Almost Time-Optimal Loosely-Stabilizing Leader
Election on Arbitrary Graphs Without Identifiers in
Population Protocols

Haruki Kanaya &

Nara Institute of Science and Technology, Japan

Ryota Eguchi &

Nara Institute of Science and Technology, Japan

Taisho Sasada &=

Nara Institute of Science and Technology, Japan

Michiko Inoue &

Nara Institute of Science and Technology, Japan

—— Abstract

The population protocol model is a computational model for passive mobile agents. We address the

leader election problem, which determines a unique leader on arbitrary communication graphs starting
from any configuration. Unfortunately, self-stabilizing leader election is impossible to be solved
without knowing the exact number of agents; thus, we consider loosely-stabilizing leader election,
which converges to safe configurations in a relatively short time, and holds the specification (maintains
a unique leader) for a relatively long time. When agents have unique identifiers, Sudo et al. (2019)
proposed a protocol that, given an upper bound N for the number of agents n, converges in
O(mN logn) expected steps, where m is the number of edges. When unique identifiers are not
required, they also proposed a protocol that, using random numbers and given N, converges in
O(mN?log N) expected steps. Both protocols have a holding time of Q(e?") expected steps and
use O(log N) bits of memory. They also showed that the lower bound of the convergence time is
Q(mN) expected steps for protocols with a holding time of Q(e”) expected steps given N.

In this paper, we propose protocols that do not require unique identifiers. These protocols achieve
convergence times close to the lower bound with increasing memory usage. Specifically, given N and
an upper bound A for the maximum degree, we propose two protocols whose convergence times are
O(mN logn) and O(mN log N) both in expectation and with high probability. The former protocol
uses random numbers, while the latter does not require them. Both protocols utilize O(Alog N)
bits of memory and hold the specification for Q(e*") expected steps.

2012 ACM Subject Classification Theory of computation — Distributed algorithms

Keywords and phrases Population protocols, Leader election, Loose-stabilization, Self-stabilization
Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.37

Related Version Full Version: https://arxiv.org/abs/2411.03902

Funding The second author was supported by JSPS KAKENHI Grant Number 22H03569.

1 Introduction

The population protocol model, introduced by Angluin et al. [3], is a computational model
widely recognized in distributed computing and applicable to passive mobile sensor networks,
chemical reaction systems, and molecular calculations, etc. This model comprises n finite
state machines (called agents), which form a network (called a population). Agents’ states
are updated through communication (called interaction) among a pair of agents. A simple

© Haruki Kanaya, Ryota Eguchi, Taisho Sasada, and Michiko Inoue;
37 licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).

Editors: Silvia Bonomi, Letterio Galletta, Etienne Riviére, and Valerio Schiavoni; Article No. 37; pp. 37:1-37:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kanaya.haruki.kk3@naist.ac.jp
https://orcid.org/0009-0003-8102-0280
mailto:ry.eguchi@is.naist.jp
https://orcid.org/0000-0002-4836-2903
mailto:taisho.sasada@naist.ac.jp
https://orcid.org/0000-0003-2144-4949
mailto:kounoe@is.naist.jp
https://orcid.org/0000-0002-9837-5147
https://doi.org/10.4230/LIPIcs.OPODIS.2024.37
https://arxiv.org/abs/2411.03902
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2

Almost Time-Optimal Loosely-Stabilizing Leader Election on Graphs Without ID

connected digraph G = (V, E) (called a communication graph) determines the possibility of
interaction among the agents. In this model, only one pair of agents interacts at each step.
The interactions are determined by a uniform random scheduler.

The leader election problem is one of the most studied problems in population protocols.
This problem involves agents electing a unique leader agent from the population and main-
taining this unique leader forever. Angluin et al. [3] first studied this problem for complete
graphs with designated common initial state. Under this assumption, many studies have
been conducted [3, 6, 11, 17], and a time and space optimal protocol [6] has already been
proposed. Several studies also exist for arbitrary graphs [1, 2], and a time-optimal protocol [2]
has already been proposed.

The self-stabilizing leader election problem requires that agents start from any config-
uration, elect and externally maintain a unique leader agent. It is known that there is no
self-stabilizing leader election protocol for arbitrary graphs [4] and complete graphs [8], and
researchers have explored the problem in three ways. The first approach involves assuming
that all agents initially know the exact number n of agents [7, 8, 22]. The second approach
introduces an oracle that informs agents about the existence of leaders [5, 9, 10]. The third
approach relaxes the requirement of maintaining a unique leader forever, introducing a
loosely-stabilizing leader election problem, where agents start from any configuration, elect a
unique leader within a short time, and maintain this leader for a long time. Sudo et al. [16]
first addressed this problem on complete graphs. Subsequent studies have continued to
explore this problem [12, 15, 18, 19, 20, 21] as follows and summarized in Table 1.

Sudo, Ooshita, Kakugawa, and Masuzawa [18] first addressed this problem for arbitrary
graphs, and it is significantly improved by Sudo, Ooshita, Kakugawa, Masuzawa, Datta,
and Lawrence [20] introducing a novel concept of Same Speed Timer. They proposed two
protocols. The first protocol, Pips , assumes that agents have unique identifiers and are
given N as initial knowledge. Pip2 converges within O(mN logn) expected steps and holds
the unique leader with Q(Ne?V) expected steps, using O(log N) bits of memory. The second
protocol, Prpe, assumes that agents can make randomized transitions and is given N as initial
knowledge. Prpa converges within O(mN? log N) expected steps and holds the unique leader
with Q(Ne?") expected steps using O(log N) bits of memory. Sudo et al. also demonstrated
that the lower bound of the convergence time is Q(mN) steps for any loosely-stabilizing
protocols with holding a unique leader Q(e”) expected steps.

Loosely-stabilizing leader election protocols without requiring unique identifiers or random
numbers were proposed [19] and then improved [22]. The protocol, Pag, given N and A as
initial knowledge, converges within O(mnD logn + mNA?log N) expected steps and holds
with Q(Nel¥) expected steps using O(log N) bits of memory [22].

1.1 Our Contribution

In this paper, we propose a protocol Ppc whose convergence time is nearly optimal on
anonymous (without unique identifiers) arbitrary graphs, as supported by the lower bound [20].
The lower bound for the complete graph [12] is Q(nN), but this is a special case, as the lower
bound [20] is known to hold even when m = ©(n?). Given N and A, P converges within
O(mN logn) steps if the transition is randomized, and O(mN log N) steps if the transition is
deterministic!, both in expectations and with high probability. The protocol holds the unique
leader with Q(Ne?V) expected steps and utilizes O(Alog V) bits of memory. The proposed

L Transition is said to be deterministic if it does not require random numbers in the transition. Though
the transition is deterministic, we allow the protocol to exploit the randomness with which initiator and
responder roles are chosen.

H. Kanaya, R. Eguchi, T. Sasada, and M. Inoue

Table 1 Convergence and Holding Times for Loosely-Stabilizing Leader Election Protocols with
Exponential Holding Times. n denotes the number of agents, N denotes the upper bound of
n, m denotes the number of edges of the communication graph, D denotes the diameter of the
communication graph, and A denotes the upper bound of the maximum degree of the communication
graph. All protocols are given N as initial knowledge. Protocols with * are also given A. The
symbol t represents lower bounds of convergence time or memory usage for protocols with holding
time of Q(e™).

