY , m, W ⟩ to every p ∈ Π;

10 [Π] upon receiving ⟨READY , m, W ⟩ from k witnesses in Wi:
11 send ⟨READY , m, Π⟩ to every w ∈ Vi;

12 [W ] upon receiving ⟨READY , m, Π⟩ from ⌊n+f
2 ⌋+ 1 processes:

13 send ⟨VALIDATE , m⟩ to every p ∈ Π;

14 [Π] upon Upon receiving ⟨VALIDATE , m⟩ from k witnesses in Wi:
15 deliver(m, id, seq);

At the source s, a single instance of Witness-Based Broadcast (WBB) parameterized
with (s, seq) is initialized when s invokes broadcast(m), where (s, seq) is attached to m. On
the remaining processes, the initialization happens when first receiving a protocol message
associated to (s, seq). Upon initialization, processes sample Vi and Wi from ωi, which are
fixed for the rest of the instance.

Each action is tagged with [S], [W ] or [Π], where [S] is an action performed by the source,
[W ] is performed by a process acting as witness and [Π] by every process. A process pi

can take multiple roles in the same instance and always takes actions tagged with [Π], but

3 A quorum is a subset of processes that can act on behalf of the system. A Byzantine quorum [33] is
composed of q = ⌊ n+f

2 ⌋ + 1 processes, for a system with n processes in which f are Byzantine.

OPODIS 2024
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performs each action only once per instance. Moreover, pi (correct) acts as witness iff pi ∈ Vi.
We assume every broadcast m to include the source’s signature so that every process can
verify its authenticity.

Algorithm 2 uses WBB as a building block to validate and deliver messages. Clearly,
if the validation procedure satisfies the reliable broadcast properties, then Algorithm 2
implements long-lived reliable broadcast.

Algorithm 2 Long-Lived Reliable Broadcast.

Local Variables:
seq ← 0; /* Sequence number of pi */
Hist ← ∅; /* Delivered messages */

1 operation broadcast(v):
2 seq + +;
3 m← (v, pi, seq);
4 WBB.broadcast(m);

5 upon WBB.deliver(m):
6 Hist ← Hist ∪ {m};

3.2 Protocol Correctness
Consider an instance of WBB where f < |Π|/3 and for every pi correct:
1. Wi has at least k correct witnesses and at most k − 1 faulty witnesses;
2. for every pj correct, Wj ⊆ Vi.

Then the following theorem holds:

▶ Theorem 2. Algorithm 1 implements Byzantine reliable broadcast.

Proof. Validity: Let pi be a correct process and assume that a correct source is broadcasting
m. Since for every pj correct Wi ⊆ Vj (assumption 2), all correct witnesses in Wi receive
⌊n+f

2 ⌋+ 1 echoes and reply with READY . From assumption 1, Wi has at least k correct
witnesses that reply to pi, which in turn sends its own READY back. The validation phase
follows similarly and pi delivers m after receiving k VALIDATE messages from witnesses.

Integrity: m is signed by the source and processes verify its authenticity, so a message
broadcast is only delivered if the authentication is successful. By assumption, the adversary
cannot crack the private key of a correct process and forge signatures.

Consistency: Because Wi has at most k− 1 faulty processes, pi is guaranteed to receive a
message from at least one correct process in lines 10 and 14 before proceeding to a new phase.
A correct witness has to receive ⌊n+f

2 ⌋+1 ⟨READY , m, Π⟩ in order to send ⟨VALIDATE , m⟩.
Since f < |Π|/3, every pair of subsets of ⌊n+f

2 ⌋+ 1 processes intersects in at least one correct
process, thus two correct witnesses cannot send VALIDATE for distinct messages (this would
require a correct process to send READY for distinct messages).

If a correct process delivers m, then at least ⌊n+f
2 ⌋+ 1 processes sent ⟨READY , m, Π⟩ to

a correct witness, thus, at least f + 1 correct processes sent ⟨READY , m, Π⟩ to every witness.
Consequently from assumption 2, correct witnesses receive f + 1 readies for a message and
are able to trigger line 9 to send ⟨READY , ·, W ⟩. In order to send READY without hearing
from f + 1 processes, witnesses gather echoes from ⌊n+f

2 ⌋+ 1 processes. Similarly to the
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Consistency part of the proof, two correct witnesses cannot then send READY for distinct
messages. Finally, Totality holds from the fact that every Wi has at least k correct witnesses,
which send ⟨READY , m, Π⟩ to all processes. ◀

For a single broadcast instance, the message complexity depends on the size of Vi (the set
of potential witnesses). Let |Π| = n and v the expected size of Vi, the message complexity
is O(n · v). We assume that parameters for the witness-oracle (Section 4) are chosen such
that v is Ω(log n), resulting in a complexity of O(n log n). Moreover, WBB takes 5 message
delays to terminate with a correct source.

4 Witness Oracle

Figure 1 Illustration of how stream local hashing of similar histories (S and Ŝ) results in similar
witness set selections (W and Ŵ ).

The witness oracle is responsible for selecting a set of witnesses for each broadcast message.
This selection should be unpredictable so that it is known only with close proximity to the
time of receiving the broadcast message. We implement this service locally on each node
and require that for every broadcast message and for any pair of nodes, the locally selected
witness sets will be similar.

In order to provide unpredictable outputs, each node uses the hash of a history of random
numbers that are jointly delivered with messages. The witness set used in a particular
broadcast instance is defined according to the current history, and remains the same (for
that instance) after the first oracle call.

Let W l
i (id, seq) and V l

i (id, seq) be the outputs for ωi.getOwnWitnesses(id, seq) and
ωi.getPotWitnesses(id, seq) respectively at the moment pi’s history has l elements. The
witness oracle construction satisfies:

(Witness Inclusion) For any pair of correct nodes pi and pj , and instance (id, seq):

Wi(id, seq) ⊆ Vj(id, seq)

(Unpredictability) Let S be the history of correct process p and w the average witness set
size. Then for a given ϵ > 0, there exists L ∈ N such that, for any process q and L′ ≥ L:

Pr(q ∈W l+L′
(·, ·) | |S| = l) ≤ 1

w
+ ϵ

Witness Inclusion ensures that correct processes use close witness sets in the same
instance. Unpredictability hinders processes from accurately predicting witness sets: based
on p’s history S at any point in the execution, it is impossible to precisely determine whether
any process q will be selected as a witness after L instances.

To support a high rate of broadcast messages, nodes do not wait or try to establish the
same histories before hashing. Instead, we use a novel locality sensitive hashing scheme to
ensure that small differences in histories will result in small differences in the selected witness
set, as illustrated in Figure 1.

OPODIS 2024
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The history of random numbers can be regarded as a set. However, existing locality
sensitive hashing algorithms for sets (such as those based on MinHash [8]) are less sensitive
to small differences with bigger sets, which does not fit well the case of histories that are
expected to grow indefinitely. Note that hashing just a sliding window within histories may
result with distinct nodes having different hash values even if their histories are the same,
due to differences in the order that values can be added.

Another disadvantage of existing locality sensitive hashing algorithms is their vulnerability
to messages crafted to manipulate the hash result. For example in MinHash based algorithms,
adding an item with extremely small hash value will most likely keep the hash of the entire
set constant for a long time regardless of insertions of new items. In our case, when using
history hash for witness selection, it could allow the adversary to make the witness selection
predictable.

In short, let f : P ({0, 1}∗)→ Zb
r be a stream local function that can hash a set of binary

strings into a vector in b-dimensional mod r torus. We require f to satisfy:
(Locality) Let Si, Sj ∈ P ({0, 1}∗). There exists λ > 0 and L ∈ N such that:

(|Si ∪ Sj − Si ∩ Sj | ≤ L) =⇒ distance(f(Si), f(Sj)) ≤ λL

For some pre-defined distance measure in Zb
r.

