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Abstract
Emerging optical switching technologies enable demand-aware datacenter networks, whose topology
can be flexibly optimized toward the traffic they serve. This paper revisits the bounded-degree
network design problem underlying such demand-aware networks. Namely, given a distribution over
communicating node pairs (represented has a demand graph), we want to design a network with
bounded maximum degree (called host graph) that minimizes the expected communication distance.

We improve the understanding of this problem domain by filling several gaps in prior work.
First, we present the first practical algorithm for solving this problem on arbitrary instances without
violating the degree bound. Our algorithm is based on novel insights obtained from studying a
new Steiner node version of the problem, and we report on an extensive empirical evaluation, using
several real-world traffic traces from datacenters, finding that our approach results in improved
demand-aware network designs. Second, we shed light on the complexity and hardness of the
bounded-degree network design problem by formally establishing its NP-completeness for any degree.
We use our techniques to improve prior upper bounds for sparse instances.

Finally, we study an intriguing connection between demand-aware network design and the virtual
networking embedding problem, and show that the latter cannot be used to approximate the former:
there is no universal host graph which can provide a constant approximation for our problem.
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1 Introduction

With the popularity of data-centric applications and artificial intelligence, the traffic in
datacenters is growing explosively. Accordingly, over the last years, significant research
efforts have been made to render datacenter networks and other distributed computing
infrastructure more efficient and flexible [28].
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An intriguing approach to improve performance in networked and distributed systems, is to
make them more demand-aware. In particular, emerging optical communication technologies
allow to dynamically change the topology interconnecting the datacenter racks, according
to the workload they currently serve [22, 36]. But also virtualization technologies enable
demand-awareness, e.g., by allowing to flexibly embed a workload (e.g., processes or virtual
machines) on a given infrastructure [26].

Such demand-awareness is attractive as empirical studies (e.g., from Google [36], Mi-
crosoft [12], Facebook [17]) show that communication traffic features significant spatial
locality, which can be exploited for optimization [4]. For example, in a demand-aware
network, frequently communicating nodes (e.g., a pair of racks in a datacenter) can be
placed topologically closer, reducing communication costs and hence improving the overall
performance. However, the underlying algorithmic problem of such demand-aware networks
is still not well understood today.

This paper revisits the design of efficient demand-aware networks, and in particular
the bounded-degree network topology design problem [8]: given a traffic matrix describing
the communication demand between pairs of nodes, find a network topology (i.e., a graph)
which “serves this traffic well.” Informally, the network interconnecting the nodes should be
demand-aware in the sense that it provides short paths between frequently communicating
node pairs, minimizing the number of hops travelled per bit. The degree bound is motivated
by practical constraints and scalability requirements: reconfigurable switches typically have a
limited number of ports. For example, reconfigurable links based on moving lasers or mirrors
require space, and each optical circuit switch provides a single matching (i.e., degree 1 per
node), hence typically limiting the degree to a small constant (e.g., 16) [24].

Bounded network design. To formalise the goal of demand-aware network design, we
adopt the framework introduced by Avin et al. [7, 8]. Specifically, in the bounded-degree
demand-aware network design problem (or bounded network design problem for short), we
are given a degree bound ∆, a node set V = {1, 2, . . . , n} and a probability distribution
p :

(
V
2
)

→ [0, 1] over possible edges1 over set V . The task is to find a graph G = (V, E) with
maximum degree ∆ minimizing the expected path length∑

{u,v}∈(V
2 )

p({u, v})dG(u, v) , (1)

where dG(u, v) denotes the (hop) distance between u and v in G. We interpret the edges
e ∈

(
V
2
)

with non-zero probability p(e) as forming a graph D = (V, ED) that we will refer
to as a demand graph. We call the edges of the demand graph demand edges. The graph
obtained as a solution is called the host graph.

State of the art and challenges. Avin et al. [7, 8], in addition to introducing the bounded-
degree network design problem, give approximation algorithms for sparse and other restricted
demand distributions. This line of work is continued by Peres and Avin [34], who use square
roots of graphs to obtain improved approximation algorithms for sparse distributions. The

1 We note that compared to the original formulation of the problem given by Avin et al. [7, 8], we define
the demand distribution over undirected edges instead of directed edges. However, one may easily
observe that the two formulations are equivalent: adding the demands on two opposite directed edges
to a single undirected edge or splitting the demand of an undirected edge into equal demands on the
two corresponding directed edges results in the same objective function.
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problem is also related to demand-aware data structures, such as biased binary search trees [38].
There already exists much follow-up work, e.g., on designs accounting for robustness [6],
congestion [9], or scenarios where the demand-aware network is built upon a demand-oblivious
network [10,19], among many others [24,35].

However, in terms of solving bounded-degree network design problem for general demand
distributions, existing solutions face a major challenge, namely that the maximum degree of
their produced host graphs depends on the density of the demand graph. More specifically,
the approximation algorithms of [7, 8, 34] are what we will henceforth call demand balancing
algorithms: if the demand graph has average degree ∆avg, then the output host graph will
have maximum degree O(∆avg). Considering that the degree bound ∆ represents the physical
limitations of the network hardware, solutions of the demand balancing algorithms are not
feasible for ∆avg ≫ ∆.

Further, we note that the computational complexity of the bounded-degree network
design problem is not fully understood. Avin et al. [7, 8] note that for ∆ = 2 and connected
demand graphs, the problem is equivalent to minimum circular arrangement problem and
thus NP-hard. However, for general ∆ without additional assumptions, the existing literature
does not give an NP-completeness proof.

Other related work. Demand-aware networks are motivated by their applications in data-
centers, where reconfigurable optical communication technologies recently introduced un-
precedented flexibilities [2, 11, 16, 22, 23, 25, 39, 41, 42]. Demand-aware networks have also
been studied in the context of virtualized infrastructures, and especially the virtual network
embedding problem has been subject to intensive research over the last decade [14,18,26,37].

However, there is also much research on demand-oblivious reconfigurable datacenter
networks [1,3, 12,31,32,40]. For a review of the enabling technologies of dynamic datacenter,
networks, we refer the reader to the recent survey by Hall et al. [24].

Our contributions. We make the following contributions. We present the first polynomial-
time heuristic algorithm for computing bounded-degree network designs for general demand
distributions, which guarantee that the degree bound ∆ is not violated (henceforth referred
to as fixed-degree heuristic). This algorithm is based on solving a high-weight subproblem
using an approximation algorithm for a variant of the original problem, as we will discuss
below, and provably provides a valid solution for the bounded network design problem on all
instances. We report on an extensive empirical evaluation, using several real-world traffic
traces from datacenters. We compare our algorithm to simple solutions based on random
trees and graphs as well as several simple greedy heuristics, and show that it is more reliable
and produces solutions with smaller effective path lengths.

We introduce and study a variant of the bounded network design problem, in a resource
augmentation model where we are allowed to use Steiner nodes in addition to the nodes
of the demand graph. This approach is motivated by existing bicriteria algorithms in the
literature on demand-aware network designs (which however allow for degree augmentation),
and it turns out to be useful to overcome some of the limitations of existing approaches to
the original bounded network design problem.

Formally, in the bounded network design problem with Steiner nodes, we are given a
degree bound ∆, a node set V = {1, 2, . . . , n} and a probability distribution p :

(
V
2
)

→ [0, 1]
over possible edges over set V as before. The task is to find a graph G = (V ∪ U, E) with
maximum degree ∆, where U is an arbitrary set disjoint from V , minimizing the expected
path length (1). We refer to nodes in U as Steiner nodes.

