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Abstract
We describe a novel construction of arbitrary read-modify-write (RMW) primitives in a persistent
shared memory model with process failures. Our construction uses blocking synchronization, in the
form of recoverable mutual exclusion (RME), and is optimal in terms of the widely studied remote
memory reference (RMR) complexity measure. The implemented objects tolerate either system-wide
or independent process crashes, depending on the RME lock used, and also provide detectability
for resolving the outcome of operations interrupted by failures. We prove that our construction
is RMR-optimal using a reduction back to the RME problem. Our proof technique introduces a
novel algorithmic style that enables solving challenging synchronization problems using a common
execution path for both the system-wide and independent failure models, which previously required
separate analyses, and relies only on a suitable implementation of the detectable base objects in
each model to achieve RMR efficiency. Experiments demonstrate that our construction outperforms
prior wait-free and lock-free algorithms on a multiprocessor with Intel Optane persistent memory.
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1 Introduction

Over the last decade, the emergence of persistent main memory has reinvigorated research
on shared memory algorithms. The ability to retain data across power failures and system
crashes opens the door to faster recovery of in-memory data structures than is possible
using the traditional approach of rebuilding such structures using state saved in slower
secondary storage, and has precipitated a thorough reexamination of established theoretical
abstractions. The persistent memory revolution has so far witnessed several reformulations
of classic correctness properties and synchronization problems (e.g., [7, 31, 3, 24, 20]) into
their recoverable counterparts, as well as the birth of more novel concepts such as Friedman,
Herlihy, Marathe and Petrank’s notion of detectability [18, 19] – the capability to forensically
determine the outcome of an operation that was interrupted by a failure.

The blossoming landscape of problems and solutions hints at a bright future for algo-
rithmic research on persistent main memory, though the full perspective remains difficult
to comprehend given limited connections between emerging concepts. This research takes

© Sahil Dhoked, Ahmed Fahmy, Wojciech Golab, and Neeraj Mittal;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 5; pp. 5:1–5:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sahil.dhoked@utdallas.edu
https://orcid.org/0000-0003-2893-377X
mailto:ahmed.fahmy@uwaterloo.ca
https://orcid.org/0000-0003-3700-2301
mailto:wgolab@uwaterloo.ca
https://orcid.org/0000-0002-8891-256X
mailto:neerajm@utdallas.edu
https://orcid.org/0000-0002-8734-1400
https://doi.org/10.4230/LIPIcs.OPODIS.2024.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 RMR-Efficient Detectable Objects for Persistent Memory and Their Applications

important steps towards filling this gap by exploring the relationship between detectability,
which we formalize using sequential specifications [6, 37, 39], and the recoverable mutual
exclusion (RME) problem [24, 25], which is a modern take on the long-standing question
of how to implement fault-tolerant mutex locks. In a nutshell, RME generalizes Dijkstra’s
mutual exclusion (ME) problem [16] by allowing processes to crash at arbitrary times and
recover by starting over. While it makes sense intuitively that objects of arbitrary types
can be constructed using RME locks, existing literature focuses on recovering the internal
state of the lock and overlooks the fundamental problem of recovering actions performed
in the critical section. At best, compositions of RME locks have been considered where
such actions are largely idempotent, and can be recovered by repeating the critical section.
The use of detectable objects to solve RME is similarly unexplored, and we view this as a
missed opportunity since the treatment of such problems from first principles is notoriously
challenging (e.g., see [22, 34]). Advances along new research directions that simplify reasoning
about failures and concurrency are urgently needed as the theory community takes aim at
more complex synchronization problems in the realm of persistent memory.

Implementing detectable objects correctly and using them efficiently is itself technically
challenging. Fundamentally, such object implementations face the problem that modern
memory hierarchies combine persistent media, such as Intel Optane persistent memory, with
volatile CPU registers that are used by primitive memory operations to return responses to
the application program. In other words, it is not possible for a program to simply “look
up” the outcome of its last memory operation before a failure, or even determine exactly
which operation was the last one. Despite this, detectable objects must track the progress
of operations across failures so that any process can resolve the status of its most recent
operation, even if the corresponding state transition has already been overwritten by an
operation applied by another process. Further perils lie ahead when detectable objects are
used to solve more complex synchronization problems because such objects achieve only a
partial separation of concerns between fault tolerance and concurrency control. To begin
with, a recoverable algorithm must decide which of its possibly many detectable base objects
need to be resolved, and in which order. Additional recovery state that is kept outside of the
base objects (e.g., via checkpoint variables) may also be needed to guide recovery towards a
consistent state. On the other hand, once the detectable objects are properly implemented
and techniques for their correct use are developed, a new algorithmic style emerges where
application-specific imperatives, such as enforcing linearizability [29] or mutual exclusion [16],
can be insulated from mundane low-level recovery actions such as determining the outcome
of a read-modify-write (RMW) hardware instruction after a failure.

Our main contributions in this paper are two-fold. First (Section 4), we present a universal
construction of detectable RMW primitives. Our RME-based construction is the first to
implement arbitrary RMW types while using a sublinear number of remote memory references
or RMRs – expensive memory operations that traditionally define the time complexity of
ME and RME algorithms – while ensuring strict linearizability [1]. We show experimentally
that it performs well in comparison to prior lock-free and wait-free techniques. Second
(Section 5), we leverage the detectable RMW primitive to devise a novel RMR-optimal RME
algorithm, and deduce from the properties of this algorithm a lower bound on the worst-case
RMR complexity of any generic construction of detectable RMW primitives. The unique
algorithmic style emerging from this reduction opens the door to solving complex problems
using a common execution path for both the system-wide and independent failure models,
which previously required separate analyses, and relies only on a suitable implementation of
the detectable base objects to achieve RMR efficiency in each failure model.
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2 Model

We combine Herlihy and Wing’s classic model of linearizable data structures [27] with features
borrowed from recent research on crash recovery for persistent memory [7, 31, 25, 23, 3, 37].
A fixed set of N asynchronous processes, denoted p1, p2, . . . , pN , communicate by applying
operations on shared base objects. Processes may fail by crashing, either independently
or simultaneously, and may recover from crashes by restarting their execution from the
beginning under the same process ID. Each base object has a sequential specification that
describes its possible states and state transitions. We will assume that base object operations
are atomic with the understanding that they can be either supported directly in hardware, or
emulated in software via shared object implementations that specify an access procedure for
each emulated operation. Base objects are persistent, meaning that their states are unaffected
by crash failures. In addition, processes may use private volatile variables whose values are
reinitialized during recovery from a failure. The algorithms presented in this paper can be
adapted to more complex models that consider a volatile cache through judicious insertion
of persistence instructions, for example using the transformations described in [31, 13].