Next, we show a construction of a safe stream local hashing for histories (SLASH ), a
hashing scheme that guarantees high degree of unpredictability and also similar outputs for
similar histories. Later we show how SLASH can be used for witness selection.

4.1 Constructing a safe stream local hashing of histories
We consider a history as a set of binary strings and we assume the existence of a family
of one-way functions Hc = {hs : {0, 1}∗ → {0, 1}c}. For example, for c = 256, we can use
hs(x) = SHA256(x⊕ s) where s is a predefined random binary string with length at least c

and “⊕” is the bit concatenation operator.
We define a family of SLASH functions Fr,b,Hc

=
{

fs : P ({0, 1}∗)→ Zb
r

}
, where b < 2c.

Each of these functions can hash a set of arbitrary binary strings into a vector in b-dimensional
mod r torus and should be locality sensitive in the sense that sets with small differences
should be hashed to vectors with small distance, where vector distance is defined as follows:

TorusDistr,b(X, Y ) := max({min(Xj−Yj mod r, Yj−Xj mod r) | j ∈ { 0, . . . , b−1}})

Our construction of SLASH functions Fr,b,Hc can be described as follows: each evaluation
of f ∈ Fr,b,Hc

on a set S ⊆ {0, 1}∗ defines a random walk in Zb
r where each item x in S

accounts for an independent random step based on the hash of x. More specifically:

f(S) := ⟨g (S0) , g (S1) , . . . , g (Sb−1)⟩ ,

where Sy := {x ∈ S | hs(x) mod b = y} and g(V ) =
∑

v∈V (−1)hs(v)÷b mod r.
The distance between any two sets is not affected by shared items while each non-shared

item increases or decreases the distance by at most 1.

▶ Theorem 3 (Locality). Let S, T ∈ P ({0, 1}∗), then for any f ∈ Fr,b,Hc
:

TorusDistr,b(f(S), f(T )) ≤ |S ∪ T − S ∩ T |.
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Proof. Each element x ∈ S can be mapped to a single Sy, in which it either increases
or decreases g(Sy) by 1. Suppose that S ∪ T − S ∩ T = {x} (so either S = T ∪ {x} or
T = S∪{x}). Let hs(x) mod b = y, then f(S) is identical to f(T ) in all positions 0, . . . , b−1
except for y, where f(S)[y] = f(T )[y]± 1. So:

TorusDistr,b(f(S), f(T )) = 1 = |S ∪ T − S ∩ T |

Now assume that TorusDistr,b(f(U), f(V )) ≤ |U ∪ V −U ∩ V | for |U ∪ V −U ∩ V | = L,
and let S ∪ T − S ∩ T = {x1, . . . , xL+1}. Assume without loss of generality that xL+1 ∈ S,
and let S′ = S − {xL+1}. Then by assumption, for any position m in 0, . . . , b− 1:

min(f(S′)[m]− f(T )[m] mod r, f(T )[m]− f(S′)[m] mod r) ≤ L

Now let hs(xL+1) mod b = y, then the inequalities above are satisfied for f(S) and f(T )
at any position 0, . . . , b− 1 except maybe for y, where:

min(f(S)[y]− f(T )[y] mod r, f(T )[y]− f(S)[y] mod r) ≤ L + 1

Therefore: TorusDistr,b(f(S), f(T )) ≤ |S ∪ T − S ∩ T |. ◀

Theorem 3 implies that SLASH satisfies Locality with λ = 1.
We consider node ids to be binary strings of length c. During the execution, each node i

maintains a view regarding the set of active node ids Πi ⊆ {0, 1}d and the history of delivered
random numbers Ri. In addition, a SLASH function fj is maintained for each node in Πi.
All nodes are initialized with the same functions fj as well as the one-way function hj ∈ Hc,
so that for each particular fj the id of node j is used as the seed for computing hj(x), in
order to make each step computed for different fj independent.

To select witness sets, nodes are also initialized with a distance parameter d ∈ R+. To
determine the set of witnesses Wi(id, seq), node i computes yj = fj(Ri) and then selects all
nodes j for which yj is at distance at most d from the origin.

Wi = {j ∈ Πi | TorusDistr,b(yj , [0]) ≤ d}. (1)

Keeping a SLASH instance for each node does not add significant storage overhead, since
we expect its size to be smaller than c in number of bits (see Section 5.1). Moreover, the
computational cost of updating SLASH should also be significantly smaller than verifying
digital signatures.

4.2 Secret Sharing
Unpredictability is achieved with a secret sharing protocol, in which a random number is
secretly shared by the source at the start of every instance. In the reveal phase, the number
is added to a local history and it is used to compute a random step in SLASH .

We capitalize on the steady distribution of a random walk which is the uniform distribution
in a torus4 (this means that as we increase the number of steps, the distribution of SLASH
converges to uniform). The number of steps necessary to make the distribution of the random
walk close to uniform is called the mixing time. For each new random number that is shared
by a node, we delay its addition to the history by δ = mixTime/thc steps, where thc is the

4 To guarantee uniform distribution, the diameter r needs to be odd [5], we can trivially achieve this by
skipping the last point (so the diameter of each dimension becomes r − 1).
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fraction of the throughput generated by correct sources.5 This guarantees that the adversary
cannot use it’s current state to issue carefully chosen numbers and make the outcome of
SLASH close to any specific value.

To further prevent the adversary from biasing the outcome of SLASH , we require each
number to be generated by a verifiable source of randomness. This is achieved using the
signature scheme and a hash function. Consider a random string s known to all nodes. To
generate the random number x of instance (pi, seq), pi signs s⊕ (pi, seq) and assigns to x

the hash of the resulting signature. The signature for s⊕ (pi, seq) is then used as proof that
x was correctly generated. The random string s used for (pi, seq) is the random number x′

generated in the previous instance, and the original seed can be any agreed upon number.
We use Shamir’s secret sharing scheme [40], the protocol’s integration with WBB is

described in Appendix A.

4.3 Witness Oracle – Correctness

The detailed analysis for the oracle correctness can be found in Appendix B. To verify the
conditions under which Witness Inclusion and Unpredictability are satisfied, we assume that:

The interval between the first time a correct process recovers a secret x′, and the last
time a correct process does so is upper bounded by γ;
correct processes reveal numbers (adding them to their local history) at the same rate λ;
at any correct process and within any δ interval of time, there is a lower bound thc on
the fraction of numbers revealed that come from correct processes.

Let d1 and d2 be the selection radius for Vi and Wi respectively (Equation 1), i.e., a node
j is selected as witness if yj is at distance at most d2 from the origin in Rb

r.

▶ Theorem 4 (Witness Inclusion). As long as d1 − d2 ≥ 2λγ, for any pair of correct nodes pi

and pj, and instance (id, seq): Wi(id, seq) ⊆ Vj(id, seq).

In Section 6 and Appendix D, we show how to avoid relying on the above condition
by introducing a fallback protocol that ensures progress for correct processes, even in the
absence of network synchrony. Now let w to be the predetermined average witness set size.

▶ Theorem 5 (Unpredictability). Let Si be the history of process pi at a particular moment
in the execution. For any process pj:

Pr(pj ∈W l+δ(·, ·) | |Si| = l) ≤ 1
w

+ e− π2·δ·thc
2br2

According to our model, it takes ∆ instances for a node corruption to take effect. In our
approach we set ∆ = 2δ since the same witnesses used in WBB are involved in the reveal
phase δ instances later. The parameters δ, r and b are chosen based depend on the expected
speed of adversarial corruption and the probability that the adversary can accurately predict
the processes selected as witnesses. As shown in Section 5.1, this probability is negligible
given a realistic adversarial corruption speed.