OPODIS 2024
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We show that this variant of bounded network design can be approximated within factor
2 + o(1) in polynomial time, using elegant techniques from coding theory. The approximation
algorithm will further be useful in designing various other algorithms for the standard version
of bounded network design.

Interestingly, we can use our approximation algorithm for bounded network design with
Steiner nodes to obtain an improved demand balancing algorithm for bounded network design
without Steiner nodes: given an demand distribution with average degree ∆avg, our algorithm
computes a host graph with maximum degree at most 4∆avg + 1 and a expected path length
within constant factor of the expected path length of the optimal degree-(4∆avg + 1) host
graph. This provides better guarantees in both parameters than the existing algorithms
of Avin et al. [7, 8] and Peres and Avin [34], which we also demonstrate via experimental
evaluation.

A second main objective in this work is to settle the computational complexity of the
bounded-degree network design problem. We show that the problem is indeed NP-complete
for any fixed degree bound ∆ ≥ 2, and this also holds for the variant with Steiner nodes.

We further explore an intriguing connection between the problem of designing demand-
aware network topologies and the virtual network embedding problem, where the demand
graph can be placed on a given (demand-oblivious) network in a demand-aware manner. In
particular, perhaps surprisingly at first sight, we show that the latter does not provide good
approximations for the topology design problem: given any bounded-degree network (e.g., an
expander graph) chosen in a demand-oblivious manner, there exist demands for which the
optimal embedding into this network gives an expected path length that is an Ω(log log n)
factor more than the expected path length on the optimal host graph, for networks of size n.

As a contribution to the research community and to facilitate future work, we made
available our simulation source code at https://github.com/inet-tub/DAN-balancing.

2 Preliminaries

Basic notation. Let V be a node set and p :
(

V
2
)

→ [0, 1] a probability distribution given as
input for the bounded network design problem. For nodes v, u ∈ V , we define

p(v) =
∑
u∈V

p({v, u}) , and pv(u) = p({v, u})/p(v) .

Entropy. Let X be a random variable with a finite domain X . Recall that the entropy and
the base-d entropy of X, respectively, are

H(X) = −
∑
x∈X

Pr(X = x) log2 Pr(X = x)

and Hd(X) = −
∑
x∈X

Pr(X = x) logd Pr(X = x)

For any d, we have Hd(X) = H(X)/ log2 d. When X is distributed according to p : X → [0, 1],
we abuse the notation by writing H(p) for the entropy of X.

For random variables X and Y with finite domains X and Y, respectively, the (base-d)
entropy of Y conditioned on X is

Hd(Y |X) = −
∑
x∈X

∑
y∈Y

Pr
(
(X, Y ) = (x, y)

)
logd Pr(Y = y | X = x)

https://github.com/inet-tub/DAN-balancing
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Entropy bound on trees. Consider a setting where we have a root node r, a set of nodes
V , and demands between the root and nodes in V given by a probability distribution
p : V → [0, 1], i.e., demand between r and v ∈ V is p(v). Suppose we want a tree rooted at
r and including all nodes of V such that the expected path length between r and V , i.e.,∑

v∈V p(v)dT (r, v) is minimized. It is known that this is closely related to the entropy H(p).

▶ Lemma 1 ( [8, 30]). Let {r} ∪ V be a set of nodes and let p : V → [0, 1] be a probability
distribution. Then for any d-ary tree with root r and node set including {r} ∪ V , it holds that∑

v∈V

p(v)dT (r, v) ≥ Hd+1(p) − 1 .

Note that the above lemma covers cases where nodes in V can appear as either internal
nodes or as leaves. If nodes in V are required to appear as leaves only, then this question is
equivalent to asking for optimal prefix codes.

▶ Lemma 2 (Huffman coding, e.g. [15,33]). Let {r}∪V be a set of nodes with |V | = n and let
p : V → [0, 1] be a probability distribution. The d-ary tree T with root r with leaf set exactly
V minimizing the expected path length

∑
v∈V p(v)dT (r, v) can be computed in time O(n log n)

and satisfies

Hd(p) ≤
∑
v∈V

p(v)dT (r, v) ≤ Hd(p) + 1 .

Entropy bound on graphs. For the bounded network design problem, both with and without
Steiner nodes, we use the following result to lower bound the cost of an optimal solution.

▶ Theorem 3 ( [8]). Assume we have a degree bound ∆, a node set V = {1, 2, . . . , n} and a
probability distribution p :

(
V
2
)

→ [0, 1] over possible edges over set V . Then for any graph
G = (V ∪U, E) with maximum degree ∆, the expected path length between nodes of V satisfies∑

u,v∈V

p({u, v})dG(u, v) ≥ 1
2

∑
v∈V

p(v)H∆+1(pv) − 1 .

Note that while there appears to be a factor 1
2 in the above inequality that is not present

in the original formulation of Avin et al. [8]; this is simply due to the fact that we define the
demand distribution over undirected edges rather than directed edges.

3 Hardness and lower bounds

3.1 NP-completeness
Consider the bounded network problem with integer weights in its decision form: is there a
solution with expected path length at most some given value K? We show hardness for both
the versions with and without Steiner nodes.

▶ Theorem 4. Bounded network design and bounded network design with Steiner nodes are
NP-complete for any fixed ∆ ≥ 2.

Due to space constraints, we describe all the details in Appendix A. Here, we briefly comment
on some main ideas. A first detail is that we verify that the version with Steiner nodes is in
fact in NP; the subtlety here is that we need to show that a polynomial number of Steiner
nodes suffices for an optimal solution.

OPODIS 2024
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For ∆ = 2, Steiner nodes are clearly not helpful, and so both variants are the same.
NP-completeness follows easily from a variant of the minimum linear arrangement problem,
namely undirected circular arrangement.

For ∆ > 3, we have to work harder. In Appendix A we give a reduction from vertex cover
on 3-regular graphs utilizing multiple gadgets in the construction.

3.2 A lower bound for a universal host graph
We now return to the question of approximation algorithms for bounded network design
without Steiner nodes. One possible approach one might consider is choosing a “universal”
host graph of maximum degree ∆, e.g., a ∆-regular expander, and the solving the problem
by embedding the demands into this universal host graph. We show in this section that this
approach cannot yield a constant-factor approximation algorithm.

We will restrict our attention to uniform demand functions, and will henceforth simply
refer to demand graphs with the implicit understanding that the demand function is uniform.
The precise question we now want to ask is whether there exists a host graph G such that the
following holds: given a demand graph D with n vertices, which has an optimal embedding
into a host graph G∗(D) (with maximum degree ∆) of expected path length ℓ∗(D), we have
an embedding into G of expected path length O(ℓ∗(D)).

▶ Theorem 5. Let ∆ ≥ 2. For any host graph G = (V, E) of size n and maximum degree ∆,
there exists some demand graph D with maximum degree ∆ for which the optimal embedding
of D into G has expected path length Ω(log log n), where constants depending on ∆ are hidden
in the Ω.

Note that such a demand graph D trivially has an embedding into a graph of maximum
degree ∆ and with expected path length 1; simply use D itself.

