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Abstract
A self-stabilizing randomized algorithm for mending maximal matching (MM) in synchronous
networks is presented. Starting from a legal MM configuration and assuming that the network
undergoes k faults or topology changes (that may occur in multiple batches), the algorithm is
guaranteed to stabilize back to a legal MM configuration in time O(log k) in expectation and with
high probability (in k), using constant size messages. The algorithm is simple to implement and
is uniform in the sense that it does not assume unique identifiers, nor does it assume any global
knowledge of the communication graph including its size. It relies on a generic probabilistic phase
synchronization technique that may be useful for other self-stabilizing problems. The algorithm
compares favorably with the existing self-stabilizing MM algorithms in terms of the dependence of
its run-time on k, a.k.a. fully adaptive run-time. In fact, this dependence is asymptotically optimal
for uniform algorithms that use constant size messages.1

2012 ACM Subject Classification Computer systems organization → Fault-tolerant network topolo-
gies

Keywords and phrases self-stabilization, maximal matching, fully adaptive run-time, dynamic graphs

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.33

Related Version Full Version: https://arxiv.org/abs/2105.09756 [18]

Funding Yuval Emek: supported by the Bernard M. Gordon Center for Systems Engineering at the
Technion.
Taisuke Izumi: supported by JSPS KAKENHI Grant Numbers 23H04385 and 22H03569.
Shay Kutten: supported by ISF grant 1346/22 and by the Grand Technion Energy Program.

1 Introduction

Distributed systems are notoriously subject to faults and much of the effort in the design
and implementation of distributed algorithms is devoted to fault tolerance issues. Introduced
in the seminal paper of Dijkstra [26], self-stabilization is a fundamental approach to fault
tolerance requiring that the system recovers from any number of transient faults and stabilizes
back to a legal configuration within finite time. The strong guarantees of this natural approach
attracted a lot of attention over the years making self-stabilization an extensively studied
research field (see [27, 4] for textbooks).

1 This paper is extracted from (a much longer) full version [18]. The main contribution of [18] is a self-
stabilizing black-box transformer that can be applied to LCL problems in general. The self-stabilizing
MM algorithm developed in the current paper is closely related to the one obtained by invoking the
transformer on the (fault free) algorithm presented in Sec. 4.1, although the run-time and message size
bounds of the former are better than those of the latter.
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33:2 Self-Stabilizing Fully Adaptive Maximal Matching

The main performance measure for self-stabilizing algorithms is their stabilization run-
time. With very few exceptions (discussed in Sec. 1.3), this is measured as a function of the
size of the system: the more processors are in the system, the longer is the time it takes for
the algorithm to stabilize. However, while self-stabilizing systems are guaranteed to recover
from any number of transient faults, in most systems, the common scenario is that over a
limited time interval, only few faults occur. Although a small number of faults can seriously
hinder the operation of the whole system [51], one may hope that the system recovers from
them faster than the recovery time from a larger number of faults, regardless of the total
number of processors.

With this hope in mind, we turn to the notion of fully adaptive run-time that expresses the
recovery time of a self-stabilizing algorithm as a function of the number of faults (supporting
also dynamic topology changes), rather than the size of the system. Our goal in the current
paper is to investigate this appealing complexity measure in the context of the classic maximal
matching (MM) problem as we now turn to define.

1.1 Model, Problem, and Complexity Measure
Consider a distributed algorithm Alg running on a message passing communication network
represented as a simple undirected graph G = (V, E). Under Alg, the nodes operate in
synchronous rounds so that in each round t ∈ Z≥0, every node v ∈ V executes the following
operations: (1) v performs local computation that includes reading from and writing to its
registers; (2) v sends messages to (a subset of) its neighbors; and (3) v receives the messages
sent to it by its neighbors in round t. Round t is assumed to span the time interval [t, t + 1)
so that time t marks the beginning of the round. The configuration of Alg at time t is an
abstract object that encodes the content of all nodes’ registers at that time.

Let N(v) be the set of neighbors of a node v ∈ V and let d(v) = |N(v)| be its degree. We
adhere to the conventions of the port numbering model of distributed graph algorithms where
each node v ∈ V is associated with an (arbitrarily chosen) port bijection pv : [d(v)]→ N(v) so
that from v’s perspective, node pv(i) is referred to as neighbor i for each i ∈ [d(v)]. Assuming
that pv(i) = u and pu(j) = v, when v (resp., u) sends a message to its neighbor i (resp., j),
this message is written into a designated port register πu(j) (resp., πv(i)) that u (resp., v)
can read during the local computation step of the subsequent round. We do not assume that
v (resp., u) knows anything about the identity of its neighbor i (resp., j) otherwise. In fact,
in the current paper, we focus on uniform algorithms, namely, the nodes do not have unique
identifiers, nor do they hold any global knowledge of the graph G (including its size).

Self-Stabilizing Maximal Matching. An edge subset M ⊆ E is a matching in G if the
degree of every node in the graph (V, M) is at most 1. A matching M is maximal if M ′ is
not a matching for any M ⊂M ′ ⊆ E. We assume that the interface of each node v ∈ V in
a distributed maximal matching (MM ) algorithm includes a designated matching register
µv ∈ {⊥} ∪ {U} ∪ {1, . . . , d(v)} whose semantics is as follows: µv = ⊥ indicates that v is still
undecided; µv = U indicates that v is (decided to be) unmatched; and µv = i indicates that
v is matched to its neighbor i.

To support the consistency of the nodes’ matching registers, the interface of node v also
includes, for each i ∈ [d(v)], a designated (matching) status field πσ

v (i) ∈ {⊥} ∪ {U, H, E},
within the port register πv(i), whose role is to “reflect” the content of µpv(i). Specifically,
assuming that pv(i) = u and pu(j) = v, the semantics of the status field πσ

v (i) is as follows:
πσ

v (i) = ⊥ indicates that µu = ⊥; πσ
v (i) = U indicates that µu = U; πσ

v (i) = H indicates that
µu = j (H stands for ’(matched) here’); and πσ

v (i) = E indicates that µu ∈ [d(u)] − {j} (E
stands for ’(matched) elsewhere’).
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Assuming that pv(i) = u and pu(j) = v, nodes v and u are said to be strongly matched if
(1) µv = i and µu = j; and (2) πσ

v (i) = πσ
u(j) = H. Node v is said to be strongly unmatched if

(1) µv = U; (2) πσ
v (i) = E for all i ∈ [d(v)]; and (3) every node u ∈ N(v) is strongly matched.

We say that a configuration of a distributed MM algorithm Alg is legal if every node v ∈ V is
either strongly matched or strongly unmatched, observing that the strongly matched nodes
induce a maximal matching in G; we refer to this maximal matching as the output of Alg.

