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Abstract
In this paper we study a quantum version of the multiparty simultaneous message-passing (SMP)
model, and we show that in some cases, quantum communication can replace public randomness,
even with no entanglement between the parties. This was already known for two players, but
not for more than two players, and indeed, so far all that was known was a negative result. Our
main technical contribution is a compiler that takes any classical public-coin simultaneous protocol
based on “modified equality queries,” and converts it into a quantum simultaneous protocol without
public coins with roughly the same communication complexity. We then use our compiler to derive
protocols for several problems, including frequency moments, neighborhood diversity, enumeration
of isolated cliques, and more.
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1 Introduction

In the multiparty simultaneous message-passing (SMP) model we have k players with private
inputs x1, . . . , xk ∈ {0, 1}n, and we would like to compute a function f(x1, . . . , xk) of the
joint inputs. To this end, each player ℓ ∈ [k] computes a message Mℓ, which it sends to
a referee. The referee collects all k messages and produces an output, which should equal
f(x1, . . . , xk), except possibly with some small error probability. Our goal is to use as little
communication as possible, that is, the total number of bits sent by the players to the referee
should be minimized. There are several well-studied classical variants of the SMP model:
a deterministic variant, where the participants (i.e., the players and the referee) have no
randomness, and no error is allowed; a public-coin variant, where the participants have access
to a common random string; and a private-coin variant, where each participant has access to
its own random string. The public-coin variant is the strongest of the three, but arguably, it
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34:2 Quantum Simultaneous Protocols Using Equality Queries

is unrealistic: in the absence of prior coordination, many distributed systems do not have a
source of common randomness, and must make do with the private randomness available to
each participant.1

In this paper we study a quantum version of the SMP model, and we show that in some
cases, quantum communication can replace public randomness, even with no entanglement
between the parties. This was already known for two players [9, 42], but it was not known
for more than two players, and indeed, so far all that was known was a negative result [17]
showing that for k = 3 players, there exist problems for which quantum communication with
no public randomness or entanglement is exponentially weaker than classical communication
with public randomness. Our main technical contribution is a compiler that takes any classical
public-coin simultaneous protocol based on modified equality queries (which we define below),
and converts it into a quantum private-coin simultaneous protocol with roughly the same
communication complexity. We then use our compiler to derive protocols for several problems,
including frequency moments, neighborhood diversity [31], enumeration of isolated cliques [30],
and more.

Modified equality queries. We observe that quite a few problems studied in the literature
can be solved by repeatedly executing the following type of query, MEQk,n(i, j, y, z): for two
indices i, j ∈ [k], and two strings y, z ∈ {0, 1}n known only to the referee, is it the case that
xi ⊕ y = xj ⊕ z? (Here, xi, xj ∈ {0, 1}n are the inputs of players i, j, respectively.) We refer
to such queries as modified equality queries.

There is a well-known quantum simultaneous protocol [9] for “plain” equality queries,
where we merely wish to determine whether xi = xj (without the modifying strings y, z). In
the protocol of [9], each player computes a short quantum fingerprint of its input and sends it
to the referee, who then uses the quantum fingerprints to compare the players’ inputs (with
some error probability; see Section 2 for the details). We observe that quantum fingerprints
also allow us to implement modified equality queries, and moreover, this can be done even if
the players do not know the strings y, z:

▶ Lemma 1. For any s ≥ 1, let Qs denote the set of all s-qubit quantum states.2 For any n ≥ 1
and ε ∈ (0, 1), there is a quantum operator3 F : {0, 1}n → Qs with s = O(logn·log(1/ε)) such
that if each player ℓ sends F (xℓ) to the referee, then for any i, j ∈ [k] and any y, z ∈ {0, 1}n,
the referee can compute MEQk,n(i, j, y, z) with error probability at most ε.

We stress that Lemma 1 only states that the referee can compute MEQk,n(i, j, y, z) for
one 4-tuple (i, j, y, z). Unlike classical protocols, in the quantum world it is not technically
immediate to re-use information sent by the players to compute the value of the query for
more than one 4-tuple (showing how to bypass this difficulty is indeed one of the main
contributions of this paper).

Compiling MEQ decision trees into quantum protocols. Although Lemma 1 allows us to
implement a single modified equality query, by itself it is not enough to obtain an efficient
protocol for many of the problems we want to solve, as these problems require us to execute

1 In non-simultaneous protocols it is possible to replace public randomness with private randomness [37],
but this requires at least one synchronized round of communication, and synchronization comes with its
own costs.

2 An s-qubit quantum state is any quantum state that can be represented in s qubits; it is essentially a
quantum superposition over classical s-bit strings. See Section 2 for the precise definition.

3 A quantum operator is an operation that maps one quantum state into another. In our case, we apply it
to a classical string, which is slight notation abuse.
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many such queries. For example, in the distinct elements problem, the goal is to determine
the number of distinct values among x1, . . . , xk. Solving this problem requires

(
k
2
)

“plain”
equality queries, as every player’s input must be compared against all the others. In general,
our goal is to work with protocols represented by an MEQk,n decision tree: a rooted binary
tree whose inner nodes are labeled by MEQk,n queries, and whose leaves are labeled by
output values (e.g., 0 or 1 if the tree computes a Boolean function). The tree is evaluated
starting from the root, and at each step we evaluate the query written in the current node,
proceeding to the left child if the answer is 0 and to right child if the answer is 1, until we
eventually reach a leaf and output the value written in it.

A naïve application of Lemma 1 results in a quantum protocol whose communication cost
scales linearly with the depth of the decision tree, as we must call the protocol from Lemma 1
at each step. However, we can do much better: we show that we can compile a decision
tree into a quantum protocol whose communication cost depends only logarithmically on
the depth of the tree. The key is to re-use information: instead of evaluating each modified
equality query on its own, we would like to re-use the information sent by the players, so
that evaluating multiple queries that involve the same player i will not require player i to
send fresh information each time.

