
AMECOS: A Modular Event-Based Framework for
Concurrent Object Specification
Timothé Albouy #

Univ Rennes, Inria, CNRS, IRISA, France

Antonio Fernández Anta #

IMDEA Networks Institute, Madrid, Spain

Chryssis Georgiou #

University of Cyprus, Nicosia, Cyprus

Mathieu Gestin #

Univ Rennes, Inria, CNRS, IRISA, France

Nicolas Nicolaou #

Algolysis Ltd, Nicosia, Cyprus

Junlang Wang #

IMDEA Networks Institute, Madrid, Spain
Universidad Carlos III de Madrid, Spain

Abstract
In this work, we introduce a modular framework for specifying distributed systems that we call
AMECOS. Specifically, our framework departs from the traditional use of sequential specification,
which presents limitations both on the specification expressiveness and implementation efficiency
of inherently concurrent objects, as documented by Castañeda, Rajsbaum and Raynal in CACM
2023. Our framework focuses on the interactions between the various system components, specified
as concurrent objects. Interactions are described with sequences of object events. This provides
a modular way of specifying distributed systems and separates legality (object semantics) from
other issues, such as consistency. We demonstrate the usability of our framework by (i) specifying
various well-known concurrent objects, such as registers, shared memory, message-passing, reliable
broadcast, and consensus, (ii) providing hierarchies of ordering semantics (namely, consistency
hierarchy, memory hierarchy, and reliable broadcast hierarchy), and (iii) presenting a novel axiomatic
proof of the impossibility of the well-known Consensus problem.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Concurrency, Object specification, Consistency conditions, Consensus impos-
sibility

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.4

Funding This work has been partially supported by Région Bretagne, the French ANR project
ByBloS (ANR-20-CE25-0002-01), the H2020 project SOTERIA, the Spanish Ministry of Science and
Innovation under grants SocialProbing (TED2021-131264B-I00) and DRONAC (PID2022-140560OB-
I00), the ERDF “A way of making Europe”, NextGenerationEU, and the Spanish Government’s
“Plan de Recuperación, Transformación y Resiliencia”.

1 Introduction

Motivation. Specifying distributed systems is challenging as they are inherently complex:
they are composed of multiple components that concurrently interact with each other in
unpredictable ways, especially in the face of asynchrony and failures. Stemming from this
complexity, it is very challenging to compose concise specifications of distributed systems
and, even further, devise correctness properties for the objects those systems may yield.

© Timothé Albouy, Antonio Fernández Anta, Chryssis Georgiou, Mathieu Gestin, Nicolas Nicolaou,
and Junlang Wang;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 4; pp. 4:1–4:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timothe.albouy@irisa.fr
https://orcid.org/0000-0001-9419-6646
mailto:antonio.fernandez@imdea.org
https://orcid.org/0000-0001-6501-2377
mailto:chryssis@ucy.ac.cy
https://orcid.org/0000-0003-4360-0260
mailto:mathieu.gestin@inria.fr
https://orcid.org/0009-0004-4045-6560
mailto:nicolas@algolysis.com
https://orcid.org/0000-0001-7540-784X
mailto:junlang.wang@imdea.org
https://orcid.org/0009-0003-6004-8823
https://doi.org/10.4230/LIPIcs.OPODIS.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

To ensure the correctness of a distributed system, realized by both safety (“nothing bad
happens”) and liveness (“something good eventually happens”) properties, the specification
must capture all of the possible ways in which the system’s components can interact with
each other and with the system’s external environment. This can be difficult, especially when
dealing with complex and loosely coupled distributed systems in which components may
proceed independently of the actions of others. Another challenge caused by concurrency is
to specify the consistency of the system or the objects it implements. The order in which
processes access an object greatly impacts the evolution of the state of said object. Several
types of consistency guarantees exist, from weak ones such as PRAM consistency [26] to
stronger ones such as Linearizability [20]. Therefore, one needs to precisely specify the
ordering/consistency guarantees expected by each object the system implements.

To address the inherent complexity of distributed systems, researchers often map ex-
ecutions of concurrent objects to their sequential counterparts, using sequential specifica-
tions [4, 27]. Although easier and more intuitive for specifying how abstract data structures
behave in a sequential way [35], as noted in [11], sequential specifications appear unnatural
for systems where events may not be totally ordered, hindering the potential of concurrent ob-
jects. More precisely, there are concurrent objects that do not have a sequential specification
(e.g., set-linearizable objects or Java’s exchanger object [11]), or objects that, even if they can
be sequentially specified, have an inefficient sequential implementation. For example, it is
impossible to build a concurrent queue implementation that eliminates the use of expensive
synchronization primitives [11].

Our approach. In this work, we propose a modular framework which we call AMECOS
(from A Modular Event-based framework for Concurrent Object Specification) that does
not use sequential specification of objects, but instead offers a relaxed concurrent object
specification mechanism that encapsulates concurrency intuitively, alleviating the specifier
from complex specifications. Here are some noteworthy features of our framework.
Component Identification and Interfacing: Our specification focuses on the interface between
the various system components specified as concurrent objects. In particular, it considers
objects as opaque boxes, specifying them by directly describing the intended behavior and
only examining the interactions between the object and its clients. In this way, we do
not conflate the specification of an object with its implementation, as is typically the case
with formal specification languages such as TLA+ [25] and Input/Output Automata [28].
Specifically, these languages specify a distributed system and its components with a state
machine (as a transparent box). In contrast, our formalism specifies an object at the interface
level (as an opaque box). Furthermore, we avoid using higher-order logic, which sometimes
can be cumbersome, and instead, we use simple logic, rendering our specification “language”
simple to learn and use. In some sense, we provide the “ingredients” needed for an object to
satisfy specific properties and consistency guarantees.
Modularity: Focusing on the object’s interface also provides a modular way of specifying dis-
tributed systems and separates the object’s semantics from other aspects, such as consistency.
With our formalism, we can, for example, specify the semantics of a shared register [23],
then specify different consistency semantics, such as PRAM [26] and Linearizability [20],
independently, and finally combine them to obtain PRAM and atomic (i.e., linearizable)
shared registers, respectively. This modularity also helps, when convenient (e.g., for impossi-
bility proofs), to abstract away the underlying communication medium used for exchanging
information. In fact, we also specify communication media as objects.

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:3

Structured Formalism: The formalism follows a precondition/postcondition style for specifying
an object’s semantics, via 3 families of predicates: Validity, Safety, and Liveness. The first
one specifies the requirements for the use of the object (preconditions), while the other two
specify the guarantees (hard and eventual) provided by the object (postconditions). This
makes our formalism easy to use, providing a structured way of specifying object semantics.
Notification Operations: Another feature of the formalism is what we call notification
operations, that is, operations that are not invoked by any particular process, but that spon-
taneously notify processes of some information. For example, a broadcast service provides a
broadcast operation for disseminating a message in a system, but all processes of this system
must be eventually notified that they received a message without invoking any operation.
So, a notification is a “callback” made by an object to a process, and not by a process to an
object. This feature increases our framework’s expressiveness compared to formalisms that
are restricted to using only invocation and response events for operations [33].

Contributions. The following list summarizes the contributions of the paper.
We first present our framework’s architecture, basic components, key concepts, and
notation (see Section 3). We especially show that our framework can elegantly take
into account a wide range of process failures, such as crashes or Byzantine faults (see
Sections 3.5 and 6). Then, we demonstrate how concurrent objects can be specified using
histories, preconditions, and postconditions (see Section 4).
Using our formalism, we show how we can specify several classic consistency condi-
tions, from weak ones such as PRAM consistency to strong ones such as Linearizability.
Then, we show that we can define consistency conditions (set-linearizability and interval
linearizability) for objects that do not have sequential specifications (see Section 5).
Using the definitions of object specification and consistency, we show how they can be
combined to yield correctness definitions for histories, even in the presence of Byzantine
failures (see Section 6).
We demonstrate our framework’s effectiveness in constructing axiomatic proofs by pre-
senting a novel, axiomatic proof of the impossibility of resilient consensus objects in an
asynchronous system (see Section 7). To our knowledge, this is one of the simplest and
most general proofs of this result. Its simplicity and generality stem from the fact that
our formalism abstracts away the implementation details of the object or system being
specified, allowing us to focus on proving intrinsic fundamental properties. For instance,
our impossibility proof abstracts away the communication medium. (For completeness,
we show in Section F that SWSR atomic registers and point-to-point message-passing
channels satisfy the relevant assumptions of the proof.)
Finally, to further exemplify the usability of our formalism, we specify shared memory,
message passing, and reliable broadcast as concurrent objects (see Appendices C-D). The
modularity of our formalism is demonstrated by combining the consistency conditions
with these object specifications, obtaining shared memory and broadcast hierarchies.

We also present a comparison with related work (Section 2) and a discussion of our findings
(Section 8). Due to page limitations, some developments appear in appendices.

2 Related Work

The present work addresses two different (but not unrelated) problems: object semantics
specification and consistency conditions. It also deals with the Consensus impossibility.

OPODIS 2024

4:4 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

Object semantics specification. As we already discussed, traditionally, formal definitions
of concurrent objects (e.g., shared stacks or FIFO channels) are given by sequential specifica-
tions, which define the behavior of some object when its operations are called sequentially.
Distributed algorithms are commonly defined using formal specification languages, e.g.,
input/output (IO) automata [28], temporal logics (e.g., LTL [32], CTL* [13], TLA [25]) and
CSP [1], for implementing concurrent objects. Formal proofs are used to show that those
implementations satisfy the sequential specifications of the object in any possible execution.

We argue that defining concurrent objects using such formal methods conflates the
specification and implementation of said objects. On the contrary, as we already discussed in
Section 1, our formalism considers objects as opaque boxes, and the specification stays at the
object’s interface. Furthermore, formal methods are typically complex and difficult to learn,
requiring specialized tools and expertise. Our formalism, instead, relies only on simple logic
(no higher-order logic is required), making it easy to learn and use. To this end, we concur
that our formalism complements existing formal methods by providing an intuitive way to
express the necessary properties a concurrent object must satisfy. Moreover, the formalism
may reveal the necessary components (“ingredients”) needed for an object to satisfy specific
guarantees. Armed with our object specifications, formal methods may be used to specify
and compose simpler components, drifting away from the inherent complexities of more
synthetic distributed structures.

Consistency conditions. Consistency conditions can be seen as additional constraints on
the ordering of operation calls that can be applied on top of an object semantics specification,
which, in this work, we call legality. Over time, several very influential consistency conditions
have been presented (e.g., [2, 5, 20, 24, 26]). However, all of these consistency conditions
have been introduced in their own notations and context (databases, RAM/cache coherence
or distributed systems), which raised the need to have a unified formalism for expressing all
types of consistency. Several formalisms have been proposed [8, 9, 30, 36, 38]. We propose a
formalism that uses light notation and is very expressive. As we demonstrate in Section 5,
we view legality as the lowest degree of consistency, thus making a clear separation between
legality and consistency. Furthermore, our formalism helps us specify consistency guarantees
incrementally, moving from weaker to stronger ones, yielding a consistency hierarchy. Several
works already presented consistency hierarchies and a way to combine consistencies with
object specifications [30, 39]. In contrast to our framework, these approaches rely on sequential
object specifications, which, as we have already discussed, can constrain expressiveness.