A distributed algorithm is self-stabilizing if it is guaranteed to reach a legal configuration in
finite time from any initial configuration (see [26, 27]). This notion is captured by a malicious
adversary, who knows the algorithm but is oblivious to its coin tosses, that determines the
algorithm’s initial configuration.

For reasons that will become clear soon, in the current paper, the adversary is allowed
to “intervene” in the algorithm’s execution also after time 0 (corresponding to the initial
configuration) and modify the content of any register maintained by the algorithm including
the aforementioned port registers πv(·) (and their status fields πσ

v (·)) and matching registers
µv. The adversary can also impose dynamic topology changes including the addition (resp.,
removal) of nodes and edges which are reflected in adding new port registers πv(·) (resp.,
removing existing port registers) and updating the port bijections pv. In this regard, a node
v ∈ V is said to be manipulated (by the adversary) in round t if at least one of the following
three events occur during round t: (i) the content of (any of) v’s registers is modified; (ii)
the port bijection pv is modified; or (iii) v is added to the graph as a new node. (Notice
that condition (ii) includes topological changes involving any edges incident on v as well as
“rewiring” of v’s ports.)

Fully Adaptive Run-Time. Let Alg be a distributed self-stabilizing MM algorithm. Consider
times 0 ≤ t∗

adv < t∗
0 and integer k > 0 and suppose that (1) Alg is in a legal configuration

at time t∗
adv; (2) the adversary manipulates k nodes during the time interval [t∗

adv, t∗
0); and

(3) the adversary does not manipulate any node from time t∗
0 onwards. We say that Alg

has fully adaptive run-time T (k) for some function T : Z>0 → Z>0 if it is guaranteed that
there exist some time t and maximal matching M such that (i) Alg is in a legal configuration
with output M from time t onwards; and (ii) t ≤ t∗

0 + T (k). If t (and M) are random
variables determined by the coin tosses of Alg, then we require that condition (ii) holds in
expectation and with high probability, where throughout this paper, the term with high
probability (abbreviated w.h.p.) refers to events that occur with probability at least 1− k−c

for a constant c that can be made arbitrarily large.
It is important to point out that the number k of manipulated nodes is chosen by the

adversary and is not known to the algorithm that also does not know any bound on k.

1.2 Our Contribution
Our main contribution is cast in the following theorem.

▶ Theorem 1.1. There exists a randomized uniform self-stabilizing MM algorithm that uses
messages of size O(1) whose fully adaptive run-time is O(log k).

The reader may have noticed that the guarantees of our algorithm do not depend in any
way on the size of the graph G. Indeed, Theorem 1.1 holds also for infinite graphs as long as
the node degrees are finite (though not necessarily bounded).2 We believe that distributed

2 In infinite graphs, the notion of fully adaptive run-time can be extended to support an infinite number
of manipulations as long as the manipulated nodes can be partitioned into clusters of size at most k
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computation in infinite graphs is a fascinating research domain and advocate using the notion
of (fully) adaptive run-time as a natural complexity measure when it comes to self-stabilizing
algorithms in this domain.

As established in [48], any uniform (non-self-stabilizing) distributed MM algorithm with
constant size messages requires Ω(log n) time in expectation when running on rings (and
paths) of size n. This implies that any uniform self-stabilizing MM algorithm with constant
size messages requires Ω(log k) time in expectation to stabilize from k ≤ n transient faults,
which means that the fully adaptive run-time bound promised in Thm. 1.1 is asymptotically
optimal.

1.3 Related Work and Discussion
Self-stabilizing symmetry breaking is an extensively studied research topic, see, e.g., [38]
for a survey. In particular, there is a long line of works on self-stabilizing algorithms for
maximal matching (and closely related problems) [42, 64, 21, 22, 40, 37, 35, 36, 57, 58,
63, 7, 46, 24, 5, 43, 65, 15]. Under synchronous schedules (assumed in the current paper),
the state-of-the-art MM self-stabilization run-time upper bounds are O(log n), obtained
by the (randomized uniform) algorithm of Turau [65], and O(∆ + log∗ n), obtained by the
(deterministic non-uniform) algorithm of Barenboim et al. [15], where n is the number of
nodes in the graph and ∆ is its maximum degree. Notice that those run-time upper bounds
are not fully adaptive.

The MM problem received a lot of attention also in the literature on fault free (non-self-
stabilizing) distributed graph algorithms, see, e.g., [45, 44, 54, 39, 61, 16, 32, 30, 12, 33].
Some of the algorithmic ideas in the current paper are inspired by ideas originated in that
literature, e.g., [44]. Another source of inspiration is the algorithm of [66] for the related
task of approximating maximum matching.

The self-stabilizing research community has a special interest in generic transformers
that translate non-self-stabilizing algorithms into self-stabilizing ones, see, e.g., [10, 8, 9, 2,
1, 53, 13]. None of the existing transformers though can produce self-stabilizing algorithms
that use constant size messages and run in sub-diameter time (as the algorithm developed
in the current paper does). Moreover, with the exception of the transformer presented in
the full version [18], none of the existing transformers (provably) guarantees a fully adaptive
stabilization run-time, regardless of the graph’s size and diameter or any probabilistic
assumption on the distribution of faults.

There has been a lot of interest in saving run-time in dynamic models by adapting to
the actual load on the algorithm. In the non-self-stabilizing computing context, Lamport
suggested that an algorithm should benefit from the common case where the number of
contending processes is small [52]. A maximum matching approximation can be mended
following a single topological change in constant distributed time [55]. A distributed algorithm
that mends a maximal independent set after a single change in constant time was presented
in [20]. Mending other local functions in a similar setting, also in constant distributed time,
was addressed in [47]. Mending after a small number of changes was addressed in [59]. In
the context of distributed fault tolerance, a similar motivation stands behind the notions of
obstruction freedom [41].

In highly dynamic graphs, mending of various functions has been treated recently [14, 19].
Comparing these papers to the current one, their algorithms are not self-stabilizing. Moreover,
the authors of [19] optimize the amortized time complexity (vs. the worst case time complexity

which are sufficiently far away from each other.
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used in the current paper) assuming that the graph is initially empty, whereas the run-time
of the algorithm of [14] is expressed as a (logarithmic) function of n rather than k (so it is
not adaptive). Both papers rely on messages of super-constant size.

For non-distributed algorithms, the area of dynamic algorithms started with addressing
algorithms that already computed a complete and correct output (say a minimum spanning
tree [31]) and need to mend the output following a single change to the input. A non-
distributed update of MM in dynamic graphs for the deletion or the removal of a single edge
is performed in amortized (expected) O(log n) time [17] or worst case (deterministic) O(

√
m)

time, where m denotes the number of edges [60].
In the context of self stabilization, the notion of super-stabilization [28] is concerned with

decreasing the impact of topological changes on the complexity of self-stabilizing algorithms
and the notion of containment [34] has been used to ensure that if only a single fault occurred,
then the complexity is smaller than in the general fault case. For the maximal independent
set problem, multiple simultaneous changes to the input were handled in [50] assuming a
model that is only partially self-stabilizing (the adversary may change the data structure,
but not other registers, e.g., the program counter). Moreover, while the run-time measure
there is adaptive, expressed as a function of the number k of faults, it is not fully adaptive
since all the faults are assumed to occur in a single batch before the mending starts. In
contrast, the run-time analysis in the current paper is fully adaptive in the sense that it
allows the adversary to divide the k faults (and/or topology changes) over multiple batches.