Executions of algorithms are modeled using histories, which are sequences of system states
and steps. A system state is the combination of values assigned to all program variables,
shared and private, including program counters. There are three types of steps: a base
object step represents the execution of one shared memory operation by a process along with
bounded local computation (e.g., arithmetic and accessing private volatile variables); an
invocation or response step represents the invocation of an operation on an implemented
object or its response, respectively; and a crash step represents the crash failure of one or
more processes. Crashes can be independent (affecting one process) or system-wide (affecting
all processes simultaneously). We consider two types of algorithms in this paper: shared
object implementations (Section 4) modeled as a collection of access procedures for different
implemented operations, and recoverable mutual exclusion (RME) [24] (Section 5) modeled
as a special infinite loop. Histories of RME-like algorithms comprise only base object and
crash steps. Histories of implementations additionally contain invocation and response steps.

Histories of an algorithm must satisfy safety and liveness properties specific to that
algorithm. For RME, where processes repeatedly execute a non-critical section (NCS),
recovery section (RS), entry section (ES), critical section (CS), and exit section (XS), the
fundamental safety property is mutual exclusion: at most one process can be in the CS at a
given time. A bounded prefix of the ES called the doorway controls the order of entry into the
CS in first come first serve (FCFS) RME locks. Liveness means that executions of the RS, ES,
and XS eventually terminate, and is predicated on two assumptions: (1) the CS is bounded,
and (2) the history is fair, meaning that if a process leaves the NCS, it continues taking steps
until it completes the XS and returns to the NCS without crashing. The latter implies that
if a process crashes during a passage, which is a sequence of consecutive executions of the RS,
ES, CS, and XS, then it eventually begins another passage. A maximal sequence of passages
by one process where only the last one ends in a complete execution of the XS is called a
super-passage. For shared object implementations, we choose strict linearizability [1] as the
main correctness property: implemented operations appear to take effect instantaneously
between their invocation and response steps, and any operation interrupted by a crash failure
must take effect prior to the failure or not at all. Liveness means that every implemented
operation eventually returns a response, and is once again predicated on the history being
fair, meaning that if a process invokes an operation then it must continue taking steps until
the operation produces a response or the process crashes.

OPODIS 2024
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Some shared object implementations are detectable [18, 19], meaning that a process can
resolve precisely the outcome of an operation that was interrupted by a crash. We formalize
detectability using sequential specifications, following the trend established in [6, 37, 39, 32],
whereby detection is accomplished by invoking a special resolution operation (called resolve)
on the implemented object. Specifically, we adopt the unified sequential specification (UDSS)
introduced by Moridi et al. [39], whereby resolve returns a triple ⟨op, tag, res⟩ representing
the most recent detectable operation op invoked by the calling process pi that took effect,
or else ⟨⊥, ⊥, ⊥⟩ if no such operation exists. Here res is the response of op, and tag is an
auxiliary argument passed to op to disambiguate successive invocations of op that may return
the same response (or no response at all).

We quantify complexity in terms of space, measured by counting the number of persistent
base objects, and time, measured by counting remote memory references (RMRs) – expensive
shared memory operations that necessitate communication on the interconnect that joins
processors with memory. In the cache-coherent (CC) multiprocessor architecture, RMRs
are closely tied to cache misses and invalidations. For analyzing upper bounds, we assume
that every shared memory operation is an RMR unless a process reads an object that it
has previously read, and which has not been overwritten since the most recent such read.
In the distributed shared memory (DSM) model, each variable is statically defined as local
to exactly one process and remote to all others, and an RMR is defined as any access to
a remote variable. In special cases, algorithms or portions thereof may be wait-free [28],
meaning that they terminate after a bounded number of steps in all executions.

3 Overview of Results

In this research, we derive both upper and lower bounds on the worst-case RMR complexity
per operation of detectable RMW objects (more precisely on objects that simultaneously
support FAS and CAS) by connecting this topic formally to RME. In terms of upper bounds,
our detectable objects have the same RMR complexity asymptotically as their underlying
RME locks, and require only O(N) additional space. As we discuss in Section 4.2, experiments
conducted using Intel Optane persistent memory show that our objects scale better than
alternatives obtained using lock-free and wait-free techniques [6, 36] for Fetch-And-Store
operations. Our lower bound on RMR complexity pertains to the independent failure model,
and shows that implementing detectable objects is as hard as solving the RME problem.
We obtain this result by constructing a reduction from the latter problem to the former,
and applying existing lower bounds on the RMR complexity of RME [9, 10]. The lower
bound is tight, which makes our detectable object construction RMR-optimal for independent
failures. The same holds for system-wide failures, where we achieve O(1) RMR complexity.
As summarized in Tables 1 and 2, we present the first sub-linear (i.e., o(N)) RMR bounds
for detectable unconditional RMW operations such as Fetch-and-Store.

4 From RME to Detectable Objects

This section presents a generic RMR-efficient construction of detectable read-modify-write
(RMW) primitives using an RME lock as the main building block. This result complements
prior work (see Section 6) on detectable constructions of comparison primitives that achieve
RMR-efficiency indirectly by guaranteeing wait-freedom. As we show later on in Section 5,
detectable FAS and CAS primitives instantiated using our construction can be used to solve
the RME problem efficiently and relatively straightforwardly, which establishes equivalence in
terms of worst-case RMR complexity (per passage and per operation, respectively) between
RME and any generic detectable RMW construction.
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Table 1 A comparison of known algorithms for implementing detectable/recoverable RMW
objects under system-wide process failures. Unless stated otherwise, the object is readable and
the RMR complexity bound holds for both the CC and DSM models. M denotes the number of
operations that have been invoked on the object.

Reference Object

RMR Complexity Linearizability
(Safety)

Guarantee

Progress Guarantee

Detectable
Operation

Recover or
Resolve

Detectable
Operation

Recover or
Resolve

Lehamn, Attiya,
Hendler [36]

Fetch-And-Store
(swap) O(N) O(M) nesting-safe

recoverable wait-free centralized

Herlihy [28, 7] Fetch-And-ϕ O(N) O(N) strict wait-free wait-free

Ben-David,
Blelloch,
Friedman, Wei [6]

Compare-And-Swap O(1) O(1) strict wait-free wait-free

Fetch-And-ϕ from
Compare-And-Swap unbounded O(1) strict lock-free wait-free

This work Fetch-And-ϕ O(1) O(1) strict blocking wait-free†

† Assumes an RME lock that supports a wait-free withdraw or abort feature.

