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Abstract
Preference aggregation is a fundamental problem in voting theory, in which public input rankings of a
set of alternatives (called preferences) must be aggregated into a single preference that satisfies certain
soundness properties. The celebrated Arrow Impossibility Theorem is equivalent to a distributed task
in a synchronous fault-free system that satisfies properties such as respecting unanimous preferences,
maintaining independence of irrelevant alternatives (IIA), and non-dictatorship, along with consensus
since only one preference can be decided.

In this work, we study a weaker distributed task in which crash faults are introduced, IIA is not
required, and the consensus property is relaxed to either k-set agreement or ϵ-approximate agreement
using any metric on the set of preferences. In particular, we prove several novel impossibility results
for both of these tasks in both synchronous and asynchronous distributed systems. We additionally
show that the impossibility for our ϵ-approximate agreement task using the Kendall tau or Spearman
footrule metrics holds under extremely weak assumptions.
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1 Introduction

Preference aggregation is a classical problem in voting theory where every voter publishes
an input vote (e.g. a single most-favorable candidate, a linear ranking of all the candidates,
weighted rankings of candidates, etc.) and a typically centralized system aggregates the votes
into a single decision outcome, according to some choice rule. Various soundness properties
of preference aggregation algorithms are desirable, such as preservation of unanimous votes
(unanimity), the notion that the outcome is not totally dictated by a small set of voters
(non-dictatorship), and many more [8].

One of the first and most-celebrated fundamental results in voting theory was proved by
Kenneth Arrow in 1951 [3]. His theorem considers the preference aggregation problem where
input votes and the decision outcomes consist of weak linear rankings of the alternatives
(candidates). In addition to unanimity and non-dictatorship, Arrow considered independence
of irrelevant alternatives (IIA), which requires that the outcome of the preference aggregation
rule with respect to the relative ordering of any two alternatives should only depend on the
voters’ initial relative ordering of those two alternatives, and none of the other “irrelevant”
pairs. Arrow’s Impossibility Theorem asserts that no deterministic preference aggregation
algorithm can satisfy unanimity, non-dictatorship, and IIA simultaneously.
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32:2 Distributed Agreement in the Arrovian Framework

This result has received significant attention from the voting theory community. There
are many generalizations of Arrow’s theorem and a plethora of different proofs, including
elementary proofs that directly exploit the unanimity and IIA axioms [24], as well as others
using more advanced mathematics like algebraic topology [6], and fixpoint methods in metric
space topology [41, 17].

There are recent advancements stemming from the methods used in distributed computing
that yield better geometric/topological understanding of Arrow’s Impossibility Theorem.
Specifically, Lara, Rajsbaum, and Raventós-Pujo [40, 30] use techniques from combinatorial
topology to prove a generalization of Arrow’s theorem that sheds light on the result’s
geometric and topological structure. In general, combinatorial topology has also been
successful in proving a myriad of impossibility and complete characterization results in
distributed computing [27, 36, 23, 32].

In this work, we introduce novel distributed tasks that combine aspects from well-
studied problems such as set agreement [9, 34, 37, 12, 21, 10] and approximate agreement
[33, 35, 20, 38, 2, 31], as well as voting theoretic properties in the Arrovian framework.
Specifically, we study two tasks that require unanimity on the correct processes along with
either k-set agreement – meaning at most k different preferences are decided – or ϵ-approximate
agreement – meaning any two decisions are within a distance ϵ apart, with respect to a
specified metric. It is important to observe that the tasks presented here are significantly
weaker than a naïve translation of the properties in Arrow’s Impossibility Theorem; both the
IIA and non-dictatorship properties are absent from our problem definition, and consensus
is weakened to set or approximate agreement. In fact, we show in Section 4 that a natural
formulation of generalized non-dictatorship properties is actually implied by unanimity on
the correct processes.

The main contributions of this paper are the following.

1. In our main result, Theorem 33, we formally show that under the relatively weak property
that there exists some set of input preferences with a variably fine-grained cyclic structure
(see Definitions 30 and 31), neither of our Arrovian tasks are solvable for reasonable
agreement parameters and sufficiently many alternatives, despite the apparent weakening
of consensus.

2. We also prove that for the special cases of ϵ-approximate preference aggregation, when
the distances between preferences are measured using the well-established Kendall tau
[28, 29] or Spearman footrule [13] metrics, no algorithm exists if ϵ is less than a certain
large quantity, expressed in terms of the metric diameter, presented in Definition 7.

3. We present a unified analysis that captures synchronous and asynchronous systems
simultaneously, meant intentionally to shed light on the fundamental structural properties
of the problem – such as cyclic preference patterns – that cause the impossibility.

The rest of this paper is organized as follows. Section 2 provides the necessary background
on relations (Subsection 2.1) and introduces distributed aggregation maps in the context of
synchronous fault-free distributed algorithms (Subsection 2.2). In Section 3, we prove some
initial observations which are simple generalizations of Arrow’s theorem in the context of
distributed aggregation maps. Section 4 formally introduces the intersection of the Arrovian
framework and set and approximate agreement tasks discussed above, and proves our remark
that a non-dictatorship property is nonrestrictive. The main results of this paper are in
Section 5, and specifically, can be found in Theorem 33 and its corollaries.
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2 Background

In this section, we present the necessary background on relations, and introduce the notation
of a distributed aggregation map and some of its relevant properties. Throughout this paper,
we use the following notation: for a positive integer n, let [n] ≜ {1, . . . , n}.

2.1 Relations
A relation on a set X is a subset of X × X. If R is a relation we usually write x R y as
shorthand for (x, y) ∈ R. A relation R ⊆ X × X is reflexive provided x R x for all x ∈ X; it
is antisymmetric or strict provided that x R y and y R x imply x = y for all x, y ∈ X; R is
complete if for every pair x, y ∈ X, it follows that x R y or y R x; R is said to be transitive
provided that for every x, y, z ∈ X, x R y and y R z imply x R z. Given a relation R and
elements a, b, we often write a ≿R b for a R b and a ≻R b for a R b but a ̸R b. The strict
part of R is defined by

st(R) ≜ {(a, b) ∈ R : b ̸R a},

that is, the pairs in R without equivalence. So, a ≻st(R) b if and only if a ≻R b. If R is
any relation on X and Y ⊆ X, we define the restriction of R to Y to be the subrelation
R|Y ≜ R ∩ (Y × Y ) of R. Similarly, if R = (R1, . . . , Rn) is a vector of relations on X and
Y ⊆ X, we define the restriction R|Y ≜ (R1|Y , . . . , Rn|Y ).

The set of all reflexive complete transitive relations, called preferences, on a set X is
denoted P (X); the set of all antisymmetric reflexive complete transitive relations, called
strict preferences, on X is denoted L(X). A subset of P (X) is called a domain. A profile on
X is an element of

⋃∞
k=1 P (X)k; usually, we consider only profiles in P (X)n or P (X)n−t,

where n is the number of processes and t is the maximum number of faulty processes.