Algorithms whose time adaptivity was at least linear in the number of faults for various
tasks were suggested in [25, 6, 49, 11].

1.4 Phase Based Distributed Algorithms
A common design pattern in distributed algorithms working under the synchronous fault
free model is to divide the execution into phases so that each phase is composed of a fixed
number ϕ of single round steps, grouped together to fulfill a task that cannot be achieved in
a single round. The execution then progresses by running the phases in succession, where
step 0 ≤ j ≤ ϕ − 1 of phase i = 0, 1, . . . is executed in round t = iϕ + j. A key property
of this design pattern is that the nodes execute their phases in synchrony so that step j of
phase i is executed by all nodes in the same round.

More often than not, the algorithm runs the same code in each phase which means that
the nodes do not have to keep track of the current round t; rather, it suffices that they have
access to a step oracle, denoted hereafter by Get_Step, that simply returns the current
step j = t mod ϕ. We refer to the family of such algorithms as phase based algorithms and
note that this family includes the distributed graph algorithm “classics” of [23] (3-coloring
of trees), [56, 3] (maximal independent set), and [44] (maximal matching), as well as more
recent distributed graph algorithms, see, e.g., [16, 29, 62, 32].

The step oracle discussion is usually avoided in the literature on synchronous fault free
algorithms as these algorithms can easily maintain a register that keeps track of t mod ϕ.
This is not the case in the self-stabilizing setting though: the adversary may modify this
register, causing the nodes to execute their phases “out of sync” indefinitely. Indeed, we
cannot assume that the nodes in a self-stabilizing algorithm have free access to a step
oracle, hence the adaptation of a phase based algorithm designed to operate in a fault free
environment to the self-stabilization setting imposes a significant challenge (cf. [65]).

To overcome this challenge, we introduce a technique called probabilistic phase synchron-
ization. In high level terms (refer to Sec. 3 for a formal exposition), this technique replaces
the step oracle by a generic (algorithm independent) module, referred to as PPS, whose

OPODIS 2024



33:6 Self-Stabilizing Fully Adaptive Maximal Matching

implementation is based on a simple ergodic Markov chain, maintained independently at
each node. The state space of the Markov chain is {ℏ,−1, 0, 1, . . . , ϕ − 1}, where states
0, 1, . . . , ϕ− 1 are identified with the ϕ steps of the phase and ℏ and −1 are auxiliary states
whose role is explained in the sequel.

Using the PPS module, the adaptation of a fault free phase based algorithm Alg into
a self-stabilizing algorithm becomes almost a “black-box compiler” based on the following
two modifications: (i) Replace each call to Get_Step by a call to a procedure named
Get_Step_PPS that returns the current state of PPS. (ii) When executing the phase, node
v restricts its communication to its phase synchronized neighbors, namely, adjacent nodes
whose PPS state agrees with that of v.

We design the PPS module so that (a) if nodes u and v start a phase in the same round,
then they remain phase synchronized until the phase ends; and (b) the Markov chain admits
a poly(ϕ) mixing time, ensuring that every pair of adjacent nodes become phase synchronized
sufficiently often. As we show in the sequel (see [18] for more details), these two properties
guarantee progress on behalf of the algorithm, allowing us to bound the stabilization time.
While our analysis is specific to maximal matching, the aforementioned adaptation is fairly
generic and serves as the cornerstone for the transformer discussed in the full version [18].

2 Preliminaries

The algorithms are presented from the perspective of a node v ∈ V and for clarity of the
exposition, they are described as if v can address its neighbors directly, rather than through
the proxy of the port bijection pv(·). Specifically, we use Inv(u) to denote the message
received by v from neighbor u ∈ N(v), recalling that this message is actually written into
the port register πv(p−1

v (u)) and that v does not know u beyond its (local) port number
p−1

v (u). Likewise, we define mv to be the neighbor pointed to by the matching register µv if
µv ∈ [d(v)]; and mv = µv otherwise (i.e., if µv = ⊥ or µv = U). Implementing our algorithm
based on the proxy of the port bijections (as defined in Sec. 1.1) is straightforward.

For a node v ∈ V and a register regv of v, let regv,t denote the value of regv at time t,
that is, at the beginning of round t prior to any local computation. Notice that if v is not
manipulated during the time interval [t− 1, t], as is guaranteed for every t > t∗

0, then the
value regv,t is also the value of regv at the end of round t− 1.

Given some graph H and a node v in H, we use the notation NH(v) and dH(v) for v’s
neighbor set and degree, respectively, in H.

3 Probabilistic Phase Synchronization

Let Alg be a phase based (fault free) distributed algorithm with phase length ϕ. We assume
that under Alg, each node v ∈ V calls Get_Step in every round and proceeds according to
the step number j ∈ {0, 1, . . . , ϕ − 1} it receives. Our goal in this section is to apply the
probabilistic phase synchronization “compiler” to Alg, obtaining an algorithm Alg′ that has
no access to Get_Step.

Consider a node v ∈ V . The design of Alg′ (from Alg) is based on the PPS module that
can be viewed as an ergodic Markov chain over the state space {ℏ,−1, 0, 1, . . . , ϕ− 1} that v

runs, independently of the other nodes. The current state of (v’s copy of) PPS is stored in a
register denoted by stepv; to minimize the interface between Alg′ and the generic module
PPS, the access of Alg′ to stepv is made by means of procedure Get_Step_PPS that simply
returns the current value of this register. The main idea is that each call of Alg to Get_Step
is replaced by a call to Get_Step_PPS under Alg′.
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Algorithm 1 Step_Counter_ϕ(), code for node v. Executed in every round at the end of the
local computation stage.

1: if stepv = ℏ then stepv ← −1 w.p. 1/2 ; ℏ w.p. 1/2
2: else if stepv = ϕ− 1 then stepv ← ℏ
3: else stepv ← stepv + 1

Beside Get_Step_PPS, the PPS module has one additional procedure whose role is to
implement the Markov chain, advancing it in every round. This procedure is denoted by
Step_Counter_ϕ (see Algorithm 1) and it is assumed to be invoked by PPS in every round,
towards the end of the local computation stage, after any call to Get_Step_PPS has already
been made. We emphasize that Step_Counter_ϕ is the only procedure that writes to the
stepv register; any other access of Alg′ to this register is restricted to the read-only procedure
Get_Step_PPS. The fundamental properties of Step_Counter_ϕ are summarized in the
following observation (see Fig. 1 for an illustration of the underlying Markov chain).

