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Abstract
In recent years, the explosion of big data and analytics has necessitated distributed storage and
processing with several compute nodes (e.g., multiple datacenters). These nodes collaboratively
perform parallel computation, where the data is typically partitioned across these nodes to ensure
scalability, redundancy and load-balancing. But the nodes may not always be co-located; in many
cases, they are part of a larger communication network. Since those nodes only need to communicate
among themselves, a key challenge is to design efficient routes catered to that subnetwork.

In this work, we initiate the study of distributed sampling and routing problems for subnetworks
in any well-connected network. Given any network G = (V, E) with mixing time τmix, consider
the canonical problem of permutation routing [Ghaffari, Kuhn and Su, PODC 2017] that aims to
minimize both congestion and dilation of the routes, where the demands (i.e., set of source-terminal
pairs) are such that each node sends or receives number of messages proportional to its degree. We
show that the permutation routing problem, when demands are restricted to any subset S ⊆ V (i.e.,
subnetwork), can be solved in exp(O(

√
log |S|)) · Õ(τmix) rounds (where Õ(·) hides polylogarithmic

factors of |V |). This means that the running time depends subpolynomially on the subnetwork size
(i.e., not on the entire network size). The ability to solve permutation routing efficiently immediately
implies that a large class of parallel algorithms can be simulated efficiently on the subnetwork.

As a prerequisite to constructing efficient routes, we design and analyze distributed branching
random walks that distribute tokens started by the nodes in the subnetwork. At a high-level, these
algorithms operate by always moving each token according to a (lazy) simple random walk, but also
branching a token into multiple tokens at some specified intervals; ultimately, if a node starts a
branching walk, with its id in a token, then by the end of execution, several tokens with its id would
be randomly distributed among the nodes. As these random walks can be started by many nodes, a
crucial challenge is to ensure low-congestion, which is a primary focus of this paper.
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1 Introduction

When designing distributed algorithms, we typically develop solutions for an entire network.
For example, we might want to identify a maximal independent set (MIS) for the graph
(e.g., [28]), find an MST for the graph (e.g., [60]), compute all-pairs shortest paths (e.g., [42]),
or solve a load balancing problem (e.g., [25]).
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In practice, however, the “entire network” is gigantic, and the application we are designing
likely wants to solve the problem only on a subnetwork. For example, we might need an MIS
only for a specific subgraph – an easy problem, since finding an MIS depends only on the
local neighborhood. Or we might want to find an MST connecting a subset of the nodes –
i.e., we want a Steiner tree; over the last several years, there has been significant progress in
distributed algorithms for Steiner tree approximation [50, 65].

For many other (non-local) problems, it remains open (to date) how easy or hard they are
to solve on subgraphs. In this paper, we focus on two fundamental problems – sampling and
routing. Solving these problems provides a framework for easily adapting existing algorithms
designed for a graph G to run efficiently on a subgraph of G: by (effectively) building
on overlay allowing nodes in the relevant subset to communicate efficiently, we can easily
simulate global algorithms on a subgraph.

In more detail, imagine you are given some graph G = (V, E) representing the network,
and some subset S ⊆ V of the nodes are identified as participants. The subgraph induced
by S is not necessarily connected (without using edges from the larger graph). Thus to
solve problems for the nodes in S, we need to design algorithms that operate in the larger
graph – but that are ideally more efficient than simply solving the problem on the entire
graph. We focus on networks with limited bandwidth – i.e., communication is governed by
the CONGEST model [61]. And we assume the graph is reasonably well-connected, i.e., has
a given mixing time τmix.

We consider two key problems: (i) random sampling, where every node in S (simultane-
ously) retrieves a random sample of node identifiers from the set S; and (ii) permutation
routing, where nodes in S discover efficient (low congestion, low dilation) routes between
pairs of nodes in S.

In general, the challenging aspect of solving these problems on a subgraph S ⊆ V is
establishing efficient communication between the nodes in S, without flooding the broader
network with messages and creating too much congestion. Nodes in S know that they are in
S, but they do not know anything about which other nodes are in S or where to find them.
To create connections, these nodes in S might send out large numbers of messages to probe
the network – but (depending on the topology of the network) this might induce significant
congestion if done naively.

Distributed Sampling
More specifically, the goal of distributed sampling is that each node in S receives sufficiently
many samples (i.e., node identifiers) drawn from a distribution sufficiently close to the
stationary distribution of the graph.

▶ Definition 1. Distributed-Subsample(S) or DSubsample(S) problem.
Input: Network G = (V, E); Subset of nodes S ⊆ V ; n = |V |.
Ensure: Each node v outputs Θ(d(v) log n) “almost-random” samples (i.e., node ids)
from set S, i.e., for each sample s at any node v ∈ V , for any node w ∈ S, Pr[s = w] =
(d(w)/d(S)) ± n−Θ(1), where d(w) is the degree of node w and d(S) =

∑
u∈S d(u).

Random-walk based algorithms have been often used for sampling: random walks are
fast and light weight, and this sampling capacity has been useful in a variety of contexts, for
example, aggregate statistics (e.g., [53, 67]), resource discovery (e.g., [39, 38]), information
dissemination (e.g., [33, 34]), peer-to-peer networks (e.g., [47, 37, 6, 35]), agreement and
leader election (e.g., [4, 5, 36]), etc.
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Unfortunately, simple random walks may take too long to discover and sample from a
subset of nodes S in the graph.

Branching Random Walks
The key technical tool that we develop to solve this problem is a special type of branching
random walk that we call an amoeba walk. Branching random walks allow a token to split
during the walk, producing more tokens and covering the graph faster. Thus a branching
walk will more quickly discover a hidden subset of the graph.

The key challenge with branching walks is controlling congestion: as the number of tokens
multiplies, so does (potentially) the congestion. In fact, we show (in Theorem 5) that a
simple branching random walk (i.e., a “count random walk” [45, 36]) inevitably creates too
much congestion.

Many branching random walks – like cobra walks (coalescing and branching random
walks) [22, 54] – control congestion by coalescing tokens when there are too many. They are
generally designed to begin at one location and eventually “cover” the network with tokens
representing a source message (e.g., a rumor or an infection).1

Unlike such branching walks, we want to begin random walks at many different nodes in
the network, where each source achieves some “balanced” level of cover in the network. (For
example, we do not want one source to crowd out the others.) To ensure this, we do not
want to allow arbitrary branching at every step – we want a more controlled process.

Specifically, an amoeba walk alternates between two different types of phases: mixing
and dividing. During the mixing phase, a token follows a traditional random walk (without
any branching); during the dividing phase, it splits into multiple tokens. This alternation
prevents too much congestion from developing in any one place in the network. Thus, if
each node in S starts appropriate amoeba walks, tokens from each node will eventually be
randomly distributed in the graph, providing a random sample of other nodes in S.

Distributed Routing
Building on the sampling infrastructure (which connects each node in S to a small number
of other nodes in S), we show how to develop a routing algorithm among all the nodes in S,
allowing nodes in S to communicate efficiently.