As already mentioned, unlike classical protocols, in the quantum world it is not technically
immediate to re-use information sent by the players. First, quantum states cannot be
duplicated (this is a consequence of the no-cloning theorem in quantum information theory).
Second, if at any point we measure a quantum state, we may cause it to collapse, losing
all the information that was stored in it (except for the outcome of the measurement), and
preventing it from being re-used. This indeed happens in the protocol from Lemma 1. To
avoid this pitfall, we use gentle measurements (see, e.g., [1, Section 1.3]), relying on the
fact that a measurement whose outcome is “nearly certain” has very little effect on the
quantum state we are measuring. To ensure that the outcome of each measurement we
make is “nearly certain”, we amplify the success probability of each query MEQk,n(i, j, y, z)
so that if xi ⊕ y = xj ⊕ z then the measurement returns 1 with probability nearly 1, and
if xi ⊕ y ≠ xj ⊕ z then the measurement returns 1 with probability nearly 0. Finally, we
observe that the quantum union bound by Gao [16] can be used and conclude that the
measurements can be applied sequentially on the same state with only a small decrease of
the success probability.

Ultimately, our result is the following:

▶ Theorem 2. For any n, k,D ≥ 0 and δ ∈ (0, 1), any MEQk,n decision tree of depth D can
be implemented by a quantum k-party SMP protocol that uses O(k(logD + log(1/δ)) logn)
qubits and has error probability at most δ.

Applications. We give several applications of our compiler in Section 4. Several are
technically straightforward. For instance, using “plain” equality queries, we can compare
all the players’ inputs to one another, which allows us to count the number of distinct
elements or compute other frequency moments of the input. Next we turn to more complex
applications involving graphs: we show that in the number-in-hand network model [8] (a
special case of the SMP model also sometimes called broadcast congested clique), we can
use our compiler to obtain efficient simultaneous quantum protocols for P3- and P4-induced
subgraph freeness [29, 36], computing neighborhood diversity [31], enumerating isolated
cliques [30] and reconstructing distance-hereditary graphs [29, 36]. For all these problems,
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we obtain efficient quantum protocols that do not require public randomness: in all of
our protocols, each player only sends polylog(n, k) qubits. This cost matches the cost of
public-coin classical protocols and improves exponentially the cost of private-coin classical
protocols.4

Relation with prior works on quantum distributed computing. Several works [2, 3, 4,
10, 11, 12, 14, 15, 17, 20, 22, 26, 27, 32, 33, 34, 35, 40, 41] have investigated how quantum
communication can help for various computational tasks and settings in distributed computing.
To our knowledge, theoretical aspects of the quantum multi-party SMP model have only
been considered in Ref. [17], which we already mentioned, and Ref. [19], which focuses on a
different input model (the number-on-the-forehead model). There are also a few experimental
investigations of multiparty simultaneous quantum protocols [21, 39], but these works are
mainly empirical and not concerned with asymptotic complexity.

2 Preliminaries

Notation and terminology. For any integer n ≥ 1, we write [n] = {1, . . . , n}. For any
strings x, x′ ∈ {0, 1}n, we denote by ∆n(x, x′) the Hamming distance between x and x′.

In this paper we consider undirected graphs with no self-loops G = (V,E) over k = |V |
nodes (since the number of nodes will always match the number of players in the protocol,
we use the same notation k for both). We use deg(v) to denote the degree of node v ∈ V .
We often implicitly assume that V = {1, . . . , k}. Let N(v) ⊆ V denote the neighbors of node
v ∈ V in G, and νv ∈ {0, 1}k denote the characteristic vector of N(v), where νv[u] = 1 iff
{v, u} ∈ E for each u ∈ [k]. Let ev ∈ {0, 1}k be the characteristic vector of the singleton {v},
i.e., the vector where ev[u] = 1 iff u = v. For a subset S ⊆ V , we use G[S] to denote the
subgraph of G induced by S. For a node v ∈ V , we define G− v as G− v = G[V \{v}].

A node v in G is called pendant if v has only one neighbor. Two nodes u, v in G are called
false twins (resp., true twins) if u and v are not adjacent (resp., adjacent), and have the
same neighborhood, that is, N(u) = N(v) (resp., N(u) ∪ {u} = N(v) ∪ {v}, or equivalently,
N(u)\{v} = N(v)\{u}). We say that u, v are twins if they are either true twins or false twins.
Note that two non-adjacent nodes u, v cannot have N(u) ∪ {u} = N(v) ∪ {v}, and because
there are no self-loops in the graph, two adjacent nodes u, v cannot have N(u) = N(v).
Therefore, in terms of neighborhood vectors, we have:

▶ Proposition 3. Nodes u ≠ v are false twins if and only if νu = νv, and true twins if and
only if νu ⊕ eu = νv ⊕ ev.

SMP protocols and NIH network model. A simultaneous message-passing (SMP) protocol
features k players with inputs x1, . . . , xk ∈ {0, 1}n, respectively, and a referee, who does not
know x1, . . . , xk. In the protocol, each player sends one message to the referee, and the referee
then produces an output. The goal of the referee is to compute some function f(x1, . . . , xk)
of the inputs, and we say that the protocol succeeds whenever the referee’s output is correct.
The communication cost of the protocol is the maximum total number of bits sent by the
players to the referee in any execution of the protocol, on any input. We say that a protocol
is bounded-error if for any input, it outputs the correct answer with probability at least
2/3. In this paper we do not assume that the players have shared randomness; each player’s
message depends only on its own input.

4 For private-coin classical protocols a lower bound of the form Ω(
√

n) or Ω(
√

k) trivially follows from the
lower bound on the cost of private-coin classical protocols for the two-party equality function [5, 38].
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A special case of the SMP model is the number-in-hand (NIH) network model [8]. Here,
the input to the computation is an undirected graph G = (V,E) over k nodes, and each
party represents a node in the graph. The input to player v ∈ [k] is the neighborhood vector
νv ∈ {0, 1}k (we thus have n = k in this case), and the referee is asked to solve some graph
problem on G.

In the quantum versions of the SMP model and the NIH network model, the only difference
is that players are allowed to send quantum information to the referee. The communication
cost of the protocol is the maximum total number of quantum bits (qubits) sent by the
players to the referee in any execution of the protocol. We do not assume that the players
have shared randomness or shared entanglement; each player’s message depends again only
on its own input.