▶ Observation 3.1. For every time t ≥ t∗
0 and node v ∈ V , we have

P(stepv,t+1 = j | stepv,t = j − 1) = 1 for every 0 ≤ j ≤ ϕ− 1;
P(stepv,t+1 = ℏ | stepv,t = ϕ− 1) = 1; and
P(stepv,t+1 = ℏ | stepv,t = ℏ) = P(stepv,t+1 = −1 | stepv,t = ℏ) = 1/2.

This holds independently of any coin toss of v prior to time t and of any coin toss of all
other nodes.

Consider some round t ∈ Z≥0 and for j ∈ {−1, 0, 1, . . . , ϕ− 1}, let

Σj
t = {u ∈ V | stepu,t = j} .

We say that adjacent nodes u, v ∈ V are phase synchronized in round t if they both belong
to Σj

t for some j ∈ {−1, 0, 1, . . . , ϕ− 1}. Notice that node v cannot be phase synchronized
(with any node) in round t if stepv,t = ℏ.

Fix some node v ∈ V . If v ∈ Σj
t for some j ∈ {0, 1, . . . , ϕ − 1}, then v runs in round t

under Alg′ the same code that Alg runs in step j with one crucial difference: v progresses as
if it operates in the graph induced by Σj

t . In other words, for the sake of the simulation of
Alg, node v restricts its interaction to its phase synchronized neighbors, that is, the nodes
in N(v) ∩ Σj

t , ignoring any node in N(v)− Σj
t . Notice that v still sends messages to all its

neighbors, however the messages sent to the nodes in N(v)−Σj
t do not carry any Alg-related

information.
To make this possible, each node u ∈ V appends the value of stepu,t−1 to its outgoing

messages (sent to all its neighbors) in round t − 1, thus allowing its neighbors v ∈ N(u)
to determine if they are phase synchronized with u in round t. Indeed, Obs. 3.1 ensures
that if the message that a node v receives from its neighbor u in round t indicates that
stepu,t−1 = j − 1 for some 0 ≤ j ≤ ϕ − 1, then v can deduce that stepu,t = j unless the
adversary manipulates u or v during the time interval [t− 1, t].

The role of state −1 is to allow the nodes to identify their phase synchronized neighbors
already in step j = 0 so that they can simulate a full phase of Alg. Specifically, if u ∈ Σ−1

t ,
then node u does not do anything in round t other than appending stepu,t = −1 to its
outgoing messages, allowing any neighbor v ∈ Σ−1

t to identify that it is phase synchronized
with u in the next round t + 1.

Similarly to state −1, state ℏ is also special in the sense that it does not correspond to
any step in Alg and as such, corresponds to an “empty code”: If stepu,t = ℏ, then node u

does not do anything in round t other then appending stepu,t = ℏ to its outgoing messages.

OPODIS 2024



33:8 Self-Stabilizing Fully Adaptive Maximal Matching

Algorithm 2 Finalize_and_Send_Messages(), code for node v.

1: if mv = ⊥ or mv = U then
2: for all u ∈ N(v) do Outσ

v (u)← mv

3: else
4: Outσ

v (mv)← H
5: for all u ∈ N(v)− {mv} do Outσ

v (u)← E

6: for all u ∈ N(v) do Send Outv(u) to u

We now turn to bound the mixing time of the Markov chain associated with PPS. To
this end, let Sϕ = {ℏ,−1, 0, 1, . . . , ϕ − 1} denote its state space. The following lemma is
established by showing that this ergodic Markov chain belongs to a family of Markov chains
that has been identified and analyzed in [67]; its proof is deferred to Appendix A.

▶ Lemma 3.2. Fix some time t0 ≥ t∗
0, node v, and j0 ∈ Sϕ. For every 0 < ϵ < 1, there

exists a time t̂ = t0 + O(log(1/ϵ) · ϕ3) such that for every t ≥ t̂, it holds that

P
(
stepv,t = j | stepv,t0 = j0

)
≥

{
2

ϕ+3 · (1− ϵ) , if j = ℏ
1

ϕ+3 · (1− ϵ) , otherwise
.

This holds independently of any coin toss of v prior to time t0 and of any coin toss of all
other nodes.

▶ Corollary 3.3. Fix some time t0 ≥ t∗
0, node v, and j0 ∈ Sϕ. For ϵ = 1− ϕ+3

2ϕ and τ = O(ϕ3),
it holds that P

(
stepv,t0+τ = −1 | stepv,t0 = j0

)
≥ 1

2ϕ . This holds independently of any coin
toss of v prior to time t0 and of any coin toss of all other nodes.

4 A Self-Stabilizing MM Algorithm

In this section, we develop the self-stabilizing MM algorithm promised in Thm. 1.1, referred
to as SSMM. First, we present a phase based fault free MM algorithm, referred to as FFMM,
similar in its spirit to the classic distributed algorithm of Israeli and Itai [44].3 Next, we
apply our probabilistic phase synchronization technique to FFMM and slightly modify it to
obtain SSMM.

We use Outv(u) to denote the message sent from v to u; the algorithms are described so
that the content of this register is constructed (during the local computation) gradually until
it is sent to u. Recall that every message includes a status field, referred to hereafter as the
σ-field, that is part of the node’s interface (see Sec. 1.1). The status field reflects the node’s
matching register and it is set before the message is sent (see Algorithm 2). The messages
include additional fields on top of the σ-field; we use a superscript x to refer to the x-field of
the message so that Outx

v(u) and Inx
v(u) denote the x-fields in the messages sent from v to u

and received by v from u, respectively. For ease of reference, Table 1 summarizes the various
registers of FFMM and SSMM and the values they can hold.

3 Israeli and Itai [44] present their MM algorithm under the CRCW-PRAM model, but by now, it is
better known in its implementation as a distributed message passing algorithm (cf. [66]).
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Algorithm 3 FFMM(), code for node v.