Specifically, we focus on the distributed permutation routing problem, introduced by
Ghaffari, Kuhn and Su [31] in the context of expander networks. In this problem, there
is a set of source-terminal pair of nodes (typically called the “demand”), where a (unique)
message needs to be sent from each source to its terminal. At the same time, there is a
constraint on the demand wherein each node is designated as the source or terminal for a
total number of messages that is at most its degree.

The challenge is to ensure that all messages reach their respective destinations as quickly
as possible, requiring nodes to route them all in parallel, while limiting congestion, i.e.,
ensuring that at most polylogarithmic (in network size) bits are sent along any edge at a
time.

This problem has received great attention in recent years [31, 32, 14, 12], due to several
important applications, such as distributed MST and min-cut [31, 16], data summarization
(e.g., sorting, distinct elements, frequency moments, etc) [67], subgraph enumeration [13],

1 Of course, one can start a cobra walk at many locations, and there are other applications aside from
“rumor spreading.”
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shortest path and distance-related computation [11], etc. Moreover, Ghaffari and Li [32]
showed that permutation routing enables an efficient adaption of work-efficient algorithms
in the PRAM model to distributed networks in the CONGEST model, thereby creating a
bridge to a vast literature of parallel algorithms.

In this work, we study a natural generalization of permutation routing, where the demand
is restricted to a subset of nodes. The goal is to obtain performance guarantees that (ideally)
depend on the subset size.

▶ Definition 2. Subnetwork-Permutation-Routing(S) or SPRoute(S) problem.
Input: Network G = (V, E); Source-Terminal Set D = {(s1, t1), . . . } where ∀i ∈
[|D|], {si, ti} ⊆ S ⊆ V and node si knows the id of node ti and a message mi that
needs to be sent to node ti, where mi is of size at most O(log |V |) bits.
Require: For each node v ∈ S, |{P | (v ∈ P ) ∧ (P ∈ D)}| ≤ d(v) · O(log |V |), where d(v)
is the degree of node v.
Ensure: ∀i ∈ [|D|], node ti receives the intended message mi.

Our basic solution for subnetworks extends the random-walk based approach of Ghaffari,
Kuhn and Su [31]. First, the nodes execute (slightly modified) amoeba walks to randomly
distribute the node ids. Then the nodes in S efficiently simulate a random graph overlay
among themselves. Combining these methods, we can create a hierarchical decomposition of
the nodes in S, enabling an efficient routing algorithm between any pair of those nodes.

Contributions
Our technical contributions are two-fold, with a focus on distributed sampling and routing.

Figure 1 An illustration of amoeba-walk started by a node.

To tackle the sampling and routing problems, we design and analyze a new distributed
branching random walk algorithm called amoeba-walks. The main idea is that each node
in the subnetwork, starts a token that always executes a (lazy) simple random walk, but
also occasionally branches into multiple tokens. See Figure 1 for an illustration. The tokens
executing these algorithms carefully alternate between “mixing” and “dividing” phases, so
that the algorithm induces low-congestion, and all the nodes end up with (almost-)random
samples (i.e., node ids) from the subnetwork.

▶ Theorem 3. Consider any network G = (V, E) with mixing time τmix and any set S ⊆ V .
The DSubsample(S) problem can be solved in Õ(τmix) rounds whp.

Once we are able to efficiently distribute the random samples of the subnetwork, one
may be tempted to let the nodes simply reverse the tokens to obtain low-congestion routes.
However, for the permutation routing problem, the demands can be such that each node sends
or receives a number of messages proportional to its degree, which could cause congestion in
the (naive) amoeba-walk algorithm. However, with a slight modification, and simulation of a
(virtual) random graph over the subnetwork, and leveraging the state-of-the-art permutation
routing algorithm (i.e., [32]), we prove the following theorem.
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▶ Theorem 4. Consider any network G = (V, E) with mixing time τmix and any set S ⊆ V .
The SPRoute(S) problem can be solved in exp(O(

√
log |S|)) · Õ(τmix) rounds whp.

An immediate corollary of this theorem is that we can simulate a large number of parallel
and distributed algorithms designed for an entire graph [2, 32]. For example, due to Ghaffari
and Li [32], Theorem 4 implies that any (work-efficient) T round CRCW PRAM algorithm
can be simulated by the nodes in S in time O(T exp(O(

√
log |S|)) · Õ(τmix).

2 Preliminaries

We formally define the distributed network model, assumptions, and notations.

Network. Let G = (V, E) be a connected graph that denotes a network of nodes, where V

and E are the set of nodes and set of (bidirectional) communication links, respectively. As is
typical, |V | = n and |E| = m. The nodes in the graph represent a fixed set of computing
entities, where each node is associated with a unique identifier (or id). Moreover, we assume
that the id of any node can be encoded in O(log n) bits.

The system proceeds in synchronous rounds, i.e., a message m sent by a node u in any
round is received by its recipient node v by the end of that round.

Network Properties. Let d(u) = |N(u)| and d(S) =
∑

u∈S d(u) be the degree of node u

and volume of subset S ⊆ V (resp.), where N(u) = {v | (u, v) ∈ E} is the set of neighbors of
node u. Let ∆ = maxu∈V d(u) be the max-degree. Let Φ = minS⊂V |∂S|/ min(d(S), d(V \S))
denote the conductance where ∂S = {(u, v) | u ∈ S, v ∈ V \ S}.

Let π and τmix denote the stationary distribution and mixing time of the lazy random
walk on the network. Recall that the lazy walk stays at the current node with probability
1/2, otherwise it moves to a uniformly random neighbor; see, Algorithm 2 for a reference. As
the name implies, once the random walk reaches the “stationary” distribution, it stays there
forever; for the lazy walk, it is known that π(u) = d(u)/2m for any node u (see, e.g., [51]).

Furthermore, let pt(u, v) be the probability distribution of the lazy random walk that
started at node u and ended up at node v after t steps. In this paper, we define the mixing
time τmix as the minimum t such that for all pairs of nodes u and v, |pt(u, v) − π(u)| ≤ n−c,
where c is a suitable constant.

Congestion. In any round, each node can send O(log2 n) bits along any edge. We consider
a slightly non-standard CONGEST(B) model [61], where B is polylogarithmic in n (instead
of O(log n)), so that the exposition of the analysis becomes simple, as each node can send
O(log n) random walk tokens, having distinct node ids, in a single round.

Estimates of Certain Global Parameters. For the sake of a clean exposition, we make a
simplifying assumption that the nodes have a good estimate (i.e., within constant factors) of
the network’s mixing time, d(S), n and m (where S ⊆ V is part of the input).

For the routing problem, these parameters could be estimated directly, i.e., nodes can
determine the various sizes by evaluating aggregate functions (such as summation, etc), for
e.g., by constructing a BFS tree using the node with minimum id as the root. For the mixing
time, nodes can use a “guess-and-double” trick until all routing paths are established [32],
i.e., if a node cannot route a message to its destination in the anticipated time, then the node
can inform the root, which can re-initiate the routing algorithm after doubling the estimate.