Graph Convergence Holding Memory Requisite
[16] complete O(nN logn) Q(NeM) O(log N) -
[12] complete O(nN) QeM) O(log N) -
[12]f complete Q(nN) Q(eM) - -
[12]f complete - QeM) Q(log N) -
[18]% arbitrary O(mAN logn) Q(NeM) O(log N) agent identifiers
[18]% arbitrary O(mA2N?log N) Q(NeM) O(log N) random numbers
[20] arbitrary O(mN logn) Q(Ne*™) O(log N) agent identifiers
[20] arbitrary O(mN?1log N) Q(NeM) O(logN) random numbers
[20]f arbitrary Q(mN) QeM) - -
[19]* arbitrary O(mnDlogn +mNA%log N) Q(Ne™) O(log N) -
Thisx arbitrary O(mN logn) Q(Ne*™) O(AlogN) random numbers
Thisx arbitrary O(mN log N) Q(Ne2N) O(Alog N) -

Ppc has better convergence time than SOTA self-stabilizing leader election protocol [22]
which converges with O(mn?D logn) steps with requiring the knowledge of n.

To achieve the convergence time of Pgc, we utilize the Same Speed Timer proposed in
Prp2 [20], which requires two-hop coloring. The self-stabilizing two-hop coloring protocol
was first studied by Angluin et al. [4], and further explored by Sudo et al. [20] (see Table 2).
In this paper, we propose two new self-stabilizing two-hop coloring protocols; Prry with
randomized transitions, and P’rry with deterministic transitions. Both protocols require
N and A as initial knowledge. Prry converges within O(mn) steps, both in expectation
and with high probability, and uses O(Alog N) bits of memory. P'rry converges within
O(m(n + Alog N)) steps, both in expectation and with high probability, and also uses
O(Alog N) bits of memory. In P'ry, agents generate random numbers independently from
interactions among themselves. To ensure the independence among random numbers, we
employ the self-stabilizing normal coloring protocol Pnc to assign superiority or inferiority
between adjacent agents. When interacting, only the superior agent uses the interaction to
generate random numbers. Pyc converges within O(mnlogn) steps, both in expectation
and with high probability, and utilizes O(log N) bits of memory.

2 Preliminaries

In this paper, N denotes the set of natural numbers no less than one, and log x refers to
logy z. If we use the natural logarithm, we explicitly specify the base e by writing log, x.

A population is represented by a simple connected digraph G = (V, E), where V (|V] > 2)
represents a set of agents, and E C {(u,v) € V x V | u # v} represents the pairs of agents
indicating potential interactions. An agent w can interact with an agent v if and only if
(u,v) € E, where u is the initiator and v is the responder. We assume G is symmetric,
that is, if for every (u,v) € V x V, the preposition (u,v) € F = (v,u) € FE holds. We also
denote n = |V| and m = |E|. The diameter of G is denoted by D. The degree of agent w is

37:3

OPODIS 2024

37:4

Almost Time-Optimal Loosely-Stabilizing Leader Election on Graphs Without ID

Table 2 List of Convergence Times for Self-Stabilizing Two-Hop Coloring Protocols on Arbitrary
Graphs. n denotes the number of agents, N denotes the upper bound of n, m denotes the number
of edges of the communication graph, § denotes the maximum degree of the communication graph,
and A denotes the upper bound of §.

Convergence Memory Knowledge Requisite
Angluin et al. [4] - O(A?) A random numbers
Angluin et al. [4] - O(A?) A -
Sudo et al. [20] O(mndlogn) O(log N) N random numbers
Prru (this) O(mn) O(Alog N) N,A random numbers
P’Lru (this) O(mn +mAlogN) O(AlogN) N, A -

denoted by 6, = |[{v € V| (u,v) € EV (v,u) € E}|, and the maximum degree is denoted by
d = max,ev{d,}. The upper bound N of n satisfies N > n, and the upper bound A of §
satisfies § <A <2(N —1) 2.

A protocol P is defined as a 5-tuple (Q,Y, R, T, O), where @ represents the finite set of
states of agents, Y represents the finite set of output symbols, R C N represents the range of
random numbers, T : Q X Q X R — Q x @ is the transition function, and O : Q@ — Y is the
output function. When an initiator u, whose state is p € @, interacts with a responder v,
whose state is ¢ € @), each agent updates their states via the transition function using their
current states and a random number r € R to p’, ¢ € Q such that (p’,q") = T(p,q,7). An
agent whose state is p € @ outputs O(p) € Y. A protocol P is with deterministic transitions
if and only if Vr,Vr' € R,Vp,Vq € Q : T(p,q,7) = T(p, q,r’) holds. Otherwise, a protocol P
is with randomized transitions. The memory usage of protocol P is defined by [log |Q|] bits.

A configuration C : V — @ represents the states of all agents. The set of all configurations
by protocol P is denoted by Cuy(P). A configuration C transitions to C’ by an interaction
e = (u,v) and a random number r € R if and only if (C'(u),C’(v)) = T(C(u),C(v),r) and
Yw € V \ {u,v} : C'"(w) = C(w) holds. Transitioning from a configuration C' to C’ by an
interaction e and a random number 7 is denoted by C¢' =5 C”. A uniform random scheduler
I' =Ty,I'1,... determines which pair of agents interact at each step, where I'y € E (for
t > 0) is a random variable satisfying V(u,v) € E, V¢ : Pr(I'y = (u,v)) = 1/m. An infinite
sequence of random numbers A = Ry, Ry, ... represents a random number generated at each
step, where R, (for ¢ > 0) is a random variable satisfying Vr € R,Vt : Pr(R; = r) = 1/|R|.
Given an initial configuration Cy € Cuyi(P), a uniform random scheduler I', and a sequence
of random numbers A, the execution of protocol P is denoted by Zp(Co, ', A) = Cy, C1, . ..

where Cj Ft’—Rt> Ciy1 (for ¢ > 0) holds. If T" and A are clear from the context, we may
simply write Zp(Cp). A set of configurations S is safe if and only if there is no configuration
C; ¢ S (i € N) for any configuration Cy € S and any execution =(Cy) = Cp,Cy,.... A
protocol is silent if and only if there is no state changed after reached safe configurations.
For a protocol P that solves a population protocol problem, the expected holding time
and the expected convergence time are defined as follows. The specification of the problem,
which is a required condition for an execution, is denoted by 8C. For any configuration
C € Cau(P), any uniform random scheduler I', and any infinite sequence of random numbers
A, the expected number of steps that an execution Zp(C,I', A) satisfies SC is defined as the
expected holding time, denoted EHT»(C, 8€). For any set of configurations S C Coy(P),
any configuration C € Cuy(P), any uniform random scheduler I', and any infinite sequence

2 Given only N, § < 2(N — 1) holds, thus A < 2(N — 1).

H. Kanaya, R. Eguchi, T. Sasada, and M. Inoue

of random numbers A, the expected number of steps from the beginning of the execution
Ep(C,T, A) until the configuration reaches S is defined as the expected convergence time,
denoted ECTp(C,S). A computation is considered to be finished with high probability if
and only if the computation finishes with probability 1 — O(n~¢) for ¢ > 1.

The leader election problem requires that all agents output either L or F', where L
represents a leader and F' represents a follower. The specification of the leader election is
denoted by LE. For an execution Zp(Cy) = Co, C4, ..., Cy, ..., the configurations Cy, ..., C,
satisfy LE if and only if there is an agent w such that Vi € [0,2] : O(C;(u)) = L, and
Vi € [0,z],Yv € V \ {u} : O(C;(v)) = F holds.