1: for all u ∈ N(v) do Outr
v(u) = ⊥

2: if mv = ⊥ and Inσ
v (u) = E for all u ∈ N(v) then mv ← U

3: if mv = ⊥ then
4: if Get_Step() = 0 then
5: chosenv ← ⊥
6: activev ← true w.p. 1/2 ; false w.p. 1/2
7: if activev then
8: Pv ← {u ∈ N(v) | Inσ

v (u) = ⊥}
9: if |Pv| > 0 then

10: chosenv ← node picked from Pv uniformly at random
11: Outr

v(chosenv)← Mreq

12: if Get_Step() = 1 then
13: if activev = false then
14: Pv ← {u ∈ N(v) | Inσ,r

v (u) = (⊥, Mreq)}
15: if |Pv| > 0 then
16: chosenv ← node picked arbitrarily from Pv

17: Outr
v(chosenv)← Acc

18: if Get_Step() = 2 then
19: if activev then
20: if chosenv ̸= ⊥ and Inr

v(chosenv) = Acc then mv ← chosenv

21: else if chosenv ̸= ⊥ then mv ← chosenv

22: Finalize_and_Send_Messages()

4.1 Algorithm FFMM

Like the algorithm of [44], algorithm FFMM, presented in Algorithm 3, is phase based with a
phase of length 3. In round 0 of the phase, each undecided node v tosses an unbiased coin
that determines if v is active or passive (for the duration of the current phase); active nodes
then send a matching request to an undecided neighbor picked uniformly at random. In
round 1 of the phase, a passive node v that received a matching request from at least one
neighbor picks one such neighbor u (arbitrarily) and replies that u’s matching request is
accepted. Finally, in round 2 of the phase, each edge over which a matching request was
accepted is added to the output MM. To implement this logic, the messages sent by FFMM
use one additional field (on top of the aforementioned σ-field), namely, the r-field that takes
values in {Mreq, Acc} (stands for ’matching request’ and ’accept’, respectively).

4.2 Algorithm SSMM

Our self-stabilizing algorithm SSMM, presented in Algorithm 5, is obtained from FFMM through
the following two modifications: (1) We add an error detection subroutine, presented in
Algorithm 4, which is invoked in every round (see line 2 in Algorithm 5). In this subroutine,
node v checks whether its available local information indicates that it is either strongly
matched or strongly unmatched; if v is neither, then it becomes undecided by setting mv ← ⊥.
(2) We apply the probabilistic phase synchronization “compiler” of Sec. 3. To this end, the
outgoing messages are augmented with an additional s-field (stands for ’step’). This field is
used to communicate v’s current step so that Outs

v(·) is set to the value of stepv before the
message is sent by calling Get_Step_PPS (see line 23 in Algorithm 5).

OPODIS 2024
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Algorithm 4 Detect(), code for node v.

1: if mv ∈ N(v) and Inσ
v (mv) = H then return

2: if mv = U and Inσ
v (u) = E for all u ∈ N(v) then return

3: mv ← ⊥

Algorithm 5 SSMM(), code for node v.

1: for all u ∈ N(v) do Outr
v(u) = ⊥

2: Detect()
3: if mv = ⊥ and Inσ

v (u) = E for all u ∈ N(v) then mv ← U

4: if mv = ⊥ then
5: if Get_Step_PPS() = 0 then
6: chosenv ← ⊥
7: activev ← true w.p. 1/2 ; false w.p. 1/2
8: if activev then
9: Pv ← {u ∈ N(v) | Inσ,s

v (u) = (⊥,−1)}
10: if |Pv| > 0 then
11: chosenv ← node picked from Pv uniformly at random
12: Outr

v(chosenv)← Mreq

13: if Get_Step_PPS() = 1 then
14: if activev = false then
15: Pv ← {u ∈ N(v) | Inσ,r,s

v (u) = (⊥, Mreq, 0)}
16: if |Pv| > 0 then
17: chosenv ← node picked arbitrarily from Pv

18: Outr
v(chosenv)← Acc

19: if Get_Step_PPS() = 2 then
20: if activev then
21: if chosenv ̸= ⊥ and Inr

v(chosenv) = Acc then mv ← chosenv

22: else if chosenv ̸= ⊥ then mv ← chosenv

23: for all u ∈ N(v) do Outs
v(u)← Get_Step_PPS()

24: Finalize_and_Send_Messages()

5 Analysis

Assume that SSMM is in a legal configuration at time t∗
adv and that the adversary manipulates

k > 0 nodes during the time interval [t∗
adv, t∗

0) and does not manipulate any node from time
t∗
0 onwards. Our goal in this section is to establish Thm. 1.1 by proving that SSMM stabilizes

to a legal configuration by time t∗
0 + O(log k) in expectation and w.h.p. (in k).

Recall that the phase length of SSMM is φ = ϕ + 1, where ϕ = 3 is the phase length of
FFMM. Although the analysis presented in this section is dedicated to SSMM, it is performed
with respect to a general parameter ϕ (and φ) so that it can be applied to self-stabilizing
algorithms derived from other phase based algorithms. Since the adversary may add/remove
nodes/edges, the graph may change during the time interval [t∗

adv, t∗
0); in what follows, we

reserve G = (V, E) for the graph that exists at time t∗
0, recalling that this is also the graph

at any time t > t∗
0.
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5.1 Outline
This section presents the general structure of SSMM’s analysis. It hinges on Prop. 5.1–5.6
whose combination yields Thm. 1.1. We start with Prop. 5.1 ensuring that once the algorithm
reaches a legal configuration, it stays in a legal configuration.

▶ Proposition 5.1. For every t ≥ t∗
0 and v ∈ V , if v is strongly matched (resp., unmatched)

at time t, then v is strongly matched (resp., unmatched) at time t + 1.

We say that v is locally matched to node u ∈ N(v) if (i) mv = u; and (ii) Inσ
v (u) = H;

when the identity of u is not important, we may refer to v as being locally matched without
explicitly mentioning u. Notice that by definition, if v is strongly matched, then v is also
locally matched. Given some t ≥ t∗

0, let Vt be the set of nodes which are not locally matched
at time t, let Et = E ∩ (Vt × Vt), and let Gt = (Vt, Et) be the graph induced on G by Vt.
When combined with Prop. 5.1, the following proposition implies that we do not have to
worry about the nodes that are no longer in Gt.

▶ Proposition 5.2. For every t > t∗
0 and v ∈ V , if v is locally matched at time t, then v is

strongly matched at time t.

By combining Prop. 5.1 and 5.2 with the following proposition, we deduce that if Et = ∅,
then SSMM is in a legal configuration at time t + 1 and will remain so indefinitely.

▶ Proposition 5.3. For every t > t∗
0 and v ∈ Vt, if dGt(v) = 0, then v is strongly unmatched

at time t + 1.

The rest of the analysis is devoted to showing that it takes O(log k) rounds in expectation
and w.h.p. for the set Et to become empty. Let τ = O(ϕ3) be the parameter promised in
Cor. 3.3. The next proposition implies that from time t > t∗

0, algorithm SSMM stabilizes in
O

(
ϕ5

log(1+1/ϕ2) log |Et|+ log k
)

rounds in expectation and w.h.p. (in k), which is O(log |Et|+
log k) when ϕ is a constant as in SSMM. This means in particular that once SSMM reaches a
configuration in which |Et| ≤ poly(k), it takes O(log k) additional rounds in expectation and
w.h.p. for the algorithm to stabilize.

▶ Proposition 5.4. Fix some time t > t∗
0 and a configuration at time t. There exist universal

positive constants α and δ such that P
(
|Et+τ+φ| ≤ (1− δ

ϕ2 ) · |Et|
)
≥ α/ϕ2.