5 One can adjust thc based on the broadcast rate of the n − f nodes with smallest rate. Alternatively
one can wait until the total number of additions to the history, committed by the n − f nodes with
smallest rate, has reached mixT ime.
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5 Security and Performance

The witness set selections depend on the positions of the random walks in Rb
r, and there

may happen that not enough good nodes or too many bad nodes arrive in the selection zone.
Thus the average number of instances until some property of WBB is violated depends on
the random walks properties. Next, we determine the expected failure time of the complete
protocol by calculating the time it takes for the random walks to reach a position where
a “bad” witness set is chosen. Note that in our approach, the probability of failure for a
particular instance is dependent on previous instances, as the random walks depend on their
previous state.

5.1 Expected Time of Failure

We say that the long-lived protocol fails when, in any WBB instance, a correct process
selects a witness set containing at least k corrupted parties (consistency failure) or fewer
than k correct ones (liveness failure). The adversary may attempt to corrupt processes
dynamically to cause protocol failure as quickly as possible. However, as shown in Theorem 5,
the probability of accurately predicting which processes to corrupt decreases with δ · thc. We
choose δ (mixing time in Figure 2) to ensure that the total variation distance between the
SLASH outcome and the uniform distribution is bounded by ϵ < 2−20, giving the adversary
a negligible advantage in predicting witnesses.

Given that the SLASH probability distribution is close to uniform from the time a value
is shared to the moment it is added to the history, we consider every step to be independent
from the SLASH states. In addition, since we are in the random model for hash functions,
the distribution of the values issued by malicious nodes becomes uniform for a large number
of values. We therefore assume that every value added to a local history comprises a random
step in Rb

r.
Random walks on Rr

b may randomly result in the selection of a “bad” witness set. We
analyze this scenario bellow. Since the adversary cannot predict witness sets with significant
advantage, we assume all adversarial nodes in the execution are corrupted from start, thereby
maximizing the probability of selecting a sufficiently corrupted witness set.

We call gathering time the average number of steps until at least k nodes out of f are
selected as witnesses, assuming that the initial distribution for each node is uniform and
independent. We give a detailed discussion of the gathering time calculations in Appendix C.
Intuitively, we relate the problem to the well known hitting time [18] of Markov chains, in
which one calculates the first time the chain reaches a particular set of states. Let Xl be
the number of corrupted nodes in the witness selection area after l steps, we consider a
Markov Chain {Xl | l ∈ N} whose possible states are 0, . . . , f . The gathering time is then
the average number of steps l such that Xl ≥ k. We compare the numbers obtained from our
analysis with simulations of f random walks6 in Zb

r in Appendix C, the results show that
our approach gives conservative7 gathering times.

The problem is the same when it comes to calculating the time until the witness set is
not live. The possible states are 0, . . . , n− f and we calculate the average number of steps l

such that Xl < k.

6 We choose f = 0.25n, based on the total number of nodes n we consider for each run.
7 In general, our estimations are at least 100 times smaller than the simulated values.
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The choice of parameters for the witness oracle depends on the characteristics of the
application. Selecting a bigger diameter r increases the average time of failure, but also
increases the mixing time, and thus the system can tolerate adversaries that take longer to
corrupt nodes. We consider the example of a system with 1024 nodes, and give parameters
so that the mixing time is in a practical range.8 Figure 2 shows the expected time of failure
and the mixing time for b = 4, r = 210 and k = 0.45w, where w is the expected witness set
size.

Figure 2 Average number of instances for gathering according to expected witness set size. The
parameters used are: n = 1024, b = 4, r = 210, k = 0.45w. Each curve is for distinct t, the fraction
of malicious nodes.

To contextualize Figure 2, we compare our protocol’s expected time of failure with two
well-known probabilistic protocols: the gossip based reliable broadcast by Guerraoui et
al. [22] and the Algorand protocol [20].

Guerraoui et al. [22] propose a one-shot probabilistic reliable broadcast that can be
used in Algorithm 2 to implement L-PRB. In their construction, each instance has an
independent probability of failure based on the sample size, with a communication complexity
of O(n · sample size), similar to WBB’s O(n · v). For a system with 1024 nodes and t = 0.15,
they require a sample size of approximately 250 nodes to achieve an expected failure time
of 1012 broadcast instances. In contrast, our protocol achieves the same expected time of
failure with just 100 witnesses.

Algorand [20] employs a randomly selected committee to solve Byzantine Agreement,
where the committee size influences the failure probability. In a system with t = 0.2, Algorand
requires a committee size of 2000 nodes to achieve an average failure time of 5 · 109, whereas
our approach needs fewer than 130 witnesses.

Instead of relying on a single, evolving witness set to validate all messages, multiple
independent histories can be maintained, each assigned based on the issuer’s ID and sequence
number. This creates parallel dynamic witness sets, where each set validates an equal

8 The mixing time is 107.56 steps for b = 4 and r = 210. If we consider a throughput of 1000 broadcast
messages per second, then the system takes around 10 hours to mix.
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portion of the workload. The hitting time for multiple random walks decreases linearly with
the number of walks [1], as does the gathering time. However, since each history receives
a fraction of the random numbers proportional to the number of witness sets, the total
gathering time remains roughly the same. On the downside, the overall number of delivered
messages required to ensure unpredictability increases proportionally with the number of
witness sets.

5.2 Scalability – A Comparative Analysis
We use simulations to make a comparative analysis between Bracha’s reliable broadcast,
the probabilistic reliable broadcast from [22] (hereby called scalable broadcast) and our
witness-based reliable broadcast. We implemented all three protocols in Golang, the protocol
and simulation codes are available at [2, 3]. For the simulation software, we used Mininet [30]
to run all processes in a single machine.

We used a Linode dedicated CPU virtual machine [31] with 64 cores, 512GB of RAM,
running Linux 5.4.0-148-generic Kernel with Mininet version 2.3.0.dev6 and Open vSwitch [38]
version 2.13.8.

We chose witness set and sample sizes so that both WBB and scalable broadcast have
longevity of 106 instances when f = 0.1. For the witness set size, we use W = 2 log(n)
and V = 3 log(n), the parameters selected for the SLASH construction are the same as in
Figure 2 and 8 parallel witness sets are used. For the sample size we use 5 log(n). The small
sizes allow us to better compare the performance of both protocols with Bracha’s broadcast
for a small number of nodes.

Since in a simulated environment we can change network parameters to modify the
system’s performance, we analyze normalized values instead of absolute ones, using Bracha’s
protocol as the base line.9 Processes are evenly distributed in a tree topology structure, with
16 leaves on the base connected by a single parent node. The bandwidth speed is limited to
20Mbps per link.

In the first simulation, we observe each protocol’s performance with a high volume of
transmitted messages and how it relates to the number of processes. Each process initiates
broadcast of a new message once the previous one was delivered throughout all the experiment.
We then measure the achievable throughput (number of delivered messages per second) and
average latency for different system sizes as it’s show in Figures 3a and 3b.

The superior asymptotic complexity of the probabilistic protocols is illustrated in Fig-
ures 3a and 3b, where both WBB and scalable broadcast show improved performance
relative to Bracha’s broadcast as the number of processes increases. Additionally, WBB
scales consistently better than scalable broadcast, as it requires fewer processes for message
validation overall.

6 Timeout and Recovery

Based on the assumptions outlined in Section 4.3, the level of synchrony may contribute
to discrepancies in local histories among correct processes. A process with a significantly
divergent history from the rest of the system may attempt to validate messages using a
non-responsive witness set.

9 Simulating hundreds of nodes on a single server presents significant performance challenges. In
throughput tests involving a large number of nodes, we allocate reduced resources, such as limited
bandwidth and CPU time, to each node.
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(a) Throughput according to the number of nodes. (b) Latency according to the number of nodes.

Figure 3 Normalized throughput and latency according to the number of processes.

In this section, we present an extension of our protocol that includes a liveness fallback:
if it takes too long for a process to validate a message, a timeout mechanism and a recovery
protocol are triggered to ensure progress.