2.2 Distributed Aggregation Maps
Consider a synchronous distributed message-passing system with n processes {p1, . . . , pn}.
In this subsection, we consider only deterministic fault-free models of computation. In
particular, we are interested in algorithms of the following type. Let X be a finite set of
alternatives (also called candidates) and let WI , WO ⊆ P (X) be domains of preferences; we
denote the size of X by m. Suppose processes take inputs from WI , and after communicating,
decide a preference in WO satisfying certain desirable properties of a distributed voting
system. Given these assumptions, distributed algorithms where processes have inputs in WI

and decide values in WO are completely characterized by functions F : W n
I → W n

O. To see
this, since such algorithms are fault-free, every process has complete information after only
one round of communication, so that the determinism of the algorithm guarantees the given
map; the opposite direction is similarly trivial. This motivates the following definition.

▶ Definition 1 (Distributed Aggregation Map). A distributed aggregation map on an n-process
system with input domain WI ⊆ P (X) and output domain WO ⊆ P (X) is a map from W n

I

to W n
O.

The properties we are interested in obtaining are characterized in the following definitions.
For the rest of this section, let F be an n-process distributed aggregation map with input
domain WI and output domain WO.

OPODIS 2024



32:4 Distributed Agreement in the Arrovian Framework

▶ Definition 2 (Unanimity). We say that F satisfies unanimity if the following holds: for all
a, b ∈ X and for all R ∈ W n

I such that a ≻Ri
b for all i ∈ [n], we have a ≻F (R)i

b for all
i ∈ [n].

▶ Definition 3 (IIA). The map F satisfies independence of irrelevant alternatives (IIA) if
for all a, b ∈ X and all R, S ∈ W n

I such that R|{a,b} = S|{a,b}, it follows that F (R)|{a,b} =
F (S)|{a,b}.

The following definition of decisiveness is standard terminology in the voting theory
community [8], but the motivation is as follows: a set S is decisive if all of the strict rankings
between pairs are always dictated by the strict relations of the inputs in S.

▶ Definition 4 (Decisive). A set S ⊆ [n] is said to be decisive if S is nonempty and the
following holds: for all a, b ∈ X and all R ∈ W n

I such that a ≻Ri b for all i ∈ S, it follows
that a ≻F (R)j

b for all j ∈ [n].

▶ Definition 5 (Dictatorship). If F has a decisive set of size at most k, we say that F is a
k-dictatorship or that F is k-dictatorial; if k = 1, we say that F is simply a dictatorship or
that F is dictatorial.

In this paper, we are interested in set agreement and approximate agreement relaxations
of the consensus property that is usually assumed in the Arrovian framework. Given a vector
or list v, define set(v) to be the set of entries in v.

▶ Definition 6 (Set Agreement). If for all R ∈ W n
I , we have | set(F (R))| ≤ k, then we say

that F satisfies k-set agreement. The property of 1-set agreement is called consensus.

Before describing the approximate agreement condition, we introduce some definitions
and corresponding notation commonly used throughout this paper.

▶ Definition 7 (Metric Diameter). If d is a metric on a finite set Y and A ⊆ Y , we define
the diameter of A with respect to d by diamd(A) ≜ maxx,y∈A d(x, y). The diameter of a list
v of elements of Y is defined to be the diameter of the set of values it contains, and is written
diamd(v).

▶ Definition 8 (Approximate Agreement). If d is a metric on a domain containing WO, then
we say that F satisfies ϵ-agreement (for ϵ ≥ 0) with respect to d if every R ∈ W n

I satisfies
diamd(F (R)) ≤ ϵ.

Our main results in Section 5 pay special attention to the following natural metrics [28, 29,
13] on L(X) which are useful measures of distance in the context of approximate agreement.
The Kendall tau metric measures the number of pairs of alternatives that differ, while
Spearman’s footrule measures that cumulative distance between the ranks of each of the
alternatives. These metrics are formally described below.

▶ Definition 9 (Kendall tau). Define the Kendall tau metric on L(X), denoted KT, by
KT(R, S) ≜ |{(a, b) ∈ X × X : a ≻R b ∧ b ≻S a}| for all R, S ∈ L(X).

▶ Definition 10 (Rank and Spearman’s footrule). Given R ∈ L(X) and a ∈ X, define the
rank of a in R by rankR(a) ≜ |{b ∈ X : b ≿R a}|. The Spearman footrule on L(X) is a
metric SF defined by SF(R, S) ≜

∑
a∈X |rankR(a) − rankS(a)| for all R, S ∈ L(X).

The following results with respect to diameter in the Kendall tau or Spearman footrule
metrics can be found in [13], but are otherwise easy to prove.
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▶ Proposition 11. If |X| = m, then diamKT(L(X)) = m2−m
2 and diamSF(L(X)) =

⌊
m2

2

⌋
.

Since we are interested in distributed analogues to Arrow’s Theorem, we introduce the
following definition.

▶ Definition 12. We say that a domain W ⊆ P (X) is Arrow-Complete (AC) if every
distributed aggregation map on n processes with input domain W and output domain P (X)
that satisfies unanimity, IIA, and consensus is dictatorial.

Arrow’s Impossibility Theorem then states the following.

▶ Theorem 13 (Arrow). If n ≥ 2 and m ≥ 3, then P (X) is AC.

In [8], Arrow’s theorem has also been generalized to show that any domain satisfying a
certain chain rule is AC if n ≥ 2 and m ≥ 3.

3 Initial Observations

In this section, we state and prove our initial observations as a starting point for discussing
our main theorem and corollaries in Section 5. In particular, we prove two impossibility
results related to distributed aggregation maps when the consensus condition is weakened
to either set agreement or approximate agreement. The core of both arguments relies on
a simple coordinate-by-coordinate reduction of a distributed aggregation map. Although
we find these preliminary results interesting, the main contributions of this paper can be
found at the end of Section 5 (see Theorem 33 and its corollaries in Section 5). In particular,
our main results are impossibility theorems in fault-prone distributed systems with either
synchronous or asynchronous communication between processes.

▶ Proposition 14. Let k be a positive integer such that k < n and k < |W |, where W is an
AC domain. Furthermore, assume there is a set P ⊆ W of size at least k +1 such that for any
two distinct R, R′ ∈ P , there exists a, b ∈ X satisfying a ≻R b and b ≻R′ a. Every distributed
aggregation map on W satisfying k-set agreement, unanimity, and IIA is k-dictatorial.

▶ Proposition 15. Let W be an AC domain that contains some strict preference. Let d be
a metric on W . If ϵ < diamd(W ∩ L(X)), then every distributed aggregation map on W

satisfying ϵ-agreement (with respect to d), unanimity, and IIA is dictatorial.