Unfortunately, by manipulating k nodes, the adversary can lead the algorithm to a graph
Gt∗

0
whose edge set is arbitrarily large (and not polynomially bounded) with respect to k.

To resolve this obstacle, we prove that it takes the algorithm O(log k) rounds in expectation
and w.h.p. to reduce the number of edges in Gt down to O(k2). This relies on the following
proposition derived from a nice combinatorial property of maximal matching.

▶ Proposition 5.5. Let S = {v ∈ V | v is strongly matched at time t∗
0}. There exists a node

set K ⊆ V − S of size |K| ≤ 2k such that I = V − (S ∪K) is an independent set in G.

Consider the sets K and I promised in Prop. 5.5 and some positive constant ξ = ξ(ϕ)
whose value is determined later on. For t > t∗

0, let Dt = {v ∈ K ∩ Vt | dGt(v) ≥ ξk} and
let T be the random variable that takes on the earliest time t such that Dt = ∅. Since
I is an independent set, every edge in ET is incident on at least one vertex in K, thus
|ET | < |K| · ξk ≤ 2ξk2. Recalling that ϕ is a constant in SSMM, the proof of Thm. 1.1 is
completed due to the following proposition, implying, by standard probabilistic arguments
(see Appendix B), that T ≤ O(log k) in expectation and w.h.p.

▶ Proposition 5.6. Fix some time t > t∗
0 and a configuration at time t. There exists a

universal positive constant δ such that P (v /∈ Dt+2φ+1) ≥ δ2−ϕ for every node v ∈ Dt.
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5.2 Correctness of the Detection Process
We begin the journey towards proving Prop. 5.1–5.6 by establishing two simple structural
observations regarding the operation of SSMM.

▶ Observation 5.7. For every time t > t∗
0, node v ∈ V , and node u ∈ N(v), the following

three statements are logically equivalent: (1) mv,t = u; (2) Inσ
u,t(v) = H; (3) Inσ

w,t(v) = E for
every w ∈ N(v)− {u}.

▶ Observation 5.8. For every t > t∗
0 and v ∈ V , if v is strongly matched at time t, then v is

strongly matched at time t + 1.

Proof. Since v is strongly matched at time t, it holds that mv,t = u, mu,t = v, and
Inσ

u,t(v) = Inσ
v,t(u) = H. The design of SSMM ensures that in this case, mv = u and

mu = v after the call to Detect in line 2, thus mv = u and mu = v before the call to
Finalize_and_Send_Messages in line 24 and mv,t+1 = u and mu,t+1 = v. By Obs. 5.7, it
holds that u and v are strongly matched at time t + 1. ◀

We are now ready to prove Prop. 5.1–5.3.

Proof of Prop. 5.1. The statement regarding a strongly matched node is proved by Obs. 5.8.
If v is a strongly unmatched at time t, then mv,t = U, Inσ

v,t(u) = E for every u ∈ N(v), and
all neighbors of v are strongly matched. The design of SSMM ensures that in this case, mv = U
after the call to Detect in line 2, hence mv = U at the end of the round and mv,t+1 = U.
By Obs. 5.8, all of v’s neighbors remain strongly matched, and by Obs. 5.7 we know that,
Inσ

v,t+1(u) = E for every u ∈ N(v). ◀

Proof of Prop. 5.2. Since v is locally matched to u at time t, it holds that mv,t = u and
Inσ

v,t(u) = H. By Obs. 5.7, we know that mu,t = v and Inσ
u,t(v) = H. ◀

Proof of Prop. 5.3. Since dGt(v) = 0 we know that all of v’s neighbors are locally matched.
By Prop. 5.2, all of v’s neighbors are also strongly matched. Since v is not locally matched
we conclude that none of v’s neighbors are strongly matched to him. In this case, by Obs.
5.7, Inσ

v,t(u) = E, for every u ∈ N(v). Moreover, by Prop. 5.1 and Obs. 5.7 it holds that, for
every u ∈ N(v), u is strongly matched at time t + 1 and Inσ

v,t+1(u) = E.
If mv,t ∈ N(v), then after the call to Detect in Line 2 of SSMM it holds that mv = ⊥.

Thus, in Line 3 of SSMM node v sets mv = U. This value will not change during round t, thus
mv,t+1 = U.

If mv,t = U, then mv = U after the call to Detect in Line 2 of SSMM. The design of
SSMM ensures that in that case mv = U in the end of round t, thus mv,t+1 = U. Otherwise
(mv,t = ⊥), in Line 3 of SSMM node v sets mv = U. This value will not change during round t,
thus mv,t+1 = U. We can conclude that v is strongly unmatched at time t + 1. ◀

5.3 Eliminating the Graph
Our goal in this section is to establish Prop. 5.4– 5.6, starting with some additional definitions.
For every time t ≥ t∗

0, let

Ṽt = Vt ∩ {v ∈ V | stepv,t = −1}

be the subset of nodes that start a phase in round t, recalling that stepv,t is the state of v’s
PPS module at time t. Let Ẽt = Et ∩ (Ṽt × Ṽt) and let G̃t = (Ṽt, Ẽt) be the graph induced
on Gt by Ṽt.
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A key feature of SSMM is that in each phase, node v ∈ V writes to regv before reading
from it for every register regv other than mv and Inv(·). Therefore, we can conceptually
assume that these registers are reset to an arbitrary default value at step −1.

Consider some graph H = (VH , EH). Node v ∈ VH is said to be good in H if at least 1/3
of its neighbors u in H have degree dH(u) ≤ dH(v). The following lemma is established by
Alon et al. [3, Lem. 4.4].

▶ Lemma 5.9. Let H be an undirected graph. At least 1/2 of the edges in H are incident on
a good node.

Lem. 5.9 is exploited in the following two lemmas to show that sufficiently many edges
are removed with a sufficiently high probability; Prop. 5.4 follows by a standard Markov
inequality argument (see Appendix B).

▶ Lemma 5.10. Fix some time t > t∗
0 and a configuration at time t. There exists a universal

positive constant pg such that P (v /∈ Vt+φ) ≥ pg for every good node v ∈ Ṽt.

Proof. Denote by d the degree of node v in G̃t, i.e., d = d
G̃t

(v) > 0. Node v is good, thus
there exist u1, . . . , u⌈d/3⌉ ∈ N

G̃t
(v) such that di = d

G̃t
(ui) ≤ d for every 1 ≤ i ≤ ⌈d/3⌉.

Recall that by the definition of G̃t, nodes v and u1, . . . , u⌈d/3⌉ start a phase (in synchrony) at
time t. Node v marks itself as passive in step 0 of the phase with probability 1/2; condition
hereafter on this event. For 1 ≤ i ≤ ⌈d/3⌉, let Bi be the event that ui marks itself as active
and sends a Mreq message to v in step 1 of the phase, noticing that P(Bi) = 1

2di
≥ 1

2d . Since
the events Bi are independent, it follows that the probability that none of them occurs is
up-bounded by (1− 1/(2d))⌈d/3⌉ < e−1/6. The assertion follows since the occurrence of any
of the events Bi implies that v becomes locally matched by the end of the phase that lasts
for φ rounds. ◀

▶ Lemma 5.11. Fix some time t > t∗
0 and a configuration at time t. There exists a universal

positive constant α such that E (|Et+τ+φ|) ≤ (1− α
ϕ2 ) · |Et|.