First, to account for time, we modify the WBB initialization block: after sampling the
witnesses we call the method setTimeout()(Algorithm 3). This method guarantees that a
timeout is triggered after a predetermined amount of time has passed without a successful
validation. Once a process receives a protocol message containing a new broadcast message
m, it initializes a new instance of message validation and relays m to the corresponding
witnesses in a NOTIFY message.

Algorithm 3 WBB – Initialization Update.

1 [Π] upon init - (id, seq):
2 Vi ← ωi.getPotWitnesses(id, seq);
3 Wi ← ωi.getOwnWitnesses(id, seq);
4 setTimeout();

When a timeout event is triggered, a process resorts to the recovery protocol outlined
in Algorithm 7 (Appendix D). The actions on the recovery protocol should be executed by
every process, and are performed only once a process triggers timeout or delivers a message
in that instance.10

The idea behind the algorithm is to “recover” any value that could have possibly been
delivered in the witness validation procedure, and then execute Bracha’s Byzantine reliable
broadcast [6]. We achieve this by making processes echo the last WBB they acknowledged,
so that if a message is delivered by any process using WBB, no distinct message can be
delivered using the recovery protocol. A detailed description of the protocol, as well as
correctness proofs can be found in Appendix D.

The inclusion of the recovery protocol ensures progress if WBB is not live for a correct
process, albeit with a higher communication cost as we use Bracha’s Byzantine reliable
broadcast which has communication complexity of O(n2). Reduced communication using
WBB is thus achieved in optimistic runs, when network asynchrony is not too severe.

10 Messages from the recovery protocol received by a process before satisfying any of these conditions are
then stored and treated later.
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7 Related Work

Solutions designed for partially synchronous models [17] are inherently optimistic: safety
properties of consensus are always preserved, but liveness is only guaranteed in sufficiently
long periods of synchrony, when message delays do not exceed a pre-defined bound. This
kind of algorithms, also known as indulgent [21], were originally intended to solve the
fundamental consensus problem, which gave rise to prominent partially synchronous state-
machine replication protocols [29, 10] and, more recently, partially-synchronous blockchains.

Reliable broadcast protocols [6] provide a weaker form synchronization than consensus:
instead of reaching agreement on the total order of events, reliable broadcast only establishes
common order on the messages issued by any given source. This partial order turns out handy
in implementing “consensus-free” asset transfer [23, 24], by far the most popular blockchain
application, and resulting implementations are simpler, more efficient and more robust
than consensus-based solutions [4, 14, 27].11 To alleviate O(n2) communication complexity
of classical quorum-based reliable broadcast algorithms [7, 32, 34, 41], one can resort to
probabilistic relaxations of its properties [35, 22]. The probabilistic broadcast protocol
in [22] achieves, with a very high level of security, O(n log n) expected complexity and
O(log n/ log log n) latency by replacing quorums with randomly selected samples of O(log n)
size. In this paper, we propose an optimistic probabilistic reliable broadcast algorithm
that, in a good run, exhibits even better security (due to the “quasi-deterministic” though
unpredictable choice of witnesses) and, while achieving the same communication complexity,
constant expected latency. For simplicty, as a fall-back solution in a bad run, we propose the
classical O(n2) broadcast protocol [6]. However, one can also use the protocol of [22] here,
which would give lower costs with gracefully improved security.

In the Algorand blockchain [20, 12], scalable performance is achieved by electing a small-
size committee for each new block. To protect the committee members from a computationally
bound adversary, one can use verifiable random functions (VRF) [36]. The participants use
a hash of the last block and their private keys as inputs to the VRF that returns a proof of
selection. As the proof is revealed only when a committee member proposes the next block,
the protocol is protected against an adaptive adversary. The approach was later applied to
asynchronous (randomized) Byzantine consensus [13], assuming trusted setup and public-key
infrastructure (PKI). Similar to [20, 13], we use local knowledge for generating unpredictable
process subsets of a fixed expected size. In contrast, our protocol does not assume trusted
setup. We generate pseudo-randomness based on the local states, without relying on external
sources (e.g., the blockchain state). However, we only tolerate a slow adversary (time to
corrupt a node considerably exceeds communication delay).
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A Secret Sharing Scheme

In order to prevent the adversary from biasing the outcome of SLASH , we require each
number to be generated by a verifiable source of randomness. This is achieved using the
signature scheme and a hash function. Consider a random string s known to all nodes, to
generate the random number x of instance (pi, seq), pi signs s⊕ (pi, seq) and assigns to x

the hash of the resulting signature. The signature for s⊕ (pi, seq) is then used as proof that
x was correctly generated. The random string s used for (pi, seq) is the random number x′

generated in the previous instance, and the original seed can be any agreed upon number.

On top of that, we capitalize on the steady distribution of a random walk which is the
uniform distribution in a torus12 (this means that as we increase the number of steps, the
distribution of SLASH converges to uniform). The number of steps necessary to make
the distribution of the random walk close to uniform is called the mixing time. For each
new random number that is broadcast by a node, we delay its addition to the history by
δ = mixTime/thc steps, where thc is the fraction of the throughput generated by correct
sources.13 This guarantees that the adversary cannot use it’s current state to issue carefully
chosen numbers and make the outcome of SLASH close to any specific value, in other words,
the adversary does not know if the delayed step will bring the value of the hash closer of
farther to a desirable value.

The unpredictability is achieved with a secret sharing protocol, in which the source’s
signature for (id, seq) is shared and only revealed after δ messages are delivered. The goal of
the protocol is to guarantee that:

Correct processes agree on the revealed number.

No information about a number issued by a correct process is revealed until at least one
correct process starts the reveal phase.

We use Shamir’s secret sharing scheme [40] abstracted as follows: the split method
SH.Split(x, n, f + 1) takes a string x and generates n shares such that any f + 1 shares are
sufficient to recover x. The recover method SH.Recover(X) takes a vector with f + 1 shares
as input and outputs a string x′ such that, if X was generated using SH.Split(x, n, f + 1),
then x = x′. In addition, no information about x is revealed with f or less shares.

The pseudo-codes in Algorithms 4 and 5 describe the complete protocol. In short, the
source p first generates the signature π for s ⊕ (id, seq) and splits π in n shares. Next, p

includes the corresponding share to each NOTIFY message. We assume that the source’s
signature for the message with the share is also sent alongside it.

12 To guarantee uniform distribution, the diameter r needs to be odd [5], we can trivially achieve this by
skipping the last point (so the diameter of each dimension becomes r − 1).

13 One can adjust thc based on the broadcast rate of the n − f nodes with smallest rate. Alternatively
one can wait until the total number of additions to the history, committed by the n − f nodes with
smallest rate, has reached mixT ime.
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Algorithm 4 Secret Sharing Protocol - Sharing Phase.

1 [S] upon preparation for broadcasting m:
2 π ← sign(s⊕ (id, seq));
3 π ← SH.Split(π, n, f + 1);
4 Include π[i] in NOTIFY message sent to pi;

5 [Π] operation deliver(m, id, seq):
6 Hi ← Hi ∪ {m};
7 checkpoint[id, seq]← |Hi|;

Algorithm 5 Secret Sharing Protocol - Reveal Phase.