Possibly the work in [38] (derived from [8, 9]) is the closest to ours with respect to
“specification style.” However, the object specifications in [38] (and [8, 9]) use the artificial
notion of arbitration to always impose a total order on object operation executions, whereas
our formalism does not require a total order (unless the consistency imposes it); in general,
we only consider partial orders of operation executions. Another notable difference with [38]
is that their consistency specification is for storage objects, whereas we specify consistency
conditions in general, and then we combine them with a specification of a shared memory
object to yield a consistency hierarchy for registers (similar to storage objects considered
in [38]). Additionally, compared to other endeavors such as [8, 9, 30], our framework also
considers strong failure types such as Byzantine faults.

Impossibility of Asynchronous Consensus. Consensus is a fundamental abstraction where
all participants of a distributed system must eventually agree on one of the values that have
been proposed [27]. To demonstrate the utility of the framework, we define a Consensus

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:5

Communication Medium (Object M)

p1

App

Alg A

Alg B

p2

App

pn

App

Alg A

Alg B
Object B

Object A

Object
interface

Alg B

Alg A

Figure 1 Example of a distributed system architecture with 3 objects. The distributed system is
formed by n processes that communicate using a Communication Medium, which is Object M . The
system has 2 more objects, Objects A and B, built by local modules (Alg. A and B) in each process,
that cooperate using a protocol (horizontal arrows) to implement the object. Each process has an
application algorithm that can execute the operations (vertical arrows) of the objects offered by
their interface. Also, objects’ local modules can execute operations of other objects.

0..1inv0..1

0..1res0..1

1e1 *

1e2 *

1
obj

*
1
op

*Objects

Operations
name, type,
V, S, L

Processes
type

OpExes Events
value

EventOrder
1

proc

*

Figure 2 Class diagram for the relations and attributes of the components (sets) of the framework.

object and provide a proof of the FLP impossibility [14]. Like [37], our proof follows an
axiomatic approach: the notion of asynchronous resilient consensus is defined as a system of
axioms, and then it is proved that this system is inconsistent, i.e., that there is a contradiction.
With the framework, the proof becomes agnostic to the communication media, unlike other
proofs that assume message-passing [14, 15, 18, 40], shared memory [15, 17, 19] or other
models like iterated immediate snapshot [21]. See Appendix A.6 for more details.

3 Framework: Architecture, Components, Notation, and Concepts

3.1 System Architecture
The proposed framework assumes a distributed system as depicted in Figure 1, which has
a set of processes that interact with some Communication Medium (e.g., shared memory,
message passing), modeled as an object. The processes have applications and local modules
that implement other objects. (Processes are essentially computing entities, and they could
be modeled as I/O Automata [28].) Each object offers an interface formed by operations
that can be invoked by applications and modules of other objects. An execution of this
system is an execution of the applications of all the processes and the execution of the object
operations these applications invoke (directly or by execution of operations in other objects).

3.2 Components
In the framework, an execution of a distributed system is described with 6 (potentially
infinite) sets. As shown in Figure 2, these sets are in relation to each other.

OPODIS 2024

4:6 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

Processes: contains all processes pi (of identity i) of the system execution, where the
pi.type ∈ {correct, faulty} attribute is the type of pi (either correct or faulty, see Sec-
tion 3.5).
Objects: contains all the objects of the system (e.g., a channel, a register, a stack, etc.). An
object is associated with a set of operations (the interface) that processes can execute on it.
Operations: contains all the operations op that can be executed on some object op.obj ∈
Objects, where the op.name attribute is the name of op (e.g., write or read), the op.type ∈
{normal, notif} attribute is the type of op (either it is a normal operation or a notification
operation, see Section 3.3), and the op.V , op.S, and op.L attributes are predicates respectively
defining the invocation validity, safety, and liveness of the operation (see Section 4).
OpExes: contains all operation executions (op-ex for short) o of an operation o.op ∈
Operations by a process o.proc ∈ Processes. When an operation is executed, it produces an
invocation event and a response event. Hence, an op-ex o is the pair (o.inv, o.res) of the
invocation and the response events of o. If o.op.type = notif then op-ex o has no invocation
event, i.e., o.inv = ⊥ (see Section 3.3).
Events: contains all the events e in OpExes, where the e.value attribute is the value of the
event (i.e., the input or output value of an op-ex, see Section 3.3). The set Events does not
contain the ⊥ value, which denotes the absence of an event.
EventOrder : corresponds to the total order of the events in Events, represented as a set of
event pairs ep = (ep.e1 , ep.e2). For the sake of simplicity, we denote this total order with <

over all elements of Events as follows: < ≜ {(ep.e1 , ep.e2) | ∀ ep ∈ EventOrder}. The order
< defines the temporal ordering of events, i.e., e<e′ means event e happens before event e′.

3.3 Notation
As described, an op-ex o ∈ OpExes is a pair (i, r) where i = o.inv and r = o.res. An op-ex
o ∈ OpExes can have the following configurations:

o = (i, r), where i, r ∈ Events, i ̸= r, and i < r: in this case, o is said to be a complete
op-ex (an operation invocation that has a matching response),
o = (i,⊥), where i ∈ Events: in this case, o is said to be a pending op-ex (this notation is
useful to denote operation calls by faulty processes or operation calls that do not halt),
o = (⊥, r), where r ∈ Events: in this case, o is said to be a notification op-ex (i.e., its
operation is not a callable operation, but an operation spontaneously invoked by the
object to transmit information to its client).

The “≡” relation indicates that some op-ex o follows a given form or the same form as
another op-ex: an op-ex o could be of the form “read op-ex on register R by process pi which
returned output value v”, which we denote “o ≡ R.readi()/v”. If the object, process ID,
parameter, or return value are not relevant, we omit these elements in the notation: the form
“L.geti(j)/v op-ex on list L, process pi, index j as input value and returned output value v”
could simply be written “get()”. If only some (but not all) parameters can have an arbitrary
value, we can use the “−” notation: the form “S.set(k, v) op-ex on key-value store S for key
k and for any value v” could be written “S.set(k,−)”. As notifications have no input, the ()
parameter parentheses are omitted for notifications: the form “receive notification op-ex of
message m by receiver process pi from sender process pj” is denoted “receivei/(m, j)”. Lastly,
we denote by “op” any op-ex operation: the form “any op-ex on register R (write or read)”
could thus be written “R.op()”. Pending op-exes and complete op-exes with no return value
can be respectively denoted with a ⊥ and ∅ symbol as their output value. For instance, the

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:7

forms “All pending op-exes” and “All complete op-exes with no return value” can be written
“op()/⊥” and “op()/∅”, respectively. By abuse of notation, to refer to any op-ex of a set O

that follows a given form f , we can write f ∈ O, for example R.write(v) ∈ O.

3.4 Histories

The six sets of the framework are used to describe an execution of a distributed system. We
are interested in describing all possible executions of the system for a given set of Objects
and Operations. Hence, each such system execution is described with Events, OpExes,
EventOrder , and Processes. We call this a history. Note that a history captures a system
execution via the events and op-exes observed in the objects’ interfaces.

Hence, a history of a distributed system is a tuple H = (E, <, O, P), where E = Events
is the set of events, < = EventOrder is a strict total order of events in E, O = OpExes is the
set of op-exes, and P = Processes is the set of processes. There are some natural constraints
on a history that cannot be expressed directly on the diagram of Figure 2.

Event validity: Every event must be part of exactly one op-ex.
Operation validity: If an operation is a notification, then all its op-exes must be
notification op-exes, otherwise, they must all be complete or pending op-exes.

In the sequel, we will often consider subhistories of a history H = (E, <, O, P). For
instance, it is useful to consider the subhistory obtained by projecting a history to one
particular object. Hence, given history H = (E, <, O, P) and object x, we denote by H|x
the subhistory containing only the events of E applied to x and the op-exes of O applied to
x, and the corresponding subset of <. The concepts of legality, consistency, and correctness
defined in the next sections can hence be applied to histories and subhistories.

3.5 Process Faults

Our framework considers two very general types of process failures: omission faults and
Byzantine faults. In the framework’s model presented in Figure 2, for any p ∈ Processes,
omission faults concern p only if p.type = faulty.omitting, and Byzantine faults concern
p only if p.type = faulty.byzantine. Processes p of type p.type = correct are subject to
none of these faults.

Omissions correspond to missing events, like op-ex invocations that do not have a matching
response, for whatever reason, producing pending op-exes. We assume that such omitting
processes, although they may suffer omissions at any time, follow their assigned algorithm.
A crash fault is a special case of omission fault on a process p, where there exists a point τ

in the sequence of events of the history (the crash point) such that, p has no event after τ in
the sequence. Observe that omission faults also account for benign dynamic process failures
like crash-recovery models.

On the other hand, Byzantine processes may arbitrarily deviate from their assigned
algorithm (for instance, because of implementation errors or attacks). Strictly speaking,
given that their behavior can be arbitrary, we cannot say that Byzantine processes execute
actual op-exes on the same operations and objects as non-Byzantine processes. For instance,
Byzantine processes may simulate op-exes that can appear legitimate to other processes. We
further discuss Byzantine faults in Section 6.

Observe that by adding more constraints to the model, new failure subtypes can be
derived from these two basic failure types.

OPODIS 2024

4:8 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

4 Object Specification and History Legality

4.1 Object Specification
In our formalism, we specify an object using a set of conditions that are defined for the
operations and applied to the op-exes of the object. There are two types of such conditions
(that we express as predicates): preconditions (invocation validity) and postconditions (safety
and liveness). Every operation of every object has a V precondition and two S and L
postconditions (if not given, they are assumed to be satisfied). We will use the register object
as an example to understand better the notations defined below. A register R is associated
with two operations, R.read()/v and R.write(v), where the former returns the value of R and
the latter sets the value of R to v, respectively.

Op-ex context. The context of an op-ex o is the set of all op-exes preceding o in the same
object with respect to a binary relation → defined over O.

▶ Definition 1 (Context of an op-ex). The context of an op-ex o ∈ O with respect to a
binary relation → over O is defined as ctx(o, O,→) ≜ (Oc,→c), where Oc ≜ {o′ ∈ O |
o′→o, o.op.obj = o′.op.obj} and →c ≜ {(o′, o′′) ∈ → | o′, o′′ ∈ Oc ∪ {o}}.

For instance, the context of a R.read()/v op-ex is made of all the previous op-exes of register
R with respect to a given → relation. Note that pending op-exes can be part of the context
of other op-exes, and thus influence their behavior (and especially their return value in the
case of complete op-exes or notifications).