Proof. Denote m = |Et|. Let V̂ ⊆ Vt be the (random) set of nodes v ∈ Vt such that
stepv,t+τ = −1 and let Ê = {{u, v}

∣∣ v, u ∈ V̂ , u ̸= v}. For every edge e ∈ Et let Ae be the
event that e ∈ Ê. By Cor. 3.3, for every edge e = (u, v) ∈ Et, we have

P (Ae) ≥ 1
4ϕ2 . (1)

Hence,

E
(
|Ê|

)
≥ 1

4ϕ2 m. (2)

Let Ec
t+τ = Et −Et+τ and notice that Ec

t+τ ∩Et+τ+φ = ∅. We partition the set Ê into
two (possibly empty) disjoint sets, Ê ∩ Et+τ and Êc = Ê ∩ Ec

t+τ . By the definition of Ẽt+τ ,
it holds that Ê ∩ Et+τ = Ẽt+τ .

By Lem. 5.9, in the (random) graph G̃t+τ at least half of the edges are incident on a
good node (at least one). Every good node in G̃t+τ is removed with probability at least pg,
where pg is the constant promised in Lem. 5.10. Hence, the expected number of removed
edges in the time interval [t + τ, t + τ + φ) can be low-bounded as follows

E (|Et+τ − Et+τ+φ|) = E
(
E

(
|Et+τ − Et+τ+φ|

∣∣ |Ẽt+τ |
))
≥ 1

2 · pg · E
(
|Ẽt+τ |

)
.

OPODIS 2024



33:14 Self-Stabilizing Fully Adaptive Maximal Matching

By definition, |Ê| = |Êc| + |Ẽt+τ |, hence E
(
|Ê|

)
= E

(
|Êc|

)
+ E

(
|Ẽt+τ |

)
and by Eq. 2,

E
(
|Êc|

)
+ E

(
|Ẽt+τ |

)
≥ 1

4ϕ2 m. This allows us to low-bound the expected number of edges
removed in the time interval [t, t + τ + φ) by

E (|Et − Et+τ+φ|) ≥ E
(
|Êc|

)
+ E (|Et+τ − Et+τ+φ|) ≥ E

(
|Êc|

)
+ 1

2 · pg · E
(
|Ẽt+τ |

)
≥ 1

2 · pg ·
(
E

(
|Êc|

)
+ E

(
|Ẽt+τ |

))
≥ 1

8ϕ2 · pg ·m ,

thus completing the proof. ◀

We now turn to establishing Prop. 5.5.

Proof of Prop. 5.5. Let A be the set of nodes in V − S that are manipulated (by the
adversary) during the time interval [t∗

adv, t∗
0). Let R be the set of nodes in V − (S ∪A) that

are strongly matched at time t∗
adv, referred to hereafter as orphans. We define K = A ∪R

and establish the assertion by proving that (1) |K| ≤ 2k; and (2) I = V − (S ∪K) is an
independent set in G.

For every orphan v ∈ R, let w(v) be the node with which v is strongly matched at time
t∗
adv. Note that w(v) does not necessarily exist in G as it may have been removed during the

time interval [t∗
adv, t∗

0). Since v and w(v) are no longer strongly matched at time t∗
0 and since

v is not manipulated during the time interval [t∗
adv, t∗

0), Obs. 5.8 implies that w(v) must be
manipulated during that time interval. We conclude that |R| ≤ k as the mapping defined by
w is injective. The bound |K| ≤ 2k follows since |A| ≤ k.

It remains to show that I is an independent set in G. This is done by arguing that every
node v ∈ I is strongly unmatched at time t∗

adv. This establishes the assertion recalling that
by definition, the nodes in I are not manipulated during the time interval [t∗

adv, t∗
0), hence

the adversary does not introduce new edges in I × I. To that end, assume by contradiction
that there exists some node v ∈ I that is not strongly unmatched at time t∗

adv. Since SSMM
is in a legal configuration at time t∗

adv, it follows that v must be strongly matched at that
time. But by definition, the nodes in V − S that are strongly matched at time t∗

adv belong to
either R or A, in contradiction to v ∈ I = V − (S ∪A ∪R). ◀

▶ Corollary 5.12. Fix some time t > t∗
0 and a configuration at time t. If v ∈ Ṽt ∩K and

d
G̃t

(v) ≥ 3k, then v is good in G̃t.

Proof. Let d = d
G̃t

(v). Node v has at most |K| − 1 < 2k neighbors from the set K, thus at
least d− 2k ≥ (1/3)d of v’s neighbors in G̃t belong to Ṽt −K = I ∩ Ṽt. By Prop. 5.5, every
node u ∈ I ∩ Ṽt has degree at most 2k which completes the proof. ◀

The analysis is completed by establishing Prop. 5.6.

Proof of Prop. 5.6. For every node v ∈ Vt, let t ≤ t(v) be the first time after time t such that
stepv,t(v) = ℏ. According to the definition of the PPS module it must hold that t ≤ t(v) ≤ t+φ

and notice that t(v) is fully determined by stepv,t. Denote by Av the event that stepv,t′ = ℏ
for every t(v) ≤ t′ ≤ t + φ. By Obs. 3.1, it holds that the event Av is independent of any
coin toss of v prior to time t(v) and of any coin toss of all other nodes and that

P (Av) ≥ 2−φ. (3)

For every node v ∈ Vt, we augment the power of the adversary by allowing it choose the
outcome of any coin toss in the time interval [t, t(v)). Notice that this adversary can only
choose the outcome of coin tosses that are within a phase and cannot choose the outcome of
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coin tosses of the PPS module. Let S be the set of nodes v ∈ Vt that are not locally matched
at time t(v), i.e., S = {v ∈ Vt

∣∣ v ∈ Vt(v)}. Let GS = (S, ES) be the graph induced on Gt

by S.
Fix some node v ∈ Dt. If node v is locally matched at time t(v) or dGS (v) < ξk, then

v /∈ Dt+2φ+1 with probability 1. Otherwise (v is not locally matched at time t(v) and more
than ξk of its neighbors are in S), we will show that with probability Ω(2−φ) node v is locally
matched at time t + 2φ + 1 which implies that v /∈ Dt+2φ+1.

Let B be the event that d
G̃t+φ+1

(v) ≥ 3k. We start by showing that there exists
α = α(φ) such that P (B) ≥ α. For every u ∈ S, let Ãu be the event that Au occurred and
stepv,t+φ+1 = −1. By Eq. 3 and Obs. 3.1 we conclude that P

(
Ãu

)
= P (Au)·(1/2) ≥ 2−(φ+1).