» Definition 1 (Loosely-stabilizing leader election[16]). A protocol P is an («, B)-loosely-
stabilizing leader election protocol if and only if there exists a set of configurations S C Cay(P)
such that maxcec,,, (p) ECTp(C,S) < a and mingces EHTp(C, LE) > 3 holds.

all

A protocol P is a self-stabilizing protocol of a problem if and only if there exists safe
configurations that any execution starting from any safe configuration satisfies the specification
of the problem (called closure), and any execution starting from any configuration includes a
safe configuration reaches the safe configurations (called convergence).

» Definition 2. A protocol P is a self-stabilizing normal coloring protocol if and only if there
exists non-negative integer x such that for any configuration Cy € Cqy(P), and the execution
Ep(Co) = Co,Ch,...,Cy, ..., the following condition holds: Vi € N,Yv € V : O(C,(v)) =
O(Cy4i(v)) and Yu,Yu € V : (u,v) € E = O(Cy(u)) # O(Cy(v)).

» Definition 3. A protocol P is a self-stabilizing two-hop coloring protocols if and only if there
exists non-negative integer x such that for any configuration Cy € Cqy(P), and the execution
Ep(Co) = Co,Ch,...,Cy, ..., the following condition holds: Vi € N,Yv € V : O(C,(v)) =
O(Cr1i(v)) and Yo,Yu,Yw € V : (u,v) € E A (v,w) € E = O(Cy(u)) # O(Cy(w)).

3 Self-Stabilizing Two-Hop Coloring

In this section, we introduce a self-stabilizing two-hop coloring protocol with randomized
transitions Prru, alongside a deterministic self-stabilizing two-hop coloring protocol with
deterministic transitions P'1ru.

Two distinct agents u,v € V are called two-hop located if and only if there exists w € V'
such that (u,w) € EA (v,w) € E. A graph is considered two-hop colored if and only if, for
any pair of agents v and v that are two-hop located, u and v are assigned distinct colors.

The basic strategy is similar to that described by Angluin et al. [4] and Sudo et al. [20].
The differences lie in the methods for generating colors and the length of the array used to
record the colors of interacted agents. Angluin et al. memorized all generated colors using
an array of length A(A — 1) + 1, whereas Sudo et al. recorded only the most recent color. In
the protocols, the agents record the last A colors.

We present a general strategy for color collision detection. When interacting two agents,
they record each other’s color with a common binary random stamp. If there is no color
collision, when they interact again they find that they remember each other’s color with
the same stamp value. Assume that agents v and w have a color collision, that is, they are
two-hop located with a common neighbor u and have the same color. Consider the scenario
in which interactions occur in the order of (u,v), (u,w), (u,v), and u (resp. v) records v’s
(resp. u’s) color with a stamp 0 and then u records w’s color (it is also v’s color) with a
stamp 1. When u and v interact again, they notice they remember each other’s color with
different stamp values and detect the color collision.

37:5

OPODIS 2024

37:6

Almost Time-Optimal Loosely-Stabilizing Leader Election on Graphs Without ID

In both protocols, each agent has arrays whose size are A to record the last A colors and
their stamps. Both protocols are the same except for the way to generate colors. In Ppru,
agents generate colors by using the ability of generating uniform random numbers. In P’ Ry,
agents generate colors by using the roles of initiator and responder. To generate z-digit
binary random number, each agent generates a one random bit according to its role (initiator
or responder) in each interaction, and repeats it « times. To ensure the independence of
random numbers, only one agent can use the interaction to generate random numbers for each
interaction. To solve this issue, we use normal coloring. A graph is considered normal colored
if and only if agents u and v are different colors for any pair (u,v) € E. We call agents’ colors
which are colored by normal coloring the normal color. To guarantee independency among
random numbers, when two agents interact, the agent with larger normal color value can use
the interaction to generate random numbers. Though this mechanism does not give a chance
to generate random numbers to agents with smaller normal color, random numbers are used
when two agents detect a color collision. In such cases, two random numbers are provided as
new colors from an agent who has larger normal color value and already generated two or
more numbers.

3.1 Protocol Prryu

In this subsection, we introduce the randomized self-stabilizing two-hop coloring protocol
Prru- Given N and A, the protocol Prry achieves convergence within O(mn) steps, both in
expectation and with high probability, while requiring O(Alog N) bits of memory per agent.

An agent a in Ppry has four variables: a.hopcolor € {1,...,8N3A?} a.prev e {1,...,
SN3A2}A a.stamp € {0,1}?, and a.idx € {0,...,A}. The variable a.hopcolor represents
the two-hop color of the agent. The variable a.prev is an array that stores the last A colors
interacted by the agent. The variable a.stamp is an array of size A, with each entry being
either 0 or 1, used to record the stamp associated with each color memorized. Lastly, a.idx
serves as a temporary index to locate the color of the interacting agent in a.prev.

Prru is given by algorithm 1, and consists of four parts: i) reading memory, ii) collision
detection, iii) saving colors, and iv) stamping.

i) Reading memory (lines 1-6) aims to find a color of the interacting partner in an array
of recorded colors. For each agent a; (where ¢ € {0,1}) interacting with another agent
a1—;, a; searches a;.prev for a;_;.hopcolor and records the minimum index in a;.idx if
exists, otherwise, sets a;.idx as 0.

i) Collision detection (lines 7, and 13-16) aims to generate new colors when a stamp
collision is detected. To address this, two uniform random numbers are generated
from the range [1,8N3AZ?]. These numbers are then used to update ag.hopcolor and
a1.hopcolor respectively.

iii) Saving colors (lines 8-11) aims to maintain arrays prev and stamp in a Least Recently
Used (LRU) fashion.

iv) Stamping (lines 12, and 17-18) aims to generate a common binary stamp to two
interacting agents, and to move a color and a stamp of this current interacting partner
to the heads of arrays prev and stamp.

We have following theorems.

» Theorem 4. Given the upper bound N and A, PLry is a self-stabilizing two-hop coloring
protocol with randomized transitions, and the convergence time is O(mn) steps both in
expectation and with high probability.

H. Kanaya, R. Eguchi, T. Sasada, and M. Inoue

Algorithm 1 Self-Stabilizing two-hop coloring Prru -

Outout Function O:Each agent a outputs a.hopcolor.
when an initiator ag interacts with a responder a; do

1 forall i € {0,1} do

2 a;.idx + 0

3 for j < 1 to A do

4 if a;.prev[j] = a1—;.hopcolor then
5 a;.idx < j

6 break

7 Generate_Color ()

8 forall i € {0,1} do

9 if a;.idx = 0 then a;.idx < A
10 for j < a;.idx — 1 downto 1 do

11 L (a;.prev[j + 1], a;.stamp[j + 1]) + (a;.prev(j], a;.stamp[j])
12 Generate_Bit ()

function Generate_Color():
13 if ap.idx > 0 A a;.idx > 0 A ag.stamp[ag.idx] # a.stampla;.idx]) then

14 generate two colors cg, c; € {1,...,8N3A?} uniformly at random
15 (ap-hopcolor,a;.hopcolor) + (cg,c1)
16 ag.idx < a1.idx < 0

function Generate Bit():

17 generate bit b € {0,1} uniformly at random

18 (ap.prev[l], ai.prev|l], ap.stamp[l], a;.stamp[l]) +
(a1.hopcolor, ag.hopcolor, b, b)

» Theorem 5. Given the upper bound N and A, P'Lru is a self-stabilizing two-hop coloring
protocol with deterministic transitions, and converges to safe configurations within O(m(n +
Alog N)) steps both in expectation and with high probability.