Preconditions. The preconditions of an object are the use requirements of this object by its
client that are needed to ensure that the object works properly. Typically, a precondition
for the operation on an object can require that the input (parameters) of this operation is
valid, or that some op-ex required for this operation to work indeed happened before. For
instance, we cannot have a read op-ex in register R if there was no preceding write op-ex in
R. Another example of precondition for the divide(a, b)/d operation that returns the result d

of the division of number a by number b, is that b must not be zero. These preconditions are
given for each operation of an object by the invocation validity predicate V.

▶ Definition 2 (Invocation validity predicate V). Given an operation op ∈ Operations, its
invocation validity predicate op.V(o, ctx(o, O,→)) indicates whether an op-ex o = (i̸=⊥, r) ∈
OpExes of op (i.e., o.op ≡ op) respects the usage contract of the object given its context
ctx(o, Oc,→c).

Postconditions. The postconditions of an object are the guarantees provided by this object
to its client. The postconditions are divided into two categories: safety and liveness. Broadly
speaking, safety ensures that nothing bad happens, while liveness ensures that something
good will eventually happen. For a given op-ex o, safety is interested in the prefix of op-exes
of o (i.e., its context), while liveness is potentially interested in the whole history of op-exes.
For example, for a register object R, the safety condition is that the value v returned by
a R.read()/v is (one of) the latest written values, while the liveness condition is that the
R.read() and R.write() op-exes always terminate. These postconditions are given for each
operation of an object by the safety predicate S and the liveness predicate L.

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:9

▶ Definition 3 (Safety predicate S). Given an operation op ∈ Operations, its safety predicate
op.S(o, ctx(o, O,→)) indicates whether r.value is a valid return value for op-ex o = (i, r ̸=⊥) ∈
OpExes of op (i.e., o.op ≡ op) in relation to its context ctx(o, Oc,→c).

We can see in the above definition that the op.S(o, ctx(o, O,→)) predicate is not defined
if o = (i,⊥), that is, if o is a pending op-ex.

▶ Definition 4 (Liveness predicate L). Given an operation op ∈ Operations, its liveness
predicate op.L(o, H,→) indicates whether an op-ex o = (i, r) ∈ OpExes of op (i.e., o.op ≡ op)
respects the liveness specification of op.

Example. As a complete example, the following is the specification of a single-writer single-
reader (SWSR) shared register R using the above conditions. Let pw and pr be the writer and
reader processes, respectively. Recall that ctx(o, O,→) = (Oc,→c) is the context of op-ex
o. Let us define predicate OpTermination(o) ≜ (o.proc.type = correct) =⇒ (o ̸≡ op()/⊥),
which forces an op-ex o to have a response if executed by a correct process.

Operation read. If o ≡ R.read()/v, then we have the following conditions.

read.V(o, (Oc,→c)) ≜ (o.proc = pr) ∧ (∃ o′ ≡ R.write(−) ∈ Oc).
read.S(o, (Oc,→c)) ≜ v ∈ {v′ | ∃ o′≡R.write(v′) ∈ Oc,∄ o′′≡R.write(−) ∈ O′

c : o′→co′′}.
read.L(o, H,→) ≜ OpTermination(o).

The V predicate states that only the reader process can read and the register must have
been previously written. The S predicate states that a read must return one of the latest
written values. The L predicate prevents a read op-ex of a correct process to be pending.

Operation write. If o ≡ R.write(v), then we have the following condition.

write.V(o, (Oc,→c)) ≜ o.proc = pw. write.L(o, H,→) ≜ OpTermination(o).

Observe that the S predicate is not provided and is hence assumed to be always satisfied.

4.2 History Legality
We now define the notion of history legality.

▶ Definition 5 (History validity, safety, and liveness). Given a history H = (E, <, O, P) and a
relation → on O, the following predicates define the validity, safety, and liveness of H.

Validity(H,→) ≜ ∀ o = (i ̸=⊥, r) ∈ O : o.op.V(o, ctx(o, O,→)).
Safety(H,→) ≜ ∀ o = (i, r ̸=⊥) ∈ O : o.op.S(o, ctx(o, O,→)).

Liveness(H,→) ≜ ∀ o = (i, r) ∈ O : o.op.L(o, H,→).

Notice that, for an op-ex o, if o is a notification, we do not need to verify its invocation
validity, and if o is a pending op-ex, we do not need to verify its safety.

▶ Definition 6 (Legality condition). Given a history H = (E, <, O, P) and a relation → on
O, the legality condition is defined as

Legality(H,→) ≜ {Validity(H,→), Safety(H,→), Liveness(H,→)}.

Legality is defined as a set of clauses (or constraints) on a history H and an op-ex relation →.
Informally, a history H is legal if and only if all clauses of Legality(H,→) evaluate to true.

OPODIS 2024

4:10 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

5 Consistency Conditions

In the previous section we have presented how object legality can be specified using operation
conditions, abstracting the consistency model with a binary order relation →. In this section
we describe how to define order relations → to extend legality with different consistency
conditions. We first define reusable predicates describing certain constraints on the op-ex order
→ (Section 5.1) and then we define common consistency conditions (Section 5.2) to showcase
the power of the formalism. In addition, we provide the definitions of set-linearizability [29]
and interval-linearizability [10], which are new interesting consistency conditions; objects
with these consistencies do not have sequential specifications [11] (Section 5.3).

5.1 Op-ex Order Relations
We first define partial and total orders within our framework.

▶ Definition 7 (Generic strict orders). Given an arbitrary set S and an arbitrary binary
relation ≺ over the elements of S, the following predicates define strict partial order and
strict total order.

PartialOrder(S,≺) ≜ (∀ e ∈ S : e ̸≺ e) ∧ (∀ e, e′, e′′ ∈ S : e ≺ e′ ≺ e′′ =⇒ e ≺ e′′).
TotalOrder(S,≺) ≜PartialOrder(S,≺) ∧ (∀ e, e′ ∈ S, e ̸= e′ : e ≺ e′ ∨ e′ ≺ e).

We call these orders “strict” because they are irreflexive. Observe that the asymmetry
property is redundant for strict orders because it directly follows from irreflexivity and
transitivity. As we can also see, total order adds the connectedness property to partial order.

▶ Definition 8 (Basic orders). Given a history H = (E, <, O, P) and a relation → on the set
of op-exes O, the following predicates define history order, process order and FIFO order:

HistoryOrder(H,→) ≜ ∀ o = (i, r), o′ = (i′, r′) ∈ O, r ̸= ⊥ :
((i′ ̸= ⊥ ∧ r<i′) ∨ (i′ = ⊥ ∧ r<r′)) =⇒ (o→o′ ∧ o′ ↛o).

ProcessOrder(H,→) ≜ ∀ pi ∈ P : HistoryOrder(H|pi,→) ∧ TotalOrder(O|pi,→).
FIFOOrder(H,→) ≜ ∀ oi, o′

i ∈ O|pi, oj , o′
j ∈ O|pj :

(oi→o′
i→oj→o′

j ∧ oi→o′
j) =⇒ (oi→oj ∧ o′

i→o′
j).

Note that the above predicates do not define “classic” order relations (strict or not) per
se, as they do not guarantee all the required properties. These predicates define how a
“visibility” relation → between op-exes of history H should look in different contexts, in the
sense that the behavior of an op-ex is determined by the set of op-exes it “sees”.

In HistoryOrder , we check if → respects the event order <: if two op-exes are not
concurrent with respect to the < order, then the oldest one must precede the newest one.
Note that we distinguish whether the second op-ex o′ is a notification or not.
In ProcessOrder , we check if → totally orders the op-exes of each process pi while also
respecting the event order of pi.
In FIFOOrder , we check that, if an op-ex of any given process sees some other op-
ex of another process, then it also sees all the previous op-exes of the latter process.
Furthermore, we also check that the set of op-exes seen by the op-exes of a given process is
monotonically increasing, i.e., that a given op-ex sees all the op-exes that its predecessors
(of the same process) saw. More details about FIFOOrder can be found in Section B.

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:11

Legality Serializability SeqConsistency Linearizability

ProcessConsistency FIFOConsistency CausalConsistency

IntLinearizability SetLinearizability

Total order

Figure 3 Hierarchy of the consistencies defined in this paper and their relative strengths [30].

5.2 Classic Consistency Conditions

This section defines common consistency conditions from the literature. They are represented
as sets of clauses, extending those in Legality and constraining the → op-ex order.

▶ Definition 9 (Classic consistency conditions). Given a history H = (E, <, O, P) and a
relation → on O, the following sets of clauses respectively define process consistency, FIFO
consistency [26], causal consistency [2, 31], serializability [5], sequential consistency [24] and
linearizability [20].

ProcessConsistency(H,→) ≜ Legality(H,→) ∪ {ProcessOrder(H,→)}.
FIFOConsistency(H,→) ≜ ProcessConsistency(H,→) ∪ {FIFOOrder(H,→)}.

CausalConsistency(H,→) ≜ FIFOConsistency(H,→) ∪ {PartialOrder(O,→)}.
Serializability(H,→) ≜ Legality(H,→) ∪ {TotalOrder(O,→)}.

SeqConsistency(H,→) ≜ Serializability(H,→) ∪ CausalConsistency(H,→).
Linearizability(H,→) ≜ SeqConsistency(H,→) ∪ {HistoryOrder(H,→)}.

Note that the above Serializability condition strays away from the traditional definition
of serializability, as it considers that a transaction (originally defined as an atomic sequence
of op-exes [5]) is the same as a single op-ex. Likewise, as discussed in detail in Section B, our
definition of FIFOConsistency differs from the traditional definition of PRAM consistency.

We illustrate in Figure 3 the relations between all the consistency conditions defined in
this section. In this figure, if we have C1 → C2 for two consistency conditions C1 and C2,
then it means that C2 is stronger than C1, and thus, that C2 imposes more constraints on the
order of op-exes. The conditions inside the red rectangle are conditions that impose a total
order of op-exes. Combining these consistency conditions with other object specifications
allows us to obtain multiple consistent object specifications (see Section C.2).

5.3 Set- and Interval-Linearizability Definitions

This section adds set-linearizability [29] and interval-linearizability [10] to the repertoire
of consistency conditions supported by the framework. These are interesting because they
define objects with no sequential specification [11]. We first define interval and set orders.

▶ Definition 10 (Set and interval orders). Given a history H = (E, <, O, P) and a relation
→ on O, the following predicates define interval and set orders:

IntOrder(H,→) ≜ (∀ o ∈ O : o ↛o) ∧ (∀ o, o′ ∈ O, o ̸= o′ : o→o′ ∨ o′→o)
∧ (∀ o, o′, o′′ ∈ O : o→o′′ =⇒ (o→o′ ∨ o′→o′′)).

SetOrder(H,→) ≜ IntOrder(H,→) ∧ (∀ o, o′, o′′ ∈ O, o ̸= o′′ : o→o′→o′′ =⇒ o→o′′).

OPODIS 2024

4:12 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

p1

p2

p3

time linearization points

propose(1)/{1, 2}

propose(2)/{1, 2}

propose(3)/{1, 2, 3}

Figure 4 A set-linearizable execution of lat-
tice agreement that is not linearizable.

p1

p2

p3

time linearization points

propose(1)/{1, 2}

propose(2)/{1, 2, 3}

propose(3)/{1, 2, 3}

Figure 5 An interval-linearizable execution
of lattice agreement that is not set-linearizable.