Moreover, the events in {Ãu

∣∣ u ∈ S} are independent.
Denote d = dGS (v) and let u1, . . . , ud be the neighbors of v is GS . Let Y be the random

variable that counts the number of occurrences of events Ãui
. Notice that if Y ≥ 3k and

Ãv occurs, then event B occur; moreover, events Y ≥ 3k and Ãv are independent and
E (Y ) ≥ ξk2−(φ+1) since d ≥ ξk.

By choosing ξ = 4/2−(φ+1) = 2φ+3 and applying Chernoff’s (lower tail) bound we
conclude that

P (Y < 3k) = P
(

Y < (1− 1/4) · ξk2−(φ+1)
)
≤ P (Y < (1− 1/4) · E (Y )) < e−k/8 ≤ e−1/8 .

Thus P (B) ≥ (1 − e−1/8) · 2−(φ+1). By Cor. 5.12 and Lem. 5.10, occurrence of B implies
that v is good in G̃t+ϕ+1 and a good node is removed with at least a constant probability by
the end of the phase, i.e., at time t + 2φ + 1. We conclude that

P (v /∈ Dt+2φ+1) = P (B ∧ v /∈ Vt+2φ+1)

≥ P
(
v /∈ Vt+2φ+1

∣∣ B
)
· P (B) = pg · (1− e−1/8) · 2−(φ+1) ,

thus establishing the assertion. ◀

▶ Remark. Unfortunately, we did not manage to prove Prop. 5.6 based on the promise of
Cor. 3.3 as we did in the proof of Lem. 5.11. Instead, we used the weaker promise of Obs. 3.1
that results in an exponential, rather than polynomial, dependency on the phase length ϕ.
As ϕ is a constant in SSMM, this does not affect its asymptotic run-time.
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A Proving Lemma 3.2

Proof of Lem. 3.2. To avoid cumbersome notation, we assume throughout this proof that
t0 = 0. Let {Xt}∞

t=0 be a stochastic process such that Xt = stepv,t. The stochastic process
{Xt}∞

t=0 can be defined by the discrete time Markov chain Mϕ with state space Sϕ as in
Fig. 1.

Let Pϕ ∈ RSϕ×Sϕ

≥0 be the time-homogeneous transition matrix of the Markov chain Mϕ

and P t
ϕ the matrix Pϕ to the power of t. Denote entry (i, j) ∈ Sϕ × Sϕ of Pϕ by Pϕ(i, j) and

recall that for every t, s ∈ Z≥0 such that t ≥ 1 it holds that P t
ϕ(i, j) = P (Xt+s = j | Xs = i).

For convenience sake, let n = |Sϕ| = ϕ + 2.
The chain Mϕ is ergodic, thus there exists a unique stationary distribution on the state

space Sϕ, which we denote by the size n vector π ∈ RSϕ

>0. It is easily verifiable that π(ℏ) = 2
n+1

and π(j) = 1
n+1 for every j ∈ Sϕ − {ℏ}. We will prove that there exists t̂ = O(log(1/ϵ) · n3)

such that for every t ≥ t̂ it holds that

P t
ϕ(j0, ℏ) ≥ 2

n + 1(1− ϵ) (4)
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and

P t
ϕ(j0, j) ≥ 1

n + 1(1− ϵ),∀j ∈ Sϕ − {ℏ}. (5)

The chain Mϕ is a special case of the coin-flip chain as defined in [67] with p = q = 1/2.
By Proposition 5.8, Theorem 3.6 and Lemma 2.4 in [67], for every positive ϵ < 1 there exists
a time t(n) = O(n3) such that for every t ≥ O(log(1/ϵ) · t(n)), and i ∈ Sϕ

max
j∈Sϕ

∣∣∣∣∣P t
ϕ(i, j)
π(j) − 1

∣∣∣∣∣ ≤ ϵ.

Thus, for every t ≥ O(log(1/ϵ) · n3) we can low-bound Eq. 4–5 by,

P t
ϕ(j0, j) ≥ π(j) · (1− ϵ).

The proof is completed by the value of π. ◀

B Standard Probabilistic Arguments

In the section we will show how to prove Thm. 1.1 using Prop. 5.4–5.6. It is also used to
prove Prop. 5.4 using Lem. 5.11.

Fix some m, ℓ ∈ Z>0 and c > 1. We define 1 < β(c) < 1
1−1/c . Let {Xi}∞

i=0 be a stochastic
process such that (1) X0 = m; (2) for every i ∈ Z≥0, it holds that Xi ≥ 0 with probability 1;
and (3) for every α ∈ Z>0 it holds that E

(
Xαℓ

∣∣ X(α−1)ℓ = d
)
≤ (1 − 1

c ) · d. The random
variable that corresponds to the run time of an algorithm with the aforementioned properties
is defined as T = min{i

∣∣ Xi < 1}.
Fix some α ∈ Z>0 and d ∈ R≥0. Let Yd ∼ Xαℓ

∣∣ X(α−1)ℓ = d. By applying Markov
inequality we get

P
(

Yd > β(c)(1− 1
c

)d
)
≤ P (Yd > β(c)E (Yd)) <

1
β(c) .

Hence,

P
(

Yd ≤ β(c)(1− 1
c

)d
)
≥

(
1− 1

β(c)

)
This is regardless of the value of d and α. So, for every α with probability at least

(
1− 1

β(c)

)
the value of Xαℓ decreases by a factor of β(c)(1− 1

c ) < 1 and we denote this event by Aα.
Let j = log m

log
(

1
β(c)(1−1/c)

) and α̂ denote the jth occurrence of events from the set {Aα | α ∈

Z>0}. Since X0 = m, it holds that Xα̂ℓ < 1 implying that T/ℓ ≤ α̂. It is easily verifiable
that T/ℓ is stochastically dominated by a random variable Y ∼ NB (j, 1− 1/β(c)) and the
proof is completed by the properties of Y .
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C Figures and Tables

−1

0

1

...

ϕ − 1

ℏ

1/2

1/2

1

11

1

1

Figure 1 The underlying Markov chain of PPS with state space Sϕ = {ℏ, −1, 0, . . . , ϕ − 1}.

Table 1 The registers maintained by FFMM and SSMM.

register values set
stepv {ℏ, −1, 0, . . . , ϕ − 1}
mv {⊥, U} ∪ N(v)

Inσ
v (·), Outσ

v (·) {⊥, U, H, E}
Inr

v(·), Outr
v(·) {⊥, Acc, Mreq}

Ins
v(·), Outs

v(·) {ℏ, −1, 0, . . . , ϕ − 1}
activev {true, false}
chosenv {⊥} ∪ N(v)

P (v) 2N(v)
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