The key observation underlying the proofs of both of these results is the following lemma.
The proof is based on a simple coordinate-by-coordinate reduction from any distributed
aggregation map to a distributed aggregation map satisfying consensus. In observing that
this reduction preserves unanimity and IIA, we exploit Arrow-Completeness to show that
each reduced map is a dictatorship. This shows that every output coordinate is in a sense
“dictated” by an input coordinate, which is unique under a very weak condition. It is
important to note that we are not claiming to reprove Arrow’s theorem in any way, and
instead, we are building on a domain that already satisfies Arrow’s theorem.

▶ Lemma 16. Suppose W is an AC domain. Let F : W n → P (X)n be a distributed
aggregation map. Suppose F satisfies unanimity and IIA, and let j ∈ [n]. Then we have the
following.
1. Then there exists some i ∈ [n] such that for all a, b ∈ X and R ∈ W n such that a ≻Ri

b,
we have a ≻F (R)j

b.
2. If W contains some two preferences R, R′ and a, b ∈ X such that a ≻R b and b ≻R′ a,

then the i above is unique.

OPODIS 2024



32:6 Distributed Agreement in the Arrovian Framework

Proof. Construct a map F j : W n → P (X)n by setting F j(R) = (F (R)j)i∈[n] for all R ∈ W n.
It is clear F j satisfies consensus. It is also easy to show that since F satisfies unanimity and
IIA, F j also satisfies unanimity and IIA. Since W is AC, it follows that F j is dictatorial.
Thus (1) follows from the construction of F j and Definition 4.

To show the second part, suppose i and i′ be two elements of [n] satisfying the above
criteria. Consider a preference profile R such that Ri = R and Ri′ = R′, where R and
R′ are defined in the lemma statement. Let a, b ∈ X such that a ≻R b and b ≻R′ a. By
the assumption on i and i′, we know that a ≻F (R)j

b (as Ri = R and i satisfies (1)) and
b ≻F (R)j

a (as Ri′ = R′ and i′ satisfies (1)), which is a contradiction. Thus (2) follows. ◀

We are now ready to prove Proposition 14 and Proposition 15.

Proof of Proposition 14. Let P be defined as in the theorem statement. By Lemma 16,
every j ∈ [n] can be uniquely mapped to some δ(j) ∈ [n] such that for all a, b ∈ X and
R ∈ W n such that a ≻Rδ(j) b, we have a ≻F (R)j

b. Let S = {δ(j) : j ∈ [n]}. It is
clear by construction that S is a decisive set for F , so it remains to show that |S| ≤ k.
Suppose for contradiction that |S| ≥ k + 1. Let S′ ⊆ S such that |S′| = k + 1. It follows
that there exists an injection g : S′ → P . Also, fix an injection ∆ : S′ → [n] such that
∆(i) ∈ δ−1(i) for all i ∈ [n]. Construct any profile R ∈ W n such that for all i ∈ S′, we have
Ri = g(i) ∈ P . Suppose i, i′ ∈ S′ are distinct. Consider ∆(i) and ∆(i′), which are distinct as
∆ is injective. Observe that since g is a bijection, g(i) ̸= g(i′). By definition of P and noting
that g(i), g(i′) ∈ P , there exists a, b ∈ X such that a ≻Ri

b and b ≻Ri′ a. As δ(∆(i)) = i and
δ(∆(i′)) = i′, the definition of δ implies that a ≻F (R)∆(i) b and b ≻F (R)∆(i′)

a. This shows
that F (R)∆(i) ̸= F (R)∆(i′); that is, every F (R)∆(i) is distinct over all i ∈ S′. In particular,
this shows that

| set(F (R))| ≥ |{F (R)∆(i) : i ∈ S′}| = |S′| = k + 1 > k.

This contradicts the k-set agreement property of F . Hence |S| ≤ k, which shows F is
k-dictatorial. ◀

Proof of Proposition 15. Suppose F is a distributed aggregation map on W that satisfies
unanimity and IIA. Suppose for contradiction that F is not dictatorial. For each j ∈ [n], let
δ(j) ∈ [n] such that for all a, b ∈ X and R ∈ W n such that a ≻Rδ(j) b, we have a ≻F (R)j

b,
which is well-defined by Lemma 16. Since F is not dictatorial, not all values of δ(j) for
j ∈ [n] are equal, so that there exists distinct j, j′ ∈ [n] where δ(j) ̸= δ(j′). Let i = δ(j)
and i′ = δ(j′). This implies that for all R ∈ W n if Ri ∈ L(X), then F (R)j = Ri, and if
Ri′ ∈ L(X), then F (R)j′ = Ri′ .

So let R, R′ ∈ W ∩ L(X) such that d(R, R′) = diam(W ∩ L(X)). Construct a profile
R ∈ W n such that Ri = R and Ri′ = R′. As Ri ∈ L(X), the above remark shows that
F (R)j = R. Similarly, F (R)j′ = R′. By construction of R and R′, if ϵ < diam(W ∩ L(X)),
then F does not satisfy ϵ-agreement with respect to d, a contradiction. ◀

4 Distributed Set and Approximate Preference Aggregation

In this section and the next, we study distributed aggregation algorithms in the presence
of process failures, in both synchronous and asynchronous communication models. The
previous impossibility theorems in Section 3 were only in the synchronous fault-free case, so
naively introducing failures into the system only makes the task at hand more difficult, and
so the impossibility trivially holds. Hence we will discard the IIA property, as it is typically
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viewed as the most restrictive and least necessary for preference aggregation. Additionally,
we discard the dictatorship properties as well, only requiring unanimity and agreement. We
will find in this section and the next that we still obtain a plethora of impossibilities, despite
this apparent simplification.

For the rest of this paper, consider a set of n processes, {p1, . . . , pn}, at most t (with
1 ≤ t < n) of them suffering crash failures. Let X be any finite set of m ≥ 2 alternatives.
Let WI , WO ⊆ P (X) be input and output domains, respectively. The identity of process pi

is defined to be i. Let C be the set of correct process identities in a given execution of a
distributed algorithm.

We focus on the following two problems, which consider distributed aggregation functions
in a message-passing distributed system in the crash failure model.

▶ Definition 17 (k-Set Preference Aggregation). Let k ≥ 1. The k-set preference aggregation
task with respect to WI , WO has the following specifications. Each process pi selects a private
input preference Ri ∈ WI . Every correct process pi decides a value Si ∈ WO satisfying:

k-set agreement. At most k different orders are decided: |Si : i ∈ C| ≤ k.
Unanimity. For all a, b ∈ X, if every correct pi has a ≻Ri b, then a ≻Si b for all i ∈ C.