Basics of quantum information. The most basic notion in quantum information is the
concept of quantum bit (qubit), which represents the state of an elementary physical system
that follows the laws of quantum mechanics (e.g., one photon). Qubits are physically stored
in quantum registers. Mathematically, the state of a quantum register consisting of q qubits
is described by a unit-norm complex vector of dimension m, where m = 2q, and usually
written using Dirac’s notation as |ψ⟩. By taking an orthonormal basis of the m-dimensional
complex vector space and indexing these basis vectors (again using Dirac’s notation) as |j⟩
for all j ∈ {1, . . . ,m}, we can write |ψ⟩ =

∑m
j=1 αj |j⟩ for complex numbers αj such that the

state has norm 1 (i.e., satisfying
∑m

j=1 |αj |2 = 1).
All transformations on quantum registers need to be unitary, i.e., described by unitary

matrices. The main unitary matrices that will appear in the technical parts of this paper
are the Hadamard gate (denoted H) and the Pauli X gate, both acting on 1 qubit, and the
CNOT gate acting on two qubits. The precise definition of these gates will not be necessary
for understanding this paper.

Information can only be extracted from a quantum register by measurements. The most
elementary type of measurements is measurement of a 1-qubit register in the computational
basis. For a 1-qubit register in the state |ψ⟩ = α|0⟩+ β|1⟩ where |α|2 + |β|2 = 1, measuring
it in the computational basis gives as outcome 1 bit: the outcome is 0 with probability |α|2
and 1 with probability |β|2. Importantly, the state collapses (i.e., is irreversibly modified)
after the measurement: in the former case the postmeasurement state is |0⟩, while in the
later case the postmeasurement state is |1⟩.

Several more general kinds of measurements are allowed by quantum mechanics. In this
paper, we will mostly use the 2-outcome measurements defined as follows. A 2-outcome
measurement of a q-qubit register R is the following process: introduce a new 1-qubit register
S initialized to |0⟩, apply a unitary transform U on the whole system, and then measure
Register S in the computational basis, which gives as outcome a bit b ∈ {0, 1}. We refer
to Figure 3 in Appendix A for an illustration of the process. We denote such a 2-outcome
measurement by M. We will also use the following notation: for any bit b ∈ {0, 1} and any
q-qubit quantum state |ψ⟩, we denote by Mb(|ψ⟩) the probability of obtaining outcome b by
M when the initial state in R is |ψ⟩.

Quantum union bound. We now present the quantum union bound by Gao [16]. While
this bound only applies to a special type of 2-outcome measurements called 2-outcome
projective measurements (defined in Appendix B), any 2-outcome measurement can actually
be efficiently converted into a 2-outcome projective measurement (the conversion is described
in Appendix B).

OPODIS 2024



34:6 Quantum Simultaneous Protocols Using Equality Queries

Consider several 2-outcome projective measurements M1, . . . ,MN acting on the same
q-qubit register. Consider what happens when performing these N measurements sequentially.
Specifically, assume that the system is initially in state |ψ⟩. We first perform M1 on |ψ⟩
and obtain a postmeasurement state |ψ1⟩. Then we perform M2 on |ψ1⟩ and obtain the
postmeasurement state |ψ2⟩. And so it carries on, with each measurement being performed
on the state resulting from the previous measurement. After N measurements, we obtain
the state |ψN ⟩. For an arbitrary binary string s ∈ {0, 1}N , we would like to estimate
the probability that the sequence of outcomes of this measurement process is s, i.e., the
probability that for all i ∈ {1, . . . , N}, the outcome of measurement Mi is the bit si. The
following theorem by Gao [16] shows that this probability is high when for each i ∈ {1, . . . , N}
applying measurement Mi on the initial state |ψ⟩ gives outcome si with high probability.

▶ Theorem 4 (Quantum union bound [16]). For any string s ∈ {0, 1}N , the probability that
the above sequential measurement process has outcome s is at least

1− 4
N∑

i=1

(
1−Msi

i (|ψ⟩)
)
.

The SWAP test. The SWAP test [7, 9] is a quantum protocol that checks whether two
quantum states |ψ1⟩ and |ψ2⟩ stored in two q-qubit registers R1 and R2, respectively, are close
or not (i.e., estimates their inner product). For completeness we give a detailed description
of the test in Appendix C (this detailed description is not needed to understand the claims of
this paper). The main property of the SWAP test is that the test outputs 1 with probability
1
2 + 1

2 |⟨ψ1|ψ2⟩|2 (and outputs 0 with probability 1
2 −

1
2 |⟨ψ1|ψ2⟩|2), where ⟨ψ1|ψ2⟩ denotes the

inner product between |ψ1⟩ and |ψ2⟩.
The SWAP test is especially useful when combined with the notion of quantum fingerprints.

We first give the definition of this concept.

▶ Definition 5. A quantum fingerprint family for the set of n-bit strings is a family {|hx⟩ :
x ∈ {0, 1}n} such that the following conditions hold for each x ∈ {0, 1}n:
1. |hx⟩ is a O(logn)-qubit quantum state;
2. |⟨hx|hx′⟩| ≤ ζ holds for all x′ ∈ {0, 1}n \ {x}, for some universal constant ζ ∈ (0, 1/2].

For a quantum fingerprint family {|hx⟩ : x ∈ {0, 1}n}, the SWAP test on states |ψ1⟩ = |hx⟩
and |ψ2⟩ = |hx′⟩ outputs 1 with probability 1 if x = x′ (since ⟨hx|hx⟩ = 1) and outputs 1
with probability at most 1

2 + ζ2

2 if x ̸= x′ (since |⟨hx|hx′⟩| ≤ ζ). For later reference, we state
this result in the following lemma.

▶ Lemma 6. When |hx⟩ and |hx′⟩ are given in R1 and R2, respectively, the SWAP test outputs
1 with probability 1 if x = x′, and outputs 1 with probability at most 1

2 + ζ2

2 ≤
5
8 if x ̸= x′.

Ref. [9] showed how to create quantum fingerprint families. We will actually need a
special kind of quantum fingerprint families, also used in [18], that satisfies the following
additional property: for any known string y ∈ {0, 1}n, the fingerprint of x can be converted
to the fingerprint of x⊕ y (by a unitary transformation depending on y) without knowing
the fingerprint of x. We call a quantum fingerprint family satisfying this additional property
a linear quantum fingerprint family. Ref. [18] showed how to construct a linear quantum
fingerprint family, which we write {|Ψx⟩ : x ∈ {0, 1}n}.
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For completeness, we briefly describe the construction from [18], which is based on
constant rate linear error-correcting codes (the details of the construction will not be needed
to understand the results in this paper). Take a linear function E : {0, 1}n → {0, 1}m

where m = O(n) such that ∆m(E(x), E(x′)) = Ω(m) for any distinct x, x′ ∈ {0, 1}n. The
corresponding quantum fingerprint of x is then defined as the O(logn)-qubit quantum state

|Ψx⟩ = 1√
m

m∑
j=1

(−1)E(x)j |j⟩,

where E(x)j denotes the jth bit of E(x). It is easy to check that this family of states satisfies
all the required conditions. In particular, for any y ∈ {0, 1}n, the state |Ψx⟩ can be converted
to |Ψx⊕y⟩ by a unitary transformation (depending on y) without knowing |Ψx⟩.