In IntOrder , an op-ex is represented as a time interval, and we check that it can see
only all op-exes with which it overlaps, and all previous op-exes. The first clause guarantees
irreflexivity (an op-ex cannot see itself), the second connectedness (all op-exes are in relation
with each other), and the last one ensures that no forbidden pattern is present.

In SetOrder , we check that an op-ex can see only all other op-exes of its equivalence
class (except itself), and all previous op-exes. In addition to IntOrder , SetOrder guarantees
a weakened version of transitivity, allowing two-way cycles between two or more op-exes,
thus creating equivalence classes. Let us remark that the weakened transitivity property of
SetOrder implies the last clause of IntOrder .

Leveraging the above order relations, we can define set- and interval-linearizability.

▶ Definition 11 (Set- and interval-linearizability). Given a history H = (E, <, O) and a relation
→ on O, the following predicates define set-linearizability [29] and interval-linearizability [10].

IntLinearizability(H,→) ≜ Legality(H,→) ∪ {HistoryOrder(H,→), IntOrder(H,→)}.
SetLinearizability(H,→) ≜ IntLinearizability(H,→) ∪ {SetOrder(H,→)}.

To illustrate the set- and interval-linearizability consistency conditions, we provide some
examples of executions of lattice agreement in Figures 4 and 5, taken from [11]. Lattice
agreement is an object that provides a single operation propose(v)/V , where v is a value and
V is a set of proposed values. Its only safety property is that V must contain all previously
or concomitantly proposed values along with the value being proposed, and its only liveness
property is that the propose operation must eventually terminate for correct processes.

In the set-linearizability example of Figure 4, op-exes form two equivalence classes
{propose(1), propose(2)} and {propose(3)}. The last clause of SetOrder enables the cre-
ation of said equivalence classes. Indeed, we have propose(1)→propose(2)→propose(3)
and propose(1)→propose(3). Besides, we also have propose(2)→propose(1)→propose(3) and
propose(2)→propose(3). This shows that the forbidden pattern in set-linearizability is, for
any op-exes o, o′, o′′ such that o ̸= o′′, there is o→o′→o′′ and o′′↛o′↛o. Hence, the weakened
transitivity clause of SetOrder precludes this pattern. Note that the o ̸= o′′ condition in this
clause prevents the contradiction of this clause with the irreflexivity property.

In the interval-linearizability example of Figure 5, equivalence classes can be more complex.
More precisely, two equivalence classes can intersect, but it does not necessarily imply that
both equivalence classes can “see” each other. Here, op-exes form two different equivalence
classes {propose(1), propose(2)} and {propose(2), propose(3)}. This shows that the forbidden
pattern in interval-linearizability is: for any op-exes o, o′, o′′ that are connected but not
concurrent, i.e., (o→o′→o′′ ∧ o′′ ↛o′ ↛o), we also have o′′→o. The clause precluding
this pattern is thereby (o→o′→o′′ ∧ o′′ ↛o′ ↛o) =⇒ o′′ ↛o. However, because of the
connectedness property, the o→o′→o′′ part of the implication is redundant, and the formula
can be simplified to o′′ ↛o′ ↛o =⇒ o′′ ↛o. Finally, by applying the contrapositive, we
obtain the formulation of the clause that appears in IntOrder : o→o′′ =⇒ (o→o′ ∨ o′→o′′).

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:13

6 History Correctness

Thus far, we have defined Legality (Section 4) and extended it to the Consistency (Section 5)
of a history H with respect to an op-ex order →, as a set of clauses C. We now define the
correctness of a history H with respect to a set of clauses C when no process is Byzantine.

▶ Definition 12 (Correctness predicate). Given a history H = (E, <, O, P) and a set of
clauses C, the following predicate describes the correctness of H with respect to C:

Correctness(H, C) ≜ ∃ → ∈ O2 :
∧

C∈C
C(H,→).

Intuitively, a history H is correct with respect to a set of clauses C if it is possible
to find a relation → on the op-exes of H, such that all clauses in C are satisfied. As an
example, Correctness(H, ProcessConsistency) is the predicate that decides whether history
H is correct under ProcessConsistency, which according to its definition in Section 5, requires
that the clauses composing Legality (see Section 4) and OpProcessOrder (see Section 5) are
satisfied by H. Note by the above definition of correctness, it is apparent that the more
clauses are present, the fewer histories, and thus executions, will satisfy all the clauses. This
demonstrates that when stronger, more restrictive, semantics are considered, the more refined
is the set of executions that can provide them.

In a similar fashion, we can derive a more general definition where processes may exhibit
Byzantine behavior. To model the set of all possible Byzantine behaviors, we introduce the
ByzHistories function, which, given a history H, returns the set of all modified histories H ′,
where the op-exes by non-Byzantine (i.e., correct or omitting) processes are the same in
H and H ′, but Byzantine processes are given any arbitrary set of pending op-exes.

▶ Definition 13 (Byzantine histories function). Given history H = (E,<,O, P), the
ByzHistories(H) function returns the set of all possible histories H ′ = (E′, <′, O′, P) s.t.

O′ = {o ∈ O | o.proc.type ̸= faulty.byzantine} ∪ {any arbitrary set of pending
op-exes by p | ∀ p ∈ P, p.type = faulty.byzantine},

E′ = {i, r ∈ (i, r) ∈ O′}, and <′ ⊆ E′2 : < ⊆ <′.

Informally, given a base history H = (E, <, O, P) and a modified history H ′ =
(E′, <′, O′, P) ∈ ByzHistories(H), the set O′ is constructed by keeping all op-exes of O

by non-Byzantine processes and creating arbitrary pending op-exes for Byzantine processes,
the set E′ is the set of all events appearing in O′, and the order <′ is an arbitrary total order
on E′ extending <. Notice that we only populate the op-exes of Byzantine processes using
pending op-exes, and not complete op-exes or notifications, as we do not guarantee anything
for Byzantine processes. Hence, we define correctness with Byzantine processes as follows.

▶ Definition 14 (Byzantine Correctness predicate). Given a history H = (E, <, O, P) and a
set of clauses C, the following predicate describes the Byzantine correctness of H:

Correctness(H, C) ≜ ∃ H ′ = (E′, <′, O′, P) ∈ ByzHistories(H),∃ → ∈ O′2 :
∧

C∈C
C(H ′,→).

Intuitively, a history H with Byzantine processes is correct with respect to a set of clauses
C if it is possible to construct a modified history H ′ (where Byzantine processes perform
arbitrary op-exes) and an arbitrary relation → on the op-exes of H ′, such that all clauses in
C are satisfied. To create the set of all possible modified histories, we use the ByzHistories

OPODIS 2024

4:14 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

function. In other words, history H is correct if and only if we can “fix” it by changing only
the op-exes of the Byzantine processes to make it correct with respect to C. In the absence
of Byzantine processes, Definition 14 collapses to Definition 12.

7 Asynchronous Resilient Consensus Impossibility

This section further exemplifies the framework’s utility by showing how it can be used to
construct axiomatic proofs. Particularly, we demonstrate the FLP impossibility of having
consensus in an asynchronous system with process failures [14]. Due to page limitation, we
provide a high-level overview of the proof in this section, but the full developments can be
found in Section A.

The Consensus object. Without loss of generality, we consider a simplified version of the
consensus object C , which only has one notification operation, C .decidei(v), returning a value
v ∈ V (we have binary consensus if V = {0, 1}) to process pi. Proving the impossibility of
this weaker version makes our proof more general. We give in the following the semantics of
the decide notification operation. If o ≡ C .decidei/v, then we have the following predicates.

decide.S(o, (Oc,→c)) ≜ (v ∈ V) ∧ (∀ C .decidej/v′ ∈ Oc : v = v′).
decide.L(o, H,→) ≜ ∃ C .decidej/− ∈ O.

The S predicate states that the values decided are in the appropriate set V and that, in
the context of each op-ex, all decided values are the same. Observe that we allow the same
process to decide several times as long as the decided values are the same. The L predicate
states that some process must decide.

Set of states of the system (Σ). In the proof, we consider a system with a consensus
object C and a communication medium object M . We use the (potentially infinite) set
Histories to capture all the histories of the system executions. From each execution, a history
is obtained that contains only the events of objects C and M in the order they occurred.
From these histories, we will construct a (potentially infinite) set Σ of possible states of the
system. Each state σ ∈ Σ is a (potentially infinite) set of events. Intuitively, a state σ is
the collection of local states of all system processes pi, represented by the totally-ordered
local events that pi has experienced. We also assign an index to each event in a history
H = (E, <, O, P) ∈ Histories. The index assigned to event e ∈ E is an attribute e.idx that
is the position of e in the sequence of events of its process e.proc. This sequence is obtained
by ordering with < the set E|e.proc.

A special subset of Σ is the set of complete states, defined as Complete(Σ) ≜ {E |
(E, <, O, P) ∈ Histories}. Consider now any history H = (E, <, O, P) ∈ Histories. We say
that state σ = E ∈ Complete(Σ) ⊆ Σ is a state extracted from H.

The Continuity property. This property ensures that, from every nonempty state σ ∈ Σ,
a previous substate σ′ = σ \ {e} can be obtained by removing one event e using the following
recursive procedure exhaustively. If σ ∈ Σ is a state extracted from H, let e be the event in
σ with the largest index e.idx of those from process e.proc, then σ′ = σ \ {e} is also a state
in Σ extracted from H. This procedure ends when the empty state ∅ is reached (which is
also in Σ). Hence, Σ contains a state σ iff there is a history H = (E, <, O, P) ∈ Histories
such that the events in σ from every process p ∈ P are a prefix of the sequence of all events
from p in E ordered by <.

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:15

The Asynchrony axiom. An asynchronous system’s set of states Σ must satisfy the
Asynchrony axiom, which requires that, if two states differ only in their last respective
events, which are from different processes, their union is also a state. Observe that this
must hold even if the two states are extracted from different histories. We point out that
our impossibility proof is agnostic of the communication medium object M , as long as the
medium satisfies asynchrony as defined above. For completeness we show in Section F that
atomic registers and message-passing objects satisfy this axiom.

The Val function. Our impossibility proof relies on the notion of valence, which was first
introduced in [14]. We represent it as a function Val(σ), taking a state σ as a parameter,
and returning the set of all possible decision values that can be reached from this state
(by extending σ with more events, or because σ already contains some decide events). The
valence of a complete state is the set of all values that were decided in the histories from
which it was extracted. Moreover, the valence of an incomplete state is the union of the
valences of all the states obtained by adding one event to it. We call this last property
Branching. We say that a state σ ∈ Σ is univalent iff we have |Val(σ)| = 1, and we say that
it is multivalent iff we have |Val(σ)| > 1.

The NonEmptyValence lemma. This lemma uses the L predicate of the C object to
show that there is no state σ with an empty valence, |Val(σ)| = 0 (proof in Section A).

The Termination lemma. This lemma shows that all complete states have a finite
univalent sub-state (proof in Section A).