OPODIS 2024
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3 Related Work

Distributed and Parallel Random Walks. There has been a vast literature on the design,
analysis and applications of random walks in distributed networks. Alon et al. showed that
the cover time (i.e., expected time taken to visit all nodes) can be significantly reduced over
various families of graphs, when multiple (independent) simple random walks are started
from an arbitrary node. However, they do not minimize congestion. In the CONGEST model,
Das Sarma et. al showed that an L-length random walk can be computed in Õ(

√
LD) time,

i.e., sublinear in the length of the walk, where D denotes the diameter of the network. They
achieved it by performing several short random walks and carefully stitching them together.
In a subsequent work, Das Sarma et. al [66] extended this algorithm to dynamic regular
networks, where the network can change arbitrarily over time. In fact, the idea of stitching
independent random walks has been exploited in the massively parallel computation [46] and
overlay models [21, 7], for an exponential speed up in computing random walks.

A closely related stochastic process is a natural generalization of simple random walk,
called the coalescing-branching random walks [23, 19, 20, 55, 9]. Dutta et al. [23] initiated
the study the rate of information dissemination, particularly cover time for different classes of
networks. In particular, they show a cover time of O(log2 n) in expander networks, whereas,
the cover time for simple random walk is known to be Θ(n log n). This process begins with a
branching factor k, and an arbitrary node is initially “active”. In any step, each active node
chooses k random neighbors to be active (i.e., “branching” property). However, a node can
be active in any step only if it is chosen by some node in the previous step (i.e., “coalescing”
property). A key difference with our distributed branching random walk is that although the
tokens divide into multiple tokens over time, they never coalesce into a single token at any
node. Moreover, our focus is on ensuring that the process induces low-congestion (i.e., each
node sends at most polylog bits over any edge in any round), whilst achieving a different goal,
i.e., randomly distributing samples (i.e., node ids) of any subset of nodes to the network.

Perhaps, a type of distributed random walk that is closest to the distributed branching
random walks, are “count” random walks [45]. Here, a small set of nodes start (polynomially)
many walks by associating a count parameter with a token (in addition to the id of the node
that started the token). The way that many random walks, by a single node, can be executed
is by treating each count in each token as an independent random walk, but merging them
(if they are associated with the same id) while sending them along any edge. This technique
has proven to be useful in many important contexts (in the CONGEST model), such as
approximating the mixing time [59], leader election with sublinear message bounds [45, 36],
and testing of network conductance [26, 8]. An important observation in all those works, is
that at most Õ(1) number of nodes start the count random walks. Thus, regardless of the
count values in the tokens, the number of tokens with distinct ids traversing the network is
always low (due to merging of tokens). However, amoeba-walk tokens can be started by any
(polynomial) number of nodes (with distinct ids), which makes the problem of maintaining
low-congestion much harder to achieve, even if merging of tokens is allowed.

Expander Routing. While early solutions to permutation routing over expander networks
were randomized [31, 32], recent works have also designed efficient deterministic algorithms
[14, 12]. Since our solution uses, as a black-box, the permutation routing algorithm designed
for the entire network, we provide a high-level overview of the algorithm.

The randomized algorithms work by recursively embedding Erdős-Rènyi random graphs
G(n, p) (whilst deterministic solutions work with embedding an expander graph), on a base
graph G0, using random walks. In particular, the base graph G0 is a random graph G(m, d/m)
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with a parameter d = exp(Θ(
√

log n)), constructed over the edge-set [32]. Then, a graph G1
is embedded onto G0 with low congestion and dilation, where G1 is a disjoint union of random
graphs Gi

1’s, where Gi
1 is a random graph G(|Vi|, d/4|Vi|) over the set of nodes Vi, where

V1, V2, . . . , Vk form a partition of V , and for all i, |Vi| = Θ(m/k). Such a hierarchical decom-
position recursively proceeds until the graphs have a size of roughly exp(Θ(

√
log n)). Finally,

a routing mechanism is given using standard packet-routing techniques, i.e., randomized
mapping of address space (e.g., [68, 43, 64]) and random-delay packet routing [48].

Connection to Flow Sparsifiers. The notion of cut and flow vertex sparsifiers were introduced
in the seminal works of [57, 49]. Let G = (V, E) be a network, and terminal set K ⊂ V , then
informally, the problem is to construct a graph H = (VH , EH) that preserves (i.e., bounded
by a small multiplicative factor) the minimum congestion of flows for any demand that is
restricted to the terminals. Note that for any given demand, there exists an optimal “flow
assignment,” i.e., a set of paths along which messages from a source to a terminal are routed.
Here, the optimality is defined with respect to minimizing the congestion objective2, which
is defined as the maximum congestion over all edges, and the congestion of any edge is the
total flow sent over that edge (divided by its capacity).

The main idea is that if a combinatorial optimization problem depends only on the flows
(or cuts) of a subset of vertices, called terminals, then an algorithm for that problem can be run
on H (after having precomputed such a sparsifier), instead of G, thereby significantly reducing
the runtime, as |VH | ≈ |K| ≪ |V |. Such a fundamental “network compression” primitive has
received a great deal of attention since its inception (see, e.g., [24, 15, 52, 18, 1, 44, 17]).

In comparison with our work, we point out a few differences with flow sparsification. First
and foremost, we consider identifying a subgraph, i.e., VH ⊆ V and EH ⊆ E in the distributed
setting, where nodes have only local knowledge. Second, another key difference is that our
focus is on minimizing the completion-time objective, i.e., the time taken for the last message
to reach its destination, which is a function of both congestion and dilation (i.e., length of
the paths). We refer to the recent works of [30, 40] for more details on this objective (and
how it is strongly desirable in packet routing in networks). Finally, we consider preserving
the minimum completion-time for permutation demands, and not arbitrary demands.

4 Distributed Branching Random Walks

In this section, we design and analyze a distributed random walk algorithm called amoeba-
walk. Broadly, in this algorithm, the nodes send out tokens, where the tokens always execute
simple random walk for a certain number of rounds (i.e., mix), and every so often, each
of them branch into two tokens (i.e., divide). The lazy version of an amoeba-walk can be
analogously defined, i.e, the tokens would always execute the lazy simple random walk. In
this paper, we work with lazy random walks, as the simple random walk may not always
converge to the stationary distribution, for e.g., in bipartite networks.

Each node u in subset S ⊆ V , starts the “amoeba-walk token,” tu = (u.id, L, countu),
where the token consists of three entries: (1) u.id is the id of node u (that started the token),
(2) L is the number of steps after which the token divides into two tokens, and (3) countu

denotes the “count” of the token tu.
The count of an amoeba-walk token plays an important role because it represents the

“weight” of the token; in other words, one can think of the token as a set of (lazy simple
random walk) tokens moving together, with the cardinality of the set equal to the count.