3 Quantum SMP Protocols Based on MEQ Decision Trees

In this section we prove the main technical results of this paper (Lemma 1 and Theorem 2).

3.1 Implementing a Single Query: Proof of Lemma 1

We first give a brief sketch of the proof. We use the linear quantum fingerprint family
{|Ψx⟩ : x ∈ {0, 1}n} introduced at the end of Section 2. Each player sends the fingerprint
corresponding to its input (i.e., player ℓ sends the state |Ψxℓ

⟩). The referee then implements
the SWAP test on the states |Ψxi⊕y⟩ and |Ψxj⊕z⟩, which can be constructed from the
messages of player i and the player j due to the linearity property of the quantum fingerprint
family. From Lemma 6, we know that the success probability of the SWAP test is at least
5/8. We amplify the success probability by applying O(log(1/ε)) SWAP tests in parallel,
which requires each player to actually send O(log(1/ε)) copies of its quantum fingerprint.
We now explain all the details of the proof.

Proof of Lemma 1. Take t = Θ(log(1/ε)). For any x ∈ {0, 1}n we define F (x) = |Ψx⟩⊗t,

i.e., t copies of the (linear) quantum fingerprint of x. Since each state |Ψx⟩ is encoded by
O(logn) qubits, F (x) is a quantum state of O(t logn) = O(log(1/ε) logn) qubits, as claimed.
We now describe and analyze the referee’s procedure.

Description of the referee’s procedure. Remember that the referee knows the indices i, j
and the strings y, z. The referee receives the quantum message F (xℓ) from player ℓ, for each
ℓ ∈ {1, . . . , k}. We assume that F (xℓ) is stored by the referee in registers (Rℓ,1, . . . ,Rℓ,t),
where each Rℓ,r stores one copy of |Ψxℓ

⟩.
The referee implements the procedure of Figure 1. Note that the conversion at Step 1

can be done locally by the referee since the referee knows y and z (remember that we are
using linear quantum fingerprints, for which such a conversion is possible). Also note that
Step 2 essentially implements, for each r, the SWAP test on registers (Ri,r,Rj,r). The only
difference with the SWAP test described in Section 2 (and Appendix C) is that Register
Sr is not measured. Instead, the AND of all the Registers S1,. . .,St is computed in a new
register, which is then measured.

OPODIS 2024
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1. Convert |Ψxi⟩⊗t into |Ψxi⊕y⟩⊗t in Registers (Ri,1, . . . ,Ri,t).
Convert |Ψxj

⟩⊗t into |Ψxj⊕z⟩⊗t in Registers (Rj,1, . . . ,Rj,t).
2. For every r = 1, . . . , t:

2.1 Introduce a register Sr initialized to |0⟩.
2.2 Apply the Hadamard gate H to Sr.
2.3 (Controlled SWAP) If the content of Sr is 1, swap Ri,r and Rj,r.
2.4 Apply the Hadamard gate H and then the X gate on Sr.

3. Compute the AND of all the registers S1,. . .,St in a new 1-qubit register S.
4. Measure Register S in the computational basis.

Figure 1 Description of the referee’s procedure for Lemma 1.

Analysis of the referee’s procedure. We now analyze the success probability of the
procedure. First assume that MEQk,n(i, j, y, z) = 1. Then from Lemma 6 we know that each
SWAP test would output 1 with probability 1. This means that at Step 4, the measurement
outcome is 1 with probability 1.

Now assume that MEQk,n(i, j, y, z) = 0. By Lemma 6, for each r ∈ {1, . . . , t}, the
SWAP test on Registers (Ri,r,Rj,r), which has input (|Ψxi

⟩, |Ψxj
⟩), would then output 1

with probability at most 5
8 . Thus at Step 4, the measurement outcome is 0 with probability

at least 1−
( 5

8
)t ≥ 1− ε, where the inequality follows from our choice of t.

In both cases we thus have success probability at least 1− ε, as desired. ◀

3.2 Implementing an MEQ Decision Tree: Proof of Theorem 2
MEQ decision trees. We define the model of Modified Equality Query decision trees
(MEQk,n decision trees, or MEQ decision trees when the parameters k, n are clear from the
context) and the computation associated with them as follows.

The input consists of k n-bit strings X1, · · · , Xk; the output is an element of a set S.
The computational process is described by a binary tree T in which each node has
either 0 or 2 children. Each internal node of the tree (i.e., each node with 2 children) is
labeled by a 4-tuple (i, j, y, z) for some indices i, j ∈ {1, . . . , k} and some (known) strings
y, z ∈ {0, 1}n. Each leaf (i.e., each node with 0 child) is labeled by an element in S.
The computation proceeds as follows. We start at the root. At each internal node we
proceed to the right child if Xi ⊕ y = Xj ⊕ z and to the left child if Xi ⊕ y ̸= Xj ⊕ z.
When reaching a leaf, we stop and output the label of the leaf.

Observe that for any input X1, . . . , Xk, the above computational process can be imple-
mented using at most D modified equality queries, where D denotes the depth of T . For a
function f : ({0, 1}n)k → S, we say that T computes f if the output of the computational
process induced by T is equal to f(X1, . . . , Xk) for any X1, . . . , Xk ∈ {0, 1}n.

Converting MEQ decision trees into SMP protocols. Here is our main theorem (repeated
from the introduction).

▶ Theorem 3 (repeated). For any n, k,D ≥ 0 and δ ∈ (0, 1), any MEQk,n decision tree of
depth D can be implemented by a quantum SMP protocol that uses O(k(logD+log(1/δ)) logn)
qubits and has error probability at most δ.
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Proof. For each r ∈ {1, . . . , k}, ℓ sends to the referee the quantum state F (xℓ) specified
by Lemma 1 with ε = δ

4D . The total communication cost is thus O(k log(1/ε) logn) =
O(k(logD + log(1/δ)) logn), as claimed.