Table 2 A comparison of known algorithms for implementing detectable/recoverable RMW
objects under independent process failures. Unless stated otherwise, the object is readable and
the RMR complexity bound holds for both the CC and DSM models. M denotes the number of
operations that have been invoked on the object.

Reference Object

RMR Complexity Linearizability
(Safety)

Guarantee

Progress Guarantee

Detectable
Operation

Recover or
Resolve

Detectable
Operation

Recover or
Resolve

Attiya,
Ben-Baruch,
Hendler [3]

write O(1) O(1) nesting-safe
recoverable wait-free wait-free

Compare-And-Swap O(1) O(N) nesting-safe
recoverable wait-free wait-free

non-readable
Test-And-Set O(1) O(N)∗ nesting-safe

recoverable wait-free blocking

counter O(1) O(N) nesting-safe
recoverable wait-free wait-free

Lehamn, Attiya,
Hendler [36]

Fetch-And-Store
(swap) O(N) O(M)∗ nesting-safe

recoverable wait-free blocking

Jayanti, Jayanti,
Jayanti [32]

writable
Compare-And-Swap O(1) O(1) recoverable wait-free wait-free

Herlihy [28, 7] Fetch-And-ϕ O(N) O(N) recoverable wait-free wait-free

Ben-David,
Blelloch,
Friedman, Wei [6]

Compare-And-Swap O(1) O(1) strict wait-free wait-free

Fetch-And-ϕ from
Compare-And-Swap unbounded O(1) strict lock-free wait-free

This work Fetch-And-ϕ O
(

log N
log log N

)
O

(
log N

log log N

)
strict blocking wait-free†

∗ For CC model only. The RMR complexity is unbounded for the DSM model.
† Assumes an RME lock that supports a wait-free withdraw or abort feature.
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4.1 Detailed description and analysis
The sequential specification of the implemented object in our construction is a subset of
Moridi et al.’s UDSS [39] applied to a generic Fetch-And-ϕ (FAϕ) operation that returns
the previous abstract state of the object and applies a state transition according to the
user-specified function ϕ. In formal terms, we can regard ϕ as a parameter of the implemented
operation, which enables the application of different state transitions at different points in the
same execution. For example, Fetch-And-Increment (FAI) can be emulated as ϕ : s → s + 1,
and a Fetch-And-Store (FAS) operation that swaps in value v can be emulated as ϕv : s → v.
Compare-And-Swap (CAS) and blind Write operations are also easily emulated. The UDSS
transformation maps FAϕ to detectable-FAϕ, which accepts an additional tag argument,
and a resolve operation that returns a triple of the form ⟨op, tag, res⟩ as explained in
Section 2. In a nutshell, the generic construction protects executions of detectable-FAϕ

using a recoverable mutex lock RM . Dealing with crash failures in this construction is
nontrivial for two reasons. First, as we explain shortly, the critical section established by
RM comprises multiple memory operations and requires cleanup after a crash. Second, a
process that crashes during a passage through RM is required (by the specification of the
RME problem) to restart and complete a failure-free passage. We address both concerns
by adding recovery actions in the resolve operation, and by ensuring that this operation is
executed after a failure via the following access restriction:

▶ Assumption 1. If a process fails inside detectable-FAϕ then it must eventually complete
a call to resolve, and moreover it must do so before invoking any other operation on the
same object.

The construction records the abstract state of the implemented object in a shared variable
S with state transitions occurring at line 18. S is initialized to s0, the initial abstract value
of the implemented object. Additional state needed for detectability is maintained using a
collection of arrays. Process pi uses NextOp[i], NextTag[i] and NextRet[i] at lines 6 to 11 to
record the signature of its next detectable operation (i.e., function ϕ), the corresponding tag
argument, and the value fetched from S, respectively. In case the operation is interrupted by
a crash and needs to be rolled back for strict linearizability, pi first creates a secondary copy
of these state variables in PrevOp[i], PrevTag[i], and PrevRet[i], respectively, at lines 2
to 4. The decision to roll back is informed by the value of the checkpoint variable C[i],
inspired by [25], which pi uses to track its progress through the critical section at lines 1, 5,
17, and 20. An additional array LastS is used to record the last value read from S at line 12,
which simplifies recovery. Finally, we use a global variable P and an array Help[1..N ] to
implement a helping mechanism that synchronizes the critical section in detectable-FAϕ

with resolve. The variable P records the ID of the process executing the critical section at
line 15, and is used at lines 13 to 14 to pass the previous value of S to the last process that
completed the CS up to and including line 15.

The operation resolve starts with a passage through RM at lines 23 to 25, which is
required only to repair the internal state of RM . The remainder of resolve is structured as
a case analysis based primarily on the value of C[i]. Its goal is to ensure that NextOp[i],
NextTag[i] and NextRet[i] record the correct details of pi’s last detectable operation that
took effect. No special action is required if C[i] = 0 or C[i] = 1. The case C[i] = 2 (line 28)
indicates that a detectable operation failed before it took effect but after its details were
already recorded in NextOp[i], NextTag[i] and NextRet[i]. These state changes are rolled
back at lines 29 to 31 to maintain strict linearizability. The case C[i] = 3 (line 33) indicates
that a detectable operation failed close to the point where the abstract state S is updated at
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line 18, and is the most challenging to resolve. Process pi must deduce correctly whether its
last operation took effect, even if other processes subsequently applied their own detectable-
FAϕ operations. The key algorithmic idea is for pi to obtain a copy of the abstract state S

as of the time of its failure, and compare it against the value pi fetched from S and saved
in LastS[i] at line 12. The copy is obtained by reading Help[i] at line 36 if Help[i] ̸= ⊥
(line 35), which indicates that another process already completed the helping mechanism at
lines 13 to 14, otherwise by reading S directly line 34. If the copy and saved value match
(line 37) then either pi’s last detectable-FAϕ operation did not update S at line 18, or it
did update S but caused a trivial state transition via a fixed point of the function ϕ. We
consider that pi’s last detectable-FAϕ operation did not take effect in both cases, and
roll back pi’s state changes at lines 38 to 40 similarly to the case C[i] = 2. Otherwise, the
copy and saved value are unequal, which implies that pi did update S. In that case pi’s
last detectable-FAϕ operation did take effect and the correct values are already stored in
NextOp[i], NextTag[i] and NextRet[i]. All cases in the analysis finally reset C[i] to 0, if
needed, and then produce the response ⟨NextOp[i], NextTag[i], NextRet[i]⟩ at line 42.