▶ Definition 18 (ϵ-Approximate Preference Aggregation). Let ϵ ≥ 0; let d be a metric on a
subset of P (X) containing WO. The ϵ-approximate preference aggregation task with respect to
WI , WO, d has the following specifications. Each process pi selects a private input preference
Ri ∈ WI . Every correct process pi decides a value Si ∈ WO satisfying:

ϵ-approximate agreement. All correct decisions are at most ϵ apart: diamd({Si : i ∈
C}) ≤ ϵ.
Unanimity. For all a, b ∈ X, if every correct pi has a ≻Ri

b, then a ≻Si
b for all i ∈ C.

Even without the IIA and non-dictatorship properties seen in Propositions 14 and 15
(the deterministic synchronous fault-free case), a significant amount of structure is still
imposed on algorithms solving either of these tasks, particularly because of the strength of
this unanimity property together with an agreement condition, as we shall see in Section 5.

Another reason for the lack of non-dictatorship criteria in ϵ-approximate and k-set
preference aggregation is that these properties are often implied by the unanimity condition.
We make this precise in the following definition and proposition, noting that its proof is
based on an indistinguishability argument commonly seen in distributed computing [18, 5].

A distributed algorithm A is k-dictatorial provided that the following holds for all
admissible executions: there is a nonempty set T ⊆ [n] with |T | ≤ k such that if every correct
process pi has input Ri and output Si and T ⊆ C, then a ≻Ri

b for all i ∈ T (a, b ∈ X)
implies a ≻Si

b for all i ∈ C. A domain W ⊆ P (X) is non-trivial if there are two preferences
R, S ∈ W and two alternatives a, b ∈ X such that a ≻R b and b ≻S a.

▶ Proposition 19. Suppose WI is non-trivial. Any algorithm in any synchrony model that
satisfies unanimity is not k-dictatorial if 1 ≤ k ≤ t.

Proof. Suppose A is an algorithm that satisfies unanimity, and assume 1 ≤ k ≤ t. Let
R, R′ ∈ WI and a, b ∈ X such that a ≻R b and b ≻R′ a. Let T ⊆ [n] such that 1 ≤ |T | ≤ k.
Consider an execution Ξ of A where every process is non-faulty and every process pi for
i ∈ T has input R and every other process has input R′. Since |T | ≤ k ≤ t, there exists an
admissible execution Ξ′ that is identical to Ξ except the set of faulty processes is precisely T .
By unanimity, in Ξ′, processes pi with i ∈ [n] \ T must decide S′

i ∈ WO satisfying b ≻S′
i

a.
Since Ξ and Ξ′ are indistinguishable executions for any pi with i ∈ [n] \ T , it follows that
each such pi decides some Si ∈ WO satisfying b ≻Si a. Since a is ranked higher than b for all
inputs of processes with identity in T , this shows that A is not k-dictatorial. ◀

OPODIS 2024
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We will make use of the following synchrony notation in the next sections. Define the
synchrony of a distributed system to be sync if the system is synchronous and async if the
system is asynchronous. Let the synchrony of the distributed system at hand be denoted
tsync. Additionally, we say that an execution of a distributed algorithm in a particular model
of computation (synchrony and maximum number of faults) is admissible if the execution
satisfies the synchrony requirements and its number of faults is at most the maximum number
of faults permissible by the model of computation.

5 Arrovian Impossibilities in Synchronous and Asynchronous Systems

In this section, we present strong impossibility results for both synchronous and asynchronous
systems and both k-set and ϵ-approximate preference aggregation tasks. We begin with a
simple definition that allows us to treat both synchrony models simultaneously.

▶ Definition 20 (Synchronous Process Number). Define the synchronous process number
n(tsync) of a synchrony tsync ∈ {sync, async} by

n(tsync) ≜
{

n, if tsync = sync
n − t, if tsync = async.

Next we describe a convenient map that captures the relation between input and output
of correct processes in an arbitrary admissible execution. Note that these reductions are
not topological in nature as in [27, 10, 34, 36], and are merely convenient tools used in our
impossibility results.

▶ Definition 21 (Execution Map: sync). If A is a distributed algorithm in the sync synchrony
model with inputs in WI and outputs in WO, define a map Fsync

A : W n
I → W n

O as follows: for
each R ∈ W n

I , deterministically fix an execution of A where all processes are correct and
each pi has input Ri; let Si be the output of each pi, and set Fsync

A (R) ≜ S = (S1, . . . , Sn).

In the following definition, we choose the set of n − t correct processes in the given execu-
tions to be p1, . . . , pn−t (and the faulty set to be pn−t+1, . . . , pn) for notational convenience,
but this labeling is rather arbitrary.

▶ Definition 22 (Execution Map: async). Let A be an algorithm in async synchrony
model. Define a map Fasync

A : W n−t
I → W n−t

O by setting Fasync
A (R) for each R ∈ W n−t

I as
follows: deterministically fix an admissible execution of A where pn−t+1, . . . , pn are the t

faulty processes that crash before sending any messages, and pi has input Ri for i ∈ [n − t],
and the correct processes p1, . . . , pn−t communicate perfectly synchronously for the duration
of the execution; let Si be the decided value of pi; let Fasync

A (R) ≜ (S1, . . . , Sn−t) = S.

In either synchrony cases for tsync ∈ {sync, async} of the above reductions, Definition
20 shows that the reduced map is from W

n(tsync)
I to W

n(tsync)
O . Note that even when A is a

nondeterministic algorithm in the above definitions, a deterministic execution can still be
chosen. For the rest of this section, fix a synchrony model tsync ∈ {sync, async}.

▶ Observation 23. If A is an algorithm that satisfies k-set agreement in the tsync synchrony
model, then the map Ftsync

A satisfies k-set agreement.

▶ Observation 24. If A is an algorithm that satisfies ϵ-approximate agreement in the tsync
synchrony model, then the map Ftsync

A satisfies ϵ-approximate agreement.
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The following definition of u-unanimity for distributed aggregation maps can be seen as
a kind of unanimity that is preserved under u-of-n(tsync) thresholds.
▶ Definition 25 (u-Unanimity). A map F : W

n(tsync)
I → W

n(tsync)
O satisfies u-unanimity for

an integer u if for all a, b ∈ X and R ∈ W
n(tsync)
I , the set T ≜ {i ∈ [n(tsync)] : a ≻Ri

b}
satisfying |T | ≥ u implies that a ≻F (R)i

b for all i ∈ T .
The next auxiliary lemma is a simple application of a classical indistinguishability

argument in distributed computing [18, 5], and connects distributed unanimity with u-
unanimity for appropriate u.
▶ Lemma 26. If A is an algorithm that satisfies unanimity in the tsync synchrony model,
then the map Ftsync

A satisfies (n(tsync) − t)-unanimity.