The referee then implements the computation induced by the MEQk,n decision tree, by
starting from the root and then following the computational path. This requires making at
most D modified equality queries sequentially.

Note that one individual modified equality query MEQk,n(i, j, y, z) can be implemented
using the quantum states F (xi) and F (xj) received from player i and player j. By using the
procedure of Figure 1 on these two quantum states, the success probability is at least 1− δ

4D .
The main issue is that the procedure of Figure 1 modifies the quantum states F (xi) and

F (xj), which prevents reusing them for implementing the next modified equality query. To
solve this issue, we convert the procedure of Figure 1 (which corresponds to a 2-outcome
non-projective measurement) into a 2-outcome projective measurement using the conversion
process mentioned in Section 2 and described in Appendix B. Since this conversion pre-
serves the success probability of the measurement, the success probability of the 2-outcome
projective measurement that we obtain is at least 1 − δ

4D . We implement the modified
equality queries on the computation path by applying the corresponding 2-outcome projective
measurements sequentially. Theorem 4 shows that the overall success probability is at least
1− 4D

(
1−

(
1− δ

4D

))
= 1− δ, as claimed. ◀

4 Applications

In this section we present several applications of our compiler, ranging from statistical
problems to graph problems.

4.1 Warm-up: Grouping By Equality
The simplest application of our compiler is to efficiently group the players by input, so that
all players with the same input are in the same group: formally, the GroupByEQk,n problem
requires the referee to output a partition P1, . . . , Ps of [k], such that for every i, j ∈ [k], there
is an index t such that i, j ∈ Pt if and only if xi = xj , where x1, . . . , xk ∈ {0, 1}n are the
players’ inputs.

▶ Theorem 8. There exists a bounded-error SMP quantum protocol for GroupByEQk,n with
communication cost O(k log k logn).

Proof. The GroupByEQk,n problem can be solved by an MEQk,n decision tree of depth
(

k
2
)
,

where on each path we compare players’ inputs against one another until we arrive at the
correct output partition. See Figure 2 for an example with k = 3 players. Note that not all
paths have the same length, as sometimes we can deduce the answer without comparing
all inputs against one another; for example, if we learn that x1 = x2, then we no longer
need to compare x2 against the other inputs, as the query answers we obtain for x1 imply
the answers for x2. The longest path is the leftmost path, where all queries return 0 (“not
equal”), and the length of this path is exactly

(
k
2
)
.

The conclusion then follows from Theorem 2. ◀

Using our protocol for GroupByEQk,n we can immediately solve several related problems.
First, we use it to solve the AllEQk,n and ExistsEQk,n problems, which ask us to determine
whether all inputs are the same, or whether there exist two players that have the same input,
respectively. Ref. [13] showed that for any constant ε > 0, the classical communication costs
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x1 = x2?

x1 = x3?

{1, 2, 3}{1, 2} , {3}

0 1

x1 = x3?

{1, 3} , {2}x2 = x3?

{1} , {2, 3}{1} , {2} , {3}

0 1

0 1

0 1

Figure 2 An MEQk,n decision tree for GroupByEQk,n with k = 3 players. Each inner node is
labeled with a query of the form “xi = xj?”, which is short-hand notation for MEQk,n(i, j, 0n, 0n).
The leaves are labeled with output partitions.

of AllEQk,n and ExistsEQk,n in the private-coin SMP model are Θ̃(
√
kn+ k) and Θ̃(k

√
n),

respectively. Both problems reduce trivially to GroupByEQk,n; therefore Theorem 8 implies
a quantum SMP protocol with communication cost O(k log k logn) for both problems,5 which
is an exponential improvement in the dependence on n. More generally, for any p ≥ 0, we
can compute the p-th frequency moment of the input, Fp =

∑
w∈{0,1}n (fw)p, where fw is

the frequency of the string w in the input (i.e., the number of players whose input is w). The
case p = 0 corresponds to counting the number of distinct inputs.

Finally, we can use our protocol for grouping by equality to solve P3-induced subgraph
freeness: this problem is set in the NIH network model (as explained in Section 2), and
requires us to determine whether the input graph contains an induced path consisting of
two edges (P3). As observed in [29], a graph G is P3-induced subgraph free if and only
if G is a collection of node-disjoint cliques. This can be tested by grouping the nodes of
the graph using the input νv ⊕ ev (that is, the characteristic vector of N(v) ∪ {v}) for each
node v, and then checking if for each node v ∈ V , the number of nodes grouped together
with v (excluding v itself) is exactly deg(v). To implement this test, we have each node
send its degree to the referee, and then apply our protocol for GroupByEQk,k to the vectors
{νv ⊕ ev}v∈V . The total communication cost is O(k log2 k) qubits, nearly matching the cost
of the public coin classical protocol from [29].

4.2 Neighborhood Diversity

Our next application is to computing neighborhood diversity [31], a graph parameter that is
used in fixed-parameter tractability to measure the density of a graph (in the same way that
treewidth, cliquewidth, and other parameters are sometimes used).

The following definition is stated in the terminology of twins, for the sake of consistency
with the remainder of the paper, although this is not the terminology used in [31]:

▶ Definition 9 ([31]). A graph G = (V,E) has neighborhood diversity d if its nodes can be
partitioned into d sets but no fewer, such that all nodes in each set are twins (false or true)
of one another.

5 We remark that for AllEQk,n, this can be further improved to O(k log n) by using the permutation test
[7, 9, 28] instead of the SWAP test that we use here.
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We design an efficient quantum protocol for computing the neighborhood diversity of a
graph, based on Proposition 3 from Section 2 (which is similar to what is used in, e.g., [36]):

▶ Theorem 10. In the NIH network model, there exists a bounded-error quantum protocol
for computing the neighborhood diversity with communication cost O(k log2 k).