The Resilience axiom. This axiom states that, for any process, any multivalent state can
be extended by an event that is not from this process. This ensures that even if one process
stops taking steps (i.e., crashes), the system can still progress and reach a decision.

The NonTriviality axiom. This axiom states that there exist 2 states with different
valences, implying that there are histories deciding different values.

The impossibility theorem. The proof of the impossibility of asynchronous resilient con-
sensus consists in showing that a contradiction lies in the system of axioms that we have
created. Firstly, we show that NonTriviality, Continuity, and Branching imply the existence
of a multivalent state. From this multivalent state and using Termination, we can find a
critical state, i.e., a multivalent state for which all extensions are univalent. By Branching
from the critical state, we can find two univalent 1-event extensions with different valences.
Let us consider the two distinct events, e and e′, that extend the critical state into these
two superstates with different valences. If e.proc ̸= e′.proc, then Asynchrony applies, and we
can create an extension of the critical state containing both e and e′, however, by Branching
and NonEmptyValence, this state would be multivalent, which contradicts the definition of a
critical state. Otherwise, if e.proc = e′.proc, then by Resilience, we can create another 1-event
extension of the critical state, whose valence is different from at least one of the two previous
extensions (that of e or that of e′). This makes us fall back to the case e.proc ̸= e′.proc, again
yielding a contradiction. Therefore, in all cases, the system of axioms leads to a contradiction.
(The details of the proof can be found in Section A).

OPODIS 2024

4:16 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

8 Conclusion

In this paper, we have introduced a modular framework for specifying distributed objects.
Our approach departs from sequential specifications, and it deploys simple logic for specifying
the interface between the system’s components as concurrent objects. It also separates
the object’s semantics from other aspects such as consistency and failures, while providing
a structured precondition/postcondition style for specifying objects. We demonstrate the
usability of our framework by specifying communication media, services, and even problems,
as objects. With our formalism, we also provide a proof of the impossibility of consensus that
is agnostic of the medium used for inter-process communication. The simple specification
examples we presented in this paper were for illustration and understanding the formalism.
Of course, we acknowledge that some combinations of system model, object, and consistency
may not be specified with the current version of the framework. We are confident that our
framework’s expressiveness (via the specification and combination of concurrent objects)
enables the specification of more complex distributed systems, including ones with dynamic
node participation. As our formalism gets used and flourishes with object definitions, its
usefulness will be apparent both to distributed computing researchers and practitioners
seeking for a modular specification of complex distributed objects. In addition, we plan to
explore how to feed our specification into proof assistants such as Coq [22] and Agda [6].

References
1 Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors. Communicating Sequential

Processes: The First 25 Years, Symposium on the Occasion of 25 Years of CSP, volume 3525
of Lecture Notes in Computer Science. Springer, 2005.

2 Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal
memory: Definitions, implementation, and programming. Distributed Comput., 9(1):37–49,
1995. doi:10.1007/BF01784241.

3 Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani. Asynchronous Byzantine
reliable broadcast with a message adversary. Theor. Comput. Sci., 978:114110, 2023. doi:
10.1016/J.TCS.2023.114110.

4 Hagit Attiya and Jennifer L. Welch. Distributed computing – Fundamentals, simulations, and
advanced topics (2. ed.). Wiley series on parallel and distributed computing. Wiley, 2004.

5 Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

6 Ana Bove, Peter Dybjer, and Ulf Norell. A Brief Overview of Agda – A Functional Language
with Dependent Types. In Theorem Proving in Higher Order Logics, pages 73–78, Berlin,
Heidelberg, 2009. Springer. doi:10.1007/978-3-642-03359-9_6.

7 Gabriel Bracha. Asynchronous Byzantine agreement protocols. Inf. Comput., 75(2):130–143,
1987. doi:10.1016/0890-5401(87)90054-X.

8 Sebastian Burckhardt. Principles of eventual consistency. Found. Trends Program. Lang.,
1(1-2):1–150, 2014. doi:10.1561/2500000011.

9 Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated
data types: specification, verification, optimality. In Proc. 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’14), pages 271–284. ACM, 2014.
doi:10.1145/2535838.2535848.

10 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Unifying concurrent objects and
distributed tasks: Interval-linearizability. J. ACM, 65(6):45:1–45:42, 2018. doi:10.1145/
3266457.

11 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. A linearizability-based hierarchy
for concurrent specifications. Commun. ACM, 66(1):86–97, 2023. doi:10.1145/3546826.

https://doi.org/10.1007/BF01784241
https://doi.org/10.1016/J.TCS.2023.114110
https://doi.org/10.1016/J.TCS.2023.114110
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/3266457
https://doi.org/10.1145/3266457
https://doi.org/10.1145/3546826

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:17

12 Shir Cohen and Idit Keidar. Tame the wild with Byzantine linearizability: Reliable broadcast,
snapshots, and asset transfer. In Proc. 35th Int’l Symposium on Distributed Computing
(DISC’21), volume 209 of LIPIcs, pages 18:1–18:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.DISC.2021.18.

13 E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never” revisited: On
branching versus linear time. In Proc. 10th ACM Symposium on Principles of Programming
Languages (POPL’83), pages 127–140. ACM Press, 1983. doi:10.1145/567067.567081.

14 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

15 Eli Gafni and Giuliano Losa. Invited paper: Time is not a healer, but it sure makes hindsight
20:20. In Proc. 25th Int’l Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS’23), volume 14310 of Lecture Notes in Computer Science, pages 62–74. Springer,
2023. doi:10.1007/978-3-031-44274-2_6.

16 Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical report, Cornell University, 1994.

17 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
1991. doi:10.1145/114005.102808.

18 Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. Unifying synchronous and asyn-
chronous message-passing models. In Proc 17th ACM Symposium on Principles of Distributed
Computing (PODC’98), pages 133–142. ACM, 1998. doi:10.1145/277697.277722.

19 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858–923, 1999. doi:10.1145/331524.331529.

20 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/78969.78972.

21 Gunnar Hoest and Nir Shavit. Towards a topological characterization of asynchronous
complexity (preliminary version). In Proc. 16th ACM Symposium on Principles of Distributed
Computing (PODC’97), pages 199–208. ACM, 1997. doi:10.1145/259380.259440.

22 Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq proof assistant a tutorial.
Rapport Technique, 178, 1997. URL: http://www.itpro.titech.ac.jp/coq.8.2/Tutorial.
pdf.

23 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

24 Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers, 28(9):690–691, 1979. doi:10.1109/TC.1979.1675439.

25 Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872–
923, 1994. doi:10.1145/177492.177726.

26 Richard J. Lipton and Jonathan S. Sandberg. PRAM: A scalable shared memory. Technical
Report TR-180-88, Princeton University, 1988.

27 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
28 Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms.

In Proc. 16th ACM Symposium on Principles of Distributed Computing (PODC’87), pages
137–151. ACM, 1987. doi:10.1145/41840.41852.

29 Gil Neiger. Set-linearizability. In Proc. 13th ACM Symposium on Principles of Distributed
Computing (PODC’94), page 396. ACM, 1994. doi:10.1145/197917.198176.

30 Matthieu Perrin. Spécification des objets partagés dans les systèmes répartis sans-attente.
(Specification of shared objects in wait-free distributed systems). PhD thesis, University of
Nantes, France, 2016. URL: https://tel.archives-ouvertes.fr/tel-01390700.

31 Matthieu Perrin, Achour Mostéfaoui, and Claude Jard. Causal consistency: beyond memory.
In Proc. 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’16), pages 26:1–26:12. ACM, 2016. doi:10.1145/2851141.2851170.

OPODIS 2024

https://doi.org/10.4230/LIPICS.DISC.2021.18
https://doi.org/10.1145/567067.567081
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/978-3-031-44274-2_6
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/277697.277722
https://doi.org/10.1145/331524.331529
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/259380.259440
http://www.itpro.titech.ac.jp/coq.8.2/Tutorial.pdf
http://www.itpro.titech.ac.jp/coq.8.2/Tutorial.pdf
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/41840.41852
https://doi.org/10.1145/197917.198176
https://tel.archives-ouvertes.fr/tel-01390700
https://doi.org/10.1145/2851141.2851170

4:18 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

32 Amir Pnueli. The temporal logic of programs. In Proc. 18th Symposium on Foundations of
Computer Science (FOCS’77), pages 46–57. IEEE Computer Society, 1977. doi:10.1109/
SFCS.1977.32.

33 Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems – An Algorithmic Ap-
proach. Springer, 2018. doi:10.1007/978-3-319-94141-7.

34 Nicola Santoro and Peter Widmayer. Time is not a healer. In Proc. 6th Symposium on
Theoretical Aspects of Computer Science (STACS’89), volume 349 of Lecture Notes in Computer
Science, pages 304–313. Springer, 1989. doi:10.1007/BFB0028994.

35 Nir Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76–84, 2011. doi:
10.1145/1897852.1897873.

36 Robert C. Steinke and Gary J. Nutt. A unified theory of shared memory consistency. J. ACM,
51(5):800–849, 2004. doi:10.1145/1017460.1017464.

37 Gadi Taubenfeld. On the nonexistence of resilient consensus protocols. Inf. Process. Lett.,
37(5):285–289, 1991. doi:10.1016/0020-0190(91)90221-3.

38 Paolo Viotti and Marko Vukolic. Consistency in non-transactional distributed storage systems.
ACM Comput. Surv., 49(1):19:1–19:34, 2016. doi:10.1145/2926965.

39 Roman Vitenberg and Roy Friedman. On the locality of consistency conditions. In Proc.
17th Int’l Conference on Distributed Computing (DISC’03), volume 2848 of Lecture Notes in
Computer Science, pages 92–105. Springer, 2003. doi:10.1007/978-3-540-39989-6_7.

40 Hagen Völzer. A constructive proof for FLP. Inf. Process. Lett., 92(2):83–87, 2004. doi:
10.1016/J.IPL.2004.06.008.

A Impossibility of Resilient Consensus in Asynchronous Systems

In this section, we use our framework to define a Consensus object and to provide an
axiomatic proof of the FLP impossibility of having reliable deterministic consensus in an
asynchronous system with process failures [14]. (This proof is inspired by [37].) After the
proof a discussion on its relevance is included.

A.1 Consensus Object
We start by providing the specification of a Consensus object using the conditions defined in
Section 4. Our Consensus object C has only one notification operation, C .decidei(v), which
returns a value v ∈ V (we have binary consensus if V = {0, 1}) to process pi. Observe that
we consider a simple version of a Consensus object without the common propose operation.
Proving the impossibility of this version makes our proof more general1.

Let Histories be the set of histories of a distributed system that contains a Consensus
object C . For every history H = (E, <, O, P) ∈ Histories, let H|C = (E|C, <|C, O|C, P)
be the subhistory containing only the events of E applied to C . Consider history H =
(E, <, O, P) ∈ Histories with set of op-exes O, a relation → on O, an op-ex o ∈ O|C , and its
context ctx(o, O,→) = (Oc,→c).