2 For formal definitions in vertex sparsification, we refer to [58].

OPODIS 2024
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Whenever a token divides into two tokens, its count is equally divided amongst those two
tokens. However, when a token has count equal to 1, then that token will not divide into
multiple tokens. Thus, finally, at the end of the execution, each amoeba-walk token has its
count equal to 1. Since our goal is to (randomly) distribute the node ids of the subnetwork
in the entire network, the total count of all amoeba-tokens at the start of the execution, is
set such that

∑
u∈S countu = Θ(m log n). See Algorithm 1 for the pseudocode.

Algorithm 1 Amoeba-Walk(S, L) for a node u.

1: Let α = Θ(1) and C = ⌈αmd(u) log n/d(S)⌉ and token t = (u.id, L, C);
2: (Round 1) ∧ (u ∈ S) → LazyRW(t);
3: for each received token t = (id, l, count) do
4: // Mix Phase
5: l ≥ 1 → LazyRW((id, l − 1, count));
6: if l < 1 ∧ count > 1 then
7: // Divide Phase
8: LazyRW((id, L, ⌈count/2⌉));
9: LazyRW((id, L, ⌊count/2⌋));

10: end if
11: end for

Algorithm 2 LazyRW(token) for a node u.

1: Let b ∈R {0, 1} denote a (uniformly) random element drawn from the set {0, 1};
2: b = 0 → Send token to a random node in N(u);
3: b = 1 → Send token to self;

First, we provide a congestion analysis to necessitate the mixing of tokens, before dividing
them, i.e., when the parameter L = 0, we show that the amoeba-walk algorithm can cause
congestion issues at some edge (e.g., some node is not able to forward a token along an edge
in a round). Moreover, this analysis also sheds light on the shortcomings of the existing count
random walk algorithm (e.g., [45, 59, 26, 36, 8]; see Section B for a similar analysis), especially
in the case where the total number of nodes starting the tokens is high. Subsequently, we
prove that the amoeba-walk has low-congestion when L is equal to Θ(τmix).

▶ Theorem 5. Consider a network G = (V, E) with conductance Φ = Ω(1) and max-degree
∆ = O(1). There exists a subset of nodes S ⊂ V for which at least one node sends more than
Ω(logc n) bits in expectation, for any constant c, along an edge in a single round during the
execution of Amoeba-Walk(S, 0).

Proof. If the set of nodes S are “close together” in the network, and if |S| is large enough,
when the tokens have a high count and are dividing into multiple tokens, there are nodes in
S that end up getting a large number of tokens (from many distinct nodes). The key idea is
to shift our focus from a collection of tokens to individual tokens of count value equal to one
from round 1, i.e., each count is indeed executing a lazy random walk (though the random
choice may be correlated with other counts).
Notation. Let the initial count (in round 1), started by nodes in S, be denoted as C ∈ N.
For the sake of analysis, the initial count started by node in S, is viewed as a collection of
individual counts, indexed by [C]. Let Ct(u, v) be the random variable for the total count of
node u (over all tokens present) at any node v ∈ V in any round t ≥ 1. Let Ct(u, v, k) be
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the indicator random variables for the presence of the count k of node u ∈ S at any node
v ∈ V in any round t ≥ 1. Let Pi,j(u, v) denote the probability that a lazy random walk that
starts at node u in round i and ends at node v in round j, for j > i. Let sgn(x) = 0 if x is
even, and 1 otherwise. Let B(u, r) = {v | 0 ≤ dist(u, v) ≤ r} be the ball of radius r around a
node u, where dist(u, v) denotes the distance between nodes u and v in G. Let ϵ = Φ/∆ and
h = ⌈log1+ϵ 10B⌉ where B = Ω(logc n); note ∀u ∈ V, |B(u, H)| ≥ 10B.

Setting up the Bottleneck. Consider some node v0 ∈ V and |S| = ⌊
√

n⌋. Let r0 =
argminr(|B(v0, r)| ≥ |S|). Let S be the set of nodes closest to the node v0 among nodes in
B(v0, r0), including node v0, where |S| ≥ ⌊

√
n⌋. Let Seven = {w | sgn(dist(v0, w)) = 0 ∧ (w ∈

S)} and Sodd = S \ Seven. By pigeonhole principle, either Seven ≥ 5B or Sodd ≥ 5B. If
Seven ≥ 5B, then S′ = Seven and b = 0, whereas if Sodd ≥ 5B, then S′ = Sodd and b = 1.
Furthermore, if sgn(h) = b, then h′ = h, whereas if sgn(h) ̸= b, then h′ = h − 1.

Analysis. As each count is executing a lazy random walk, for any nodes u ∈ S and v ∈ V ,
and any count k ∈ [C], E[Ct(u, v, k)] = P1,t(u, v) ≥ 1/(2∆)t. By linearity of expectation,
and due to max-degree ∆, the following two claims hold: (1) ∀u ∈ S, if 0 < dist(u, v0) =
t, then E[Ct(u, v0)] ≥ ⌊C/(2∆)t⌋, and (2) ∀u ∈ S, if 0 ≤ dist(u, v0) ≤ t ≤ h − 2 and
sgn(t) = dist(u, v0), then E[Ct+2(u, v0)] ≥ E[Ct(u, v)]/4∆2. By combining the two claims,
and the bound on conductance, ∀u ∈ S′, E[Ch′(u, v0)] ≥ ⌊Θ(

√
n log n)/(2∆)h′⌋ = Ω(log n),

as ∆ = O(1) and Φ = Ω(1), (2∆)log1+ϵ 10B ≪
√

n. Thus, the node v0 needs to send tokens
from B = Ω(logc n) distinct nodes in round h′ + 1, in expectation. ◀

For showing that amoeba-walks can have low-congestion, we rely on a useful property
about multiple lazy random walks. Informally, it says that if each node u starts with roughly
Θ(d(u) log n) random walk tokens (i.e., the collective set of tokens3, in the network, are
roughly already initially in stationary distribution), then in any round t, the expected number
of tokens at any node u is at most O(d(u) log n); if t ≤ poly(n), this property also holds,
whp. Indeed, variants of this property appear in different contexts of distributed networks,
including overlay networks (e.g., [6, 21]) and distributed property testing (e.g., [10]).

▷ Claim 6. Consider any network G = (V, E). Let each node u start at most 2Bu tokens
that independently execute lazy random walk (i.e., Algorithm 2) where Bu = Cd(u) log n,
where C is a suitably large constant. Then, in any round t ∈ Õ(τmix), the number of tokens
at any node u is at most O(Bu) with high probability.

Proof. For the sake of analysis, at the start, add “virtual” tokens to each node until each
node u has 2Bu = Θ(d(u) log n) (real or virtual) tokens. Note that adding additional tokens
can only increase the congestion. Without loss of generality, let the initial vector of tokens is
B = (2Bu1 , . . . , 2Bun

). Further, let T be the lazy random walk transition matrix of G; it is
well-known that the stationary distribution vector is π = (d(u1)/2m, . . . , d(un)/2m). Using
the property of the stationary distribution, we know that π · T = π. With the help of this
fact, we can bound the expected number of tokens at any node.