1 [Π] upon |Hi| − checkpoint[id, seq] = δ:
2 send ⟨REVEAL, id, seq, π[i]⟩ to every w ∈ Vi

3 [W ] upon receiving ⟨REVEAL, id, seq, π[j]⟩ from f + 1 processes:
4 π ← SH.Recover(πf+1); /* πf+1 is a vector with f + 1 shares */
5 if verify(π, s⊕ (id, seq), pkid) then
6 send ⟨DONE , π, id, seq⟩ to every p ∈ Π;
7 else
8 Let S be the set of f + 1 signed shares;
9 send ⟨FAILED, S, id, seq⟩ to every p ∈ Π;

10 [Π] upon receiving ⟨DONE , id, seq, π⟩ from a witness:
11 if verify(π, s⊕ (id, seq), pkid) and |Hi| − checkpoint[id, seq] ≥ δ then
12 if secret[id][seq] ̸= ⊤ then
13 secret[id][seq]← h(π);
14 send ⟨DONE , id, seq, π⟩ to every w ∈ Vi;

15 [Π] upon receiving ⟨FAILED, S, id, seq⟩ from a witness:
16 convicted← convicted ∪ {id};
17 send ⟨FAILED, S, id, seq⟩ to every w ∈ Vi;

18 [W ] upon receiving ⟨DONE , id, seq, π⟩:
19 if verify(π, s⊕ (id, seq), pkid) then
20 send ⟨DONE , id, seq, π⟩ to every p ∈ Π;

21 [W ] upon receiving ⟨FAILED, S, id, seq⟩:
22 send ⟨FAILED, S, id, seq⟩ to every p ∈ Π;

When delivering the message associated with (id, seq), nodes store the current number
of delivered messages in the history. After delivering δ new messages, each process starts
executing the reveal phase using the same witnesses to recover the secret. Each process then
sends its share to the witnesses which, after gathering enough shares, either reveal the secret
or build a proof that the shares were not correctly distributed by the source. In the former
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case, each process verifies the revealed signature π and adds the hash of π to secret, defining
a step in the random walk on SLASH . In the latter, when receiving such proof, a process
marks the faulty source as “convicted”.

The following results assume correctness of the underlying WBB protocol.

▶ Proposition 6. If pi and pj correct add x and x′ to secret[id, seq] respectively, then x = x′.

Proof. Before adding x or x′ to secret, they check whether the revealed signature π is valid
for the string s⊕ (id, seq) (line 11). From the uniqueness property of the signature scheme,
it follows that x = x′. ◀

▶ Proposition 7. If a correct process pi adds x to secret[id, seq], then eventually every correct
process adds x to secret[id, seq].

Proof. After receiving ⟨DONE , id, seq, π⟩ from a witness, pi relays the message to every
witness in Vi (line 14). Because the underlying WBB is correct, Wj ⊆ Vi for any pj correct.
Thus, there is a common correct witness that receives π from pi and relays it to pj , which
adds h(π) to secret (note that since pi added x = h(π) to secret, π is a valid signature). ◀

▶ Proposition 8. Let π be the signature a correct process shares at instance (id, seq), then
any other process can only reveal π if at least one correct process delivers δ new messages
after delivering (·, id, seq).

Proof. From Shamir’s construction, no information about π is revealed unless a process
gathers f + 1 shares [40]. A correct process does not reveal its share unless it has delivered δ

new messages (line 1), and a correct source does not reveal the secret π. It follows that π

can be revealed only when at least one correct process reveals its share. ◀

Detecting when a source incorrectly distributes shares is important to prevent the
adversary from controlling when the secret is revealed. A malicious process can send
malformed shares that cannot be recovered by correct processes, and later (in an arbitrary
time) send DONE with the correct secret through a corrupted witness. We employ the
detection mechanism to discourage malicious sources from distributing bad shares. Processes
relay the proof as soon as an incorrect share is detected, leaving little time for malicious
nodes to take advantage of the incorrect distribution. Correct processes can subsequently
exclude the misbehaving party from the system.

One can also guarantees the recovery of a secret (independently of adversarial action)
with a stronger primitive called Verifiable Secret Sharing (VSS [15]). The asynchronous VSS
protocol presented in [15] allows nodes to check their shares against a commitment that must
be reliably broadcast, thus preventing a malicious source from distributing bad ones. One
can replace the reliable broadcast with WBB, attaching the commitment to the broadcast
message to reduce communication complexity. Because the size of the commitment can be
large and the scheme computationally intensive, we use Algorithms 4 and 5 as a more efficient
approach. For the remaining of the paper, we consider optimistic runs of the algorithms in
which the detection mechanism successfully deter malicious participants from distributing
incorrect shares.

B Witness Oracle - Correctness

The pseudo-code for the witness oracle implementation is described in Algorithm 6. Parame-
ters d1 and d2 are the distances of the selection area for Vi and Wi respectively, while Si is
node i’s current local history of random numbers.
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Algorithm 6 Local Witness Oracle - code for process i.

Local Variables:
Wi, Vi ← ∅;

1 operation defineWitnesses(id, seq):
2 for j ∈ Π do
3 yj ← fj(Si);
4 if TorusDistr,b(yj , [0]) ≤ d1 then
5 Vi[id, seq]← Vi[id, seq] ∪ {j};
6 if TorusDistr,b(yj , [0]) ≤ d2 then
7 Wi[id, seq]←Wi[id, seq] ∪ {j};

8 operation getPotWitnesses(id, seq):
9 if Vi[id, seq] = ∅ then

10 defineWitnesses(id, seq);
11 return Vi;

12 operation getOwnWitnesses(id, seq):
13 if Wi[id, seq] = ∅ then
14 defineWitnesses(id, seq);
15 return Wi;

We now analyse the properties of the resulting protocol composed of Algorithms 2, 6, 4
and 5. To combine Algorithm 6 with 5, we make Si ≡

⋃
secret[id][seq]. First, to verify the

conditions under which Witness Inclusion and Unpredictability are satisfied, we assume that:
The interval between the first time a correct process adds x′ to secret, and the last time
a correct process does so is upper bounded by γ;
correct processes add new numbers to secret at the same rate λ;
at any correct process and within any δ interval of time, there is a lower bound thc on
the fraction of numbers added to secret that come from correct processes.

Recall that d1 and d2 in Algorithm 6 are the selection radius for Vi and Wi respectively,
i.e., a node j is selected as witness if yj is at distance at most d2 from the origin in Rb

r.

▶ Theorem 4 (Witness Inclusion). As long as d1 − d2 ≥ 2λγ, for any pair of correct nodes pi

and pj, and instance (id, seq): Wi(id, seq) ⊆ Vj(id, seq).

Proof. Let Ri(t) and Rj(t) be pi’s and pj ’s histories at a particular time t respectively. The
condition Wi(id, seq) ⊆ Vj(id, seq) is guaranteed if TorusDistr,b(fi(Ri), fi(Rj)) ≤ d1 − d2.

By assumption, all numbers in Ri(t− γ) are already in Rj(t). The only numbers that
might be in Ri(t) ∪Rj(t)−Ri(t) ∩Rj(t) are those pi and pj have added to their histories in
(t− γ, t], therefore, because they add numbers at a maximum rate of λ:

|Ri(t) ∪Rj(t)−Ri(t) ∩Rj(t)| ≤ 2λγ

Moreover, TorusDistr,b(f(S), f(T )) ≤ |S ∪T −S ∩T | from the Locality property of SLASH .
Thus Wi(id, seq) ⊆ Vj(id, seq) is satisfied whenever d1 − d2 ≥ 2λγ. ◀
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We generalize an upper bound on the mixing time of a random walk on the circle Zn [5],
by including a multiplicative factor of b to calculate the mixing time of a random walk on Zb

r:

MixingTime(Zb
r, ϵ) ≤ −2b · r2 · ln(ϵ)

π2

Where ϵ is the upper bound on the distance between the random walk distribution µ and
the uniform distribution υ, using the total variation distance:

TotalVariationDistance(µ, υ) = 1
2

∑
x∈Zb

r

|µ(x)− υ(x)| < ϵ

Consider w to be the predetermined average witness set size, and d the corresponding
distance selected to achieve w.

▶ Theorem 5 (Unpredictability). Let Si be the history of process pi at a particular moment
in the execution. For any process pj:

Pr(pj ∈W l+δ(·, ·) | |Si| = l) ≤ 1
w

+ e− π2·δ·thc
2br2

Proof. Let yj = fj(Si), Sδ
i be pi’s history after adding δ new numbers to Si and y′

j = fj(Sδ
i ).