Proof. We consider ∆ ≥ 3; the claim is obvious for ∆ = 2, as the only connected host graphs
are the n-path and the n-cycle, and a demand graph consisting of two cycles of length n/2
does not have a good embedding into either.

Let G∆ be the collection of ∆-regular graphs on V . We assume from hereon that ∆n is
even, since otherwise G∆ is empty. Standard results allow us to bound |G∆|. Asymptotically,
the number of ∆-regular graphs (ignoring constants depending on ∆) is (see [13])

Θ
(

(∆n)!
(∆n/2)! 2∆n/2(∆!)n

)
Applying this gives us the lower bound

|G∆| = Ω((∆n/4)∆n/2 · ∆−∆n) = Ω(2∆n(log(∆n)−2)/2−∆ log ∆·n)

Suppose that for every graph D on V with maximum degree ∆, there is some embedding
(that is, a permutation) πD that embeds D into G with an average stretch of at most ℓ :=
log log n/(200 log ∆). Let Gπ := {D ∈ G∆ : πD = π}, for any permutation π of V . There
must be some permutation σ for which

|Gσ| ≥ |G∆|/n! = Ω(2∆n log n/2−∆(1+log ∆)n−n log n)

As long as ∆ ≥ 3, this is at least Ω(2∆n log n/4).
We will restrict our attention to Gσ going forward. Without loss of generality, we can

assume σ is the identity.
Let Ĝ = (V, Ê) be the graph where {u, v} ∈ Ê whenever the shortest path distance

between u and v in G at most 100ℓ.
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▶ Lemma 6. Ĝ has fewer than 2100 log ∆·ℓ · n edges.

Proof. For each v ∈ V , just from the degree bound for G we deduce that there are less than
∆100ℓ nodes within distance 100ℓ of v. ◀

From our choice of ℓ, this means that Ĝ has at most n
√

log n edges.
We consider every possible subgraph G′ of Ĝ. For each such G′, let

Γ(G′) := {D ∈ Gσ : E(D) ∩ Ê = E(G′)}

Since there are at most 2n
√

log n subgraphs of Ĝ, it follows that there exists some subgraph
G∗ of Ĝ for which

|Γ(G∗)| ≥ |Gσ|/2n
√

log n = Ω(2∆n log n/4−n
√

log n) (2)

For each D ∈ Γ(G∗), given that the average stretch of D is at most ℓ, we have by Markov’s
inequality that at most 1/100 fraction of the edges of D have stretch more than 100ℓ. That
is, |E(D) \ Ê| ≤ |E(D)|/100 ≤ ∆n/200. This means we can describe D in an efficient way:
its edge set consists of E(G∗), along with at most ∆n/200 other edges.

Considering that we can describe every D ∈ Γ(G∗) in such a way, we deduce that |Γ(G∗)|
is at most the number of ways of choosing a subset of at most ∆n/200 edges from the
collection of

(
n
2
)

pairs. Hence

|Γ(G∗)| ≤
(

n
2
)∆n/200 ≤ n∆n/100 = 2∆n log n/100

This contradicts (2). ◀

4 Approximation with Steiner nodes

In this section, we give a constant-factor approximation algorithm for the bounded network
design with Steiner nodes. Let ∆ be the degree bound, V = {1, 2, . . . , n} the set of nodes
and p :

(
V
2
)

→ [0, 1] the probability distribution given as input. Let m denote the number of
demand edges.

Approximation algorithm. We now present the approximation algorithm itself. The al-
gorithm constructs the host graph in two simple steps: first, for each node v ∈ V separately,
we construct a Huffman tree for the distribution pv, i.e., the conditional distribution of the
other endpoint given that v is included in the demand edge. Second, we connect these trees
together to obtain the final host graph.

In more detail, the algorithm constructs the host graph G as follows:
1. For each node v ∈ V , let Tv be the (∆ − 1)-ary Huffman tree for probability distribution

pv, ignoring any probabilities of 0. Denote the leaf node corresponding to probability
pv(u) as tv,u, and let dTv (v, tv,u) be the distance from v to tv,u in Tv.
In the special case that pv(u) = 1 for some u ∈ V , we take Tv to be a tree with a root
and a single leaf instead of the trivial tree.

2. For each pair {u, v} ⊆ V with p({u, v}) ̸= 0, we add an edge between the parent of tv,u

in Tv and the parent of tu,v in Tu, and remove the nodes tv,u and tu,v.
See Figure 1 for illustration.

OPODIS 2024
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u v
u v u v(1) (2)

tu,v tv,u

Figure 1 Approximation algorithm for bounded network design with Steiner nodes. In Step (1),
a Huffman tree is constructed for all nodes; the leaf nodes marked by squares are not included in
the final host graph. In Step (2), the corresponding leaf nodes are deleted and replaced by an edge.

Time complexity. To analyze the time complexity of the approximation algorithm, we first
observe that constructing the Huffman tree in Step (1) for node v takes O(dv log dv) time,
where dv = degD(v) is the degree of v in the demand graph. We have∑

v∈V

dv log2 dv ≤ log2 m
∑
v∈V

dv = 2m log2 m ,

and thus constructing Huffman trees for all nodes takes O(m log n) time in total. Step (2) can
clearly also be implemented in O(m log n) time, so the total time complexity is O(m log n).

Cost of solution. Consider a graph G as constructed above. By construction, we have

dG(u, v) = dTv
(v, tv,u) + dTu

(u, tu,v) − 1

for all u, v ∈ V . Thus, the expected path length between nodes in V in G is∑
{u,v}∈(V

2 )
p({u, v})

(
dTv

(v, tv,u) + dTu
(u, tu,v) − 1

)
=

∑
v∈V

∑
u∈V \{v}

p({u, v})dTv (v, tv,u) −
∑

{u,v}∈(V
2 )

p({u, v})

=
∑
v∈V

p(v)
∑
u∈V

pv(u)dTv
(v, tv,u) − 1

≤
∑
v∈V

p(v)
(

H∆−1(pv) + 1
)

− 1

=
∑
v∈V

p(v)H∆−1(pv) +
∑
v∈V

p(v) − 1

=
∑
v∈V

p(v)H∆−1(pv) + 1 := C

The expected path length C∗ of an optimal solution is 1
2

∑
v∈V p(v)H∆+1(pv) − 1 or

greater by Theorem 3. Comparing this to the expected path length upper bound C on
G, we have that the approximation factor of the algorithm is 2 log2(∆+1)

log2(∆−1) + o(1). Note that
2 log2(∆+1)
log2(∆−1) is at most 4 for all ∆ ≥ 3, and at most 3 for all ∆ ≥ 4.

Number of nodes. Let n = |V | and let m be the number of non-zero entries in p. We
now want to analyze the total number of nodes in V ∪ U in the graph G given by the above
algorithm.

▶ Fact 7 (e.g. [27]). Given a d-ary Huffman tree T , the leaves can be rearranged so that all
internal nodes of T have exactly d children, with the exception of one internal node located
at the maximum distance from the root. This node has at least 2 children.
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▶ Fact 8. A full d-ary tree with ℓ leaves has ℓ−1
d−1 internal nodes.