4 Loosely-Stabilizing Leader Election

In this section, we propose a loosely-stabilizing leader election protocol Ppc. Ppc uses a
self-stabilizing two-hop coloring protocol. Thus, if it uses Prryu, Ppc is with randomized
transitions. If it uses P'1,ru, Prc is with deterministic transitions. In both cases, Pgc holds
a unique leader with Q(Ne?V) expected steps and uses O(Alog N) bits of memory. Note
that Pgc (with randomized transitions) always generates random numbers deterministically
like in P'Lry outside of two-hop coloring since it does not affect a whole complexity.

The basic strategy of leader election is as follows: i) All agents become followers. ii) Some
candidates of a leader emerge, and the number of candidates becomes 1 with high probability.
iii) If there are multiple leaders, return to i). Each agent a has 6 variables and 4 timers:
a.LF € {B,Lo,L1,F}, a.type € {1,...,2Ms N1+ _ 1} qid € {1, ..., gllog N*1+1 _ 1}, a.color,
a.pcol, a.rc € {0,1}, a.timerir € [0,2tpc], a.timery, € [0,tpc], a.timery € [0, 2tpc], and
a.timerg € [0,2tpc]. Here, tpc is a sufficiently large value for Ppc to work correctly. A
status of an agent a is represented by a.LF where B (leader candidate), Ly (leader mode),

37:7

OPODIS 2024

37:8

Almost Time-Optimal Loosely-Stabilizing Leader Election on Graphs Without ID

and Ly (duplication check mode) represent leaders and F represents a follower. The variable
a.type is used for detecting multiple leaders. The variable a.id represents the identifier of
leaders.

In Ppc, agents mainly use the broadcast (also called the epidemic and the propagation)
to inform others of something. In a broadcast mechanism, information from one agent is
repeatedly copied (with modification if needed) to agents when two agents interact. In order
to detect the end of operations (including broadcasts) for all agents, the agents uses timers.
The timers decrease by Larger Time Propagation and Same Speed Timer. Using Larger Time
Propagation and Same Speed Timer, all timer values decrease gradually, almost synchronously.
Larger Time Propagation means that when an agent u interacts with an agent v, u.timer
(resp. v.timer) is set to max(u.timer,v.timer — 1) (resp. max(v.timer,u.timer — 1)). A
variable a.rc is used to implement Same Speed Timer and represents whether a can decrease
its own timers or not in the current interaction. Same Speed Timer decrease a timer value
by 1 when an agent interacts the same agent continuously. For Same Speed Timer, after
reaching Scolor, the agents use the colors to determine whether the current partner is the
last partner or not. A read-only variable a.color represents a color determined in the
two-hop coloring. A variable a.pcol represents an agent’ color that a interacted previously.
The domains of a.color and a.pcol depend on a self-stabilizing two-hop coloring protocol.

If we use Prry, a.color,a.pcol € {1,...,8N3A2}. If we use P'rLry, a.color,a.pcol €
{0,...,2Me8NAT _ 1y

4.1 Outline of Pyc

We show the outline of Ppc. We call a configuration satisfying certain conditions a phase.
Ppc mainly has 3 phases: i) Global Reset, ii) Leader Generation, iii) Leader Detection. We
first explain the overview of the three phases with the roles of 4 timers using an example flow
shown in Fig. 1, where the height of the timer represents the relative magnitude of its value.

i) Global Reset is the phase that resets all agents when some inconsistencies are detected.
(In Fig. 1(a), multiple leaders are detected.) A configuration is in the Global Reset if
there exists agents whose timery; > 0. When some inconsistency is detected, a Global
Reset phase is started and the kill virus is created. The kill virus makes an agent a
follower, sets the agent’s identifier to 1 (a tentative value before generating id), and also
erases the search virus. The presence of kill virus is represented as a positive value of
timeryy, which serves as timer to live (TTL). When the Global Reset phase begins, some
agents’ timery; are set to the maximum value and spread to all agents with decreasing
the values as shown in Fig. 1(b). Eventually, timery; will become 0, and the Global
Reset phase will be finished. While timery; > 0, timer;r takes its maximum value and
timery takes 0.

ii) Leader Generation is the phase where agents generate leaders. In Ppc, a leader keeps a
values of timerpr to its maximum value, while followers propagate the value with Larger
Time Propagation and Same Speed Timer. If there is no leader (Fig. 1(c)), values of
timeryr for some followers eventually become 0. Then these followers become candidates
(B) (Fig. 1(d)). Each candidate for leaders generates a random number as an identifier
using interactions. The way to generate random numbers is described in Section 3. The
candidates broadcast their ids to all agents, and become a follower (F) if it encounters a
larger id value. While generating an identifier (id), timerpp takes its maximum value,
and it gradually decreases after generating id. When timerpr of a candidate becomes 0,
it becomes a leader (Lg). When there are no candidates for leaders, Leader Generation
is finished.

H. Kanaya, R. Eguchi, T. Sasada, and M. Inoue

no leader or multiple leaders with low probability

S,

(type,timer) timery timer (id,timer.)) (timer; (type,timer,)
—— —— — F I Lyt — e ——
 — | —— — || C—— O — —
Bimir ey ovear
:= — — B —_———___
multiple leaders no leader id generation ;
(a) b) (c) (d) type generation (e)
Leader Detection Global Reset Leader Generation Leader Detection

Figure 1 An example flow of Ppc.

iii) Leader Detection is the phase where leaders determine whether there are multiple leaders
or not. The leaders generate search viruses periodically using timery. When timerg
becomes 0, the agent start generating a type of search virus. If there are multiple
leaders, leaders generate search viruses almost simultaneously thanks to Larger Time
Propagation. When leaders generate search viruses, they generate random numbers
using interactions to determine the type of search virus. The type of search virus with
its TTL timery spreads to all agents. When two different types of search viruses meet,
agents create the kill virus and move to the Global Reset phase (Fig. 1(a)). While, if

there is a unique leader, one search virus is periodically generated and expired (Fig. 1(e)).

Phases circulates Global Reset, Leader Generation, and Leader Detection in this order.

If there exists a unique leade , the configuration stays in Leader Detection phase with high
probability. Otherwise, the phase moves to Global Reset phase. Timers timery; and timer;g
are used for Global Reset and Leader Generation phases to have enough steps.

4.2 Details of Pyc

Psc is given by Algorithm 2, Algorithm 3, and Algorithm 4. We explain the details of
Pic. Psc has five parts: i) Two-hop coloring, ii) Timer Count Down, iii) Reset, iv) Leader
Generation, v) Leader Detection. The relationship between the three phases and five parts is
as follows. The Global Reset phase corresponds to the Reset part, the Leader Generation
phase to the Generate part, and the Leader Detection phase to the Detect part. The
Timer Count Down part operates throughout all phases, while the Two-Hop Coloring part
is completed before the phases begin. Throughout this explanation, we consider when an
initiator ag interacts with a responder a;.

i) In line 1, the agents execute the two-hop coloring protocol PLry or P'Lru.

ii) Timer Count Down (lines 2, 4-12, and 15-22) aims to increase or decrease timers. First,
the interacting agents determine whether the current partner is the same as the last
partner in REPEAT__CHECK (lines 2, and 17-20) to implement Same Speed Timer.
After that, each agent saves the current partner’s color to its own pcol. Then, agents
decrease timers if a;.rc = 1 holds. timery, (lines 4-5) and timery (lines 6-7) are handled
by Larger Time Propagation and Count Down. That is, for i € {0,1}, a;.timery, is set
to max(a;.timergy, a1_;.timery, — 1), and if a;.rc = 1 holds, a;.timery; is decreased by
1 (resp. timerg). If both interacting agents are not candidates (B), they increase or
decrease timerpp like timery; (lines 8-10). For ¢ € {0,1}, if a; is a leader (Lo or Ly),
a;.timerr is set to tpc (lines 11-12). If ag or a; is a candidate (B), timerir increases
or decreases in Leader Generation. timery increases or decreases in Leader Detection.