Calculating the probability that pj ∈W l+δ(·, ·) is equivalent to calculate the probability that
y′

j is within distance d from the origin.
Any of the next δ numbers pi will reveal must be already shared by its source and the

corresponding instance finished delivered by pi, so that pi can start counting the number of
instances that passed before revealing the number. Any number originated from a correct
process is shared regardless of the current state and thus comprise a random step in Rb

r when
applying fj , note that there are at least δ · thc such numbers. On the other hand, numbers
originated from malicious nodes were already shared based on information up to Si. Thus,
we can apply these numbers in any order from Si, since they do not depend in later states of
pi’s history.

Consider the resulting hash value y′′
j after applying all numbers issued by malicious nodes

at once from Si. Now, when we apply the remaining steps coming from correct processes, it
is equivalent of performing a random walk starting from y′′

j , and the upper bound on the
mixing time applies to this case as well.

The probability that y′
j is within distance d from the origin is given by the resulting distri-

bution υ after applying all remaining steps. If the distribution is uniform, then the probability
is 1/w. The maximum the probability can variate is given by the TotalVariationDistance,
which when replacing ϵ becomes:

TotalVariationDistance(µ, υ) < e− π2·Nsteps

2br2

Where Nsteps is the number of steps in the random walk. The result follows by replacing
Nsteps with the minimum amount of numbers coming from correct processes: δ · thc. ◀

C Security Against Passive Attacks

In the passive attack, the adversary waits until the history hash will be such that the selected
witness set for a malicious message will contain many compromised nodes. The selection of
each compromised node depends on what can be considered as an independent random walk
(the per node history hash) arriving to a small subspace in Zb

r (within a defined distance
from the origin).
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The expected ratio of compromised nodes in the witness set is their ratio in the total
population. We argue that the number of random walk steps (new numbers revealed and
added to the local history) required to obtain a much higher ratio of compromised witnesses
can be very high. One key indication that it takes long for multiple random walks to co-exist
in the same region in Zb

r is the linear speedup in parallel coverage time of Zb
r [18].

C.1 The Gathering Time Problem
We are interested in the average occurrence time of two events: the time until the number
of selected compromised nodes exceeds a given ratio of the expected witness set size, and
the time until the number of selected correct nodes is smaller than said ratio. The former
event is discussed first, which we call Gathering Time since the adversary waits until enough
random walks gather in a defined area.

Our problem is related to Hitting Time bounds [18] that were well studied in recent
years and consider the time it takes for one (or many) random walks to arrive to a specific
destination point. The Gathering Time differs from the Hitting Time in two main aspects:
1) we require that the random walks will be at the destination area at the same time and 2)
we do not require all random walks to arrive at the destination but instead we are interested
in the first time that a subset of them, of a given size, will arrive at the destination area.
Next we provide an approximation for a lower bound which we compare to simulated random
walks results.

C.2 A simplified Markov Chain approach
We assume that nodes are initially mapped to points in Zb

r and are selected to be witnesses
if they are at distance at most r · q/2 from the origin in Zb

r (based on L∞). The initial
mapping of nodes is uniform and independent, also, the movement of nodes in the space can
me modeled as independent random walks.

The initial probability that a node i is found at distance at most p · r is equal to the
probability that in all b dimensions its location is at most p · r, i.e. Pr(disti ≤ p · r) = (2p)b.
Therefore, qb is the initial probability that a node is selected and the expected witness set
size is n · qb. We consider configurations where the witness set size is logarithmic with n, i.e.,
n · qb = c log2 n.

Next, we estimate the expected time until at least k out of f compromised nodes will be
selected, where t < n/3 and s > t are the ratio of compromised nodes in the system and in
the witness set respectively, i.e., f = t · n and k = s · c · n · qb = s · c log2 n. Initially, f nodes
are uniformly distributed in Zb

r. In one step, every node moves a single unit (+1 or −1) in
one dimension.

Let A be the witness selection area in Zb
r and B = Zb

r −A, that is, B is the complement
of A in Zb

r. Calculating the hitting time for k out of f nodes to reach A is an analytical
and computational challenge. Suppose, for instance, that we use the transition matrix P
of a random walk in Zb

r, depending on the size of the space, the number of states makes it
implausible to solve the hitting time computationally using P (even without considering the
f simultaneous random walks).

Instead, we represent the number of nodes inside A as a Markov Chain {Xl | l ∈ N},
where S = 0, ..., f are the possible states and Xl is the number of nodes in the targeted area
after l steps. In order to calculate Pr(Xl+1 = y | Xl = x) we consider, as a simplification,
only the average probability (over all possible positions) that each individual node inside A

OPODIS 2024



31:24 Dynamic Probabilistic Reliable Broadcast

may leave the area in one step, as well as the average probability that each individual node
inside B may move to A. These probabilities are assumed to be the same for every node
independently of its position inside A (or inside B).

Only nodes located in the “border” of A with B can move to B in one step. Intuitively,
the border of A is composed of points that are one step away from a point in B. To formalize
this notion we use the norm-1 distance, which can be thought as the minimum number of
steps needed to go from a point u to another point v.

1-Distr,b(u, v) :=
b−1∑
j=0

min(uj − vj mod r, vj − uj mod r)

We define the distance between a point and an area B ⊆ Zb
r as the minimum distance

from u to any point of B. The border of an area A is comprised of all the points that are at
distance 1 from its complement B.

border(A) := {u ∈ A | 1-Distr,b(u, B) = 1}

Nodes inside A that are not located in the border cannot leave the area in a single step.
Thus, the average probability that a node leaves A after one step (over all points of A14) is:

Avg Pr(i leaves A) = Pr(i leaves A | i ∈ border(A)) · |border(A)|
|A|

The probability of a node leaving B is analogous.
Let Yl denote the number of nodes that leave A from step l to step l + 1, and Wl the

number of nodes that leave B. We define Cl = Wl − Yl as the variation of the number of
nodes in A, thus:

Xl+1 = Xl + Cl

Pr(Xl+1 = y | Xl = x) = Pr(Cl = y − x | Xl = x)

The witness selection region A is comprised of all the points at a distance d = r · q/2
(L∞) from the origin. We say that u = [u1, ..., ub] ∈ A iff ∀ui : −d ≤ ui ≤ d (where −d is
the same as r − d). The size of the space (number of points) is rb, while the size of A is
(2d + 1)b, and thus |B| = rb − (2d + 1)b.

A point v inside B that is one step away from A satisfy the following condition: there is
a single vi such that vi = d + 1 or vi = −(d + 1), and for all other vj , −d ≤ vj ≤ d. For a
specific vi, there are (2d + 1)d−1 points in border(B) with vi = d + 1 (same for vi = −(d + 1)).
Since there are b dimensions, the total number of points in border(B) is 2b(2d + 1)b−1. Now
for any node in border(B), a random step can change the value of a single position by +1 or
−1, so the probability that such node moves to A after one step is 1

2b .
On the other hand, in border(A) there are points that are at distance 1 from multiple

points in B. A point u in border(A) should satisfy: ∀ui,−d ≤ ui ≤ d and ∃uj : uj = d or
uj = −d. The probability of moving from border(A) to B depends on how many values
uj = d (or −d), and there can be at most b values equal to d. Suppose there are k such uj ,
then the probability that a node in this point leaves to B is 1

2(b−k+1) .