Shared variables:
S: read/write register, initialized to the designated initial state s0

P : read/write register, initialized to ⊥

C[1..N ]: array read/write registers initialized to 0
P revOp[1..N ], P revT ag[1..N ], P revRet[1..N ], NextOp[1..N ], NextT ag[1..N ], NextRet[1..N ],
Help[1..N ], LastS[1..N ]: arrays of read/write registers initialized to ⊥

RM : starvation-free RMR-optimal recoverable mutex

Procedure detectable-FAϕ(tag: inte-
ger) for process pi.

1 C[i] := 1
2 P revOp[i] := NextOp[i]
3 P revT ag[i] := NextT ag[i]
4 P revRet[i] := NextRet[i]
5 C[i] := 2
6 NextOp[i] := ϕ
7 NextT ag[i] := tag
8 RM .Recover()
9 RM .Enter()

10 s := S
11 NextRet[i] := s
12 LastS[i] := s
13 if P ̸∈ {⊥, i} then
14 Help[P ] := s

15 P := i
16 Help[i] := ⊥
17 C[i] := 3
18 S := ϕ(s)
19 RM .Exit()
20 C[i] := 0
21 return s

Procedure resolve() for process pi.

22 if C[i] ∈ {2, 3} then
23 RM .Recover()
24 RM .Enter()
25 RM .Exit()
26 if C[i] = 1 then
27 C[i] := 0
28 else if C[i] = 2 then
29 NextOp[i] := P revOp[i]
30 NextT ag[i] := P revT ag[i]
31 NextRet[i] := P revRet[i]
32 C[i] := 0
33 else if C[i] = 3 then
34 cmp := S
35 if Help[i] ̸= ⊥ then
36 cmp := Help[i]
37 if LastS[i] = cmp then
38 NextOp[i] := P revOp[i]
39 NextT ag[i] := P revT ag[i]
40 NextRet[i] := P revRet[i]
41 C[i] := 0
42 return

⟨NextOp[i], NextT ag[i], NextRet[i]⟩

Figure 1 Strictly linearizable detectable readable fetch-and-ϕ implementation.

The main correctness properties of the construction are stated in Theorem 1 and Theo-
rem 2. Detailed proofs are included in Appendix A.
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Table 3 Properties of our detectable object implementation with different RME locks. In the
table, F denotes the number of recent failures and ċ denotes the point contention of the passage.

Failure
Model RME Lock RMR Complexity Desirable Properties

independent Dhoked and Mittal
[15] O

(
min(ċ,

√
F + 1, log N

log log N )
) adaptive to failures

adaptive to point
contention
variant of FCFS

independent Katzan and Morrison
[35] O

(
min(ċ, log N

log log N )
) wait-free resolve method

adaptive to point
contention

system-wide Dhoked, Golab and
Mittal [13] O(1)

wait-free resolve method
FCFS

▶ Theorem 1. The generic construction is strictly linearizable.

▶ Theorem 2. Every operation applied to the generic construction terminates eventually in
any infinite fair execution history. Furthermore, each operation incurs O(R) RMRs where R

denotes the worst-case RMR complexity of the recoverable mutex RM .

The detectable construction can be optimized in several ways. To begin with, a wait-free
read operation can be implemented by simply reading S directly, without acquiring the RME
lock. Furthermore, lines 23 to 25 of resolve can be replaced with a wait-free withdrawal
operation, if RM supports it (e.g., [14]), which cleans up the state of the RME lock without
acquiring the CS and makes the entire resolution procedure wait-free. (Wait-free resolution
is important for avoiding deadlocks during recovery from crash failures.) Finally, we can
dispense with the RME lock altogether and reduce the RMR (and step) complexity to O(1)
if only one process at a time executes the detectable-FAϕ operation, which is relevant in
scenarios where the construction emulates a single-writer multi-reader register with wait-free
read. Additional ideas related to application of detectable base objects in FCFS-fair RME
locks are discussed in Appendix B.

Note that, depending on which RME lock is used to protect the CS of detectable-FAϕ,
our implementation may satisfy additional desirable properties. We summarize these in
Table 3 for some of the existing RME locks. Specifically, for the independent failure model, if
Dhoked and Mittal’s RME lock [15] is used, our implementation becomes adaptive to failures,
and has only O(1) RMR complexity as long as only a small number of failures occur.

4.2 Experimental Evaluation
We implemented our detectable construction in C++ using the Intel Persistent Memory
Development Kit (PMDK) [44], and evaluated it on a 4-socket Intel Xeon Gold 6230
multiprocessor with Optane persistent memory. We compare against two alternatives: a
lock-free emulation of FAS obtained using Ben-David, Blelloch, Friedman and Wei’s wait-
free detectable Compare-And-Swap (CAS) [6]; and a direct implementation of FAS using
Lehman, Attiya and Hendler’s partly wait-free detectable swap [36].1 Our construction

1 Lehman, Attiya and Hendler’s construction uses a blocking recovery algorithm for independent failures,
and can be considered fully wait-free in the system-wide failure model with centralized recovery.
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internally uses Dhoked, Golab, and Mittal’s withdrawable RME lock [14], which incurs O(1)
RMRs in the system-wide failure model. We consider two variations of the construction,
one corresponding to the code in Figure 1 and the other leveraging critical section re-entry
(CSR), which makes it possible to eliminate the helping mechanism in detectable-FAϕ.
The latter optimization sacrifices the possibility of wait-free resolution as it requires a critical
section inside resolve.

Both our construction and the alternative algorithms were augmented with persistence
barriers (i.e., cache line write-backs and store fences) to control the durability and visibility
of shared memory operations. The barriers were implemented by calling pmem_persist in the
PMDK. The transformation of Izraelevitz, Mendes, and Scott [31] mandates placing such
barriers after each memory operation, which is aggressive but appropriate for the lock-free
and wait-free algorithms based on [6, 36]. However, this technique does not preserve the RMR
complexity of busy-wait loops on our hardware platform, where persistence barriers always
invalidate cache lines.2 For this reason, we manually augmented the two implementations of
our construction with barriers. Our manual technique relaxes Izraelevitz, Mendes, and Scott’s
recipe by using only one barrier per busy-wait loop. We also avoid barriers in the special case
where a process reads a single-writer variable for which it is the exclusive writer. Additionally,
we consider a more advanced persistence technique, implemented in the FliT library [47],
that can effectively avoid redundant persistence operations while reading variables.