37:9

OPODIS 2024

37:10 Almost Time-Optimal Loosely-Stabilizing Leader Election on Graphs Without ID

Algorithm 2 Loosely-Stabilizing Leader Election Protocol Pgc (1/3).

Output function O: An agent a outputs L if a.LF € {B,L,L; }, otherwise, F.
when an initiator ag interacts with a responder a; do
Execute self stabilizing two-hop coloring protocol
REPEAT_CHECK()

if 3i € {0,1} : a;.timerg, > 0 then Reset()
LARGER_TIME_PROPAGATE(KL)

COUNT_DOWN(KL)

LARGER_TIME_PROPAGATE(E)

COUNT_DOWN(E)

if ag.LF,a;.LF € {LO>L1; F} then

L LARGER_TIME_PROPAGATE(LF)

© W0 N O ok W N

[
o

COUNT_DOWN(LF)

forall i € {0,1} do
L if a;.LF € {Lo,L;} then q;.timer;r < tpc

I
N =

13 GenerateLeader()
14 Detect()

function LARGER_TIME_PROPAGATE(z):
15 if 3i € {0,1} : a;.timer, < a;_;.timer, then
16 L a;.timer, < aij_;.timer, — 1

function REPEAT_CHECK():
17 forall i € {0,1} do

18 if a;.pcol = a;_;.color then a;.rc 1
19 else a;.rc + 0
20 a;.pcol < aj_;.color

function COUNT_DOWN (z):
21 forall i € {0,1} do
22 L if a;.rc =1 then a;.timer, + max(0,a;.timer, — 1)

function Reset():
23 forall i € {0,1} do
24 L (a;.LF,a;.id, a;.timery) « (F,1,0)

iii) Reset (lines 3, and 23-24) aims to reset the population when some inconsistency is
detected. For i € {0,1}, if a;.timergx. > 0 holds, a; sets (a;.LF,a;.id, a;.timery) to
(F,1,0). In other words, a; becomes a follower, its identifier becomes 1, and a; erases the
search virus. This Reset is happened when and only when there are multiple leaders and
candidates’ id have not been reset to 1. Specifically, when different search virus meets
(lines 60-61, 65-66, 69-70), and when candidates’ id have not been reset (lines 27-28).

iv) Generate Leader (lines 13, and 25-40) aims to generate a new leader when there are no
leaders. For ¢ € {0,1}, if a;.timeryg, > 0 holds, each agent sets a;.LF to tpc to prevent
starting Leader Generation during the Global Reset phase (lines 25-26). Firstly, for
i € {0,1}, if a;.LF becomes 0, a; determines that there are no leaders, and becomes a
candidate for leaders (B) and sets a;.timerir to 2tpc (lines 27-29). At this time, if a;.1d
is not 1 (i.e., , it has not been reset), a; sets a;.timery; to tgc and moves to the Global

H. Kanaya, R. Eguchi, T. Sasada, and M. Inoue

Algorithm 3 Loosely-Stabilizing Leader Election Protocol Prc (2/3).

function GenerateLeader():
25 if 3i € {0,1} : a;.timery, > 0 then
26 L ao.timerir < aq.timerir < tpc // prevent starting GenerateLeader
27 if 3i € {0,1} : a;.LF =F A q;.timerir = 0 then
28 if a;.id # 1 then ap.timery, < aj.timery, ¢ tpc // id hasn’t been reset
29 else (a;.LF,a;.timerir) < (B,2tpc) // a new candidate is created
30 if Vi € {0,1} : a;,LF =B Aq;.id < 2Mee N*1 then
31 L (a1.LF,a;.id, a;.timery) < (F, 1, tpc)
s2 | if i€ {0,1}:a;LF =BAa,;.id < 2°¢N*] then
33 L (a;.1d, a;.timerrr) < (2a;.id + i, 2tpc)
sa | if ag.LF € {F,B} Aay.LF € {F,B} A (3i € {0,1} : ((a;.LF =B A a;.id >

2Mos N1y \/ g, LF = F) A a;.id > a1_;.id) then

35 | (a1-iLF,a1;,1d) < (a;.LF,a;.1d)
36 if 3 € {0,1} : a;.LF =F A a;_;.LF = B then
37 a;.timeriy < tpc — 1 // consider a;_; as a leader
38 forall i € {0,1} do
39 if a; LF =BAa;.rc = 1 then q,.timer;r + max(0, a;.timerryr — 1)
40 if a; LF =B A q;.timerir = 0 then (a;.LF,q;.timer;r) < (Lo, tac)

Reset phase (line 29). Secondly, candidates (B) generate random numbers as their own
identifiers (id). For each interaction, if the candidate u is an initiator, v.id is updated to
2u.id; otherwise, u.id is updated to 2u.id + 1 until u.id becomes no less than 20108 N?
(lines 32-33). For the independence of random numbers, if both agents are candidates
and generating random numbers, the responder becomes a follower (F) by resetting
id to 1 (lines 30-31). Thirdly, if a candidate’s id becomes no less than 2[1°¢ Nﬁ, the
candidate starts to broadcast its own id to other agents (lines 34-35). This broadcast
allows all agents to know the maximum id of candidates. For i € {0,1}, if a; is a
candidate and a;.id < a1—;.1d holds, a; becomes a follower (F) and sets a;.id to aj_;.id.
For i € {0,1}, if a; is a follower and a;.id > a;_;.id holds, a;_; sets a;_;.id to a;.id.
To avoid generating new candidates when there are candidates in the population, for
i € {0,1}, if a; is a follower and a;_; is a candidate, a; sets a;.timerir to tge — 1 (lines
36-37). That is, we consider a;_; has timer;r = tpc virtually. Eventually, all agents’
ids become the same, and most candidates become followers (and some candidates
remain). The candidates measure until all candidates finish generating the id and ids
are broadcast for a sufficiently long time using timerir. A candidate decreases timerpr
by 1 if the agent’s rc is 1 (lines 39). Finally, when a candidate’s timerpr becomes 0, the
candidate becomes a new leader (Lg) and sets timer;r to tpc (lines 40). The range of
generated identifiers (id) is [2/18 N *1,2Mog N 2Hr1)7 so there exists a unique leader with
high probability.

Detect (lines 41-66) aims to determine whether there are multiple leaders or not. Leaders
generate search viruses every time their timergy becomes 0. If ag or a; is a candidate
(B), agents set their timerg to 2tpc to prevent generating a search virus (lines 41-42).
Firstly, for ¢ € {0,1}, if a; is a leader (Lo or L;) whose timerg becomes 0, a; becomes

37:11

OPODIS 2024

37:12

Almost Time-Optimal Loosely-Stabilizing Leader Election on Graphs Without ID

Algorithm 4 Loosely-Stabilizing Leader Election Protocol Prc (3/3).