Operation decide. If o ≡ C .decidei/v, then we have the following predicates.

decide.S(o, (Oc,→c)) ≜ (v ∈ V) ∧ (∀ C .decidej/v′ ∈ Oc : v = v′).
decide.L(o, H,→) ≜ ∃ C .decidej/− ∈ O.

1 We could add a C .proposei(v) operation to the Consensus object that returns nothing. The validity
predicate of the decide() notification has to be adapted accordingly, but this does not affect the proof.

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/BFB0028994
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.1145/1017460.1017464
https://doi.org/10.1016/0020-0190(91)90221-3
https://doi.org/10.1145/2926965
https://doi.org/10.1007/978-3-540-39989-6_7
https://doi.org/10.1016/J.IPL.2004.06.008
https://doi.org/10.1016/J.IPL.2004.06.008

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:19

The S predicate states that the values decided are in the appropriate set V and that, in
the context of each op-ex, all decided values are the same. Observe that we allow the same
process to decide several times as long as the decided values are the same. The L predicate
states that some process must decide in every history.

The Consensus object must guarantee that exactly one value can be decided in each history.
We achieve this by combining the Consensus object specification with the Serializability
consistency.

▶ Assumption 15. For every history H = (E, <, O, P) ∈ Histories, we must have
Correctness(H|C , Serializability).

Observe that Serializability is only imposed on H|C , that is, we only impose a total order
on the decide op-exes. From the fact that →|C is a total order of the op-exes on object C
(imposed by Serializability), and the last clause of decide.S(), all decide op-exes in O return
the same value v.

▶ Observation 16. ∀ H = (E, <, O, P) ∈ Histories, (C .decidei/vi, C .decidej/vj ∈ O) =⇒
(vi = vj).

Observe that it is possible to have trivial implementations of a Consensus object in
which all histories decide the same hardcoded value v ∈ V . Unfortunately, this object is
not very useful. We will impose below a non-triviality condition that guarantees that there
are histories in which the Consensus object decides different values. Additionally, the set of
Histories must reflect the fact that the system is asynchronous and has n processes of which
up to one can crash.

A.2 Asynchronous Distributed System
We consider an asynchronous distributed system with n processes in which up to one process
can crash. This means that in any history H = (E, <, O, P) ∈ Histories of the system
|P | = n and at most one process p ∈ P has p.type = faulty. For convenience we assume
that P = {p1, p2, . . . , pn} in all histories.

The set of objects Objects contains a crash-resilient Consensus object C . In order to be
able to solve consensus, it also contains some object M that allows processes to communicate.
Observe that the events of this communication medium M are in the system histories.

The (potentially infinite) set Histories represents the system executions. From these
histories, we will construct a (potentially infinite) set Σ of possible states of the system. Each
state σ ∈ Σ is a (potentially infinite) set of events. Intuitively, a state σ is the collection of
local states of all system processes pi, represented by the totally-ordered local events that pi

has experienced.
To define the set Σ, we first assign an index to each event in a history H = (E, <, O, P) ∈

Histories. The index assigned to event e ∈ E is an attribute e.idx that is the position of e

in the sequence of events of its process e.proc. This sequence is obtained by ordering with
< the set E|e.proc. Observe that the sets of events of different histories may have common
events. After adding the indices, common events with the same index are the same, but with
different indices are different. For instance, the indices distinguish events in two histories in
which the same process receives the same messages from the same senders but in different
orders.

A special subset of Σ is the set of complete states, defined as Complete(Σ) ≜ {E |
(E, <, O, P) ∈ Histories}. Consider now any history H = (E, <, O, P) ∈ Histories. We say
that state σ = E ∈ Complete(Σ) ⊆ Σ is a state extracted from H. Then, we apply iteratively

OPODIS 2024

4:20 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

and exhaustively the following procedure to add more states to Σ: if σ ∈ Σ is a state extracted
from H, let e be the event in σ with the largest index e.idx of those from process e.proc,
then σ \ {e} is also a state in Σ extracted from H. This procedure ends when the empty
state σ = ∅ is reached (which is also in Σ). Hence, Σ contains a state σ iff there is a history
H = (E, <, O, P) ∈ Histories such that the events in σ from every process p ∈ Processes are
a prefix of the sequence of all events from p in E ordered by <.

Observe that this construction of the set Σ guarantees the following property:

Continuity(Σ) ≜ ∀ σ ∈ Σ \∅,∃ e ∈ σ : (σ \ {e} ∈ Σ).

Moreover, the set of states Σ of the asynchronous system must satisfy the following axiom.

▶ Definition 17 (Asynchronous distributed system axiom). The following predicate holds for
the set of states Σ in an asynchronous distributed system.

Asynchrony(Σ) ≜ ∀ σ∈Σ, (σ ∪ {e}∈ Σ ∧ σ ∪ {e′}∈ Σ ∧ e.proc ̸= e′.proc)
=⇒ (σ ∪ {e, e′}∈ Σ).

Asynchrony requires that if two states differ only in their last respective events, which
are from different processes, their union is also a state. Observe that this must hold even if
the two states are extracted from different histories. We point out that our impossibility
proof is agnostic of the communication medium object M , as long as the medium satisfies
asynchrony as defined above.

A.3 Valence
Our impossibility proof relies on the notion of valence, which was first introduced in [14].

▶ Definition 18 (Valence function Val). Given a state σ ∈ Σ, the valence of σ is a set of
values given by Val(σ) as follows.

If state σ ∈ Complete(Σ) and σ is extracted from history H = (E, <, O, P), then Val(σ) =
{v | C .decide()/v ∈ O}.
Branching(Σ): ∀ σ ∈ Σ \ Complete(Σ), Val(σ) =

⋃
σ′∈{σ∪{e}∈Σ|e/∈σ} Val(σ′).

Intuitively, the valence of a complete state is the set of all values that were decided in
the histories from which it was extracted, and, by Branching, the valence of an incomplete
state is the union of the valences of all its one-event extensions. We say that a state σ ∈ Σ is
univalent iff we have |Val(σ)| = 1, and we say that it is multivalent iff we have |Val(σ)| > 1.
Observe that it is not possible that |Val(σ)| = 0, due to the L predicate of the Consensus
object.

▶ Lemma 19. NonEmptyValence(Σ) ≜ ∀ σ ∈ Σ, |Val(σ)| ≥ 1.

Proof. From the L predicate (liveness) of the Consensus object specification, the valence
Val(σ) of a complete state σ ∈ Complete(Σ) extracted from some history H contains at
least one value. Let us consider now a state σ ∈ Σ \ Complete(Σ) and assume by induction
that all its one-event extension states σ′ ∈ {σ ∪ {e} ∈ Σ | e /∈ σ} have |Val(σ′)| ≥ 1. By
construction of the set of states Σ, there is at least one such one-event extension state σ′.
By Branching(Σ), if holds that Val(σ′) ⊆ Val(σ). Then, |Val(σ)| ≥ 1. ◀

Moreover, it holds that all complete states have a finite univalent sub-state.

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:21

▶ Lemma 20. Termination(Σ) ≜ ∀ σ ∈ Complete(Σ),∃ σ′∈Σ, σ′ ⊆ σ, |σ′| < +∞ : Val(σ) =
Val(σ′) ∧ |Val(σ′)| = 1.

Proof. Assume σ ∈ Complete(Σ) is extracted from history H = (E, <, O, P). First note
that |Val(σ)| = 1 from Observation 16. Let Val(σ) = {v} and C .decidei/v ∈ O. Then, in
σ there is a decide event ed from process pi that returns v. Then, σ′ = {e ∈ σ | (e.proc =
pi) ∧ (e<ed)} ∪ {ed} is finite and has Val(σ′) = {v}. ◀

A.4 Resilient Non-trivial Consensus
Let us now define the properties we require for a non-trivial Consensus object that is resilient
to any stopping process.

▶ Definition 21 (Resilient Non-trivial Consensus axioms). Given a system Σ, the following
predicates describe resilient non-trivial consensus.

NonTriviality(Σ) ≜ ∃ σ, σ′ ∈ Σ : Val(σ) ̸= Val(σ′).
Resilience(Σ) ≜ ∀ σ ∈ Σ, |Val(σ)| > 1,∀ p ∈ P,∃ σ′=σ ∪ {e} ∈ Σ : (e /∈σ) ∧ (p ̸=e.proc).

NonTriviality states that there exist 2 states with different valences, implying that there
are histories deciding different values. Resilience states that, for any process, any multivalent
state can be extended by an event that is not from this process. This guarantees that even if
one process stops taking steps (i.e., crashes), the system can still progress and eventually
reach a decision.

A.5 Impossibility Theorem
▶ Theorem 22. There cannot be a resilient non-trivial Consensus object in an asynchronous
system.

Proof. By way of contradiction, let us assume that we have a resilient non-trivial Consensus
object C in an asynchronous distributed system, and let Σ be the set of states obtained
from the set Histories of the system as described above. By construction, the properties
Continuity, Branching, NonEmptyValence, and Termination hold for Σ. By assumption of
an asynchronous distributed system, the axiom Asynchrony of Definition 17 holds. We also
assume that the axioms NonTriviality and Resilience of Definition 21 hold for Σ, since C is
resilient and non-trivial.

We first show that at least one multivalent state exists, i.e., ∃ σ ∈ Σ : |Val(σ)| >

1. From NonTriviality, we have two states σu and σu′ with different valences. From
NonEmptyValence(Σ), σu and σu′ do not have empty valences, so they are either multivalent
or univalent. If either σu or σu′ is multivalent, we are done, so let us assume that they are
both univalent. By Continuity and Branching, we can iteratively remove one event in these
states, until we reach a state σm (σm can be the empty set) that is contained in both σu and
σu′ such that Val(σu) ∪Val(σu′) ⊆ Val(σm). Hence, σm is multivalent.

From the fact that there is some multivalent state σm, we can inductively show that there
exists what we call a critical state σc, i.e., a multivalent state for which all extensions are
univalent:

∃ σc ∈ Σ : (|Val(σc)| > 1) ∧ (∀ σ′ ∈ Σ, σc ⊂ σ′ : |Val(σ′)| = 1).

Observe that σm is incomplete (by Termination(Σ)) and hence has one-event extensions. If
all extensions are univalent, σm satisfies the property of a critical state and we set σc = σm.
Otherwise, σm has some one-event extension that is multivalent. Then, we make σm this new

OPODIS 2024

4:22 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

multivalent extension and repeat this procedure. Observe that this process must eventually
end by finding a critical state, since otherwise, it means an infinite multivalent state exists,
which contradicts Termination(Σ).

Let us remark that, given that σc is a critical state, extending it by only one event
results in a univalent state. By Branching, there exists (at least) two univalent states
σv, σv′ ∈ Σ, with different valences and obtained extending σc with one event: σv = σc ∪ {e}
and σv′ = σc ∪ {e′} such that |Val(σv)| = |Val(σv′)| = 1 and Val(σv) ̸= Val(σv′). Let us
consider the two following cases.