Each thread in the experiment repeatedly applies detectable FAS operations on a common
shared object. Total throughput (operations/s) is measured at different levels of parallelism
to evaluate scalability up to 160 threads: 4 processors with 20 hyperthreaded cores. Each
point in our plots represents the average over a sample of three failure-free runs, each lasting
5s. Error bars (often too small to be seen) indicate one sample standard deviation. Runs with
up to 20 threads collocate all the threads on a single processor for efficient synchronization,
and larger experiments exhibit classic NUMA (Non-Uniform Memory Access) effects due to
expensive cross-socket communication. Hyperthreading is used in runs with 81-160 threads.
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Figure 2 Scalability of non-optimized detectable Fetch-And-Store object implementations.

2 Newer Intel Xeon processors offer a cache line writeback (CLWB) instruction that may either retain the
cache line or invalidate it. Our processor model always invalidates the cache line [43].
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Figure 3 Scalability of detectable Fetch-And-Store object implementations with optimizations.

Figure 2 presents the scalability of implementations with aggressive persistence based on
variations of [31] (i.e., without FliT). The results demonstrate that using a non-CSR RME
lock in our construction with a helping mechanism is mostly superior to using a CSR RME
lock without helping. Both alternatives substantially outperform the recoverable swap [36],
which has bounded but linear RMR complexity in failure-free executions, and which we
instantiated with N = 160. The lock-free implementation based on [6] exhibits the worst
scalability, which is expected since FAS operations are contention-prone.

Next, we introduce centralized recovery (i.e., recovery in the main function of the
benchmark program), which allows two optimizations. First, our construction can leverage
an efficient failure detector-based RME lock [23] that mostly eliminates persistence barriers.
Second, we can apply the hash table-based persistence mechanism provided by the FliT
library [47] to minimize redundant persistence instructions for read-heavy shared variables.
Figure 3 compares our construction with the optimized non-CSR lock against a FliT-optimized
recoverable swap (FliT persistence applied to the tail variable and V TS array in [36]), and
against the lock-free implementation based on [6].3 The results, presented in Figure 2, show
significant speed-ups for the optimized algorithms as compared to their counterparts in
Figure 2. Our construction still leads in terms of throughput, especially at ≥25 threads
where FliT’s internal atomic counters suffer noticeably from NUMA effects.

5 From Detectable Objects to RME

This section presents a lower bound on the RMR complexity of detectable objects. We obtain
the bound by devising a novel RME algorithm that uses detectable objects for synchronization,
and then applying known lower bounds for the RMR complexity of the RME problem [9, 10].
Although the algorithm does not break new ground in terms of RMR and space complexity for
the RME problem, its design embodies a novel algorithmic style that may be of independent
interest: a common execution path is used for both the system-wide and independent failure
models, which previously required separate designs and analyses. The generic algorithm is
then instantiated for a particular failure model by substituting a suitable implementation of
the detectable base objects, which determines the overall RMR complexity.

3 The FliT library could not be applied to [6] due to missing support for double word atomic operations.
Consequently, we use the same implementation of CAS-based FAS in Figure 3 as in Figure 2.
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Our algorithm, presented in Figure 4 is an adaptation of Mellor-Crummey and Scott’s
(MCS) venerated queue lock [38], which represents attempts to enter the CS using a singly
linked list of QNode structures. In this section we consider specifically the context-free
version of MCS, in which nodes are allocated at line 58 of the entry section. Lines 61 to 71
follow the original MCS algorithm faithfully with the exception of the read-modify-write
operations at line 62 and line 68, where we introduce detectability. The tail pointer variable
T implements a subset4 of Moridi et al.’s UDSS [39] applied to the combination of FAS and
CAS operations: it supports detectable FAS and CAS operations that accept an auxiliary
argument called a tag [39], in our case a QNode reference, and the resolution operation
described earlier in Section 2. The latter is invoked at line 45 of the recovery section only if
a process crashed between line 59 and line 72, where a reference to the current node is saved
for recovery, and returns a triple ⟨op, tag, res⟩ as explained in Section 2. This triple encodes
the name of the last operation as op, the value of the auxiliary argument as tag, and the
response of the operation as res. The recovery section performs a case analysis on the values
of these components, as we explain shortly, to decide the correct way to clean up the last
passage.

A crash failure of process pi occurring with MyNode[i] = ⊥ (i.e., before line 59 or after
line 72) is benign, and in this case the body of Recover is bypassed at line 44. More
difficult cases occur if pi crashes after threading its node behind the tail at line 62, and
before it has passed control of the RME lock to the successor (i.e., completed line 71) or
unthreaded its node from the queue (i.e., completed a successful swap at line 68). If pi’s
most recent operation on the tail pointer T with respect to the current node (read at line 43)
was detectable-FAS then pi must complete its interrupted execution of the entry section.
If pi already linked with the predecessor, then it repeats the busy-wait loop in Enter and
then completes Exit via line 50 and line 53. On the other hand, if there was a predecessor
but the link was not established then pi repeats Enter from line 64 and then completes
Exit via line 52 and line 53. Finally, if there was no predecessor then pi simply completes
Exit via line 53. Next, there are two cases pertaining to a crash in Exit. If pi successfully
unthreaded its node from the queue then it proceeds to line 72 via line 55 and releases its
node. Otherwise pi has a predecessor pj and repeats lines 70 to 72 of Exit via line 57 to link
with pj and pass control of the RME lock. Note that, in all of the above cases, pi continues
to execute the entry, critical and exit sections of the current passage, and no attempt is made
to re-execute the CS from the recovery section. To guarantee critical section re-entry (CSR),
the algorithm can be modified easily by having pi bypass Exit at line 53 and then also
bypass the body of Enter using an additional private variable to direct the flow of control.

The space complexity of the algorithm can be bounded by recycling the queue nodes
allocated at line 58. We defer the details to Appendix C due to lack of space. Our technique
reduces space to O(N) while preserving the dynamic joining property: the algorithm allows
processes to join an execution “on the fly” and does not assume prior knowledge of N .

The correctness properties of the algorithm are stated below in Theorem 3 under the
implicit assumption that detectable operations on the tail pointer T are atomic. The doorway
of the algorithm, for FCFS, is a bounded prefix of the entry section and comprises lines 58
to 62. If T is simulated using a software implementation then the detectable-FAS operation
must be wait-free, at least until its linearization point, and we address this technicality more
formally in Appendix B.