Now consider the Huffman tree Tv constructed in Step (1) of the algorithm. Let d = ∆−1
be the arity of the Huffman trees. Denoting the outdegree of v in p by deg(v), and assuming
deg(v) ≥ 2, we have that Tv has deg(v) leaves. By Fact 7, we can turn Tv into a full d-ary
tree by adding at most d − 2 leaves, which has ℓ ≤ deg(v) + d − 2 leaves. By Fact 8 it has at
most

ℓ − 1
d − 1 ≤ deg(v) − 1 + d − 2

d − 1 = deg(v) − 2
d − 1 + 1

internal nodes; this is also an upper bound for the number of internal nodes in Tv.
In the special case deg(v) = 1, the above bound does not hold. However, we can use a

slightly looser bound of deg(v)−1
d−1 + 1 to cover all cases.

Since the leaf nodes of the Huffman trees Tv are deleted in Step 2 of the algorithm, the
total number of nodes in G is the total number of internal nodes in these trees – note that
the roots of the trees Tv correspond to the original nodes in V . Thus, the number of nodes
in G is at most∑

v∈V

(deg(v) − 1
d − 1 + 1

)
=

(
1 − 1

d − 1

)
n +

∑
v∈V

deg(v)
d − 1 ≤

(
1 − 1

d − 1

)
n + 2

d − 1m (3)

5 Applications

This section discusses applications of our approach. First, we will use it to derive improved
approximation bounds for the original demand-aware network design problem which results
in a constant-factor approximation for the case where the maximum degree is close the
average degree of the demand graph. Second, we show how it can be used to obtain efficient
heuristics.

5.1 Improved approximation algorithm for demand balancing
In this section, we use the ideas from our approximation algorithm for bounded network
design with Steiner nodes to design a demand balancing algorithm in the spirit of the results
of Avin et al. [8]. That is, we consider a demand graph with average degree ∆avg, but with
possibly some nodes with very high degree, and we want to design a host graph without
Steiner nodes that has maximum degree close to ∆avg.

Here, we give an improved version of Theorem 4 of [8], showing how to construct a
host graph with maximum degree 4∆avg + 1 and better expected path length guarantees.
Specifically, we improve the maximum degree guarantee from 12∆avg to 4∆avg + 1 and the
expected path length guarantee by a factor of log2(2∆avg), which results in a constant-factor
approximation.

5.1.1 Algorithm
For technical convenience, we assume ∆avg is an integer and n is divisible by 2. We say
that a node v is a high-degree node if its degree deg(v) in the demand graph satisfies
deg(v) > 2∆avg, and otherwise we say it is a low-degree node. By Markov’s inequality, the
number of high-degree nodes is at most n/2.

For each node v, we say that the up to 2∆avg demand graph edges {u, v} for which pv(u)
are highest are the high-demand edges for v, and the rest of the edges are low-demand edges
for v. Note that only heavy nodes have low-demand edges.

OPODIS 2024
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We now construct the host graph G = (V, E) in two steps as follows.

Step 1: Low-demand trees. For a heavy node v, let Lv and Hv be the set of neighbours
u of v in the demand graph such that {u, v} is low-demand and high-demand, respectively.
Define a distribution qv on Lv by selecting an arbitrary node s ∈ Lv and setting

qv(u) =
{

pv(u) +
∑

w∈Hv
pv(w) if u = s, and

pv(u) otherwise.

As in Section 4, we construct a 2∆avg-ary Huffman tree for terminal set Lv wrt. the
probabilities qv(u). As before, denote the leaf node corresponding to probability u as tv,u,
and let dTv (v, tv,u) be the distance from v to tv,u in Tv.

We repeat the construction for all heavy nodes, and map the internal nodes of the trees
injectively to nodes of V so that root of the tree for v is v. We then add all edges of the
tree to the routing graph G. This is always possible, since by applying (3) with N = n/2,
M = ∆avgn/2, and d = 2∆avg, we have that there are at most n internal nodes, including
the roots, in the constructed trees.

Step 2: Connecting edges. Now consider edge {u, v} in the demand graph. There are
three cases to consider:
1. Edge {u, v} is high-demand for both u and v. In this case, we add edge {u, v} to G.
2. Edge {u, v} is low-demand for both u and v. In this case, we add an edge from the parent

node of tv,u to the parent node of tu,v to G.
3. Otherwise, without loss of generality, edge {u, v} is high-demand for u and low-demand

for v. In this case, we add an edge from u to the parent of tv,u to G.

5.1.2 Analysis
Time complexity. By the same argument as in Section 4, we can see that computing the
high-demand edges and building the Huffman trees for low-demand edges can be done in
time O(m log n) in total. All other steps of the algorithm can be implemented with at most
O(m log n) time.

Maximum degree. Low-demand trees constructed in Step 1 have arity 2∆avg, and thus
contribute at most 2∆avg + 1 to the degree of each node. This includes edges added for
low-demand edges. Moreover, each node has at most 2∆avg edges added for handling
high-demand edges, for a total of 4∆avg + 1.

Expected path length. Here we show that the expected path length in G is at most∑
u∈V p(u)H2∆avg(pu) + 1. First, let us recall the grouping rule for entropy.

▶ Lemma 9. Let p : {1, 2, . . . , m} be a distribution, and let q : {1, 2, . . . , m−1} be a distribution
defined by q(i) = p(i) for i = 1, 2, . . . , m − 1, and q(m − 1) = p(m − 1) + p(m). Then

Hd(p) = Hd(q) + (p(m − 1) + p(m))Hd

( p(m − 1)
p(m − 1) + p(m) ,

p(m)
p(m − 1) + p(m)

)
It follows immediately from Lemma 9 that for a heavy node v we have Hd(qv) ≤ Hd(pv)

for any d ≥ 2.
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Now consider a non-zero demand {u, v}. There are four cases to consider for the distance
between u and v in G:
1. u ∈ Hv, v ∈ Hu: distance is dG(u, v) = 1.
2. u ∈ Hv, v ∈ Lu: distance is dG(u, v) = dTu(u, tu,v).
3. u ∈ Lv, v ∈ Hu: distance is dG(u, v) = dTv

(v, tv,u).
4. u ∈ Lv, v ∈ Lu: distance is dG(u, v) = dTv (v, tv,u) + dTu(u, tu,v) − 1.

Let D be the set of demand edges, i.e., edges with non-zero demand. For a predicate P ,
denote by [P ] a function that is [P ] = 1 if predicate P is true, and [P ] = 0 otherwise. The
expected path length in G is now∑
{u,v}∈D

p({u, v})
(

[u ∈ Hv][v ∈ Hu] + [u ∈ Hv][v ∈ Lu]dTu (u, tu,v) + [u ∈ Lv][v ∈ Hu]dTv (v, tv,u)

+ [u ∈ Lv][v ∈ Lu](dTv (v, tv,u) + dTu (u, tu,v) − 1)
)

.

By re-grouping terms, this is equal to∑
{u,v}∈D

p({u, v})
(

dTv
(v, tv,u)

(
[u ∈ Hv][v ∈ Lu] + [u ∈ Lv][v ∈ Hu]

)
+ dTu

(u, tu,v)
(
[u ∈ Hv][v ∈ Lu] + [u ∈ Lv][v ∈ Lu]

)
+ [u ∈ Hv][v ∈ Hu] − [u ∈ Lv][v ∈ Lu]

)
.