Let Xt
u the number of tokens at node u in round t. Let Xt =

(
Xt

u1
, . . . , Xt

un

)
denote the

vector of tokens in round t. We can show the following statement via induction for any t ≥ 1,(
E[Xt

u1
| X1 = B], . . . ,E[Xt

un
| X1 = B]

)
= B.

3 Here, we mean the distribution of tokens, i.e., the number of tokens at any node divided by the total
number of tokens in the network.
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For the first round, the statement is trivially true. Moreover, from any round to the next, an
elementary calculation reveals that,(

E[Xt+1
u1

| X1 = B], . . . ,E[Xt+1
un

| X1 = B]
)

=
(
E[Xt

u1
| X1 = B], . . . ,E[Xt

un
| X1 = B]

)
· T

= B · T.

Now we use the fact that B0 is proportional to the stationary distribution,(
E[Xt+1

u1
| X1 = B], . . . ,E[Xt+1

un
| X1 = B]

)
= B · T

= (2Cd(u1) log n, . . . , 2Cd(un) log n) · T

= 4C · m log n ·
(

d(u1)
2m

, . . . ,
d(u1)
2m

)
· T

= 4C · m log n · π · T

= 4C · m log n · π = B

Thus, for any round t, E[Xt
u | X1 = B] = 2Bu. Since the mixing time of lazy random walk is

at most polynomial in n [51], t = Õ(τmix) ≤ poly(n). As Xt
u is a sum of binary independent

random variables over all tokens on all nodes, by Chernoff bounds (cf. Section A) and union
bound, the number of tokens at any node u in any round t is O(d(u) log n) whp. ◁

To prove that amoeba-walks, for a parameter L = Θ(τmix), respects the congestion
requirements, we exploit a careful alternation between the reliance on individual (i.e., for
“divide” phase) and collective (i.e., for “mix” phase) probability distribution of tokens.

▶ Lemma 7. Consider any network G = (V, E) with mixing time τmix and any set S ⊆ V .
The following statements hold for the execution of Amoeba-Walk(S, L = Θ(τmix)), whp.
1. Each node sends or receives O(log2 n) bits in any round.
2. After Θ(L log n) rounds, for every token t = (id, l, c) on any node, l = 0 and c = 1.
3. After Θ(L log n) rounds, the total number of tokens present at any node v ∈ V , amounts

to Θ(d(v) log n), where d(v) is the degree of node v ∈ V in round 1.

Proof. We analyze the algorithm in O(log n) “epochs,” where epoch i ≥ 1 starts in round
1 + (i − 1)L, i.e., the length of each epoch is L rounds. We maintain two invariants in every
epoch, whp; for every node u ∈ V , (1) at the start, node u has at most Bu = Θ(d(u) log n)
tokens, and (2) in any round, node u has O(Bu) tokens. If this can be shown, note that the
first two statements (in the lemma) are proved.

Weighted Balls-and-Bins. Consider a stochastic process where, at most Cm log n balls
are randomly thrown into n bins, where C is a suitably large constant. Specifically, each
ball is independently placed in bin u with probability p(u) = (d(u)/2m) ± n−Θ(1), where∑

v p(v) = 1. Let Xi,u denote the indicator random variable for ball i placed in bin u. Let
Xu =

∑
i Xi,u denote the random variable for number of balls in bin u. By a Chernoff bound

(cf. Section A) and union bound over all balls and bins, Xu ≤ Θ(d(u) log n) = Bu, whp,
where Bu denotes the “max load” on any bin u.

Congestion Analysis for Lazy Random Walks. Let every node u start at most 2Bu tokens
that independently execute the lazy random walk in any round i ≥ 1 over the network G.
As the tokens are collectively in stationary distribution, by Claim 6, node u has at most
O(d(u) log n) tokens in any round, whp.
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Analysis of Amoeba-Walks. At the start of any epoch i, after the token-division (i.e.,
Line 7–9 in Algorithm 1), if at every node u, there are at most 2Bu tokens, then by the
congestion analysis of lazy random walks, until the start of epoch i + 1, the number of tokens
at any node u is at most O(Bu), whp.

At the end of any epoch i, i.e., right before the next token-division in round 1 + iL, each
token is (independent of other tokens) “well-mixed,” as it traversed the network for Θ(τmix)
rounds (i.e., from the start to end of epoch i). In other words, the probability of that token
ending up at any node u at round 1 + iL is (d(u)/2m) ± n−Θ(1) (cf. Section 2). Thus, we
can recover the bound Bu on the number of tokens at any node u at the start of epoch i + 1
by the aforementioned weighted balls-and-bins process, with high probability. Finally, by a
union bound on all rounds, Amoeba-Walk(S, Θ(τmix)) acheives the congestion bounds in
every round, with high probability.

Finally, as there are (totally) Θ(m log n) tokens in final phase, with each of them having
independently executed lazy random walk, the third statement holds, whp, again due to the
weighted balls-and-bins process. ◀

5 Applications

In this section, we provide applications of the distributed branching walk algorithm to the
aforementioned sampling and routing problems for subnetworks.

5.1 Subnetwork Sampling
▶ Theorem 3. Consider any network G = (V, E) with mixing time τmix and any set S ⊆ V .
The DSubsample(S) problem can be solved in Õ(τmix) rounds whp.

Proof. First, the nodes execute Amoeba-Walk(S, L = Θ(τmix)) algorithm to randomly
distribute the tokens in the network. Due to Lemma 7, after O(L log n) rounds, the total
number of tokens (with count equal to 1) at any node v ∈ V , amounts to Θ(d(v) log n) whp.

Forward Mixing. Recall that when the count value in any token is equal to 1 (i.e., after a
token-division), the token (independently) executes lazy random walk for Θ(τmix) rounds,
before halting at a node. Thus, the probability of that token ending up at any node v is
(d(v)/2m) ± n−c(L), where c(L) is some large constant depending on the parameter L (cf.
Section 2). However, at the end of execution, for such a token (with count equal to 1), we
want to analyze the final probability distribution of the source of the token.

Backward Mixing. For the sampling analysis, the reversibility property of random walks
(see, e.g., [3]) turns out to be useful. Consider any node w ∈ S and any token (referred to
as “sample”) s (where s denotes the node id of the token) at any node v ∈ V . Let us define
two events A and B, where A refers to s = w and B refers to s ∈ S. Using reversibility, we
consider the sample s doing a lazy random walk, starting from the node v, backwards in
time (up until round 1). Thus, similar mixing arguments apply to this sample, even in the
reverse sequence, with following implications, whp,

Pr[A ∩ B] = d(w)
2m

± 1
nc(L) and Pr[B] = d(S)

2m
± 1

nc(L) .