Proof. First, suppose tsync = async. Consider any a, b ∈ X and R ∈ W
n(tsync)
I = W n−t

I .
Suppose the set T ≜ {i ∈ [n− t] : a ≻Ri

b} satisfies |T | ≥ n(tsync)− t = n−2t. Let Ξ be the
execution of A that defines Fasync

A (R). Construct a new execution Ξ′ that sends and receives
the same messages as Ξ (and in the same order) but the set of faulty process identities is
[n − t] \ T instead of {n − t + 1, . . . , n}, and the processes with identity greater than n − t

have their messages delayed until after every other process has decided; we may assume that
each pi for i > n − t has input Ri satisfying a ≻Ri

b, so that every i ∈ C satisfies a ≻Ri
b.

Immediately, we know that processes pi for i ∈ T must decide Fasync
A (R)i in Ξ′. Furthermore,

there are |[n − t] \ T | = (n − t) − |T | ≤ (n − t) − (n − 2t) = t faulty processes in Ξ′ since
|T | ≥ n − 2t. This implies that the execution Ξ′ is admissible in the async model since
asynchronous communication delays may be unbounded (but still finite). It follows that
every i ∈ T satisfies a ≻Fasync

A
(R)i

b since pi decides Fasync
A (R)i in Ξ′ and A respects unanimity.

Hence Ftsync
A (R) satisfies (n(tsync) − t)-unanimity.

The proof for the case when tsync = sync is similar, but we include it here for complete-
ness. Suppose tsync = sync. Suppose A is an algorithm with inputs from WI and outputs
from WO that satisfies unanimity. Let a, b ∈ X and R ∈ W n

I ; let T ≜ {i ∈ [n] : a ≻Ri
b},

and assume |T | ≥ n − t. Let Ξ be the execution of A that defines Fsync
A (R) from Definition

21. Let Ξ′ be an execution of A obtained from Ξ by letting each pj for j ∈ [n] \ T be faulty
but still send and receive exactly the same messages as in Ξ. Immediately by construction,
for all i ∈ T , pi decides Fsync

A (R)i in Ξ′. Since |T | ≥ n − t, we know |[n] \ T | ≤ t, which shows
that Ξ′ is an admissible execution of A. Since, in Ξ′, every correct process pi (for i ∈ T )
has a ≻Ri b, and since A satisfies unanimity, it follows that every pi for i ∈ T decides a
preference that ranks a above b. It follows that a ≻Fsync

A
(R)i

b for all i ∈ T , as desired. Hence
Fsync

A (R)i satisfies (n(tsync) − t)-unanimity. ◀

A simple consequence of our auxiliary results thus far is the following. Suppose t ≥ n/2
and let A be an algorithm that satisfies unanimity. Then by Lemma 26, F = Fasync

A satisfies
0-unanimity, so that if i ∈ [n − t] and R ∈ W n−t

I has Ri ∈ L(X), then F (R)i = Ri. Hence,
k-set preference aggregation is impossible in the async synchrony model as long as k < n − t

and |WI ∩ L(X)| ≥ n − t. Similarly, ϵ-approximate preference aggregation is impossible in
the async synchrony model if WI ∩ L(X) ̸= ∅ and ϵ < diamd(WI ∩ L(X)). Hence most of
the interesting cases in the asynchronous communication model are when t < n/2.

Our main results in this section rely on the definitions below, inspired by the Mendes–
Herlihy algorithm [33] for approximate agreement in Rd, except with minor differences.
▶ Definition 27 (Unanimity Set). For an indexed set M = {Rα}α∈J ⊆ WI , define the
unanimity set of M by

unanimity(M) ≜ {S ∈ WO : ∀a, b ∈ X, [(∀α ∈ J, a ≻Rα
b) =⇒ a ≻S b]}.
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Thus, given an indexed set M = {Rα}α∈J ⊆ WI for some J ⊆ [n], the unanimity set of
M is the set of admissible output rankings required by unanimity, when process pα has input
Rα. The next lemma introduces the concept of safe area in this context.

▶ Definition 28 (Safe Area). Let M = {Rα}α∈J ⊆ WI , where J ⊆ [n] and |J | > t. For each
i ∈ J , let

safei(M) ≜
⋂

T ⊆J:
|T |=|J|−t

i∈T

unanimity({Rα : α ∈ T}),

called the safe area of M with respect to pi.

We often slightly abuse notation by treating a tuple (xi)k
i=1 as an indexed set {xi}i∈[k],

as we do in the following lemma. This next lemma shows the connection between unanimity
of an algorithm and the safe area concept above.

▶ Lemma 29. Let F : W
n(tsync)
I → W

n(tsync)
O be a distributed aggregation map that satisfies

(n(tsync) − t)-unanimity. Then for all i ∈ [n(tsync)] and all R ∈ W
n(tsync)
I , we have

F (R)i ∈ safei(R).

Proof. Let i ∈ [n(tsync)] and R ∈ W
n(tsync)
I . Let us prove that F (R)i ∈ safei(R). Suppose

T ⊆ [n(tsync)] such that i ∈ T and |T | = n(tsync) − t. It suffices to show that F (R)i ∈
unanimity({Rα : α ∈ T}). To this end, suppose a, b ∈ X such that for all α ∈ T , a ≻Rα

b.
Since F satisfies (n(tsync) − t)-unanimity and |T | ≥ n(tsync) − t, it follows that a ≻F (R)i

b

as i ∈ T . This shows that F (R)i ∈ unanimity({Rα : α ∈ T}), as desired. ◀

To show an impossibility, we seek cases where safei(R) = {Ri} for all i. This leads to
the notion of a k-cyclic profile, expressed through Definitions 30 and 31. For convenience in
the following definition and in the proof of Lemma 32 below, we use the following shorthand
notation. If X1 and X2 are disjoint nonempty subsets of X and R ∈ WI , we write X1 ≻R X2
as shorthand for ∀x1 ∈ X1, ∀x2 ∈ X2, x1 ≻R x2; that is, we write X1 ≻R X2 if and only if R

ranks every element of X1 above every element of X2.

▶ Definition 30 (Cyclic Preference List). Let 1 ≤ k ≤ m. A k-cyclic preference list in WI is
a list of k distinct preferences R1, . . . , Rk in WI such that the following holds: there exists
a partition X1 ∪ · · · ∪ Xk of X into nonempty sets and preferences Bj ∈ L(Xj) for j ∈ [k]
such that every Ri for i ∈ [k] respects the preferences of every Bj (that is, Ri|Xj

= Bj for
all j) and satisfies

Xi ≻Ri Xi+1 ≻Ri · · · ≻Ri Xk ≻Ri X1 ≻Ri · · · ≻Ri Xi−1.

In this case, the preferences Bj for j ∈ [k] are called the blocks of R1, . . . , Rk.