41
42

43
44
45

46
47
48
49

50
51

52
53
54

55
56
57
58
59

60
61

62
63
64
65
66

function Detect():
if 3 € {0,1} : a;.LF = B then
L ag.timerg < aj.timerg < 2tpc // prevent starting Detect
forall i € {0,1} do
if a;.LF € {Lg,L1} A a;.timerg = 0 then
L (a;.LF,a;.type, a;.timerg) < (L1,1,2tpc) // start the type generation
if a;.LF = L; A a;.type < 2Mog NT then
(a;.type, a;.timerg) « (2a;.type + i,2tpc)
if a;.type > 2/1°¢ N1 then
L a;.timery < 2tpc

f die {0, 1} a; LF=FAa;_; LF € {L(), Ll} then
if a;.timery > 0 A (a1—;.LF =Lg V a1—;.type < 2flog N1y
a;.type # aj_;.type) then
‘ ap.timery, < aj.timery, < tpc // different types are detected
else if a;.timerv = 0A a1—;.LF = L; A aj—;.timery > 0 then
L (a;.type,a;.timery) < (a1_;.type,a;_;.timery — 1)

—e

Ise if ag.LF = F A q;.LF = F then
if ag.timery > 0 A a;.timery > 0 A ag.type # a;.type then
‘ ag.timery < aj.timery, < tpc // different types are detected
else if 3i € {0,1} : a;.timery = 0 A a;—;.timery > 0 then
L (a;.type,a;.timery) < (a1_;.type,a;_;.timery — 1)

@

else if ag.LF € {Lo,L1} A a;.LF € {Lo,L;} then
L ag.timery < ap.timery, < tpc // multiple leaders are detected

LARGER_TIME_PROPAGATE(V)
COUNT_DOWN(V)
forall i € {0,1} do
if a;.timery > 0 then a;.timerg + 2tpc// prevent restarting Detect
L if a;.LF = Li A a;.timerg < tBC/2 then a;.LF < Lg

L; and starts generating random numbers to get the type of search virus (lines 44-45).
At the beginning of generating random numbers, a; sets a;.type to 1. The way of
generating random numbers is the same as id generation. While generating random
numbers, a leader sets own timerg to 2tpc to inform that there exist agents generating
random numbers (lines 46-47). When a leader finished generating random numbers,
the leader sets own timery to 2tpc (lines 48-49). Secondly, agents detect multiple
leaders if there are multiple leaders. L; broadcasts the generated search virus to all
agents via some agents until timery becomes 0 (lines 50-59). If a follower having search
virus and a leader not having search virus interact except the cases their types are
same, they set timery to tpc and the phase moves to Global Reset (lines 51-52). If a
follower not having search virus and a leader having search virus interact, the follower
set own timery to the leader’s timery — 1 and set own type to the leader’s type (lines
53-54). If ap and a; are followers and they have different types of search viruses, they
set timery, to tpc and move to Global Reset phase (lines 56-57). If ag and a; are

H. Kanaya, R. Eguchi, T. Sasada, and M. Inoue

followers and there exists a;,a;_; agents satisfying a;.timery = 0 and a;_;.timery > 0
for i € {0,1}, a;.timery is set to a;_;.timery — 1 and a;.type is set to a;_;.type (lines
58-59). If ap and a; are leaders, they set timery: to tpc and move to Global Reset
phase (lines 60—61). Finally, both agents’ timery run Larger Time Propagation and
decrease by 1 if a;.rc = 1 holds (lines 62-63). For i € {0, 1}, if a;.timery > 0 holds,
a;.timerg is set to 2tpc to prevent generating a new search virus when there is a search
virus in the population (line 65). For i € {0, 1}, if a; is a leader and a;.timerg becomes
less than tpc/2, a; becomes Ly (line 66). The range of generating random numbers of
types is [2 Mlog NT oflog NT+1) "56 when there are multiple leaders in the population, the
types generated by leaders are not the same with high probability.

» Lemma 6. For any execution, all candidates’ id no less than 2/1°% N1 gre independent and
uniform if they are started to be generated during the execution. All leaders’ type no less
than 21 N1 gre independent and uniform if they are generated from the beginning of this
execution.

4.3 Analysis

In this subsection, we analyze the expected convergence time and the expected holding time
of Ppc. We assume 7 > max(2d, [log N|/2,15 + 3logn), and tgc = 167. We will prove the
following equations under these assumptions:

maxces,... ECTpue (C, SLe) = O(mtlogn).

minges, , EHTp, (C, LE) = Q(7e™).

Here, Scolor and Spg are the sets of configurations described later.

We define the sets of configurations to prove the above equations:

Scolor 18 the safe configurations of the self-stabilizing two-hop coloring.

S’ color C Scolor 18 the set of configurations where each agent’s pcol is the same as the
last interacted agent’s color.

KLero = {C € 8 color | Vv € V : C(v).timery, = 0}.

Bho = {C € 8 color | Vv € V : C(v).LF # B}.

Lone ={C € 8 cotor | {v € V| C(v).LF € {Lo,L1}}| = 1}.

LFqua =1{C € 8 cotor | Vv € V : C(v).LF # B = C(v).timerr > tpc/2}.

Ly ={C € 8o | eV :C).LF =Ly}

Velean = {C € & color | Vv € V 1 C(v).timery = 0}.

Vinake = {C € S'color | Yo € V 1 (C(v).LF = L; = C(v).type < 218 N1) A (C(v).LF #
Ly = C(v).timery = 0)}.

Vonty = {C € §'color | V0,Yu € V : C(v).timery > 0 A C(u).timery > 0 = C(v).type =
C(u).type} N{C € S color | Vv € V : C(v).LF = Ly = C(v).type > 2loe N1,

Ehalt = {C € Slcolor | YveV: C(U).LF S {Lo,Ll} = C(v).timerE > th}.

SLE = Bno N Eone N £~Fqua N Icczero N (Vclean U (£v1 N (Vmake U Vonly) N ghalf))-

4.3.1 Expected Holding Time

» Lemma 7. Let Cy € S and Epy,(Co) = Co,Ch,.... If Pr(Vi € [0,2m7] : C; €
LE A Caopmr € SLg) =1 — O(ne™7) holds, then minges, , EHTp,. (C, LE) = Q(7e™) holds.

Proof. Let A = ming,es, . EHTpg (Co, LE). We assume that Co,...,Comr € LEACapyr €

Spe holds with probability at least p = 1 — O(ne™"). Then, We have A > p(2mrt + A).

Solving this inequality gives A > 2m7 /(1 — p) = Q(7e"). <

37:13

OPODIS 2024

37:14

Almost Time-Optimal Loosely-Stabilizing Leader Election on Graphs Without ID

We say that an agent u encounters a counting interaction when u interacts with an agent
v such that u.color = v.pcol holds.

» Lemma 8. Let Cy € §'color and Epy,(Co) = Cy, Ch, The probability that every agent
encounters less than tpc/2 counting interactions while Lo, ..., Tomr—1 is at least 1 —ne™7.
» Lemma 9. Let Cy € ' color and Ep,.(Co) = Co, Cy,. ... For any x € {LF,KL,E,V}, and

for any y > tpc/2 such that y is no more than the mazimum value of the domain of timer,,
when Jv € V : Cy(v).timer, > y holds, the probability that Yu € V : Copr(u).timer, >
y — tac/2 holds is at least 1 — 2ne™ 7.