Proof. Proposition 3 shows that nodes v, w ∈ V are twins (false or true) if and only if νv = νw

or νv ⊕ ev = νw ⊕ ew. To compute the neighborhood diversity of G, we group nodes into
sets of twins in much the same way that we used to solve GroupByEQk,n above, except that
to determine whether two nodes v, w are twins we need two queries: MEQk,k(νv, νw, 0k, 0k)
and MEQk,k(νv, νw, ev, ew). The resulting decision tree has depth 2

(
k
2
)
, and the protocol

then follows by Theorem 2. ◀

We remark that computing neighborhood diversity can actually be done using “plain”
equality queries alone (we do not need modified equality queries): we can implement the tests
above by having each node v ∈ V send the referee a quantum fingerprint of its neighborhood
νv, and also of νv ⊕ ev. However, this would fall outside the framework for our compiler, so
it is simpler here to use modified equality queries and apply Theorem 2.

4.3 Reconstruction of Distance-Hereditary Graphs
The reconstruction task in the NIH network model requires the referee to output the entire
input graph G. For information-theoretic reasons, general graphs require a total of Θ(k2)
communication to reconstruct, as this is the number of bits needed to represent an arbitrary
graph on k nodes. However, for special classes of graphs, we can sometimes do much better:
for example, [29] showed that there is an efficient classical public-coin SMP protocol which
reconstructs the input graph if it is P4-induced subgraph free, and rejects if it is not P4-
induced subgraph free. This was generalized in [36] to distance-hereditary and bounded
modular-width graphs. In this subsection, we show that there is an efficient quantum private-
coin SMP protocol for reconstructing distance-hereditary graphs. The protocols of [29, 36]
for reconstructing P4-induced subgraph free graphs and bounded modular-width graphs can
be adapted in a similar manner.

Distance-hereditary graphs and their properties. A graph G = (V,E) is called distance-
hereditary if the distance between two nodes v, w belonging to the same connected component
in G is preserved in any induced subgraph of G that contains v and w. Distance-hereditary
graphs are characterized by the existence of a decomposition called a twin-pendant node
decomposition – a sequence (v1, · · · , vk) of nodes of G, such that for each j ∈ [k − 1], one of
the following conditions is true:
(C1) vj is a pendant node in G[{vj , · · · , vk}]
(C2) vj has a true twin in G[{vj , · · · , vk}].
(C3) vj has a false twin in G[{vj , · · · , vk}].

It is known that a graph is distance-hereditary if and only if it has a twin-pendant
decomposition (see, e.g., [6]). Moreover, if the graph is distance-hereditary, then the twin-
pendant decomposition can be computed by repeatedly choosing an arbitrary node satisfying
one of the three conditions and removing it from the graph [29]. This forms the basis for
the reconstruction protocol given in [29, 36]. The protocol of [29, 36] is stated in terms of
polynomials, but we observe that it actually relies on simple algebraic properties, and can be
translated to work with binary strings (interpreted as vectors over the binary field F2), as
we do next. (This abstracts and simplifies the algorithm of [29, 36].)
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An algebraic characterization of pendant nodes and twins. The key to reconstructing
distance-hereditary graphs is to find a representation of the graph that allows us to repeatedly:
(1) Find a node satisfying one of the three conditions (C1)–(C3), and
(2) Remove this node from the graph and update our representation accordingly.

The requirement of Definition 11 below is an adaptation and simplification of a corres-
ponding requirement from [29, 36]. It requires that the graph be represented by a collection
of linearly-independent vectors, one for each node, such that the neighborhood of each node
is the sum of the representations of its neighbors, allowing us to later “peel off” nodes from
the graph by “subtracting” their representations.

▶ Definition 11. Let G = (V,E) be a k-node graph and ℓ be a positive integer. A family of
vectors m = {(av, bv)}v∈V , where av, bv ∈ Fℓ

2 for each v ∈ V , is a valid representation of G
(or valid for G, for short) if:
1. {av}v∈V are linearly independent over Fℓ

2, that is, there is no non-empty subset U ⊆ V
such that

⊕
u∈U au = 0ℓ; and

2. For each v ∈ V , we have bv =
⊕

u∈N(v) au.

The linear independence requirement of Definition 11 leads to an algebraic characterization
of the concepts of pendant nodes and twins which will be crucial to our algorithm:

▶ Proposition 12. If {(av, bv)}v∈V is a valid representation of G = (V,E), then for every
two nodes w ̸= u in G,
1. Node w is pendant and has node u as its only neighbor if and only if bw = au;
2. Nodes w, u are false twins if and only if bw = bu;
3. Nodes w, u are true twins if and only if bw ⊕ aw = bu ⊕ au.
This follows from the following property of linearly-independent sets: if {av}v∈V is a linearly-
independent set of vectors over Fℓ

2, then for any two sets S, T ⊆ V we have
⊕

u∈S au =⊕
u∈T au if and only if S = T .
Our algorithm will work with a valid representation of the graph, and modify it as it goes

along. The initial representation we will use is the following:

▶ Proposition 13. The representation {(ev, νv)}v∈V is valid for G = (V,E).

Proof. Indeed, {ev}v∈V are linearly independent, and νv =
⊕

u∈N(v) eu for each v ∈ V . ◀

Next we show how to modify a valid representation after removing a node w from the
graph, so that we obtain a valid representation for the remainder of the graph (the proof is
very similar to [29, 36], and is omitted here):

▶ Lemma 14. Let m = {(av, bv)}v∈V be valid for G = (V,E) and let w ̸= u be nodes in G.
We can obtain a valid representation m′ = {(a′

v, b
′
v)}v∈V \{w} for G− w as follows:

I. If w is pendant and u is its only neighbor: then for all v ∈ V \ {w},

a′
v = av and b′

v =
{
bv (v ̸= u),
bu ⊕ aw (v = u).

II. If w, u are false twins: then for all v ∈ V \ {w},

a′
v =

{
av (v ̸= u),
au ⊕ aw (v = u), and b′

v = bv.
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III. If w, u are true twins: then for all v ∈ V \ {w},

a′
v =

{
av (v ̸= u),
au ⊕ aw (v = u), and b′

v =
{
bv (v ̸= u),
bu ⊕ aw (v = u).

Together, Propositions 12, 13 and Lemma 14 give rise to the following abstract protocol
for computing a pendant-twin decomposition (or identifying that the graph is not distance-
hereditary). We cannot efficiently implement this protocol in the SMP model, as it requires
players to send very long messages, but we will show that we can simulate it using modified
equality queries. From the twin-pendant decomposition output by Algorithm 1 it is easy to
reconstruct the entire graph (as in [29, 36]).

Algorithm 1 Abstract Protocol for Computing a Pendant-Twin Decomposition.