By omitting the last negative term, and rearranging further, this is at most∑
u∈V

∑
v∈Lu∪Hu

p({u, v})
(

dTu(u, tu,v)
(
[u ∈ Hv][v ∈ Lu]

+ [u ∈ Lv][v ∈ Lu]
)

+ [u ∈ Hv][v ∈ Hu]
)

≤
∑
u∈V

( ∑
v∈Lu

p({u, v})dTu(u, tu,v) +
∑

v∈Hu

p({u, v})
)

≤
∑
u∈V

p(u)
( ∑

v∈Lu

pu(v)dTu(u, tu,v) +
∑

v∈Hu

pu(v)
)

.

For fixed u ∈ V , we have∑
v∈Lu

pu(v)dTu(u, tu,v) +
∑

v∈Hu

pu(v)

≤
∑

v∈Lu

pu(v)dTu(u, tu,v) +
∑

v∈Hu

pu(v)dTu(u, tu,s)

=
∑

v∈Lu\{s}

pu(v)dTu(u, tu,v) +
(

pu(s) +
∑

v∈Hu

pu(v)
)

dTu(u, tu,s)

=
∑

v∈Lu

qu(v)dTu(u, tu,v)

≤ H2∆avg(qu) + 1 ≤ H2∆avg(pu) + 1 .

Thus, the expected path length in G is at most∑
u∈V

p(u)H2∆avg(pu) + 1 .

In comparison, by Theorem 3 the expected path length for degree-(4∆avg + 1) host graphs
is at least 1

2
∑

u∈V p(u)H4∆avg+2(pu), meaning that G is a constant-factor approximation for
the optimal degree-(4∆avg + 1) host graph.
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5.2 Fixed-degree heuristics
The main challenge of our methods, as well as the prior work, is that we do not have
approximation algorithms for bounded network designs that strictly respect a given arbitrary
degree bound, without using additional resources such as Steiner nodes. However, in practice
we expect that parameters such as the degree bound and number of Steiner nodes are
limited by the physical properties of the network infrastructure, so solutions respecting these
limitations would be required.

We describe a few heuristics which although do not have any guarantees on the quality
of their solution, nevertheless appeared to have worked well in our experiments.

Fixed-degree heuristic. We choose a subset of edges from the demand graph with large
weights and use the Steiner node insertion algorithm to construct a DAN with maximum
degree ∆ − 3 for these edges. The number of picked edges is low enough to guarantee that
we only need at most n nodes for the construction of the DAN. Lastly, a randomly chosen
(almost) 3-regular graph is overlaid on top of this DAN.

Random tree and random graph. We simply pick a randomly chosen ∆ − 1-ary tree or
(nearly) ∆ regular graph as the demand aware graph. This is oblivious to the actual demand,
but tends to have low diameter.

Greedy edge deletion. We initially use the demand graph as the DAN. We iteratively
delete edges of low weight incident on vertices with degree greater than the degree bound
∆. Deleting an edge may disconnect the graph and result in infinite expected path length.
We do not delete edges if it would disconnect the graph, but as a result we may violate the
degree bound ∆, in which case we say the algorithm failed.

Greedy edge selection. We start with an empty DAN and iteratively add edges from the
demand graph starting with the ones with highest weight. We do not add an edge if it would
exceed the degree bound ∆. The algorithm may fail to construct a connected graph.

6 Empirical Evaluation

In this section we complement our theoretical insights with empirical evaluations using
datacenter traces.

6.1 Methodology
All presented algorithms in this paper were implemented and evaluated in simulations.
Furthermore, we provide comparisons to other methods such as the algorithm for sparse
distributions from Theorem 4 by Avin et al. [8], which we will refer to as the Helper
algorithm, and a k-root graph approach by Peres and Avin [34], where k = log ∆(D),
where ∆(D) is the maximum degree in the demand graph, which we will refer to as the
Split&Join algorithm. For a full overview of the algorithms used in the experiments see
Table 1.

Unfortunately, obtaining optimal solutions for our problem using integer linear program-
ming was not feasible. We need O(n2) binary variables representing each possible edge in the
output graph and for modeling the expected path length in the resulting graph we needed
a cubic number of integer variables. Solving these ILPs was feasible for only very small
instances.
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Table 1 Overview of the algorithms used in the experiments. The Steiner nodes column refers to
whether an algorithm solves the bounded network design problem with or without Steiner nodes.

Name Shorthand Ref. Steiner nodes ∆ as input

Steiner Node Insertion SNI Section 4 yes yes
Demand Balancing DB Section 5.1 no no

Split&Join S&J Split&Join [34] no no
Helper Help Theorem 4 in [8] no no

Fixed-degree Fix-Deg Section 5.2 no yes
Random Tree Rnd-Tree Section 5.2 no yes

Random Graph Rnd-Graph Section 5.2 no yes
Greedy Edge Deletion GED Section 5.2 no yes
Greedy Edge Selection GES Section 5.2 no yes

Dataset. For the experiments we used the real-world datacenter trace collection from Avin
et al. [5] that was also used by previous works [8,10,34]. These traces contain temporal data,
specifically source, destination and timestamps of communicating nodes. To adapt these
traces to our demand graph input format, we create an edge between two communicating
nodes and set its weight equal to number of times the nodes communicated. The weights are
normalized so that this can be interpreted as a communication distribution (demand). In
Appendix B in Table 4 some selected parameters of these instances are summarized.

6.2 Results
We divide the results of the experiments into three groups, based on the algorithms which
they involve, similar to the grouping in Table 1.

Sparse heuristics. We first focus our attention on the bounded network design heuristics
for which the maximum degree is a function of the input demand graph and cannot be
specified by the user. In Table 2 properties of the resulting host graphs computed by these
algorithms on our network trace dataset are presented. The Helper heuristic appeared
to have the highest expected path length and second largest maximum degree compared
to the other three approaches. In contrast, the Demand Balancing heuristic achieved
the lowest expected path length while also having the lowest maximum degree, except for
three demand graphs. For four of the ten demand graphs the expected path lengths for the
Demand Balancing and Split&Join heuristics were almost a third of the expected path
length of the Helper heuristic. The Split&Join heuristic achieved a low expected path
length, but at the cost of having a comparatively large maximum degree, almost double that
of the Demand Balancing heuristic for three demand graphs.

Fixed degree heuristics. We next compare different heuristics for which the maximum
degree is an input parameter. In Figure 2 the average expected path length over our
whole dataset is plotted against the maximum degree constraint for different heuristics. It
is apparent that the two heuristics that are oblivious to the demand graph, namely the
Random Tree and Random Graph heuristics have the worst expected path length, which
was expected to due their obliviousness to the input.
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Table 2 Properties of the host graphs computed by the Split&Join, Helper, Demand Bal-
ancing (DB) heuristics. We denote by ∆ the maximum degree in the host graph and by EPL its
expected path length. For each trace we highlight in gray the lowest maximum degree and in yellow
the lowest expected path length, unless there is a tie.

Split&Join Helper DB
Trace ∆ EPL ∆ EPL ∆ EPL

fb-cluster-rack-A 507 1.33 399 3.26 290 1.31
fb-cluster-rack-B 1,305 1.06 855 4.25 754 1.05
fb-cluster-rack-C 1,460 1.14 870 3.51 683 1.08
hpc-cesar-mocfe 21 1.33 18 2.87 21 1.0

hpc-cesar-nekbone 39 1.07 36 1 36 1
hpc-boxlib-cns 157 1.11 102 1.04 293 1.01

hpc-boxlib-multigrid 31 1.12 26 1 26 1
p-fabric-trace-0-1 143 1.01 144 1 144 1
p-fabric-trace-0-5 143 1.01 143 1 143 1
p-fabric-trace-0-8 143 1.01 143 1 143 1

Table 3 Summary of the expected path length of the host graphs computed by the Fixed-degree,
Random Tree, Random Graph, Greedy Edge Deletion, and Greedy Edge Selection
heuristics for ∆ = 32. If an algorithm failed on some instance then it is replaced with a “—” symbol.
For each trace we highlight in gray the lowest expected path length, unless there is a tie.