» Lemma 10. Let Cy € 8’ color and Epy(Co) = Co, Cy, For any integer A > 0, and any
integer x satisfying tgc < x < 2tpc, if Vo € V : Cp(v).timerir > x AVi € [0,A—1],Fv e V :
Comir (v).timeriy > x holds, then Pr(Vj € [0,2mA7],Vv € V : C;(v).timerir > = — tec A
Comxr(v).timery > — tpe/2) > 1 — 3Ane™ ™ holds.

Proof. Since there exists an agent u satisfying w.timer;r > x in Cj, the probability that
every agent’s timer;r > x — tpc/2 holds in Cy,y, is at least 1 — 2ne™" from Lemma 9. Since
there is every agent u satisfying u.timeriz > z — tpc/2 in Cy, Pr(Vj € [0,2m7],Vv € V :
Cj(v).timerir > & — tpc) > 1 —ne™ 7 holds from Lemma 8. Thus, Pr(Vj € [0,2m7],Vv €
V i Cj(v).timeryr > © — tec A Comqr(v).timerr > o — tpe/2) > 1 — 3ne” " holds by
the union bound. Repeating this A times, we get Pr(Vj € [0,2mA7],Yv € V : Cj(v) >
x —tpc A Comar(v).timerr > @ — tpc/2) > 1 — 3Ane™ " by the union bound. <

We can prove Lemma 11 by the same way of Lemma 10, and Lemma 12 by assigning
A =1 to Lemma 10. Lemma 13, 14, and 15 analyzes the probability that configuration keep
some condition for some interval.

» Lemma 11. Let Cy € §'cotor and Epy(Co) = Co, Ch,. ... For any integer A > 0, and any
integer x satisfying tpc < x < 2tpe, if Vo € V : Cy(v).timerg > z AVi € [0, —1],Fv €
V : Comir(v).timerg > x holds, then Pr(Vi € [0,2mA7],Vv € V : C;(v).timerg > & — tpc A
Comr(v).timerg > — tpc/2) > 1 — 3 ne™ " holds.

» Lemma 12. Let Cy € Spg and ZEp, (Co) = Co,Cy,.... Pr(Vi € [0,2m7] : C; € Bypo A
Comr € LFqua) > 1 —3ne™ " holds.

» Lemma 13. Let Cy € St N Velean and Zp, (Co) = Co, Cy,.... Pr(Vi € [0,2m7] : C; €
'Cone A CQm‘r S SLE N (vclean U ‘Cvl N (Vmake U Vonly) N ghalf) Z 1—5ne™" holds.

» Lemma 14. Let Cy € St N Ly N Viake N Enalr and EPBC (Co) = Cy,Ch,.... PI‘(VZ S
[07 2m7‘] 05 € Lone N Comr € SLEN Ly1 N (Vmake U Vonly) N ghalf) >1—3ne" 7 holds.

» Lemma 15. Let Cy € Stg N Ly N Vonly N Enair and EpBC (Co) = Co,ch e PI‘(VZ €
[0, Qmﬂ 105 € Lone N Copr € SLEN (Vdcan ULy U Vonly N gha]f) >1—5ne~" holds.
» Lemma 16. minges, , EHTp, . (C,LE) = Q(7e™).

Proof. Let Cy € Sig. Pr(Co,...,Comr € LEANCopr € SLg) > 1 —5ne™™ =1 —0O(ne™ ")
from Lemma 13, Lemma 14, and Lemma 15. Thus, this lemma follows from Lemma 7. <«

H. Kanaya, R. Eguchi, T. Sasada, and M. Inoue

4.3.2 Expected Convergence Time

We first analyze the number of interactions until all timers converge to 0 with high probability.
Let Atpc be the maximum value of the domain of timers, that is, A = 1 for timery, and
A = 2 for timer;f, timery, and timerg.

» Lemma 17. Let Cy € S’ color and Ep,(Co) = Co,Ch,. ... For any x € {LF,KL,V,E}, if
every agent’s timer, increases only by Larger Time Propagation (not including setting to a
specific value like tpc by leaders etc.), the number of interactions until every agent’s timer,
becomes 0 is less than 2340 Am7 logn with probability at least 1 — e= 7.

Proof. Let z = max,cv(Ci(v).timer,) (i > 0). From the mechanism of Larger Time
Propagation, for every agent v, C;(v).timer, does not become z if C;_1(v).timer, < z.
Thus, when every agent decreases its timer by at least 1 from Cj,...,C; (0 < j < 1),
max,cv (C;(v).timer,) — max,ev (Cj(v).timer,) > 1 holds (i.e., , the maximum value of
timer, decreases by at least 1). Let X ~ Bi(2m, d,/m) be a binomial random variable that
represents the number of interactions of an agent v interacts during 2m interactions. From
Chernoff Bound (Eq. 4.5 in [14]), Pr(X > §,) > Pr(X > §,) =1—-Pr(X <§,) =1-Pr(X <
(1-1/2)B[X]) > 1—e%/8 > 1~ /4% > 1/5. Thus, the probability that an agent v
interacts no less than §,, times during 2m interactions is at least 1/5. Let Y ~ Bi(,,2/d,) be
a binomial random variable that represents the number of counting interactions that an agent
v encounters during J,, interactions in which an agent v interacts. The probability that Y = 0
is Pr(Y = 0) = (1 —26,)% < e 2 < 1/5. Thus, the probability that an agent v encounters at
least one counting interaction is at least 4/5. Let E, denote the number of interactions until
an agent v decreases its timer, by at least 1. Since E, < 2m+(1—4/25)E, holds, E, < 13m
holds. By Markov’s inequality, the probability that an agent v does not decrease timer,
during 2F, interactions is no more than 1/2. Thus, the probability that an agent v does not
decrease timer, during 4logn - E, interactions is no more than n~2. By the union bound,
the probability that every agent v does not decrease timer, during 4logn - E, interactions
is no more than n=1. Let A be an event that every agent v decreases timer, by at least 1
during 4logn - E,, interactions. We consider the expected number of times until A succeeds
16A7(= Atpc) times using geometric distributions. In other words, for k& € [1,16A7], let
Zy, ~ Geom(py;) be the independent geometric random variable such that p, =1—1/n > 1/2.
Considering the sum of independent random variables Z = Z}f:)‘f Zy,. Note that E[Z] < 32\t
holds. From Janson’s inequality (Theorem 2.1 in [13]), Pr(Z > 45A7) < Pr(Z > 1.4-32\1) <
PI‘(Z > 1.4- E[Z]) < efpiE[Z](l‘élflfloge 1.4) < 6*16)‘7(1‘4*1*10&3 1.4) < e~ AT Thus, the
expected number of times that A succeeds 16A7 times is less than 45 7 with probability at
least 1 — e=*". Therefore, the number of interactions until all agents’ timer, becomes 0 is
45T - 4logn - B, < 2340AmT log n with probability at least 1 — e~ 7. |

Lemma 18 shows a convergence time.

» Lemma 18. Let Cy € Scolor and Epy(Co) = Co, C1, The number of interactions until
the configuration reaches Sug is O(mTlogn) with probability 1 — o(1).

» Theorem 19. Protocol Ppc is a randomized (O(m(n+ 7logn)), Q(re™))-loosely-stabilizing
leader election protocol for arbitrary graphs when T > max(2d, [log N1/2,15 4+ 3logn) if
PLru is used for two-hop coloring.

» Theorem 20. Protocol Ppc is a deterministic (O(m(n+Alog N+7logn)), Q(re™))-loosely-
stabilizing leader election protocol for arbitrary graphs when T > max(2d, [log N1/2,15 +
3logn) if P'Lru is used for two-hop coloring.