Input: The representation {(ev, νv)}v∈V of the graph G

1 Set av ← ev, bv ← νv for each v ∈ V
2 Set decomp ← λ (an empty sequence)
3 while |V | ≥ 2 do
4 if ∃w, u such that bw = au then // Pendant w with neighbor u

5 Append (“pendant”, w, u) to decomp
6 Apply update (I) from Lemma 14 and remove w from V

7 else if ∃w, v such that bw = bu then // False twins w, u

8 Append (“false twin”, w, u) to decomp
9 Apply update (II) from Lemma 14 and remove w from V

10 else if ∃w, u such that bw ⊕ aw = bu ⊕ au then // True twins w, u

11 Append (“true twin”, w, u) to decomp
12 Apply update (III) from Lemma 14 and remove w from V

13 else Output “Graph is not distance-hereditary”
14 Output decomp

Simulating the abstract protocol using modified equality queries. As we said above,
we cannot actually afford to implement Algorithm 1: sending full neighborhood vectors νv

requires n qubits, so we cannot even send the initial representation {(ev, νv)}v∈V to the
referee. Instead, the referee works with fingerprints of the neighborhood vectors, and we use
modified equality queries to implement the tests in Lines 4, 7 and 10.

To simulate the updates performed in Lemma 14, we rely on the following crucial property:
upon removing node w, we modify the representation {(av, bv)}v∈V by adding aw to some
vectors and leaving the others unchanged. By induction on the number of updates, we
therefore have:

▶ Proposition 15. After performing t ≥ 0 steps resulting in a partial decomposition decomp,
the resulting representation {(at

v, b
t
v)}v∈V of the remaining graph can be written in the form

at
v = ev ⊕

⊕
u∈At

v

eu and bt
v = νv ⊕

⊕
u∈Bt

v

eu,

where At
v, B

t
v ⊆ V depend only on decomp.

This is important because the referee can explicitly construct
⊕

u∈At
v
eu and

⊕
u∈Bt

v
eu and

use them as modifying vectors inside modified equality queries, as we show next:
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▶ Theorem 16. In the NIH network model, there is a bounded-error quantum protocol with
communication cost O(k log2 k) that enables the referee to reconstruct a distance-hereditary
graph, or reject if the input graph is not distance-hereditary.

Proof. The protocol is described in pseudocode in Algorithm 2. It is convenient to slightly
abuse the notation by writing MEQk,k(i, y, z) to denote the query “xi ⊕ y = z?”, where
i ∈ [k] and y, z ∈ {0, 1}k. The referee can perform this query by computing a fingerprint for
the vector 0k and then proceeding as shown in Section 3, using the fingerprint for player i’s
input, the fingerprint for 0k, and the vectors y, z.

In the protocol, the referee explicitly maintains the vectors {av}v∈V of the representation,
and implicitly maintains the vectors {bv}v∈V by storing modifier vectors {cv}v∈V , such that
bv = νv ⊕ cv for each v ∈ V (this is possible due to Proposition 15). To simulate each test
in Algorithm 1 we use appropriate modified equality queries: for example, to simulate the
test “bw = au?” in line 4 of Algorithm 1, we use the query MEQk,k(w, cw, au) in line 4 of
Algorithm 2, which checks whether νw ⊕ cw = au. Since bw = νw ⊕ cw, this corresponds to
exactly the same test.

Algorithm 2 Quantum SMP Protocol for Computing a Pendant-Twin Decomposition.

1 Set av ← ev, cv ← 0k for each v ∈ V
2 Set decomp ← λ (an empty sequence)
3 while |V | ≥ 2 do
4 if ∃w, u such that MEQk,k(w, cw, au) = 1 then // Pendant w with neighbor u

5 Append (“pendant”, w, u) to decomp and set V ← V \ {w}
6 Set cu ← cu ⊕ aw

7 else if ∃w, v such that MEQk,k(w, u, cw, cu) = 1 then // False twins w, u

8 Append (“false twin”, w, u) to decomp and set V ← V \ {w}
9 Set au ← au ⊕ aw

10 else if ∃w, u s.t. MEQk,k(w, u, cw ⊕ aw, cu ⊕ au) = 1 then // True twins w, u

11 Append (“true twin”, w, u) to decomp and set V ← V \ {w}
12 Set au ← au ⊕ aw and cu ← cu ⊕ aw

13 else Output “Graph is not distance-hereditary”
14 Output decomp

Each of the tests in lines 4, 7 and 10 of Algorithm 2 can be implemented using
(

k
2
)

modified equality queries. The other steps do not require any queries. The whole procedure
can thus be implemented by an MEQk,k decision tree of depth (k − 1)3

(
k
2
)
; the quantum

protocol can be constructed from Theorem 2. ◀

4.4 Enumeration of Isolated Cliques
Finally, we turn our attention to the problem of enumerating all isolated cliques in a graph.
Isolated cliques and pseudocliques are important concepts in complex network analysis (see,
e.g., [25, 24, 30]). Concretely, we show how to enumerate max-d-isolated cliques:

▶ Definition 17 ([30], Definition 3). A subgraph S of G = (V,E) is a max-d-isolated clique
if the subgraph induced by S is a clique, and each node in S has at most d edges to V \ S.
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It is convenient to describe our protocol for enumerating max-d-isolated cliques using a
new primitive that we call modified bounded Hamming distance queries, which compute the
Hamming distance between two modified inputs, but only if the distance does not exceed
some fixed threshold d:

MHAMd
n(i, j, y, z) =

{
∆n(xi ⊕ y, xj ⊕ z) if ∆n(xi ⊕ y, xj ⊕ z) ≤ d,
⊥ otherwise.

An MHAMd
n query can be computed by an MEQk,n decision tree of depth

∑d
c=0

(
n
c

)
= O(nd),

which checks, for all strings e ∈ {0, 1}n of Hamming weight c ≤ d, whether (xi ⊕ y)⊕ e =
xj ⊕ z.6 We note that the restriction to a fixed upper bound d is important, as in general,
computing the exact Hamming distance between two strings requires linear communication,
even for interactive quantum protocols where the parties have shared entanglement [23].7

Our protocol for enumerating max-d-isolated cliques in the NIH network model will use
modified bounded Hamming distance queries with n = k. The protocol is motivated by the
following observations. The first observation allows us to use bounded Hamming distance
queries, as it shows that we do not need to worry about nodes with ∆k(νu⊕eu, νv⊕ev) > 2d:

▶ Proposition 18. If S ⊆ V contains two nodes u ̸= v such that ∆k(νu ⊕ eu, νv ⊕ ev) > 2d,
then S cannot be a max-d-isolated clique.