▶ Definition 31 (Cyclic Profile). Let 1 ≤ k ≤ m. A k-cyclic profile with synchrony tsync is
a profile R ∈ W

n(tsync)
I such that WI has a k-cyclic preference list R′

1, . . . , R′
k and there is

an equitable partition1 A1 ∪ · · · ∪ Ak of [n(tsync)] where for all i ∈ [k] and j ∈ Ai, we have
Rj = R′

i.
The set of all k-cyclic profiles with synchrony tsync is denoted Ctsync

k . Finally, let

Ctsync ≜
⋃

n(tsync)
t ≤k≤m

Ctsync
k .

1 A partition P of a finite set S is equitable if |P | ∈ {⌊|X|/|P|⌋ , ⌈|X|/|P|⌉} for all P ∈ P. We allow empty
sets in this partition since we may have k > n(tsync), forcing at least one of the sets to be empty.
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Let us show that this definition of cyclic profiles satisfies the intuition stated above.

▶ Lemma 32. If R ∈ Ctsync, then for all i ∈ [n(tsync)], we have safei(R) = {Ri} ∩ WO.

Proof. Let R ∈ Ctsync and let i∗ ∈ [n(tsync)]. It is obvious from the definition of safei∗(R)
that {Ri∗} ∩ WO ⊆ safei∗(R). Now suppose S ∈ safei∗(R). Clearly S ∈ WO, so it remains to
show S = Ri∗ . Since R ∈ Ctsync, there exists some integer k with n(tsync)

t ≤ k ≤ m, and there
exists a k-cyclic preference list R′

1, . . . , R′
k along with an equitable partition A1 ∪ · · · ∪ Ak

of [n(tsync)] satisfying Definition 31; let j∗ ∈ [k] be the unique integer such that i∗ ∈ Aj∗ .
Since R′

1, . . . , R′
k is k-cyclic, there exists a partition X1 ∪ · · · ∪ Xk of X into nonempty sets,

and Bj ∈ L(Xj) for j ∈ [k] that satisfies the properties in Definition 30.
Since every i ∈ [n(tsync)] and j ∈ [k] satisfy Ri|Xj = Bj ∈ L(X), it is easy to see that

S|Xj
= Bj , as S ∈ safei∗(R). Let j1, j2 ∈ [k] such that Xj1 ≻Ri∗ Xj2 and there exists no

j3 ∈ [k] such that Xj1 ≻Ri∗ Xj3 ≻Ri∗ Xj2 . Notice that Ri∗ = R′
j∗ since i∗ ∈ Aj∗ . It is easy

to show that for all j ∈ [k], we have Xj1 ≻R′
j

Xj2 if and only if j ̸= j2; this implies that
for all i ∈ [n(tsync)], we have Xj1 ≻Ri

Xj2 if and only if i /∈ Aj2 . In particular, this shows
that i∗ /∈ Aj2 . Furthermore, since A1 ∪ · · · ∪ Ak is an equitable partition of [n(tsync)] and
k ≥ n(tsync)

t , we have

|Aj2 | ≤
⌈

n(tsync)
k

⌉
≤

⌈
n(tsync)

n(tsync)/t

⌉
= t.

We now let T ≜ [n(tsync)] \ Aj2 . Hence i∗ ∈ T and |T | ≥ n(tsync) − t. It follows
from Definition 28 that S ∈ unanimity({Rα : α ∈ T}). By Definition 27, it follows that
Xj1 ≻S Xj2 .

Since R′
j∗ = Ri∗ , the definition of j∗ and Definition 30 show that

Xj∗ ≻Ri∗ Xj∗+1 ≻Ri∗ · · · ≻Ri∗ Xk ≻Ri∗ X1 ≻Ri∗ · · · ≻Ri∗ Xj∗−1.

Since the choice of j1, j2 was arbitrary in the above argument, this implies that

Xj∗ ≻S Xj∗+1 ≻S · · · ≻S Xk ≻S X1 ≻S · · · ≻S Xj∗−1.

Thus, because S|Xj = Bj = Ri∗ |Xj for all j ∈ [k], we obtain S = Ri∗ , as desired. ◀

We are now ready to state and prove our main impossibility theorem.

▶ Theorem 33 (Main). Let k < n. Then there is no algorithm solving k-set preference
aggregation in the synchrony model tsync if there exists a j-cyclic profile in Ctsync for some
j > k. Similarly, there is no algorithm solving ϵ-approximate preference aggregation in the
synchrony model tsync if Ctsync ̸= ∅ and ϵ < maxR∈Ctsync diamd(R).

Proof. Suppose k < n(tsync), which is always true if tsync = sync. Suppose R ∈ Ctsync

is a j-cyclic profile for some j > k. Suppose A is an algorithm that solves k-set preference
aggregation in the tsync synchrony model. Then the map Ftsync

A satisfies k-set agreement
and (n(tsync) − t)-unanimity by Observation 23 and Lemma 26. Since R is j-cyclic and
j > k and k < n(tsync), there exists a set S ⊆ [n(tsync)] such that |S| = k + 1 and every
Ri is distinct over all i ∈ S. Then by Lemma 29, for all i ∈ S, we have Ftsync

A (R)i ∈ safei(R).
By Lemma 32, safei(R) ⊆ {Ri} for all i ∈ S, which implies that Ftsync

A (R)i = Ri for all i ∈ S.
Since |S| = k + 1, this shows that Ftsync

A does not satisfy k-set agreement, a contradiction.
This proves the result when k < n(tsync).

Now, suppose k ≥ n(tsync), so tsync = async. Suppose there exists a j-cyclic profile
in Ctsync = Casync for some k < j ≤ n. This profile can be extended to a j-cyclic profile
R ∈ W n

I . Since j > n(async) = n − t, we know j ≥ n − t + 1 ≥ n
t , so that R ∈ Csync. Since
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we have already proved the synchronous case, this shows that there is no algorithm that solves
k-set preference aggregation in the sync synchrony model, so certainly no algorithm solves
the task in the async model (such an algorithm necessarily allows synchronous executions).

For the second part, suppose Ctsync ̸= ∅ and ϵ < maxR∈Ctsync diamd(R). Suppose A

is an algorithm that solves ϵ-approximate preference aggregation in the tsync synchrony
model. Then the map Ftsync

A satisfies ϵ-approximate agreement and (n(tsync) − t)-unanimity
by Observation 24 and Lemma 26. Pick any R ∈ arg maxR′∈Ctsync diamd(R′). Let i, j ∈
[n(tsync)] such that d(Ri, Rj) = diamd(R). Then d(Ri, Rj) > ϵ. By Lemma 29, Ftsync

A (R)i ∈
safei(R) and Ftsync

A (R)j ∈ safej(R). Lemma 32 implies safei(R) ⊆ {Ri} and safej(R) ⊆
{Rj}, so that that Ftsync

A (R)i = Ri and Ftsync
A (R)j = Rj . It follows that

d(Ftsync
A (R)i, Ftsync

A (R)j) = d(Ri, Rj) > ϵ,

which contradicts the ϵ-agreement property of Ftsync
A . The theorem follows. ◀

Let us now show some consequences of this theorem on special cases. First, we consider
k-set preference aggregation on full domains, which contain all strict preferences on X.