14 As shown later, the probability that a node leaves B given that it is in border(B) is the same for every
point in border(B), which is not the case for all points in border(A).
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There are
(

b
k

)
distinct ways of choosing k out of b values to be either d or −d, and for

each choice of k elements, there are 2k ways of arranging it in a k-sequence of −d and d.
Finally, there are 2k

(
b
k

)
(2d− 1)b−k points u in which k ui have value either d or −d. The

total number of points in border(A) is the sum over all possible k:

|border(A)| =
b∑

j=1
2j

(
b

j

)
(2d− 1)b−j

We can now calculate the average probability that a node in border(A) moves to B:

Avg Pr(i leaves A | i ∈ border(A)) =
∑b

j=1
2j(b

j)(2d−1)b−j

2(b−j+1)

|border(A)|

Next, we calculate each component of the transition matrix.
Let pA = Avg Pr(i leaves A) and pB = Avg Pr(i leaves B) the individual probabilities

that a node leave the current area in one step. Suppose that there are x nodes in A and
f − x nodes in B. Then,

Yl ∼ Binomial(x, pA)

Wl ∼ Binomial(f − x, pB)

The variation Cl is calculated as following:

Pr(Wl − Yl = c | Xl = x) =
∑

c1−c2=c

Pr(Wl = c1 | X = x) Pr(Yl = c2 | X = x)

Where c1 can range from 0 to f −x and c2 can range from 0 to x. Let P be the transition
matrix of the Markov Chain {Xl | l ∈ N}, and Pij the component of the ith row and jth

columns, then:

Pij = Pr(Xl+1 = j | Xl = i) = Pr(Wl − Yl = j − i | Xl = i)

We use P to compute the average number of steps that starting from a particular state
S, the chain arrives at a state S′ ≥ k. The average hitting time is the weighted sum of all
individual hitting times, where the weight for each initial state is the probability of that state
in the initial distribution. To calculate the initial distribution, we assume that all nodes are
distributed uniformly at random and have the same probability qb. Let Xinit denote the
initial number of nodes inside A, then:

Xinit ∼ Binomial(f, qb)

We ran simulations for multiple random walks in Zb
r and compared the hitting time of

the simulations with the values obtained from the simplified analysis. For this purpose, we
chose parameters so that the number of steps required for witness set corruption is small
enough to allow the simulations to finish in a reasonable time.

Figure 4 shows results from the simulations and from the simplified analysis. For each
point in the graphs, we took the average of 1000 runs. From both graphs, we can conclude
that the simplified analysis gives a conservative estimate of the hitting time.

In the counterpart problem of the Gathering Time, we want to know the average number
of steps after which there are not enough correct nodes in the witness set. It can be calculated
with simple modifications in the Markov chain: the possible states are now 0, . . . , n− f , and
we use the updated P to compute the average number of steps until the chain arrive at a
state S′ < k.
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Figure 4 Simulations (thick line) and simplified analysis (dashed line). On the left graph: r = 210.
On the right graph: b = 8. In both graphs t = 0.25, c = 2 and s = 0.5.

Because of history differences, the path of local random walks may slightly diverge among
processes. Consider the extreme case where each local history evolves independently from
each other (and thus the difference can be arbitrarily large). The speed up property of
multiple random random walks guarantees that a linear speed up (on the number of walks f)
of the hitting time occurs [1]. In reality, the walks are highly correlated and are apart from
each other only by a factor that is much smaller than the hitting time. Thus, the speed up
in the cases we consider is negligible in relation to the hitting time.

C.3 Liveness vs Consistency graph
To optimize the overall time of failure, one has to select the threshold s so that it takes the
same amount of steps to violate liveness and consistency. In Figure 5, we show both curves
for s = 0.45 and t = 0.25.15

D Recovery Protocol

A process pi first sends RECOVER to every process and includes the latest WBB message
it has sent with tag [Π]. If a process pj that has already delivered a message m receives
RECOVER, it replies with m. When pi receives f + 1 replies for m, it knows at least one is
from a correct process, and can safely deliver it. Moreover, when receiving f + 1 RECOVER
messages, pj also sends a RECOVER to every process (this threshold ensures that at least
one correct process should propose to initiate a reliable broadcast instance).

When pi receives RECOVER from ⌊n+f
2 ⌋+ 1 processes, if a unique message m ̸=⊥ was

received so far, it then starts Bracha’s broadcast ECHO phase for m. Otherwise, pi waits
until it receives f + 1 ⟨READY , m, [Π]⟩ from the recovery messages to start echoing. The
traditional Byzantine reliable broadcast is then executed.

15 Ideally, s should be selected to optimize the failure time for each value of w and t. However, calculating
liveness results takes considerably longer (than consistency) due to the size of matrix P . Therefore, we
present the values for t = 0.25, where the size of P is smaller.
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Figure 5 Liveness and Consistency failure times. The parameters used are: n = 1024, b = 4,
r = 210, k = 0.45w and t = 0.25.

For a particular instance f < |Π|/3, we assume that for every correct process pi, Wi has
at most k − 1 faulty witnesses16. In addition, we assume the timeout time to be set much
smaller than the execution time of δ broadcast instances, such that the adversary cannot
change the composition of faulty processes in witness sets before processes timeout.

▶ Lemma 9. If two correct processes p and q deliver m and m′, then m = m′.

Proof. There are three different scenarios according to the algorithm in which p and q deliver
messages: both deliver in line 15 (Algorithm1), one delivers in line 15 and the other in
lines 28 or 41 (Algorithm 7), or both deliver in lines 28 or 41.

In the first case, since at most k − 1 witnesses are faulty in each witness set, correct
processes receive messages from at least one correct witness in lines 10 and 14, which
guarantees Consistency (see proof of Theorem 2).

For the second case, if q delivers m′ in line 28, it is guaranteed to receive a reply from at
least a correct process r. Since processes only take step in Algorithm 7 after timing out or
delivering a message, it must be that r delivered m′ in line 15. From the first case, m = m′.

On the other hand, if q delivers m′ in line 41, it received ⌊n+f
2 ⌋ + 1 ⟨READY , m′⟩.

Suppose that m ≠ m′, then ⌊n+f
2 ⌋ + 1 processes sent ⟨ECHO, m′⟩ (sufficient to make a

correct process send ready for m′). But since p delivers m after receiving ⟨VALIDATE , m⟩
from at least a correct witness, it is also the case that at least ⌊n+f

2 ⌋ + 1 processes sent
⟨READY , m, [Π]⟩.

Consequently, a correct process r must have sent both ⟨ECHO, m′⟩ and ⟨READY , m, Π⟩.
Two scenarios are possible: if r sent ECHO in line 34, then it had readies for m and m′ stored
(since r receives ⌊n+f

2 ⌋+ 1 recovery messages, as least one contains a ⟨READY , m, Π⟩), a
contradiction with the guard of line 33. If it was in line 36, then a correct process sent
⟨READY , m′, Π⟩, also a contradiction since two correct processes sent ⟨READY , ·, Π⟩ for
distinct messages m and m′ (see proof of Theorem 2).

16 Note that these assumptions are weaker than those of 3.2. This is because the addition of the recovery
protocol and a timeout compensate for the non-responsiveness of witness sets.
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Algorithm 7 Recovery Protocol.

18 upon triggering timeout:
19 if no message has been delivered then
20 mΠ ← last message sent tagged with Π;

/* mΠ ←⊥ if none */
21 send ⟨RECOVER, mΠ⟩ to every p ∈ Π;

22 upon receiving ⟨RECOVER, mΠ⟩ from pj:
23 recHist ← recHist ∪ {mΠ};
24 if already delivered m then
25 send ⟨REPLY, m⟩ to pj ;

26 upon receiving f + 1 ⟨REPLY, m⟩ messages:
27 if no message has been delivered then
28 deliver(m);

29 upon receiving ⟨RECOVER, ·⟩ from f + 1 processes such that no RECOVER was
sent:

30 mΠ ← last message sent with tag [Π];
31 send ⟨RECOVER, mΠ⟩ to every p ∈ Π;

32 upon receiving ⟨RECOVER, ·⟩ from ⌊n+f
2 ⌋+ 1 processes such that no ECHO was

sent:
33 if there is a unique m ̸=⊥ such that ⟨·, m, [Π]⟩ ∈ recHist then
34 send ⟨ECHO, m⟩ to every p ∈ Π;

35 upon having f + 1 ⟨READY , m, Π⟩ ∈ recHist such that no ECHO was sent:
36 send ⟨ECHO, m⟩ to every p ∈ Π;
37 upon receiving ⌊n+f

2 ⌋+ 1 ⟨ECHO, m⟩ or f + 1 ⟨READY , m⟩ messages:
38 send ⟨READY , m⟩ to every p ∈ Π;
39 upon receiving ⟨READY , m⟩ from ⌊n+f

2 ⌋+ 1 processes:
40 if no message has been delivered then
41 deliver(m);

In the third case, suppose p delivers m in line 28 and q delivers m′ in line41. There is
a correct process r that delivers m in line 15 and sent a reply to p, which from the second
case above implies m = m′. If both deliver m and m′ in line 41, there is at least one correct
process that send both ⟨READY , m⟩ and ⟨READY , m′⟩. Since correct processes do not send
readies for distinct messages, m = m′. ◀

▶ Lemma 10. If a correct process delivers a message, then every correct process eventually
delivers a message.