A symmetric difference of cardinality > 2d between N(u) ∪ {u} and N(v) ∪ {v} implies that
either N(u)∪ {u} contains more than d nodes that are not in N(v)∪ {v}, or vice-versa. If S
is a clique, this means that either u or v has more than d neighbors outside S, so S is not a
max-d-isolated clique; if S is not a clique, then in particular it is not a max-d-isolated clique.

The next observation is useful for checking whether a given set is a clique or not:

▶ Proposition 19. For every u, v ∈ V , if {u, v} /∈ E then ∆k(νu, νv) = ∆k(νu⊕eu, νv⊕ev)−2,
and if {u, v} ∈ E then ∆k(νu, νv) = ∆k(νu ⊕ eu, νv ⊕ ev) + 2.

This is because if {u, v} /∈ E, then N(u) ⊖ N(v) = ((N(u) ∪ {u})⊖ (N(v) ∪ {v})) \ {u, v}
(where ⊖ denotes the symmetric difference), whereas if {u, v} ∈ E, then N(u) ⊖ N(v) =
{u, v} ∪ (N(u) ∪ {u})⊖ (N(v) ∪ {v}).

One implication of Proposition 19 is that we always have ∆k(νu, νv) ≤ ∆k(νu ⊕ eu, νv ⊕
ev)+2. Together with Proposition 18, this gives us an upper bound of 2d+2 on the Hamming
distance ∆k(νu, νv) for nodes that might belong to the same max-d-isolated clique.

Our main result for computing max-d-isolated cliques is as follows:

▶ Theorem 20. In the NIH network model, for any d ≥ 1, there is a bounded-error quantum
SMP protocol with communication cost O(kd log2 k) for enumerating all the max-d-isolated
cliques of the input graph.

Proof. We compute MHAM2d+2
k (u, v, 0k, 0k) and MHAM2d

k (u, v, eu, ev) for all pairs u, v ∈ G,
using an MEQk decision tree of depth

(
k
2
)
·O(nd) +

(
k
2
)
·O(nd+2) = O(k2nd+2) (this consists

of 2
(

k
2
)

“small” MEQ decision trees, one for each MHAM query, composed with one another).
In addition, we have each node send its degree to the referee.

6 Yao [42] showed that for any constant d, one can test whether ∆n(x, y) ≤ d using O(log n) qubits in the
two-party quantum SMP model. However, unlike the equality function, it is not clear how to convert
this protocol into a protocol for modified Hamming distance queries, as it does not have the linearity
property that was crucial to prove Lemma 1.

7 Specifically, [23] shows that testing whether two n-bit strings have Hamming distance at most d requires
Ω(d) bits of communication, for any d ≤ n/2; this implies that computing the exact Hamming distance
between general n-bit strings requires Ω(n) qubits.
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We label each leaf of the decision tree based on the results of the MHAM queries leading
to the leaf. Each subset S ⊆ V is listed as a max-d-isolated clique in a given leaf if it satisfies
the following three conditions:
1. MHAM2d

k (u, v, eu, ev) ̸= ⊥ for all pairs u, v ∈ S. By Proposition 19, this also implies that
MHAM2d+2

k (u, v, 0k, 0k) ̸= ⊥ for all u, v ∈ S.
2. MHAM2d+2

k (u, v, 0k, 0k) = MHAM2d
k (u, v, eu, ev) + 2 for all pairs u, v ∈ S. And finally,

3. deg(u) ≤ |S|+ d− 1 for all u ∈ S.

The correctness of this enumeration algorithm follows from the two observations above,
together with the fact that if S is a clique, then a node u ∈ S has at most d edges going
outside S if and only if deg(u) ≤ |S|+ d− 1. ◀
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A Illustration of a 2-Outcome Measurement

outcome b ∈ {0, 1}

U

|0⟩S

R ...
...

Figure 3 A 2-outcome measurement of a quantum register R.

B Projective measurements

Projective measurements are a special kind of measurements allowed by the laws of quantum
mechanics. We explain below this concept and how to convert a 2-outcome measurement (as
introduced in Section 2) into a 2-outcome projective measurement.

The 2-outcome projective measurement corresponding to the 2-outcome measurement
associated with the unitary U is the measurement described in Figure 4. There are two key
properties. First, for any b ∈ {0, 1}, the probability of obtaining b is exactly the same as the
probability of obtaining b in the standard measurement associated with U . The second, and
crucial, property is that for any b ∈ {0, 1}, if the probability of obtaining b in the 2-outcome
projective measurement is very close to 1, then the postmeasurement state is very close to
the initial state |ψ⟩, which means that this state can be “reused” in later computation. In
this paper, we will not need a formal statement of this second property. We will use instead
(as a black box) the quantum union bound from Theorem 4.

U

|0⟩S

R ...
... R′ U U−1

|0⟩S

|0⟩

R R′...
...

...

Figure 4 Conversion from a quantum circuit implementing a (non-projective) 2-outcome measure-
ment associated with the unitary U (left) to a quantum circuit implementing a 2-outcome projective
measurement (right). Register R stores the initial state and Register R′ stores the postmeasurement
state. In the right picture, the 2-qubit gate between U and U−1 represents the CNOT gate, where
the X gate (also called NOT gate) is applied on the ⊕-part conditioned on the content of the
black-circle part being 1.

C Description of the SWAP test

In this appendix we give the technical description of the SWAP test presented in Section 2:
we describe the test in Figure 5 and give the corresponding quantum circuit in Figure 6.
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SWAP test
Input: two quantum states in Registers R1 and R2, respectively
1. Introduce a 1-register S initialized to |0⟩S.
2. Apply the Hadamard gate H on S.
3. (Controlled SWAP) If the content of S is 1, swap R1 and R2.
4. Apply the Hadamard gate H and then the X gate on S.
5. Measure Register S in the computational basis and output the outcome.

Figure 5 Description of the SWAP test.

H H X

SWAP

|0⟩S

R1
...

...

R2
...

...

Figure 6 Quantum circuit for the SWAP test.
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