▶ Corollary 34 (k-Set Impossibility: Full Domain). Suppose L(X) ⊆ WI ⊆ P (X). If
m ≥ n(tsync)

t and k < min{m, n}, then there is no algorithm solving k-set preference
aggregation on WI , WO in the synchrony model tsync.

Proof. Suppose m ≥ n(tsync)
t and k < min{m, n}, so k < m and k < n. Write X =

{a1, . . . , am}. Consider an m-cyclic preference list R1, . . . , Rm in L(X) given by setting each
Xi = {ai} and Bi to be the only preference in L(Xi) and using the relations in Definition
30. Let R ∈ L(X)n(tsync) be an m-cyclic profile constructed using Definition 31 and any
equitable partition A1 ∪ · · ·∪ Am of [n(tsync)]. Since m ≥ n(tsync)

t , we know that R ∈ Ctsync.
The result follows from Theorem 33 since R is m-cyclic and k < n and k < m. ◀

For our analysis of the ϵ-approximate preference aggregation problem, we consider the
Kendall tau metric (Definition 9) and Spearman’s footrule metric (Definition 10) on L(X).

The assumption that j is even in the following result is only for simplicity of algebraic
expressions, and is not fundamental to the result itself.

▶ Corollary 35 (ϵ-Approximate Kendall Tau: General Impossibility). Suppose there exists a
j-cyclic profile R ∈ Ctsync for some j ≥ n(tsync)

t such that each block of R is on at least ℓ ≥ 1
alternatives. If ϵ <

⌊
j2/4

⌋
ℓ2, then no algorithm solves ϵ-approximate preference aggregation

on WI , WO, KT in the tsync synchrony model. In particular, if j is even and δ ≜ ℓ · j
m , then

ϵ-approximate preference aggregation is impossible in the tsync synchrony model for

ϵ <
δ2

2 · diamKT(WI).

Proof. Since there exists a j-cyclic profile for some j ≥ n(tsync)
t , then WI has a j-cyclic

preference list R′
1, . . . , R′

j ; let X1, . . . , Xj be the blocks of R′
1, . . . , R′

j , each of size at least
ℓ. It follows that there exists a j-cyclic profile R ∈ Ctsync (constructed with the preference
list R′

1, . . . , R′
j) such that R′

1, R′
⌊j/2⌋+1 ∈ set(R). Observe that for all a, b ∈ X, we have

R′
1|{a,b} ̸= R′

⌊j/2⌋+1|{a,b} if and only if a ∈ X1 ∪ · · · ∪ X⌊j/2⌋ and b ∈ X⌊j/2⌋+1 ∪ · · · ∪ Xj or

vice versa (see Figure 1); hence KT(R′
1, R′

⌊j/2⌋+1) =
(∑⌊j/2⌋

i=1 |Xi|
)

·
(∑j

i=⌊j/2⌋+1 |Xi|
)

.
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Let ϵ <
⌊
j2/4

⌋
ℓ2. Then, since ℓ = δ · m

j and by definition of a j-cyclic preference list,

diamKT(set(R)) ≥ KT(R′
1, R′

⌊j/2⌋+1) =

⌊j/2⌋∑
i=1

|Xi|

 ·

 j∑
i=⌊j/2⌋+1

|Xi|


≥ ⌊j/2⌋ · ℓ · (j − ⌊j/2⌋) · ℓ = ⌊j/2⌋ · ⌈j/2⌉ · ℓ2 =

⌊
j2/4

⌋
· ℓ2 > ϵ.

The first part then follows from Theorem 33 since ϵ < maxR′∈Ctsync diamKT(set(R′)). For
the second part, suppose j is even and ℓ = δ · m

j for some real δ > 0. Then, by the first part,
ϵ-approximate agreement is impossible if ϵ <

⌊
j2/4

⌋
ℓ2. By Proposition 11,

⌊
j2/4

⌋
ℓ2 = j2

4 ·
(

δ · m

j

)2
= δ2

2 · m2

2 ≥ δ2

2 · diamKT(L(X)) ≥ δ2

2 · diamKT(WI).

Hence ϵ < δ2

2 · diamKT(WI) implies ϵ <
⌊
j2/4

⌋
ℓ2, proving the result. ◀

Consider the δ value in the context of Corollary 35 (and in the next corollary). Observe
that δ is at least the ratio of the smallest block size to the average block size m

j . We
necessarily have δ < 1, but the closer δ is to 1, the more the partition X1 ∪ · · · ∪ Xj of X is
evenly distributed and closer to being equitable.

R′
1 R′

⌊j/2⌋+1
B1 B⌊j/2⌋+1
B2 B⌊j/2⌋+2
...

...
B⌊j/2⌋ Bj

B⌊j/2⌋+1 B1
B⌊j/2⌋+2 B2

...
...

Bj B⌊j/2⌋

Figure 1 Visualization of R′
1 and R′

⌊j/2⌋+1 in the proofs of Corollaries 35 and 36.

▶ Corollary 36 (ϵ-Approximate Spearman Footrule: General Impossibility). Suppose there exists
a j-cyclic profile R ∈ Ctsync for some j ≥ n(tsync)

t such that each block of R is on at least
ℓ ≥ 1 alternatives. If ϵ <

⌊
j2/2

⌋
ℓ2, then no algorithm solves ϵ-approximate preference

aggregation on WI , WO, SF in the tsync synchrony model. In particular, if j is even and
δ ≜ ℓ · j

m , then ϵ-approximate preference aggregation is impossible in the tsync synchrony
model for

ϵ < δ2 · diamSF(WI).

Proof. The proof of this result is almost identical to the proof of Corollary 35. Let R′
1, . . . , R′

j

and R ∈ Ctsync and X1, . . . , Xj be defined as in the proof of Corollary 35. Observe that for
every a ∈ X1 ∪ · · · ∪ X⌊j/2⌋, we have |rankR′

1
(a) − rankR′

⌊j/2⌋
(a)| =

∑j
i=⌊j/2⌋+1 |Xi| and for

all a ∈ X⌊j/2⌋+1 ∪ · · · ∪ Xj , we have |rankR′
1
(a) − rankR′

⌊j/2⌋
(a)| =

∑⌊j/2⌋
i=1 |Xi|. See Figure 1

for a visualization of these observations.
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If ϵ <
⌊
j2/2

⌋
· ℓ2, then the observations above imply

diamSF(set(R)) ≥ SF(R′
1, R′

⌊j/2⌋+1) = 2 ·

⌊j/2⌋∑
i=1

|Xi|

 ·

 j∑
i=⌊j/2⌋+1

|Xi|


= 2 · KT(R′

1, R′
⌊j/2⌋+1) ≥ 2 ·

⌊
j2/4

⌋
· ℓ2 =

⌊
j2/2

⌋
· ℓ2 > ϵ.