Case 1: e.proc ≠ e′.proc. Given that the processes of the two events are distinct, from
Asynchrony, we have σ′ = σv ∪ σv′ ∈ Σ. Since σ′ = σv ∪ {e′}, from Branching it holds
that Val(σ′) ⊆ Val(σv), and since |Val(σ′)| ≥ 1 (NonEmptyValence), then we have
Val(σ′) = Val(σv). However, a similar argument yields that Val(σ′) = Val(σv′), which
contradicts Val(σv) ̸= Val(σv′).
Case 2: e.proc = e′.proc. By Resilience, we can extend σc with one event not from e.proc
to get a state σ′′ = σc ∪ {e′′} ∈ Σ, such that e′′.proc ≠ e.proc. From the criticality of
σc, σ′′ is univalent. Then, either Val(σ′′) ̸= Val(σv) or Val(σ′′) ̸= Val(σv′). Without
loss of generality, assume that Val(σ′′) ̸= Val(σv). Then, the contradiction follows from
Case 1. ◀

A.6 Discussion on Impossibility of Asynchronous Resilient Consensus
Consensus is a fundamental abstraction of distributed computing with a simple premise: all
participants of a distributed system must propose a value, and all participants must eventually
agree on one of the values that have been proposed [27]. But just as fundamental is the
impossibility theorem associated with consensus in the presence of asynchrony and faults. This
result of impossibility, colloquially known as the FLP theorem (for the initials of its authors),
was first shown in 1983 [14]. Later on, different approaches for proving similar theorems were
proposed (e.g., [15, 18, 21]). Notably, the impossibility of asynchronous resilient consensus
can be proved using algebraic topology and, more specifically, the asynchronous computability
theorem [19]. Constructive proofs follow another interesting approach [15, 40]: they explicitly
describe how a non-terminating execution of consensus can be constructed.2 Like [37], our
proof follows an axiomatic approach: the notion of asynchronous resilient consensus is defined
as a system of axioms, and then it is proved that this system is inconsistent, i.e., that there
is a contradiction.

Compared to previous impossibility proofs of asynchronous resilient consensus, we believe
our proof to be one of the most general, partly due to the more natural notations offered
by our specification formalism. In particular, unlike [14], which assumes that processes
communicate through a message-passing network, our proof is agnostic on the communication
medium (as long as such communication medium is asynchronous), hence it holds both for
systems using send/receive or RW shared memory. In addition, our proof is more general
than many previous proofs, in the sense that it shows an impossibility for a very weak version
of the problem.

2 In their paper [15], Gafni and Losa show the equivalence of 4 different models in terms of computability
power: asynchronous 1-resilient atomic shared memory, asynchronous 1-resilient message passing,
synchronous fail-to-send message passing, and synchronous fail-to-receive message passing. They then
present a constructive impossibility proof in the synchronous fail-to-send message-passing model, and
the impossibility in the other models directly follows. However, unlike ours, their proof still makes
assumption of the communication medium.

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:23

For instance, our proof differs from [14, 19], which assumes that, at least in some specific
cases, the value decided by the consensus instance is a value proposed by some process. In
contrast, our proof does not make this assumption, as it does not need to relate the inputs
(proposals) to the outputs (decisions) of the consensus execution.

B FIFO Consistency Addendum

Let us notice that the definition of the FIFOConsistency condition, as defined in Section 5.2,
differs from the traditional definition of PRAM consistency we encounter in the literature,
which is: “For each process pi, we can construct a total order of op-exes containing op-exes
of pi, and the update op-exes of all processes.” Here, update op-exes refer to the op-exes
that change the object’s internal state. For instance, for a register object with read and
write operations, the updates would be the write op-exes. However, this initial definition is
not completely accurate, because when we are constructing the total order of op-exes for
a process pi, if some update op-ex of another process pj returns a value, we do not want
to verify the validity of this value. Furthermore, adding a “∀ pi ∈ Processes” quantifier at
the start of the FIFOConsistency condition would make this condition structurally different
from the other conditions of Definition 9, as it would create a potentially different → relation
for every process of the system, instead of having a single global → relation like the other
conditions of Definition 9.

Hence, our definition of FIFOConsistency relies on our new predicate FIFOOrder(H,→),
which enforces a specific pattern on the → relation that characterizes the FIFO order of
op-exes. As a reminder, here are the definitions of FIFOOrder and FIFOConsistency given
in Sections 5.1 and 5.2, respectively.

FIFOOrder(H,→)≜ ∀ oi, o′
i ∈ O|pi, oj , o′

j ∈ O|pj :
(oi→o′

i→oj→o′
j ∧ oi→o′

j) =⇒ (oi→oj ∧ o′
i→o′

j).
FIFOConsistency(H,→) ≜ ProcessConsistency(H,→) ∪ {FIFOOrder(H,→)}.

pi

pj

oi o′
i

oj o′
j

Figure 6 Illustration of FIFOOrder : if the pattern represented by the 4 hard arrows is present
in the → op-ex relation, then the 2 dotted arrows must also be present in →.

As said in Section 5.1, intuitively, FIFOOrder checks that a given op-ex sees all its
predecessors on the same process, plus all the predecessors of the op-exes it sees on other
processes. Furthermore, the “knowledge” of the op-exes of a given process is monotonically
increasing with time: all the op-exes seen by a given op-ex must also be seen by its successors
on the same process. Figure 6 illustrates the FIFOOrder predicate: we consider two processes,
pi and pj (that can be the same process), that both have two op-exes (oi, o′

i, oj and o′
j). If

the first op-ex of pj sees the second op-ex of pi, and the second op-ex of pj sees the first
op-ex of pi, then the first and second op-ex of pj must respectively see the first and second
op-ex of pi.

OPODIS 2024

4:24 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

In the end, we believe that, with this FIFOOrder predicate, the resulting definition of
FIFOConsistency that we obtain is simpler than the original definition of PRAM consistency,
while still achieving the same goal.

C Examples: Reliable Broadcast Object

This section gives an example of object specification by formally defining the celebrated
reliable broadcast problem [7]. Let us remark that our formalism allows us to create object
specifications and consistency hierarchies that are completely independent of the failure
model: they hold both for omission (e.g., crashes) and Byzantine faults. Let us also observe
that our framework’s modularity enables us to define various consistent object specifications
effortlessly by simply combining an object definition with a consistency condition. For
example, by combining Linearizability with reliable broadcast (as specified in this section),
we obtain another abstraction, linearizable broadcast [12].

In the following, the specifications consist of a list of operations with their correctness
predicates, V , S, and L. For concision, if we do not explicitly specify the V , S or L predicates
for some operation, then it means that implicitly, these predicates always evaluate to true.
Furthermore, we use in the following logical formulas the ← symbol to denote an assignment
of a value to a variable in the predicates. For convenience, we define below a shorthand for
referring to the set of correct processes.

▶ Definition 23 (Set of correct processes). For a given history H = (E, <, O, P), we define
the function PC (H) that returns the set of correct processes of H, i.e., PC (H) ≜ {p ∈ P |
p.type = correct}.

Below, we define a reusable specification property for liveness checking that, if the process
of an op-ex is correct, then this op-ex must terminate.

▶ Definition 24 (Op-ex termination). For an op-ex o, the op-ex termination liveness property
is defined as OpTermination(o) ≜ o.proc.type = correct =⇒ o ̸≡ op()/⊥.

C.1 Reliable Broadcast Specification
Reliable broadcast is a fundamental abstraction of distributed computing guaranteeing an
all-or-nothing delivery of a message that a sender has broadcast to all processes of the system,
and this despite the potential presence of faults (crashes or Byzantine) [7]. This section
considers the multi-sender and multi-shot variant of reliable broadcast, where every process
can broadcast multiple messages (different messages from the same process are differentiated
by their message ID). A reliable broadcast object B provides the following operations:

B.r_broadcast(m, id): broadcasts message m with ID id,
B.r_deliver/(m, id, i) (notification): delivers message m with ID id from process pi.

In the following, we consider a multi-shot reliable broadcast object B, a set of op-exes O,
a relation → on O, an op-ex o ∈ O and its context (Oc,→c) = ctx(o, O,→).

Operation r_broadcast. If o ≡ B.r_broadcasti(m, id), then we have the following.

r_broadcast.V(o, (Oc,→c))≜∄ r_broadcasti(−, id) ∈ Oc.

r_broadcast.L(o, H,→)≜OpTermination(o)
∧ (∀ pj ∈ PC (H),∃ o′ ≡ B.r_deliverj/(m, id, i) ∈ O : o→o′).

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:25

Reliable

broadcast

FIFO

broadcast

Causal

broadcast

Total-order

(TO) broadcast

FIFO TO

broadcast

Causal TO

broadcast

Linearizable

broadcast

ProcessConsistency

(Process order)

FIFOConsistency

(FIFO order)

CausalConsistency

(Causal order)

FIFOConsistency

(FIFO order)

CausalConsistency

(Causal order)

Serializability

(Total order)

Serializability

(Total order)

Serializability

(Total order)

Linearizability

(History order)

Figure 7 The reliable broadcast hierarchy of [16, 33] extended with linearizable broadcast [12].

The V predicate states that a process cannot broadcast more than once with a given ID.
The L predicate states that a r_broadcast op-ex must terminate if a correct process made it,
and must trigger matching r_deliver op-ex on every correct process.

Operation r_deliver. If o ≡ B.r_deliveri/(m, id, j), then we have the following.

r_deliver.S(o, (Oc,→c)) ≜
C ← {B.r_broadcastj(m′, id ′) ∈ Oc | ∄ B.r_deliveri/(m′, id ′, j) ∈ Oc},
F ← {(m′, id ′) | ∀ b,b′ ∈ C, b ≡ B.r_broadcastj(m′, id ′) : b′ ↛cb} : (m, id) ∈ F.

r_deliver.L(o, H,→) ≜ pi ∈ PC (H)
=⇒ (∀ pj ∈ PC (H),∃ B.r_deliverj/(m, id, k) ∈ O).

The S predicate states that a delivery must return one of the first broadcasts that have
not been delivered with respect to →c. In S, C denotes the set of candidate broadcast
op-exes that have not been delivered, and F denotes the set of “first” broadcast values
(message and ID) of op-exes of C that are not preceded (w.r.t. →c) by other op-exes in
C. Notice that this does not necessarily mean that broadcasts must be delivered in FIFO
order, as → does not necessarily follow FIFO order (to have this property, → would have to
follow FIFOConsistency, see Section 5). This is the reverse of registers, where you can only
read one of the last written values according to →. The L predicate states that, if a correct
process delivers a message, then all correct processes deliver this message.

C.2 The Reliable Broadcast Consistency Hierarchy
The modularity of our formalism allows us to plug any consistency condition (e.g., the ones
defined in Section 5.2), or set of consistency conditions, that we want on any given object
specification (e.g., reliable broadcast) to yield a consistent object specification. This section
demonstrates this fact by applying different consistency conditions on the previously defined
reliable broadcast specification.

A reliable broadcast object can provide different ordering guarantees depending on which
consistency conditions it is instantiated with. Figure 7 illustrates the reliable broadcast
hierarchy, and how reliable broadcasts of different strengths can be obtained by using
ProcessConsistency, FIFOConsistency, CausalConsistency, Serializability or Linearizability.