Using conditional probability (cf. Section A), and the following ratio manipulation, we get
that Pr[A | B] = (d(w)/d(S)) ± O(n−c(L)+2), with high probability. Here, we show the steps
for the upper bound, but similar arguments apply for the lower bound.
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Pr[A | B] ≤ d(w) + 0.5n−c(L)+2

d(S) − 0.5n−c(L)+2 ≤ d(w)
d(S) − 0.5n−c(L)+2 + n−c(L)+2

≤ d(w)
d(S) − 0.5d(S)n−c(L)+2 + n−c(L)+2

≤ d(w)
d(S) ·

(
1 + 0.5n−c(L)+2

1 − 0.5n−c(L)+2

)
+ n−c(L)+2

≤ d(w)
d(S) + O(n−c(L)+2).

Finally, by setting L (e.g., so that c(L) ≥ 5) to be large enough, and by a union bound over
all nodes and all samples, the proof of the theorem is complete. ◀

5.2 Subnetwork Permutation Routing
The problem of permutation routing over subnetworks would be easy if all the nodes of the
subnetwork are part of a single (well-)connected component in the network: those nodes could
simply run an existing algorithm for permutation routing [31, 32, 14, 12] in that component.
In general, however, those nodes could be arbitrarily spread out in the given network, which
makes it hard to find efficient routes between the nodes. Towards that end, we consider
“simulating” a virtual network Gv = (S, Ev) for the subset of nodes S ⊆ V participating
in the routing problem over the given network G = (V, E). In particular, an edge in Gv

corresponds to a (not necessarily simple) path in G; at most O(log2 n) bits can be sent over
an edge in Gv in a virtual round, where one virtual round can be simulated in some bounded
number of rounds in G. To further understand the simulation, the notions of “congestion”
and “dilation” for a set of paths (in the multicommodity routing literature) are useful.

▶ Definition 8 (adapted from [32], Multicommodity-Routing or MRoute problem).
Input: Network G = (V, E); Source-Terminal Set D = {(s1, t1), . . . } where ∀i ∈
[|D|], {si, ti} ⊆ V and node si knows the id of node ti and a message mi that needs
to be sent to node ti, where mi is of size at most O(log |V |) bits.
Ensure: Return a set of paths P = {P1, . . . , P|D|} with congestion C and dilation D

such that for every i, Pi is a path connecting nodes si and ti, and every node in Pi is
aware of its neighbors on Pi.
Notation: Consider the following standard notation for this problem.

Let C = maxe∈E(
∑

P ∈P F (e, P )) be the congestion of the solution, where F (e, P )
equates to the number of times, the edge e, appears in the path P .
Let D = maxP ∈P |P | be the dilation of the solution, i.e., the length of the longest path.
Let W = maxv∈V |{sd | (v ∈ sd) ∧ (sd ∈ D)}| be the width of the input.

The problem of simulating the virtual network Gv = (S, Ev) can be viewed as finding the
set of paths in G of the multicommodity routing problem for the set of edges in Ev. Once this
set of paths is established with congestion C and dilation D, the elegant randomized-delay
technique by Leighton, Maggs and Rao [48] can be used to efficiently send a message from
one end of a path to the other; for e.g., in recent years, the following theorem has been useful
in the context of low-congestion shortcuts [29, 41].

▶ Theorem 9 (adapted from [29]). Given a set of paths P = {P1, . . . } as the solution for an
MRoute problem with D = {(s1, t1), . . . } in a network G = (V, E). Then, for every i ∈ [|D|],
node si can send the message mi to node ti over the path Pi in at most Õ(C + D) rounds.
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Early solutions to permutation routing [31, 32] exploited random walks to construct several
layers of such virtual networks on top of each other, forming a hierarchical decomposition of
the nodes. Specifically, they require the nodes to embed their ids in tokens, and the tokens
execute simple random walks until they are (sufficiently) randomly distributed among the
nodes. By doing so, these tokens can be used to form a (low congestion and low dilation)
“random graph” virtual network, where the edges are randomly chosen by the nodes.

If the nodes could establish a connection directly to the node id in a token, the virtual
network can easily be formed. However, as the network is static, one standard way, for any
node to establish a connection to the node id in a token (that executed a random walk and
ended at that node), is to reverse the token until it reaches the (source) node that started
the token (see, e.g., [31, 36]), so that this “token-reversal” can be executed, in parallel, by
all nodes. However, depending on the random walk algorithm executed by the tokens, such
(reversed) routes may not always have low-congestion.

For instance, if the nodes execute Amoeba-Walk(S, L = Θ(τmix)) in network G = (V, E),
and the subnetwork size |S| = Ω(

√
n), and there is some node u ∈ S with d(u) = Ω(

√
n) and

for all v ∈ V \ {u}, d(v) = O(1), then the aforementioned token-reversal strategy can cause
congestion issues. By design of the virtual network [31, 32], each node w has Õ(d(w)) random
virtual connections in the subnetwork (i.e., proportional to its degree). But the path taken by
the amoeba-walk token started by node u, before it first splits into two tokens, would consist
of (at least) one node whose degree is O(1). That node would clearly be a bottleneck when
Õ(d(u)) (distinct) tokens of the node u traverse their paths in reverse direction from their
destinations. Thus, we would like to avoid such congestion issues in token-reversal, whilst
retaining the sampling properties of amoeba-walk (cf. Section 5.1). This is done by splitting
the initial count equally in d(w) amoeba-walk tokens at each node w ∈ S; see Algorithm 3.

Algorithm 3 Create-Routes(S, L) for a node u.

1: // Node u simulates d(u) subnodes, indexed from 1 to d(u).
2: // The id of a subnode is the concatenation of node u’s id and its index.
3: // Note: The notion of subnode ids is merely for analysis exposition.
4: Let α = Θ(1) and C = αmd(u) log n/d(S) and token ti = ((u.id∥i), L, ⌈C/d(u)⌉);
5: // Start d(u) amoeba-walks, with reduced initial count.
6: (Round 1) ∧ (u ∈ S) → ∀i ∈ [d(u)], LazyRW(ti);
7: for each received token t = (id, l, count) do
8: // Mix Phase
9: l ≥ 1 → LazyRW((id, l − 1, count));

10: if l < 1 ∧ count > 1 then
11: // Divide Phase
12: LazyRW((id, L, ⌈count/2⌉));
13: LazyRW((id, L, ⌊count/2⌋));
14: end if
15: end for

▶ Theorem 4. Consider any network G = (V, E) with mixing time τmix and any set S ⊆ V .
The SPRoute(S) problem can be solved in exp(O(

√
log |S|)) · Õ(τmix) rounds whp.

Proof. The main idea can be summarized as follows: (1) consider a new “virtual” network,
Gv = (S, Ev), with a mixing time of Õ(1), where one (virtual) round of communication
in Gv can be simulated by Õ(τmix) rounds of communication in G, and then, (2) run the
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best-known distributed algorithm for permutation routing (e.g., [32]) over the virtual network
Gv, resulting in an overall round complexity of exp(O(

√
log |S|)) · Õ(τmix).