37:15

OPODIS 2024

37:16

Almost Time-Optimal Loosely-Stabilizing Leader Election on Graphs Without ID

5

Conclusion

New loosely-stabilizing leader election population protocols on arbitrary graphs without

identifiers are proposed. One is randomized, and the other is deterministic. The randomized

one converges within O(mN logn) steps, while the deterministic one converges O(mN log N)

steps both in expectations and with high probability. Both protocols hold a unique leader

with Q(Ne?N) expected steps and utilizes O(Alog N) bits of memory. The convergence time
is close to the known lower bound of Q(mN).

—— References

1

10

11

12

13

14

Dan Alistarh, Rati Gelashvili, and Joel Rybicki. Fast Graphical Population Protocols. In 25th
International Conference on Principles of Distributed Systems (OPODIS 2021), volume 217,
pages 14:1-14:18, 2022. doi:10.4230/LIPICS.0PODIS.2021.14.

Dan Alistarh, Joel Rybicki, and Sasha Voitovych. Near-optimal leader election in population
protocols on graphs. In Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing, pages 246-256, 2022. doi:10.1145/3519270.3538435.

Dana Angluin, James Aspnes, Zoé Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235-253,
2006. doi:10.1007/S00446-005-0138-3.

Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-stabilizing population
protocols. ACM Trans. Auton. Adapt. Syst., 3(4), 2008. doi:10.1145/1452001.1452003.
Joffroy Beauquier, Peva Blanchard, and Janna Burman. Self-stabilizing leader election in
population protocols over arbitrary communication graphs. In Principles of Distributed
Systems, pages 38-52, 2013. doi:10.1007/978-3-319-03850-6_4.

Petra Berenbrink, George Giakkoupis, and Peter Kling. Optimal time and space leader election
in population protocols. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 119-129, 2020. doi:10.1145/3357713.3384312.

Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty, Thomas Nowak, Eric Severson,
and Chuan Xu. Time-optimal self-stabilizing leader election in population protocols. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, pages 33—44,
2021. doi:10.1145/3465084.3467898.

Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility under global fairness:
On space complexity of self-stabilizing leader election on a population protocol model. Theory
of Computing Systems, 50(3):433-445, 2012. doi:10.1007/S00224-011-9313-Z.

Davide Canepa and Maria Gradinariu Potop-Butucaru. Stabilizing leader election in population
protocols. Research Report RR-6269, INRIA, 2007.

Michael Fischer and Hong Jiang. Self-stabilizing leader election in networks of finite-state
anonymous agents. In Principles of Distributed Systems, pages 395—-409, 2006. doi:10.1007/
11945529_28.

Leszek Gasieniec, Grzegorz Stachowiak, and Przemyslaw Uznanski. Almost logarithmic-time
space optimal leader election in population protocols. In The 81st ACM Symposium on
Parallelism in Algorithms and Architectures, pages 93-102, 2019. doi:10.1145/3323165.
3323178.

Taisuke Izumi. On space and time complexity of loosely-stabilizing leader election. In
Structural Information and Communication Complexity, pages 299-312, 2015. doi:10.1007/
978-3-319-25258-2_21.

Svante Janson. Tail bounds for sums of geometric and exponential variables. Statistics €
Probability Letters, 135:1-6, 2018.

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. doi:10.1017/CB09780511813603.

https://doi.org/10.4230/LIPICS.OPODIS.2021.14
https://doi.org/10.1145/3519270.3538435
https://doi.org/10.1007/S00446-005-0138-3
https://doi.org/10.1145/1452001.1452003
https://doi.org/10.1007/978-3-319-03850-6_4
https://doi.org/10.1145/3357713.3384312
https://doi.org/10.1145/3465084.3467898
https://doi.org/10.1007/S00224-011-9313-Z
https://doi.org/10.1007/11945529_28
https://doi.org/10.1007/11945529_28
https://doi.org/10.1145/3323165.3323178
https://doi.org/10.1145/3323165.3323178
https://doi.org/10.1007/978-3-319-25258-2_21
https://doi.org/10.1007/978-3-319-25258-2_21
https://doi.org/10.1017/CBO9780511813603

H. Kanaya, R. Eguchi, T. Sasada, and M. Inoue

15

16

17

18

19

20

21

22

Yuichi Sudo, Ryota Eguchi, Taisuke Izumi, and Toshimitsu Masuzawa. Time-Optimal Loosely-
Stabilizing Leader Election in Population Protocols. In 35th International Symposium on
Distributed Computing (DISC 2021), volume 209, pages 40:1-40:17, 2021. doi:10.4230/
LIPICS.DISC.2021.40.

Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa. Loosely-stabilizing leader election in a population protocol model.
Theoretical Computer Science, 444:100-112, 2012. doi:10.1016/J.TCS.2012.01.007.

Yuichi Sudo, Fukuhito Ooshita, Taisuke Izumi, Hirotsugu Kakugawa, and Toshimitsu Masuz-
awa. Time-optimal leader election in population protocols. IEEE Transactions on Parallel
and Distributed Systems, 31(11):2620-2632, 2020. doi:10.1109/TPDS.2020.2991771.

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Loosely-
stabilizing leader election on arbitrary graphs in population protocols. In Principles of
Distributed Systems, pages 339-354, 2014. doi:10.1007/978-3-319-14472-6_23.

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Loosely
stabilizing leader election on arbitrary graphs in population protocols without identifiers or
random numbers. IEICE Transactions on Information and Systems, E103.D(3):489-499, 2020.
doi:10.1587/TRANSINF.2019FCP0003.

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Masuzawa, Ajoy K. Datta,
and Lawrence L. Larmore. Loosely-stabilizing leader election for arbitrary graphs in population
protocol model. IEEE Transactions on Parallel and Distributed Systems, 30(6), 2019. doi:
10.1109/TPDS.2018.2881125.

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Masuzawa, Ajoy K. Datta,
and Lawrence L. Larmore. Loosely-stabilizing leader election with polylogarithmic convergence
time. Theoretical Computer Science, 806:617-631, 2020. doi:10.1016/J.TCS.2019.09.034.
Yuichi Sudo, Masahiro Shibata, Junya Nakamura, Yonghwan Kim, and Toshimitsu Masuzawa.
Self-stabilizing population protocols with global knowledge. IEEE Transactions on Parallel
and Distributed Systems, 32(12):3011-3023, 2021. doi:10.1109/TPDS.2021.3076769.

37:17

OPODIS 2024

https://doi.org/10.4230/LIPICS.DISC.2021.40
https://doi.org/10.4230/LIPICS.DISC.2021.40
https://doi.org/10.1016/J.TCS.2012.01.007
https://doi.org/10.1109/TPDS.2020.2991771
https://doi.org/10.1007/978-3-319-14472-6_23
https://doi.org/10.1587/TRANSINF.2019FCP0003
https://doi.org/10.1109/TPDS.2018.2881125
https://doi.org/10.1109/TPDS.2018.2881125
https://doi.org/10.1016/J.TCS.2019.09.034
https://doi.org/10.1109/TPDS.2021.3076769

	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Self-Stabilizing Two-Hop Coloring
	3.1 Protocol P_LRU

	4 Loosely-Stabilizing Leader Election
	4.1 Outline of P_BC
	4.2 Details of P_BC
	4.3 Analysis
	4.3.1 Expected Holding Time
	4.3.2 Expected Convergence Time

	5 Conclusion