As we can see, to obtain simple reliable broadcast, we must use the ProcessConsistency
condition to guarantee that the op-exes of a given process are totally ordered. This assumption
is necessary for the invocation validity (the precondition) of the r_broadcast operation, defined
by the r_broadcast.V predicate. Indeed, this predicate states that a process cannot broadcast
twice with the same ID; however, if op-exes of a process are not totally ordered, then there
can be two r_broadcast op-exes from the same process and with the same ID that would not

OPODIS 2024

4:26 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

be in the context of one another, and thus the r_broadcast.V would not be violated when it
should be. This is why a per-process total order of op-exes (imposed by ProcessConsistency)
is often required for some object specifications (and in this case, for reliable broadcast).

D Examples: Shared Memory Object

Shared memory is a communication model where system processes communicate by reading
and writing on an array of registers, identified by their address.

D.1 Shared Memory Object Specification
A shared memory M provides the following operations:

M.read(a)/v: returns one of the latest values v written in M at address a,
M.write(v, a): writes value v in M at address a.

In the following, we consider a shared memory M , a set of op-exes O, a relation → on O,
an op-ex o ∈ O and its context (Oc,→c) = ctx(o, O,→).

Operation read. If o ≡M.readi(a)/v, then we have the following.

read.V(o, (Oc,→c)) ≜ ∃ o′ ≡M.write(−, a) ∈ Oc.

read.S(o, (Oc,→c)) ≜ v ∈ {v′ | ∃ o′ ≡M.write(v′, a) ∈ Oc,∄ o′′ ≡M.write(−, a) ∈ O′
c :

o′→co′′}.
read.L(o, H,→) ≜ OpTermination(o).

The V predicate states that a process cannot read an address never written into. The S
predicate states that a read must return one of the last written values at that address with
respect to →c. The L predicate states that a read op-ex must terminate if a correct process
made it.

Operation write. If o ≡M.writei(v, a), then we have the following.

write.L(o, H,→) ≜ OpTermination(o).

The L predicate states that a write op-ex must terminate if a correct process made it.

D.2 Possible Variants
In the above, we have defined a version of shared memory constituted of multi-writer multi-
reader registers (abridged MWMR), where everyone can read and write all the registers.
But if we want to restrict the access of some registers to some processes, we can use the V
precondition of the read and write operations. For example, if we want to design a single-
writer multi-reader register (abridged SWMR), we can impose in the write.V predicate that
only the invocations of write by a single process are considered valid. More generally, we can
design asymmetric objects that provide different operations to different system processes
using this technique.

D.3 The Shared Memory Hierarchy
As illustrated by Figure 8, by applying the FIFOConsistency, CausalConsistency,
SeqConsistency or Linearizability consistency conditions on the specification of shared mem-
ory (Section D), different kinds of memory consistencies can be obtained.

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:27

PRAM
memory

Causal
memory

Sequential
memory

Atomic
memory

FIFOConsistency

CausalConsistency SeqConsistency Linearizability

Figure 8 The shared memory hierarchy.

E Examples: Asynchronous Message-passing Object

Asynchronous message-passing is a communication model where system processes commu-
nicate by sending and receiving messages. This model is said to be asynchronous because
messages can have arbitrary delays.

E.1 Asynchronous Message-passing Object Specification
A message-passing object M provides the following operations:

M.send(m, i): sends message to receiver pi,
M.receive/(m, i) (notification): receives message m from process pi.

In the following, we consider an asynchronous message-passing object M , a set of op-exes
O, a relation → on O, an op-ex o ∈ O and its context (Oc,→c) = ctx(o, O,→).

Operation send. If o ≡M.sendi(m, j), then we have the following.

send.L(o, H,→) ≜ OpTermination(o)
∧ (pj ∈ PC (H),∃ o′ ≡M.receivej/(m, i) ∈ O : o→o′).

The L predicate states that a send op-ex must terminate if a correct process made it,
and that the receiver, if it is correct, must eventually receive the message. For simplicity, we
assume that a given message is only sent once (so we do not have to guarantee that it is
received as often as it has been sent.

Operation receive. If o ≡M.receivei/(m, j), then we have the following.

receive.S(o, (Oc,→c)) ≜ (m, j) ∈ {(m′, k) |
∃ M.sendk(m′, i) ∈ Oc,∄ M.receivei/(m′, k) ∈ Oc}.

The S predicate states that if a process receives a message, then this message has been sent
before.

E.2 Possible Variants
We considered in this specification the asynchronous message-passing model, in which
messages have arbitrary delays. But let us mention that this model’s synchronous counterpart,
where messages have a maximum delay known by all processes, can also be represented
in our formalism as a concurrent object. The synchronous message-passing model can be
represented as having rounds of communication, where all the messages sent in a round
are received in the same round. Hence, we see that a synchronous message-passing object
S can be represented as providing two operations S.send(m, i) and S.end_round/M , where
end_round is a notification delivering to the process at hand pi all the set M of messages

OPODIS 2024

4:28 AMECOS: A Modular Event-Based Framework for Concurrent Object Specification

sent to pi during the round that ended. Again, let us notice that our formalism can specify
the behavior of complex distributed systems without relying on higher-order logic such as
temporal logic.

Furthermore, we assumed a message-passing specification over reliable channels; that is,
there is no message corruption, deletion, duplication, etc., for instance, due to interference
or disconnections. We classify this kind of network failure under the message adversary
model [34]. However, we can easily imagine variants of this specification that consider a
message adversary. In particular, for message deletions, the techniques introduced in [3] can
help us to design a message-adversary-prone asynchronous message-passing object.

Finally, we considered an authenticated message-passing object because, when a message
is received, the recipient knows the sender’s identity (there is no identity spoofing), but we
can easily design an unauthenticated variant that does not provide this information.

F Asynchrony of SWSR Atomic Registers and Point-to-point Message
Passing

In this section, we prove that SWSR atomic registers and message passing, as communication
media, satisfy the Asynchrony axiom of Definition 17. We make the following natural
assumption about op-ex invocations.

▶ Assumption 25 (Process consistent behavior). A process decides whether to invoke an op-ex
based only on its local view. Formally,

(σ ∈ Σ ∧ σ ∪ {e} ∈ Σ ∧ e ≡ opex.inv) =⇒ (∀σ′ ∈ Σ : σ|e.proc = σ′|e.proc, σ′ ∪ {e} ∈ Σ).

F.1 Asynchrony of an SWSR Atomic Register
We prove that an SWSR atomic register satisfies asynchrony as defined in Definition 17.

▶ Theorem 26. A linearizable Single Writer Single Reader (SWSR) atomic register R

satisfies the asynchronous distributed system axiom of Definition 17.

Proof. Let us consider a system that contains a SWSR register R as specified in Section 4
with Linearizability consistency. Let us consider the set Histories of all the correct histories
of this system projected to object R. Let Σ be the set of states extracted from Histories.
Observe that the states in Σ only contain events from two processes: the writer pw and reader
pr processes. Let us assume by way of contradiction that R does not satisfy asynchrony in
Σ, then there is a σ ∈ Σ and events ew and er from writer and reader respectively such that

(σ ∪ {ew} ∈ Σ) ∧ (σ ∪ {er} ∈ Σ) ∧ (σ ∪ {ew, er} /∈ Σ). (1)

This implies that σ can be extracted from a history Hw from which σw = σ ∪ {ew} can
also be extracted, but no such history Hw has event er. Similarly, σ can be extracted from
a history Hr from which σr = σ ∪ {er} can also be extracted, but no such history Hr has
event ew. We have that ew is an event from a write op-ex, and hence ew ≡ R.write.inv or
ew ≡ R.write.res. On its hand, er is an event from a read op-ex, and er ≡ R.read.inv or
er ≡ R.read.res. We have the following possibilities:

(1) First, consider a situation in which one of the events is an invocation event (i.e.,
er ≡ R.read.inv or ew ≡ R.write.inv). Let us assume, without loss of generality, that
ew ≡ R.write.inv. We have that σ|pw = σr|pw. Then, from the process consistent behavior
assumption (Assumption 25) applied to σ, σr, and ew, we have that σr ∪{ew} = σ ∪{ew, er}
belongs to Σ, which contradicts the assumption. The case er ≡ R.read.inv is similar.

T. Albouy, A. Fernández Anta, C. Georgiou, M. Gestin, N. Nicolaou, and J. Wang 4:29

(2) Next, consider the situation where both events are responses, i.e., er ≡ R.read.res
and ew ≡ R.write.res. Consider σr, which must contains the invocation e of the write op-ex
o = (e, ew). Let us consider any history H from which σr can be extracted in which pw is
correct. Then by the Legality of H (and in particular the Liveness predicate of the write
operation), op-ex o has to terminate in H. That is, pw will have ew as its next event in H.
Then σr ∪ {ew} = σ ∪ {ew, er} ∈ Σ which is a contradiction. ◀

F.2 Asynchrony of a Point-to-point Message-passing Object
We can also prove that a message-passing object as defined in Section E satisfies the
Asynchrony axiom. We consider here a message passing object M used by two processes, a
sender ps and a receiver pr, to communicate.

▶ Theorem 27. A point-to-point message-passing object M satisfies the asynchronous
distributed system axiom of Definition 17.

The proof is similar to the proof of Theorem 26 replacing the writer with the sender and
the reader with the receiver, and is omitted.

OPODIS 2024

	1 Introduction
	2 Related Work
	3 Framework: Architecture, Components, Notation, and Concepts
	3.1 System Architecture
	3.2 Components
	3.3 Notation
	3.4 Histories
	3.5 Process Faults

	4 Object Specification and History Legality
	4.1 Object Specification
	4.2 History Legality

	5 Consistency Conditions
	5.1 Op-ex Order Relations
	5.2 Classic Consistency Conditions
	5.3 Set- and Interval-Linearizability Definitions

	6 History Correctness
	7 Asynchronous Resilient Consensus Impossibility
	8 Conclusion
	A Impossibility of Resilient Consensus in Asynchronous Systems
	A.1 Consensus Object
	A.2 Asynchronous Distributed System
	A.3 Valence
	A.4 Resilient Non-trivial Consensus
	A.5 Impossibility Theorem
	A.6 Discussion on Impossibility of Asynchronous Resilient Consensus

	B FIFO Consistency Addendum
	C Examples: Reliable Broadcast Object
	C.1 Reliable Broadcast Specification
	C.2 The Reliable Broadcast Consistency Hierarchy

	D Examples: Shared Memory Object
	D.1 Shared Memory Object Specification
	D.2 Possible Variants
	D.3 The Shared Memory Hierarchy

	E Examples: Asynchronous Message-passing Object
	E.1 Asynchronous Message-passing Object Specification
	E.2 Possible Variants

	F Asynchrony of SWSR Atomic Registers and Point-to-point Message Passing
	F.1 Asynchrony of an SWSR Atomic Register
	F.2 Asynchrony of a Point-to-point Message-passing Object