Proof. A correct process p can deliver a message in three possible occasions: in line 15
(Algorithm 1), and lines 28 and 41 (Algorithm 7).
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If p delivers m in line 15, because p’s witness set has at least one correct witness
that sends ⟨ECHO, m, W ⟩ to everyone, every correct process either times-out or delivers a
message in line 15 (using witnesses). Moreover, from Theorem 9, no correct process delivers
m′ ̸= m. At least one correct witness w sent ⟨VALIDATE , m⟩ to p, ⌊n+f

2 ⌋+ 1 processes sent
⟨READY , m, Π⟩ to w, from which at least f + 1 are correct.

If another process q times-out, it can deliver m by receiving f +1 replies from a RECOVER
message. Suppose q does not receive enough replies, then at least f + 1 correct processes do
not deliver m in line 15 (Algorithm 1), that is, they timeout. Consequently, every correct
process receives f + 1 RECOVER messages and also send RECOVER (even if they already
delivered m). q then gathers ⌊n+f

2 ⌋+ 1 RECOVER messages, and since there is at least one
correct process among them that sent ⟨READY , m, Π⟩, q echoes m (if m is the only gathered
message, line 33).

If q receives a distinct m′ before echoing a message, it waits for f +1 RECOVER messages
containing ⟨READY , m, Π⟩, which is guaranteed to happen (since at least f + 1 correct
processes previously sent ⟨READY , m, Π⟩). Thus, every correct process echoes m, gathers
⌊n+f

2 ⌋+ 1 echoes and sends ⟨READY , m⟩. Any process that has not delivered a message
then receives ⌊n+f

2 ⌋+ 1 readies and deliver m.
In the case where p delivers m in line 28, at least one correct process sent reply to p and

delivered m in Algorithm 1, which implies the situation described above.
Now suppose that p delivers m in line 41, and no correct process delivers a message

in Algorithm 1. p received ⌊n+f
2 ⌋+ 1 ⟨READY , m⟩, which at least f + 1 are from correct

processes. Moreover, because correct processes wait for ⌊n+f
2 ⌋+ 1 echoes (or f + 1 readies)

before sending READY , they cannot send READY for distinct messages m and m′, since
that would imply that a correct process sent ECHO for both messages. Therefore, every
correct process q is able to receive f + 1 readies for m and also send ready for it. q then
receives ⌊n+f

2 ⌋+ 1 readies and deliver m. ◀

▶ Lemma 11. If a correct process broadcasts m, every correct process eventually delivers m.

Proof. If any correct process delivers m, from Lemma 10 every correct process delivers it.
Suppose that p is the source and that no process delivers m before it times-out. p then sends
RECOVER (including m) to every process, so that even if p reaches no correct witnesses,
correct processes still receive a protocol message and initializes the instance. Since no correct
process delivers m before timing-out, they also trigger timeout and send RECOVER with m.

Because p is correct, it sends no protocol message for m′ ≠ m. Every correct process
then gathers enough RECOVER messages to send ECHO and later READY . p eventually
gathers ⌊n+f

2 ⌋+ 1 readies and deliver m. ◀

Lemmas 9, 10 and 11 imply Theorem 12.

▶ Theorem 12. Algorithms 1, 3 and 7 together satisfy Validity, Consistency and Totality.

E Applications and Ramifications

In this section, we briefly overview two potential applications of our broadcast protocol:
asynchronous asset transfer and a generic accountability mechanism. We also discuss open
questions inspired by these applications.
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E.1 Asset Transfer
The users of an asset-transfer system (or a cryptocurrency system) exchange assets via
transactions. A transaction is a tuple tx = (s, r, v, seq), where s and r are the sender’s and
receiver’s account id respectively, v is the transferred amount and seq is a sequence number.
Each user p maintains a local set of transactions T and it adds a transaction tx to T (we
also say that p commits tx), when p confirms that (i) all previous transactions from s are
committed, (ii) s has not issued a conflicting transaction with the same sequence number,
and (iii) based on the currently committed transactions, s indeed has the assets it is about
to transfer.17

One can build such an abstraction atop (probabilistic) reliable broadcast: to issue a
transaction tx, a user invokes broadcast(tx). When a user receives an upcall deliver(tx) it
puts tx on hold until conditions (i)-(iii) above are met and then commits tx. Asset-transfer
systems based on classical broadcast algorithms [6] exhibit significant practical advantages
over the consensus-based protocols [14, 4]. One can reduce the costs even further by using
our broadcast protocol. The downside is that there is a small probability of double spending.
A malicious user may make different users deliver conflicting transactions and overspend
its account by exploiting “weak” (not having enough correct members) witness sets or over-
optimistic evaluation of communication delays in the recovery protocol. We can temporarily
tolerate such an overspending and compensate it with a reconfiguration mechanism that
detects and evicts misbehaving users from the system, as well as adjusting the total balance.
It is appealing to explore whether such a solution would be acceptable in practice.

E.2 Accountability and beyond
In our approach probabilistic protocol, every broadcast event is validated by a set of witnesses.
The validation here consists in ensuring that the source does not attempt to broadcast different
messages with the same sequence number. As a result, with high probability, all correct
processes observe the same sequence of messages issued by a given source.

One can generalize this solution to implement a lightweight accountability mechanism (in
the vein of [26, 25]): witnesses collectively make sure that the sequence of events generated
by a process corresponds to its specification. Here a process commits not only to the messages
it sends, but also to the messages it receives. This way the witnesses may verify if its behavior
respects the protocol the process is assigned.

Notice that one can generalize this approach even further, as the verified events do not
have to be assigned to any specific process. In the extreme case, we can even think of a
probabilistic state-machine replication protocol [29, 10]. What if the processes try to agree
on an ever-growing sequence of events generated by all of them in a decentralized way?
Every next event (say, at position k) may then be associated with a dynamically determined
pseudo-random set of witnesses that try to make sure that no different event is accepted at
position k. Of course, we need to make sure that the probability of losing consistency and/or
progress is acceptable and a probability analysis of this kind of algorithms is an appealing
question for future research.

17 Please refer to [14] for more details.


	1 Introduction
	2 System Model
	3 Probabilistic Reliable Broadcast
	3.1 Protocol Description
	3.2 Protocol Correctness

	4 Witness Oracle
	4.1 Constructing a safe stream local hashing of histories
	4.2 Secret Sharing
	4.3 Witness Oracle – Correctness

	5 Security and Performance
	5.1 Expected Time of Failure
	5.2 Scalability – A Comparative Analysis

	6 Timeout and Recovery
	7 Related Work
	A Secret Sharing Scheme
	B Witness Oracle - Correctness
	C Security Against Passive Attacks
	C.1 The Gathering Time Problem
	C.2 A simplified Markov Chain approach
	C.3 Liveness vs Consistency graph

	D Recovery Protocol
	E Applications and Ramifications
	E.1 Asset Transfer
	E.2 Accountability and beyond