Details about Virtual Network. In the network Gv = (S, Ev), each node u has degree
Θ(d(u) log n), and at most O(log2 n) bits can be exchanged along any edge in any virtual
round. The “structure” of Gv (ideally) corresponds to a random Θ(log n)-out graph over d(S)
“subnodes,” where each node u ∈ S simulates d(u) subnodes, and each subnode connects to
Θ(log n) random subnodes (drawn from a uniform distribution) from the d(S) subnodes. A
random k-out graph is obtained when each node connects to k (uniformly) random nodes; for
k = Θ(log n), such a graph has a mixing time of Õ(1), with Ω̃(1) conductance and Θ(log n)
max-degree, whp; see, e.g., [27]. Thus, Gv would be an expander4 graph with a mixing time
of Õ(1) with high probability, where each node u ∈ S has degree equal to Θ(d(u) log n).
Distributing Samples and Creating Routes. Let every node u ∈ S simulate d(u) subnodes,
where each subnode is responsible for sending or receiving a message along an edge of node
u, for the SPRoute(S) problem. Let the subnodes of any node u ∈ S be indexed by 1 to d(u),
so that the id of a subnode is the concatenation of id of node u and its index. Let Ssub be the
set of all subnode ids. Let the nodes execute Create-Routes(S, Θ(τmix)) algorithm. Finally,
let S(u) be the multi-set of subnode ids (referred to as “samples”), where the multiplicity
of a subnode is equal to the total count among all its tokens at node u, at the end of the
execution of Algorithm 3.
On Congestion and Subsampling. The congestion and sampling analyses of the amoeba-
walk algorithm can be inherited by Algorithm 3. In the first round, each node u ∈ V receives
O(d(u) log n) distinct tokens (i.e., from different subnodes) whp, due to Line 6 of Algorithm 3.
After the first round, the nodes execute the amoeba-walk algorithm, with the only exception
that the total number of distinct ids is now equal to the volume of set S, so the congestion
analysis (cf. Lemma 7) also holds for Algorithm 3.

Furthermore, since all nodes execute Algorithm 3 for the parameter L = Θ(τmix), the
subsampling analysis for amoeba-walk (cf. Theorem 3) holds for the final distribution of the
tokens, except that the distribution guarantee would be for the subnodes, instead of nodes.
In particular, with high probability, for any node u ∈ V , any sample s ∈ S(u), any w ∈ Ssub,
Pr[s = w] = (1/d(S)) ± n−Ω(1), as the total count started by any node in S is equally divided
among its subnodes in round 1 (due to Line 4 of Algorithm 3).
Efficiently Forming the Virtual Network. The nodes in S can use the samples to establish
the aforementioned Θ(log n)-out random graph as the virtual network, which is done by
traversing the paths taken by the tokens (that contain those samples) in the reversed direction.
To that end, for each round r ≥ 1 during the execution of Algorithm 3, every node u ∈ V

maintains a dictionary Dr(·): d(u) × Ssub → R to “log” the total count (over all tokens)
of a certain subnode delivered by a certain neighbor in round r. Such logs are helpful for
appropriately choosing a neighbor for sending (back) a message intended to a particular node.
Let ct(tw) = c for any token tw = (w ∈ Ssub, L, c), and Tt(w, v, u) is a multi-set such that
Tr(w, v, u) = {tw | tw is sent to node u by node v ∈ N(u) in round r}. For establishing the
token-reversal paths, each node u ∈ V stores Dr(v, w) =

∑
tw∈Tt(w,v,u) ct(tw) in round r.

Let Endpoints(u) ⊆ S be the set of nodes that choose node u ∈ S as their neighbor for
the virtual network Gv (via available samples, at the end of Algorithm 3); by design, the
size of this set of incoming edges is |Endpoints(u)| = Θ(d(u) log n). For each node u ∈ S,

4 Each node could have Õ(1) self-loops, but even if the self-loops are discarded, the remaining graph is an
expander with Ω̃(1) conductance.
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and if each node in Endpoints(u) sends a (distinct) message, using the path traversed by the
sample (i.e., a token containing a subnode of node u), then each of those messages must
be forwarded, in the network G (via locally stored dictionaries), to the next node in Õ(1)
rounds (resp.), until all the messages delivered to node u in at most Õ(τmix) rounds.

To see that the token-reversal paths have low-congestion, due to Line 4 of Algorithm 3
(and the sampling guarantees for subnodes), for any node in S, each incoming edge in the
virtual network Gv, is (almost-)uniform randomly mapped to its set of subnodes, i.e., each
subnode of a node u ∈ S is the recipient of O(log n) distinct (reversal) messages by other
nodes in S in any virtual round (or, in other words, O(log n) incoming virtual edges) with
high probability. This key observation implies that in any (real) round, during token-reversal,
the number of distinct (reversal) messages at any node u ∈ V is O(d(u) log2 n), with high
probability, as in each round of the (forward) execution of Algorithm 3, by Theorem 7, each
node u ∈ V received tokens from O(d(u) log n) distinct subnodes, with high probability.

Simulation of Virtual Network. Due to the token-forwarding and token-reversal techniques,
an edge in Gv is simulated by a path in G of congestion Õ(1) and dilation Õ(τmix). Thus,
by Theorem 9, and using the best-known algorithm for permutation routing [32] over Gv,
the SPRoute(S) problem can be solved in exp(O(

√
log |S|)) · Õ(τmix) rounds over G. ◀

6 Conclusion and Future Work

Motivated by distributed computing for subnetworks, we provide two distributed random
walk algorithms and their congestion analyses. As an application, we provide a solution
for the subnetwork permutation routing problem that runs in exp(O(

√
log |S|)) · Õ(τmix)

rounds. Thus, as a consequence, if |S| = n, we resort to the state-of-the-art guarantees [32],
and for e.g., if |S| ≤ exp(O(log2 log n)), our solution runs in Õ(τmix) rounds. In fact, once
the routing paths have been established, our solution has an overall message complexity
of exp(O(

√
log |S|)) · Õ(d(S) · τmix), i.e., the entire network need not even participate in

subsequent communication among the nodes in S.
We conclude with a few open questions and directions for future work.

1. By design, the amoeba-walk incurs an (extra) O(log n) multiplicative factor in the round
complexity (i.e., until all tokens have count equal to 1). This is because tokens divide into
only two tokens in the interval of L rounds. Thus, a natural open question is whether
there exists an algorithm that can (randomly) distribute the samples (i.e., node ids) of
the subnetwork in at most Θ(τmix) rounds.

2. Our solution for subnetwork permutation routing is randomized, which relies on efficient
simulation of a random graph (with good expansion properties) over the subnetwork, and
black-box application of an algorithm for permutation routing. Recent works [14, 12]
have provided deterministic solutions to permutation routing over expander networks.
We believe that it is interesting if one can deterministically simulate an expander graph
over the subnetwork, e.g., using a deterministic analogue of amoeba-walks.