The result follows by Theorem 33. The second part of this corollary holds similarly to the
proof of Corollary 35. Suppose j is even and write ℓ = δ · m

j . The result immediately follows
from the first part of this corollary and the inequality

⌊
j2/2

⌋
ℓ2 = j2

2 ·
(

δ · m

j

)2
= δ2 · m2

2 ≥ δ2 · diamSF(L(X)) ≥ δ2 · diamSF(WI),

which follows from the equality diamSF(L(X)) =
⌊

m2

2

⌋
in Proposition 11. ◀

We conclude this section by analyzing approximate preference aggregation on the full
domain consisting of all strict preferences on X.

▶ Corollary 37 (ϵ-Approximate Kendall Tau: Full Domain Impossibility). Assume WI = WO =
L(X). If m ≥ n(tsync)

t , then no algorithm solves ϵ-approximate preference aggregation
on WI , WO, KT in the tsync synchrony model, if ϵ <

⌊
m2/4

⌋
, and in particular, if ϵ <

1
2 · diamKT(L(X)).

Proof. Using the construction in the proof of Corollary 34, there exists a m-cyclic profile
R ∈ Ctsync. Since the blocks of R form an equitable partition of X, each block contains
exactly one alternative. Since m ≥ n(tsync)

t , Corollary 35 shows that there is no ϵ-approximate
preference aggregation algorithm (on WI , WO, KT) in the tsync synchrony model for ϵ <⌊
m2/4

⌋
· 12 =

⌊
m2/4

⌋
. The second part of the result follows from the following inequality:

1
2 · diamKT(L(X)) = m2−m

4 ≤
⌊

m2

4

⌋
. The first equality holds by Proposition 11 and the last

inequality is obvious if m ≥ 4, and one may easily verify that it is true when m ≤ 3. ◀

▶ Corollary 38 (ϵ-Approximate Spearman Footrule: Full Domain Impossibility). Assume WI =
WO = L(X). If m ≥ n(tsync)

t , then no algorithm solves ϵ-approximate preference aggregation
on WI , WO, SF in the tsync synchrony model, if ϵ <

⌊
m2/2

⌋
, and in particular, if ϵ <

diamSF(L(X)).

Proof. Using a similar argument as the previous corollary and by Corollary 36, we have the
following. If m ≥ n(tsync)

t , then there is no ϵ-approximate preference aggregation algorithm
(on WI , WO, SF) in the tsync synchrony model for ϵ <

⌊
m2/2

⌋
. The second part of the result

follows from the equality diamSF(L(X)) =
⌊
m2/2

⌋
, which holds by Proposition 11. ◀

6 Related Work

The Arrovian framework in voting theory has already received a lot of attention; however, its
intersection with distributed computing appears to be recent. To the best of our knowledge,
distributed combinatorial topology techniques such as the index lemma on simplicial complexes
were first used in 2022 [40] to prove the base case (m = 3, n = 2) of Arrow’s theorem
topologically, and then extended via induction. This work was later improved in 2024 [30]
by proving a domain-generalization of Arrow’s theorem using only distributed combinatorial
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topology on all cases. Other work has studied social welfare and social choice distributed
algorithms satisfying consensus and significantly weaker validity conditions (e.g. preserving
unanimity of only the highest ranked alternative) than our unanimity condition [11].

The theory in the Arrovian framework itself is full of rich results. In particular, Arrow’s
theorem and domain-generalizations thereof have been proved via many combinatorial
methods [8, 24], as well as techniques from algebraic topology [6] and fixed-point methods
in metric spaces [41, 17]. More generally, (algebraic) topological techniques have proven
successful in voting theory. For example, the Gibbard–Satterthwaite theorem – which shows
the non-existence of a social choice function (inputs being preferences and output being a
single alternative) satisfying surjectivity and strategy-proofness – has been proven using
combinatorial methods and algebraic topological methods [26, 7].

On the distributed computing side, the k-set agreement task (in which processes must
decide on at most k values with a notion of decision validity) was introduced in [9]. Other
formulations of this task may be found in [39]. The ϵ-approximate agreement distributed task
on the real line was well-studied in [14, 16] and was proven to be solvable in fully asynchronous
systems with relatively high resilience, despite the consensus unsolvability in such systems
with only one crash fault [19]. These results were later generalized to multidimensional
approximate agreement in [33, 35]. Multidimensional approximate agreement has been
studied extensively since then [1, 25, 15, 22, 4]. Discrete versions of approximate agreement
have been formulated on graphs and simplicial complexes [38, 2, 31]; these tasks are somewhat
similar to the ϵ-approximate preference aggregation task discussed in this paper.

7 Conclusion

In this paper, we propose two novel distributed tasks in the Arrovian framework and prove
strong impossibility results on these tasks in crash-prone, synchronous and asynchronous
systems. We adapt previously well-studied distributed tasks – namely, set and approximate
agreement – to the context of preference aggregation, by replacing the respective validity
properties with unanimity on the correct processes. Our impossibility results are very general,
and apply to k-set preference aggregation on a full domain, and ϵ-approximate preference
aggregation with both the Kendall tau and Spearman footrule metrics.

Using the Kendall tau metric on a domain of strict preferences illuminates a particularly
fascinating connection to a more general “metric space approximate agreement” task. One
may embed the given domain into a higher dimensional Euclidean space by examining the
order of each pair of alternatives and mapping it to a binary real. With such an embedding,
one may think of the approximate preference aggregation task (with the Kendall tau metric)
as a more traditional multidimensional approximate agreement problem, where the convexity
and agreement properties are with respect to the Euclidean L1 “taxicab” metric (instead of the
usual L2 metric) and the definition of convexity is adjusted to a more “total” convexity. Many
of the lemmas in this paper easily generalize to this metric space framework. Exploration of
this more general approximate agreement task would be interesting future work.

Another interesting direction for future work is the following. In our execution map
of an asynchronous algorithm, we make a rather arbitrary choice for the set of silent
(initially crashed) processes (see the sentence before Definition 22). Using a more rich view
and including all possible sets of silent processes in the map (or other techniques) could
potentially generate a simplicial complex that captures this information. It would be highly
insightful to determine if topological methods could be used in this way to obtain stronger
asynchronous results in our Arrovian framework, but also in the more general metric space
framework discussed above.
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