4 The full UDSS would also preserve non-detectable FAS and CAS operations, which we do not need.
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Define QNode: struct { next: ref to QNode, locked: Boolean }
Shared variables:

T : ref to QNode, init ⊥

qi: ref to QNode structure init ⟨⊥, false⟩ and local to process pi in DSM model
MyNode[1..N ]: array of ref to QNode structure, each element init ⊥

Procedure Recover( ) for process pi.

43 qi := MyNode[i]
44 if qi ̸= ⊥ then
45 ⟨op, tag, res⟩ := T.resolve()
46 if tag = qi then
47 if op = FAS then
48 prev := res
49 if prev ̸= ⊥ ∧ prev.next = qi then
50 execute line 66 of Enter
51 else if prev ̸= ⊥ ∧ prev.next = ⊥ ∧ qi.locked = false then
52 execute lines 64–66 of Enter
53 execute Exit
54 else if op = CAS ∧ res = true then
55 execute line 72 of Exit
56 else if op = CAS ∧ res = false then
57 execute lines 70–72 of Exit

Procedure Enter( ) for process pi.

58 qi := new QNode
59 MyNode[i] := qi

60 qi.locked := false
61 qi.next := ⊥

// insert QNode into linked list, also use qi as

tag

62 prev := T.detectable-FAS(qi, qi)
// check for predecessor

63 if prev ̸= ⊥ then
// link with predecessor

64 qi.locked := true
65 prev.next := qi

// wait for predecessor to release lock

66 await qi.locked ̸= true

Procedure Exit( ) for process pi.
// check for successor

67 if qi.next = ⊥ then
// no known successor, try to unlink from T ,

also use qi as tag

68 if
T.detectable-CAS(qi, ⊥, qi) = true
then

// no successor, lock idle

69 continue at line 72

// wait for successor to link with pi

70 await qi.next ̸= ⊥
// transfer lock ownership to successor

71 qi.next.locked := false
72 MyNode[i] := ⊥

Figure 4 Recoverable version of Mellor-Crummey and Scott’s queue lock for process pi.

▶ Theorem 3. The RME algorithm presented in Figure 4 satisfies the mutual exclusion,
starvation freedom, and first-come-first-served (FCFS) properties in both the independent
and system-wide crash failure models. Furthermore, it incurs O(R) RMRs per passage in
both the CC and DSM models where R denotes the worst-case RMR complexity of operations
on the tail pointer variable T .

The upper bound on RMR complexity stated in Theorem 3 can be used to deduce a lower
bound on the RMR complexity of implementing detectable base objects in the independent
crash failure model, as stated in Theorem 4.

▶ Theorem 4. A strictly linearizable implementation of an object that supports detectable
FAS and CAS operations from base objects that store O(log N) bits each and support
arbitrary single-word read-modify-write operations has a worst case RMR complexity per
operation of Ω(log N/ log log N) in both the CC and DSM models with independent crash
failures.
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Proof. The algorithm presented in Figure 4 is, informally speaking, a reduction from the
RME problem to the problem of implementing detectable base objects. Assuming that the
memory management technique from Appendix C is applied, the algorithm requires O(N)
queue nodes and stores values of size O(log N) bits for node references. Supposing that
the detectable base object T is replaced with a strictly linearizable implementation5 that
internally also uses base objects of size O(log N) bits, the algorithm solves the starvation-
free RME problem and is subject to the lower bound of Chan, Giakkoupis and Woelfel
[9] for deadlock-free RME under independent failures. The latter implies that the RME
algorithm incurs Ω(log N/ log log N) per passage in the worst case, in both the CC and DSM
models. Since portions of the algorithm outside of accesses to T incur only O(1) RMRs per
passage, this implies that in some execution a process incurs Ω(log N/ log log N) in total
while accessing T in one passage. This implies that the implementation of T has a worst
case RMR complexity of Ω(log N/ log log N) per operation since there are at most four such
operations per passage: one in Enter, one in Exit, and two in Recover. ◀

The approach illustrated in Figure 4 can be contrasted against the algorithms of Golab
and Hendler [22] as well as Jayanti, Jayanti and Joshi [34], which use much more elaborate
recovery protocols to carefully mend the queue of nodes after a failure. A single detectable
base object, namely the tail pointer, simplifies this task to the point where the correct
recovery actions can be decided by a fairly simple case analysis, without first identifying
and then analyzing a complex collection of disconnected queue fragments. Although the
detectable base objects are themselves difficult to implement, which we prove formally in
Theorem 4 for independent failures, a generic construction of such objects could be a powerful
and reusable building block for the next generation of RME algorithms, including recoverable
reader-writer and group mutual exclusion locks.

6 Related Work

The prospect of recovering in-memory data structures directly from persistent main memory
after a crash failure opened the door to rethinking some of the fundamental assumptions
ingrained in decades of literature on shared memory algorithms. We focus in this section on
theoretical aspects of persistent memory, acknowledging that the subject caught the attention
of practitioners (e.g., in [46, 11, 41, 30, 42, 12]) before it captivated the theory community.

One of the earliest theoretical issues addressed was the formulation of a suitable correctness
condition for concurrent objects in a crash-prone environment. Herlihy and Wing’s celebrated
linearizability property [29] has a fundamental drawback in that regard: it assumes that a
process finishes one operation before it invokes another. This implies that a crashed process
cannot in general restart execution using its old identifier; a new identifier must sometimes be
chosen, which goes against the nearly universal modeling assumption that a system comprises
a bounded set of N processes with fixed identifiers. Several alternatives have been proposed,
the most widely-cited of which is the durable linearizability (DL) property of Izraelevitz,
Mendes, and Scott [31]. DL simply disallows immediate reuse of process IDs, which has
the side-effect of allowing an operation that is interrupted by a crash to take effect after
the crash. Aguilera and Frølund’s strict linearizability (SL) property [1] instead requires
interrupted operations to take effect either before the crash or not at all. It allows for, but

5 Strictly linearizable implementations can be used in place of atomic base objects while preserving all
correctness properties relevant to this paper, aside from RMR complexity and space complexity.
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does not require, the reuse of process IDs across failures. Thus, SL is the strongest and most
portable of the relevant correctness properties, though not always attainable, as shown in [1]
for certain register constructions. Weaker conditions proposed in [26, 7] are susceptible to
undesirable anomalies (non-local behavior, program order inversion). Attiya, Ben-Baruch,
and Hendler defined nesting-safe recoverable linearizability (NRL) [3] for recovery of nested
compositions of objects. Their framework assumes that the system restarts a crashed process
from the most deeply nested interrupted operation to complete it, which circumvents the
anomalies present in [26, 7].