Trace Fix-Deg
Rnd

Graph
Rnd
Tree GED GES

fb-cluster-rack-A 2.6 3.02 5.72 – –
fb-cluster-rack-B 2.48 3.13 5.78 – –
fb-cluster-rack-C 2.69 3.28 5.86 – –
hpc-cesar-mocfe 1 2.32 3.87 1 1

hpc-cesar-nekbone 1.01 2.32 3.87 1 1
hpc-boxlib-cns 2.2 2.33 3.87 1.88 1.85

hpc-boxlib-multigrid 1 2.32 3.87 1 1
p-fabric-trace-0-1 1.37 1.78 3.22 1.29 –
p-fabric-trace-0-5 1.41 1.77 3.21 1.28 1.27

Unsurprisingly, the Random Tree heuristic is significantly worse than for example the
Random Graph heuristic. The randomly constructed (∆ − 1)-ary tree has many leaves
which by definition have a degree of one, and are thus poorly utilized as more edges could be
inserted to improve the EPL.

In Table 3 we present results from Figure 2 for the case ∆ = 32 in more detail, and also
include some results for heuristics which failed do solve some instances. For the Facebook
instances the Fixed-degree heuristic has the lowest expected path length. For some
demands the heuristics achieve an expected path length of almost one, whereas the Random
Graph and Tree heuristics have at least double the expected path length. The Greedy
Edge Deletion and Greedy Edge Selection fail on the Facebook instances.
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Figure 2 Average expected path length over the whole datacenter trace dataset depending on the
maximum desired degree ∆. The results for the Random Tree, Random Graph, Fixed-degree,
and Steiner Node Insertion heuristics are depicted. The results are averaged over 10 different
runs. Heuristics which sometimes failed are not depicted.

Steiner nodes. Our last experiments involve the Steiner Node Insertion algorithm.
Recall, that the Steiner Node Insertion algorithm is allowed to use additional nodes
(Steiner nodes) that are not present in the demand graph. For a relatively low maximum
degree of eight the number of new nodes used by the algorithm is sometimes even greater
than 30n. As the maximum degree increases, the expected path length decreases and so does
the number of used Steiner nodes. For some traces the number of Steiner nodes remains
quite high. For example, for ∆ = 64 on the second Facebook trace the algorithm used 2.7n

Steiner nodes.
Furthermore, in Figure 2 we compare the Steiner Node Insertion algorithm to the

Fixed-degree heuristic which utilizes the Steiner Node Insertion algorithm, but does
not use Steiner nodes; that is, it computes a host graph with the same vertex set as the
demand graph. It can be observed that the Steiner Node Insertion algorithm achieves a
slightly lower expected path length on average, but as can be seen in Table 5 (Appendix B)
this is at the cost of utilizing many Steiner nodes. The Fixed-degree does not utilize
Steiner nodes, but the expected path length is marginally larger.

7 Conclusion

This paper presented new approaches to designing bounded-degree demand-aware networks,
leading to improved approximation algorithms as well as heuristics for variants of the problem.
We also presented various hardness results and lower bounds. From the extensive empirical
evaluation, we highlight our fixed-degree heuristic as a practical algorithm for bounded-degree
network design problem; it is guaranteed to respect the given degree bound regardless of the
demand distribution and, in experiments, achieves expected paths lengths close to optimal
on real-world instances.

Our work leaves open several interesting directions for future research. In particular,
it will be interesting to explore the tradeoff between approximation quality and resource
augmentation. More generally, it remains open whether a constant-factor approximation
algorithm exists for bounded-degree network design without augmentation.
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A Hardness of bounded-degree network design

Decision version of bounded-degree network design. In this section, we show that the
decision versions of bounded-degree network design, with or without Steiner nodes, is NP-
complete for any fixed degree bound ∆ ≥ 2. Formally, the decision version bounded of
bounded-degree network design is defined as follows – note that we consider an integer-
weighted version of the problem to sidestep considerations regarding encoding of small
fractional number:

Instance: A set V with |V | = n, a weight function w :
(

V
2
)

→ N, positive integers ∆ and K.
Question: Is the a graph G = (V, E) such that maximum degree of G is at most ∆ and∑

{u,v}∈(V
2 )

w({u, v})dG(u, v) ≤ K ,

where dG(u, v) denotes the distance between u and v in G.

The decision version of bounded-degree network design with Steiner nodes is defined
analogously:

Instance: A set V with |V | = n, a weight function w :
(

V
2
)

→ N, positive integers ∆ and K.
Question: Is there a graph G = (V ′, E) such that V ⊆ V ′, the maximum degree of G is at

most ∆, and∑
{u,v}∈(V

2 )
w({u, v})dG(u, v) ≤ K ,

where dG(u, v) denotes the distance between u and v in G?
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While it is immediately clear that bounded-degree network design without Steiner nodes
is in NP, it is not a priori clear that the version with Steiner nodes always has optimal host
graphs of polynomial size. However, not surprisingly this is indeed the case:

▶ Lemma 10. For any instance of bounded-degree network design problem with Steiner nodes,
there is a solution with optimal effective path length and at most a polynomial number of
Steiner nodes.

Proof. For ∆ = 2, one can immediately observe that there is a solution with optimal effective
path length without Steiner nodes, as we can replace any degree-2 Steiner node with an
edge. Thus, assume ∆ ≥ 3 and let G = (V ∪ U, E) be a host graph with optimal effective
path length for an instance of bounded-degree network design with Steiner nodes. Moreover,
assume that G is minimal in the sense that any proper subgraph of G has larger effective
path length.

Let u, v ∈ V be arbitrary pair of nodes with non-zero demand between them and distance
ℓ ≥ 4 in G, and consider the shortest path P = (u, v1, v2, . . . , vl−1, v) between u and v in
G. Let s, t ∈ V be an another pair of nodes with non-zero demand between them, possibly
including either u or v but not both. We say that an edge e with exactly one endpoint on P

is critical for s and t if removing it from G would increase the distance between s and t.
Consider a shortest path P ′ = (s = u0, u1, u2, . . . , uk−1, uk = t) between s and t that

intersects with P , and let ui and uj be the first and the last node on P ′ that is also on P ,
respectively. As both P and P ′ are shortest paths, the distance between ui and uj must be
the same along P and P ′. It follows that only {ui−1, ui} and {uj , uj+1} can be critical for s

and t, if they exist. Moreover, a critical edge must be on all shortest paths between s and t,
so there can be at most two critical edges for s and t.

Now consider an arbitrary edge e ∈ E with exactly one endpoint on P . By minimality
of G, deleting e would increase the distance between some pair {s, t} ⊆ V ; thus, edge e is
critical for some s and t. By choice of e, it follows that all edges with exactly one endpoint
on G are critical for some s and t. By above argument, there are at most 2

(
n
2
)

≤ n2 critical
edges, and thus at most that many edges with exactly one endpoint on P .