3. In a breakthrough in packet routing, Haeupler, Räcke and Ghaffari [40] constructed a
polylog(n)-competitive oblivious routing scheme [62, 63] that minimizes the completion-
time (i.e., congestion and dilation) of the routes on any graph, whilst giving a distributed
universally-optimal solution, up to no(1) factors, for any permutation routing demand,
where a node u can be part of Θ̃(d(u)) sources/terminals. It is interesting if analogous
performance guarantees can obtained for any subnetwork premutation demand, where
the solution is universally-optimal, up to subpolynomial factors of the subnetwork size.
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A Tools in Probability Theory

We exploit the following Chernoff bounds (see, Mitzenmacher and Upfal [56]) in our paper.

▶ Theorem 10. Let X =
∑n

1 Xi and µ = E[X] where X1, . . . , Xn are binary independent
random variables. Then for any 0 < δ ≤ 1, Pr(|X − µ| ≥ δµ) ≤ 2e−µδ2/3.

Moreover, we recall the definition of conditional probability [56].

▶ Definition 11. The conditional probability that event E occurs given that event F occurs
is defined as, Pr[E | F] = Pr[E ∩ F]/Pr[F], where Pr[F] ̸= 0.

B Congestion Analysis of Count Random Walks

In this section, we provide a congestion analysis for the count random walk algorithm (see,
Kutten et al. [45]) that can be started by any subset of nodes S ⊆ V in a network G = (V, E).

Similar to Theorem 5, the key observation is that if the subnetwork size |S| is large, and
if the initial count in each token is also large (despite the total count being not more than
Θ(m log n)), then some node may have to send Ω(logc n) bits over an edge in some round
(for any constant c) with high probability, violating the congestion constraints.

▶ Theorem 12. Consider a network G = (V, E) with conductance Φ = Ω(1) and max-degree
∆ = O(1). There is a subset of nodes S ⊂ V in which at least one node sends Ω(logc n) bits
with high probability, for any constant c, along an edge in some round during the execution
of CountRW(S) algorithm.

Proof. Similar to the proof of Theorem 5, the key idea is to shift our focus from a collection
of tokens to individual tokens of count value equal to one from round 1, where each count is
independently executing a lazy random walk.
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Algorithm 4 CountRW(S) for a node u.

1: Let N(u, i) denote w ∈ N(u) such that |{w′ | w′ < w ∧ w′ ∈ N(u)}| = i − 1;
2: Let α = Θ(1) and C = ⌈αmd(u) log n/d(S)⌉ and token t = (u.id, C);
3: (Round 1) ∧ (u ∈ S) → LazyRW(t);
4: for set of all tokens Tid = {(id, c1), (id, c2), . . . } of node id received in this round do
5: count :=

∑
(id,l,c)∈Tid

c; // Aggregate the counts from all the tokens of node id
6: Let bins := [0, . . . , 0] where size(bins) = d(u) + 1;
7: while count ≥ 1 do
8: rand ∈R [d(u)] and b ∈R {0, 1} are drawn randomly from [d(u)] and {0, 1} resp.;
9: b = 0 → bins[rand] := bins[rand] + 1;

10: b = 1 → bins[0] := bins[0] + 1;
11: count := count − 1;
12: end while
13: // Each “count” in the token executes a lazy random walk via the above process
14: bins[0] > 0 → Send token t = (id, bins[0]) to self;
15: ∀i ∈ [d(u)], bins[i] > 0 → Send token t = (id, bins[i]) to node N(u, i);
16: end for

Notation. Let the initial count (in round 1), started by nodes in S, be denoted as C ∈ N.
For the sake of analysis, the initial count started by node in S, is viewed as a collection of
individual counts, indexed by [C]. Let Ct(u, v) be the random variable for the total count of
node u (over all tokens present) at any node v ∈ V in any round t ≥ 1. Let Ct(u, v, k) be
the indicator random variables for the presence of the count k of node u ∈ S at any node
v ∈ V in any round t ≥ 1. Let Pi,j(u, v) denote the probability that a lazy random walk that
starts at node u in round i and ends at node v in round j, for j > i. Let sgn(x) = 0 if x is
even, and 1 otherwise. Let B(u, r) = {v | 0 ≤ dist(u, v) ≤ r} be the ball of radius r around a
node u, where dist(u, v) denotes the distance between nodes u and v in G. Let ϵ = Φ/∆ and
h = ⌈log1+ϵ 10B⌉ where B = Ω(logc n); note ∀u ∈ V, |B(u, H)| ≥ 10B.

Setting up the Bottleneck. Consider some node v0 ∈ V and |S| = ⌊
√

n⌋. Let r0 =
argminr(|B(v0, r)| ≥ |S|). Let S be the set of nodes closest to the node v0 among nodes in
B(v0, r0), including node v0, where |S| ≥ ⌊

√
n⌋. Let Seven = {w | sgn(dist(v0, w)) = 0 ∧ (w ∈

S)} and Sodd = S \ Seven. By pigeonhole principle, either Seven ≥ 5B or Sodd ≥ 5B. If
Seven ≥ 5B, then S′ = Seven and b = 0, whereas if Sodd ≥ 5B, then S′ = Sodd and b = 1.
Furthermore, if sgn(h) = b, then h′ = h, whereas if sgn(h) ̸= b, then h′ = h − 1.

Analysis. As each count is executing a lazy random walk, for any nodes u ∈ S and v ∈ V ,
and any count k ∈ [C], E[Ct(u, v, k)] = P1,t(u, v) ≥ 1/(2∆)t. By linearity of expectation,
and due to max-degree ∆, the following two claims hold: (1) ∀u ∈ S, if 0 < dist(u, v0) =
t, then E[Ct(u, v0)] ≥ ⌊C/(2∆)t⌋, and (2) ∀u ∈ S, if 0 ≤ dist(u, v0) ≤ t ≤ h − 2 and
sgn(t) = dist(u, v0), then E[Ct+2(u, v0)] ≥ E[Ct(u, v)]/4∆2. By combining the two claims,
and the bound on conductance, ∀u ∈ S′, E[Ch′(u, v0)] ≥ ⌊Θ(

√
n log n)/(2∆)h′⌋ = Ω(log n),

as ∆ = O(1) and Φ = Ω(1), (2∆)log1+ϵ 10B ≪
√

n. Thus, the node v0 needs to send tokens
from B = Ω(logc n) distinct nodes in round h′ + 1, in expectation.

Moreover, as Ct(u, v) is defined as the sum of counts from node u to node v in round t, it
can be viewed as a sum of (independent) random walks that started at node u and ended
at node v in round t. To that end, Ct(u, v0) =

∑
i∈[C] Ct(u, v0, i) is the sum of independent

binary random variables; by Chernoff bounds, Ch′(u, v0) = Ω(log n) whp. By a union bound,
this holds true for any pair u, v0 where u ∈ S′. Thus, for any constant c, the node v0 needs
to send tokens from B = Ω(logc n) distinct nodes in round h′ + 1, with high probability. ◀
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