Traditional linearizability-like notions of correctness were challenged by Friedman, Herlihy,
Marathe and Petrank [18, 19], who introduced the notion of detectability – the ability to
resolve the outcome of an interrupted operation during recovery from a failure. NRL satisfies
this goal indirectly by ensuring that every interrupted operation eventually takes effect, and
variations on this theme have been adopted in several works [5, 2, 45, 36, 40]. Alternatively,
detectability can be embedded into an object’s sequential specification by introducing a
special resolution operation, and then combined with an existing correctness condition.
This approach was first realized by Ben-David, Blelloch, Friedman, and Wei [6], and later
generalized by Li and Golab [37] as the detectable sequential specification (DSS), without
relying on the strong system assumptions of NRL. Moridi, Wang, Cui, and Golab [39]
examined producer-consumer synchronization as a concrete use case for detectable objects,
and also proposed to merge the distinct prepare and execute phases of a detectable operation
in the DSS by introducing the conceptually simpler unified DSS (UDSS). Jayanti, Jayanti,
and Jayanti’s [32] method-based approach to detectability is a blend of [3] and [7].

Recoverable (i.e., crash-tolerant) objects can be constructed by augmenting conventional
techniques through the addition of specialized recovery procedures and, in some models,
explicit persistence instructions that flush updates from the volatile cache to the persistent
memory [7, 6, 17, 2, 32, 3, 45, 36, 40, 37, 24, 19, 8]. Of these, only purely lock-based
or wait-free techniques [7, 24, 3, 6, 45, 34] ensure bounded RMR complexity, and only a
handful yield RMR-efficient (particularly sub-linear RMR complexity in the number of
processes) implementations. The latter generally fall into three categories: solutions based on
Golab and Ramaraju’s recoverable mutual exclusion (RME) [24, 25], for which RMR-optimal
solutions were later presented in [33, 13, 22, 34], wait-free implementations of comparison
primitives such as Compare-And-Swap (CAS) and Load-Linked/Store-Conditional (LL/SC)
[3, 6, 32], and universal wait-free constructions [7]. RME does not prescribe a concrete
technique for recovering actions performed in the critical section, and hence only partially
addresses the implementation problem solved in this paper. On the other hand, detectable
wait-free implementations of comparison primitives compete directly with our RME-based
generic construction, but they have limited applicability in the context of proving RMR
complexity bounds due to their weak symmetry breaking power. For example, the RMR-
optimal algorithms in [33, 13, 22, 34] rely on unconditional synchronization primitives, such
as Fetch-And-Store (FAS), to maintain queue structures. The wait-free CAS in [6] is strictly
linearizable [1], but the constructions in [7, 3, 32] are not.

Tables 1 and 2 summarize the performance guarantees of the existing implementations
of detectable object operations for system-wide failures (Table 1) and independent failures
(Table 2). For strict linearizability, as mentioned earlier, the implementation provides a
resolve procedure to detect if the operation interrupted by a failure has taken effect and
perform any needed recovery. For recoverable linearizability, the implementation provides a
recover procedure to enable an operation interrupted by a failure to be completed.
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Tight bounds on worst-case RMR complexity in the context of persistent shared memory
are known for the RME problem in both the CC and DSM models. For independent failures,
Golab and Ramaraju’s algorithm [24, 25] solves RME in O(log N) RMRs per passage using
read/write registers only, and this matches Attiya, Hendler, and Woelfel’s lower bound [4],
which applies also to comparison primitives [21]. Using unconditional primitives such as
FAS, in combination with CAS and read/write registers, the RME problem is solvable in
O(log N/ log N log N) RMRs per passage using Jayanti, Jayanti, and Joshi’s algorithm [34],
which uses the tree structure introduced by Golab and Hendler [22]. This matches the lower
bound of Chan and Woelfel [10] for algorithms that use base objects of size O(log N) bits.
Katzan and Morrison [35] showed that more efficient solutions are possible using wider base
objects, and the trade-off achieved was proved to be tight by Chan, Giakkoupis, and Woelfel
[9]. In the system-wide failure model, RMR bounds for algorithms that use reads, writes, and
comparison primitives are the same as in the independent failure model. On the other hand,
FAS in combination with CAS and read/write registers can be used to construct efficient
queue locks with O(1) RMRs complexity using Jayanti, Jayanti, and Joshi’s algorithm [33]
or Dhoked, Golab, and Mittal’s [14]. Our transformation of ME algorithms to RME using
detectable base objects proves for the first time that an RMR-optimal generic construction
of detectable RMW objects has the same worst-case RMR complexity per operation as the
RME problem per passage in the system-wide and independent failure models.

Our detectable object construction is an important step towards a general technique to
transform a non-recoverable concurrent program into one that leverages persistent memory
for recoverability. Several such transformation already exist. Ben-David, Blelloch, Friedman,
and Wei’s technique is based on segmenting the program into capsules that can be recovered
using detectable operations [6]. Their technique is presented in the context of lock-free
synchronization using Compare-And-Swap, but can be extended to support other detectable
RMW operations.6 Its main limitation is the assumption of a persistent call stack and page
table, which requires a non-standard programming environment and operating system. Attiya,
Ben-Baruch, Fatourou, Hendler, and Kosmas describe a general construction of recoverable
data structures using persistent memory [2]. Their approach is specific to lock-free algorithms
that use only read, write and CAS instructions.

7 Conclusion

Our work draws the first comprehensive connection between detectability and recoverable
mutual exclusion. We showed how to use RME to construct detectable read-modify-write
objects, and then used such objects to solve the RME problem using an algorithm that provides
a common execution path for both system-wide and independent process failure models. Our
constructions establish the first RMR lower bound on detectable object implementations, and
pave the way toward future RMR-efficient solutions for complex synchronization problems
such as recoverable versions of reader-writer exclusion and group mutual exclusion.
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Table 4 Linearization points of generic construction from Figure 1.