Assume for the sake of contradiction that ℓ ≥ n2 + 3. Since there are at most n2 edges
with exactly one endpoint on P , there exist two non-adjacent nodes on P that have degree
less than ∆. Adding an edge between these two nodes to G would decrease the effective
path length, which contradicts the optimality of G. Moreover, since u and v were chosen
arbitrarily, it holds that for all pairs u, v ∈ V with non-zero demand the distance between u

and v in G is O(n2). By minimality of G, it follows that G has at most O(n4) nodes. ◀

NP-completeness for ∆ = 2. For degree bound ∆ = 2 one can easily observe that, for
both versions of the bounded-degree network problem, there is an optimal host graph that is
a collection of cycles. Moreover, it is clear that Steiner nodes cannot improve the solution
for ∆ = 2.

Avin et al. [8] have noted that for connected demand graphs, the bounded-degree network
design problem for ∆ = 2 is very close to minimum linear arrangement. More precisely, we
can reduce from the undirected circular arrangement problem, known to be NP-complete [29],
to prove that bounded-degree network design problems are NP-complete:
Instance: Graph G = (V, E) with |V | = n, a weight function w : E → N, a positive integer

K.
Question: Is there a bijection f : V → {1, 2, . . . , n} such that∑

e∈E

w(e)h(e) ≤ K ,

where h({u, v}) = min
(
f(u) − f(v) mod n, f(v) − f(u) mod n) .
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The circular arrangement problem can be seen as an instance of bounded-degree network
design where the host graph is required to be a cycle. In particular, circular arrangement
is equivalent to bounded-degree network design with ∆ = 2 on connected instances, as in
that case the host graph is also required to be connected – i.e., a path or a cycle. Thus,
the NP-completeness for both versions of bounded-degree network design follows from the
following observation:

▶ Lemma 11. Undirected circular arrangement problem is NP-complete when restricted to
connected graphs.

Proof. Membership in NP is trivial. For NP-hardness, we reduce from undirected circular
arrangement on general inputs.

Let G = (V, E), w and K be an instance of undirected circular arrangement. We construct
a new instance by letting G′ = (V, E′) be a complete graph on V , and define the new edge
weight function w′ as

w′(e) =
{

n3w(e) if e ∈ E, and
1 if e /∈ E.

Finally, we set K ′ = n3(K + 1) − 1. Clearly G′ is a connected graph.
First consider the case where G is a yes-instance, and let f be a solution satisfying∑

e∈E w(e)h(e) ≤ K. Using f as a solution for G′ and summing over the edges in E, we
have that

∑
e∈E w′(e)h(e) ≤ n3K. For edges not in E, we have

∑
e/∈E

w′(e)h(e) ≤
(

n

2

)
n < n3 .

Thus,∑
e∈E′

w′(e)h(e) =
∑
e∈E

w′(e)h(e) +
∑
e∈E′

w′(e)h(e) < n3K + n3 ,

which is at most n3(K + 1) − 1 as the value of the sum is an integer. Hence, G′ is a
yes-instance.

For the other direction, assume that G′ a yes-instance, and let f be a solution satisfying∑
e∈E′ w′(e)h(e) ≤ K ′. This implies that∑

e∈E

w′(e)h(e) ≤ K ′ = n3(K + 1) − 1 .

Since all edge weights w′(e) for e ∈ E are divisible by n3, the value of
∑

e∈E w′(e)h(e) is
also divisible by n3. This combined with above inequality implies∑

e∈E

n3w(e)h(e) ≤ n3K ,

and thus we have∑
e∈E

w(e)h(e) ≤ K .

Hence, G is a yes-instance. ◀
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NP-completeness for ∆ ≥ 3. We prove NP-hardness for both variants of the bounded-
degree network design problem. There are two main tricks we utilize in this proof, which we
explain before proceeding with the proof proper.

First is the observation that when we construct instances for these problems, we can
force any optimal host graph to have some specific edge {u, v} we desire by giving this pair
a large demand p({u, v}) = W . If we then have k edges we want to force, we can set the
cost threshold of the instance to be between kW and kW − 1, so that any valid host graph
will necessarily include all of these edges.

The second trick is used to ensure that nodes in our gadget constructions have the desired
degrees. We use the following simple lemma:

▶ Lemma 12. Let d ≥ 3 be an odd integer. There is a graph Hd = (V, E) such that
|V | = d + 2, one node in Hd has degree d − 1, and all other nodes in Hd have degree d.

Proof. We start from a (d + 1)-clique Kd+1, and then remove an arbitrary matching of size
(d − 1)/2. The resulting graph has d − 1 nodes of degree d − 1, and 2 nodes of degree d.
We then add a new node and connect it with an edge to all the nodes of degree d − 1. The
resulting graph clearly has the claimed properties. ◀

We use Lemma 12 to do what we will henceforth call attaching a degree-blocking gadget:
given a graph of odd maximum degree ∆, some value d ≤ ∆, and a node v with degree
deg(v) < d, we turn v into a degree-d node by adding d − deg(v) copies of H∆ to the graph,
and adding an edge between v and degree-(∆ − 1) node in each copy of H∆. Clearly then v

will have degree d, and each added node will have degree exactly ∆.
We now proceed to the main proof. For simplicity, we start with the case of odd maximum

degree ∆.

▶ Theorem 13. Bounded-degree network design and bounded-degree network design with
Steiner nodes are NP-hard for any odd ∆ ≥ 3.

Proof. We reduce from vertex cover on 3-regular graphs; recall that the problem is known
to remain NP-complete even with the degree restriction [20, 21]. More precisely, we will give
a reduction that has the additional property that the resulting instance is a yes-instance
without Steiner nodes if and only if it is a yes-instance with Steiner nodes, thus proving
NP-hardness for both variants of the problem.

Let (V, E, k) be an instance of vertex cover (in its decision form, where we ask if there is
a vertex cover of size k). We first define the various gadget graphs we will use in the the
construction.

Selector gadget. Let b = 2⌈log2 k⌉ be the smallest power of two larger than k. To construct
the selector gadget, we start with a complete binary tree with b leaves and root node r. We
arbitrarily select k leaves as the selector nodes s1, s2, . . . , sk, and attach ∆−2 degree-blocking
gadgets H∆ to each si. We also attach ∆ − 2 degree-blocking gadgets H∆ to the root r, and
∆ − 1 degree-blocking gadgets to the remaining leaves. One can now verify that each selector
node has degree ∆ − 1, and the remaining nodes in the selector gadget have degree ∆.

Vertex gadgets. For each vertex v ∈ V in the vertex cover instance, we construct a vertex
gadget as follows – recall that by assumption v has degree 3. We take a complete binary tree
with 4 leaves, denoting the root of the tree by rv. We identify 3 of the leaves as terminal
nodes te for edges e incident to node v. Finally, we attach ∆ − 3 degree-blocking gadgets
H∆ to the root rv, as well as ∆ − 2 degree-blocking gadget to each terminal node and ∆ − 1
degree-blocking gadgets to the remaining leaf.
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Finally, we combine the vertex gadgets for all vertices in V by identifying two terminal
nodes for edge e = {u, v} in the vertex gadgets of u and v, as well as merging the respective
degree-blocking gadgets into one. We can now observe that in the graph formed by the
combined vertex gadget, the root nodes rv for v ∈ V have degree ∆ − 1, and all other nodes
have degree ∆.

Instance construction. We now construct an instance (V ′, w, K) of bounded-degree network
design with Steiner nodes as follows. Let V ′ be the set of nodes in the selector gadget and
the combined vertex gadgets as constructed above. For any edge {u, v} ⊆ V ′ in the gadget
constructions, we set the demand w({u, v}) to be W = |E|(log2 b + 3) + 1. For each edge
e ∈ E in the vertex cover instance, we add demand w({r, te}) = 1 between the root of the
selector gadget and the terminal node for e. For all other pairs, we set the demand to 0.
Finally, we set the effective path length threshold for the bounded network design instance
to be K = MW + |E|(log2 b + 3), where M is the total number of edges in the gadgets.

Correctness. Now assume that (V, E, k) is a yes-instance of vertex cover, and let C =
{v1, v2, . . . , vk} ⊆ V be a vertex cover. Let G′ = (V ′, E′) be a host graph for instance
(V ′, w, K) obtained by taking all the gadget edges and edges {si, rvi

} for i = 1, 2, . . . , k. The
demands for the gadget edges are satisfied by G′ with direct edges, contributing a total of
MW to the effective path length. Now consider an arbitrary edge e ∈ E and a demand
between r and te. Since C is a vertex cover, there is a vertex vi ∈ C ∩ e such that the edge
{si, rvi} belongs to E′. Thus there is a path from r to te in G′ that starts from r and travels
along the selector gadget to si, crosses the edge {si, rvi

} and travels from rvi
to te along the

vertex gadget for vi. This path has length log2 b + 3. Since e was selected arbitrarily and C

is a vertex cover, this holds for all edges e ∈ E. Therefore the total effective path length is
MW + |E|(log2 b + 3) = K, that is, (V ′, w, K) is a yes-instance.

For the other direction, assume that (V ′, w, K) is a yes-instance, and let G′ = (V ′ ∪ U, E′)
be a host graph with effective path length at most K. First, we observe that G′ must include
all gadget edges, as otherwise the effective path length from the corresponding demands is
at least (M + 1)W > K. Now consider the path between r and te for an arbitrary e ∈ E.
Since all gadget edges are included in G′, this path must exit the selector gadget via an
edge connected to one of the selector nodes si, as all other nodes in the selector gadget have
degree ∆ from the edges inside the gadget. By the same argument, the path must enter the
vertex gadget via one the nodes rv and travel via gadget edges to te. It follows that this
path must have length at least log2 b + 3. Thus, for the effective path length to be at most
K = MW + |E|(log2 b + 3), the distance between r and each te must be exactly log2 b + 3.

We now observe that for an edge e = {u, v} ∈ E, by the same reasoning as above, the
only way for the path from r to te to be of length log2 b + 3 is that the path travels from
r to a selector node si, then from si to either rv or ru by a direct edge, and then via the
vertex gadget to te. Thus, for any edge e = {u, v} ∈ E, either {si, rv} or {si, ru} is in E′ for
some i = 1, 2, . . . , k. Thus, the set of vertices

C =
{

v ∈ V : {si, rv} ∈ E′ for some i = 1, 2, . . . , k
}

is a vertex cover of G, and since each si may only be incident to one non-gadget edge due to
the degree constraint, we have |C| ≤ k. Thus, (V, E, k) is a yes-instance of vertex cover. ◀

We can now modify the above construction for even maximum degree as follows.

▶ Theorem 14. Bounded-degree network design and bounded-degree network design with
Steiner nodes are NP-hard for any even ∆ ≥ 4.
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Proof. Let ∆ ≥ 4 be fixed and even. We start by taking the reduction given by Theorem 13
for ∆ − 1, and modify it as follows. Let N be the total number of nodes in the instance
(V ′, w, K) produced by the reduction, and let M be the number of forced edges in the gadgets,
i.e., the number of edges with demand W .

We now create the instance for degree ∆ by taking two disjoint copies of the node set and
demands of the degree-(∆ − 1) instance (V ′, w, K), and adding a demand W for each pair of
corresponding nodes from the two copies. All other demands for pairs from different copies
is set to 0. Finally, the effective path threshold is set to 2(MW + N) + 2|E|(log2 b + 3).

If the vertex cover instance was a yes-instance, then the degree-∆ instance has a solution
of cost 2(MW + |E|(log2 b + 3)) + NW , obtained by taking the solution for degree-(∆ − 1)
instance for both copies, and adding all the edges between corresponding nodes in the two
copies. On the other hand, if the degree-∆ instance is a yes-instance, then all high-weight
edges between the two copies must be included in the solution, using up one edge for each
node in the instance. Each copy of the degree-(∆ − 1) instance must have effective path
length of MW + |E|(log2 b + 3) for its internal demands, which by same argument as in the
proof of Theorem 13 is only possible if the original vertex cover instance is a yes-instance. ◀

Putting together all the results from this section, we obtain Theorem 4.

B Additional tables and figures

Table 4 Properties of demand graphs in the datacenter trace collection from Avin et al. [5]. The
table summarizes the number of nodes, edges, minimum degree, average degree, maximum degree,
entropy and conditional entropy of the demand graphs. For the entropy calculations the base-2
logarithm was used.

Trace n m δ ∆avg ∆ entropy cond. entropy

fb-cluster-rack-A 13,733 496,624 1 72.33 7,272 16.97 7.98
fb-cluster-rack-B 18,897 1,777,559 1 188.13 11,932 16.23 7.66
fb-cluster-rack-C 27,358 2,326,086 1 170.05 25,224 18 8.91
hpc-cesar-mocfe 1,024 3,808 2 7.44 21 12.81 3.28

hpc-cesar-nekbone 1,024 15,115 16 29.52 36 14.43 4.48
hpc-boxlib-cns 1,024 37,982 55 74.18 1,023 16.19 6.21

hpc-boxlib-multigrid 1,024 10,620 7 20.74 26 14.37 4.43
p-fabric-trace-0-1 148 10,300 1 139.19 144 13.03 5.88
p-fabric-trace-0-5 144 10,296 143 143 143 13.03 5.87
p-fabric-trace-0-8 144 10,296 143 143 143 13.22 6.06
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Table 5 The expected path length (EPL) in the resulting host graphs computed by the Steiner
Node Insertion algorithm for different maximum degree bounds. We denote by n′ the number of
nodes in the host graph and by n the number of nodes in the demand graph.

∆ = 8 ∆ = 16 ∆ = 32
Trace n′/n EPL n′/n EPL n′/n EPL

fb-cluster-rack-A 12.5 4.85 5.8 3.31 3.1 2.55
fb-cluster-rack-B 31.7 4.51 14 3.17 6.9 2.45
fb-cluster-rack-C 28.6 5.42 12.4 3.8 6 2.68
hpc-cesar-mocfe 1.5 1.77 1.2 1.18 1 1

hpc-cesar-nekbone 5.2 2.57 2.5 1.67 1.5 1
hpc-boxlib-cns 12.6 3.72 5.7 2.52 3 1.92

hpc-boxlib-multigrid 3.9 2.48 1.9 1.64 1 1
p-fabric-trace-0-1 23.4 3.18 10.7 1.97 4.9 1.33
p-fabric-trace-0-5 24 3.17 11 1.97 5 1.33
p-fabric-trace-0-8 24 3.27 11 2.1 5 1.39
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