Operation Special case Linearization point

detectable-FAϕ non-trivial state transition applied to S at
line 18 (i.e., S overwritten with new value)

write to S at line 18

detectable-FAϕ trivial state transition applied to S at line 18
(i.e., S overwritten with same value) and line 20
completed in the same operation

write to S at line 18

detectable-FAϕ remaining cases n/a (does not take effect)
resolve operation runs to completion arbitrary point in the op-

eration’s execution
resolve remaining cases n/a (does not take effect)

It remains to show that the chosen strict linearization is a legal history, meaning that each
operation returns a correct response. Recall that correctness in this context is interpreted
with respect to the implemented object type, which is a subset of Moridi et al.’s UDSS [39]
applied to a generic FAϕ operation that returns the previous abstract state of the object
and applies a state transition according to the user-specified function ϕ.

We proceed by first proving a state invariant in Theorem 5 below:

▶ Lemma 5. Consider a finite history H of the generic construction, let L be the corre-
sponding strict linearization determined by the linearization points defined in Table 4, and
let (s, A, T , R) denote the abstract state of the implemented object at the end of L. Recall
that s is the state of the underlying non-detectable type (in our case FAϕ), A[i] identifies
the signature (in our case the function ϕ) of the last detectable operation by pi in L, T [i]
is the tag argument of this operation, and R[i] is the operation’s response. Recall also that
A[i] = T [i] = R[i] = ⊥ if pi does not have any detectable operation in L. Then the state
(s, A, T , R) is related to the variables of the generic construction at the end of H as follows:

if C[i] ∈ {0, 1} then A[i] = NextOp[i], T [i] = NextTag[i], and R[i] = NextRet[i]
if C[i] = 2 then A[i] = PrevOp[i], T [i] = PrevTag[i], and R[i] = PrevRet[i]
if C[i] = 3 and pi applied a nontrivial state transition (i.e., changed the value of S) at
line 18 in the detectable-FAϕ operation where it most recently assigned C[i] = 3 at
line 17, then A[i] = NextOp[i], T [i] = NextTag[i], and R[i] = NextRet[i]
if C[i] = 3 and pi applied a trivial state transition (i.e., did not change the value of S)
at line 18 in the detectable-FAϕ operation where it most recently assigned C[i] = 3 at
line 17, then A[i] = PrevOp[i], T [i] = PrevTag[i], and R[i] = PrevRet[i]
if C[i] = 3 and pi has not yet reached line 18 in the detectable-FAϕ operation where
it most recently assigned C[i] = 3 at line 17, then A[i] = PrevOp[i], T [i] = PrevTag[i],
and R[i] = PrevRet[i]

Moreover, s = S (i.e., the abstract value of the implemented object matches the value stored
in the variable S).

Correctness of the detectable-FAϕ operation follows from the last clause of the invariant
(s = S) and the use of the recoverable mutex RM to protect updates to S. The mutex ensures
that the value of S does not change between when pi reads S at line 11 and when pi executes
the linearization point of the detectable-FAϕ operation at line 18 before returning the
value read at line 21, which implies that the return value equals the value of S immediately
before the linearization point. Next, consider the resolve operation. A completed call to
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resolve by pi enforces C[i] = 0 via line 27, line 32, or line 41, and so Theorem 5 ensures that
A[i] = NextOp[i], T [i] = NextTag[i], and R[i] = NextRet[i] when pi reaches line 42. Since
pi’s resolve operation returns ⟨NextOp[i], NextTag[i], NextRet[i]⟩ at line 42, the lemma
implies that the return value is equal to ⟨A[i], T [i], R[i]⟩, as required by the UDSS.

Before proceeding with the proof of Theorem 5, we establish a secondary lemma that
captures the effect of the helping mechanism.

▶ Lemma 6. When a process pi reaches line 37 of resolve, the value of cmp is the value of
the variable S as of when pi last crashed during an execution of detectable-FAϕ.

Proof. First, note that pi can only reach line 37 when C[i] = 3 due to pi’s earlier execution
of line 33 and branch to line 34. This implies that pi invoked detectable-FAϕ at least
once since C[i] = 3 can only be established by pi at line 17, and that pi crashed during
its last invocation of detectable-FAϕ as otherwise it would have reached line 20 and
reset C[i] back to 0 before returning. Furthermore, this most recent crash occurred after
line 17 since Assumption 1 requires pi to complete a call to resolve after each crash during
detectable-FAϕ, and since every complete execution of resolve by pi resets C[i] to 0 at
line 27, line 32, or line 41. Since pi’s last crash in detectable-FAϕ occurred after line 17,
it follows that pi already completed line 15 and assigned P = i, where the latter condition
holds until the point of failure due to the critical section enforced by RM .

Next, consider how pi arrived at line 37 of resolve. If Help[i] = ⊥ at line 35 then cmp is
the value read by pi from S at line 34, and in this case no process has overwritten S between
pi’s most recent crash in detectable-FAϕ and pi’s execution of line 34. To see this, note
that any process that overwrites S at line 18 after pi’s crash must first acquire the mutex
RM at line 9 after pi’s crash, and then execute the helping mechanism at lines 13 to 14 inside
the critical section. The first process that executes the helping mechanism after pi’s crash
does so with P = i, which ensures that Help[i] is overwritten with a value different from
⊥ at line 14. Thus, the lemma holds when Help[i] = ⊥ at line 35. Otherwise pi observes
Help[i] ̸= ⊥ at line 35, and cmp is the value read by pi from Help[i] at line 36. In this case
some process pj already executed the helping mechanism with P = i before pi read Help[i]
at line 37, and so Help[i] at that point already holds the value read by pj from S at line 14.
Since pj executes the helping mechanism after pi’s crash and before any process overwrites
S, as explained earlier, the lemma holds in this case as well. ◀

Finally, we present the proof of Theorem 5 below.

Proof of Theorem 5. We proceed by induction on the number of steps, k, in the history H.
We will use subscript notation in reference to the value of a program variable or abstract
state component at the end of a history, for example denoting the value of NextOp[i] at the
end of H by NextOpH [i], or denoting the value of A[i] at the end of a linearization L of H

by AL[i].
In the base case k = 0, and H = L = ⟨⟩. Then CH [i] = 0, NextOpH [i] = NextTagH [i] =

NextRetH [i] = ⊥, and SH = s0 by initialization. Similarly, AL[i] = TL[i] = RL[i] = ⊥
and sL = s0 by definition of the initial state of the UDSS. The lemma holds since AL[i] =
NextOpH [i], TL[i] = NextTagH [i], RL[i] = NextRetH [i], and sL = SH .

Next, choose an arbitrary k ≥ 0 and suppose for induction that the lemma holds for any
history H of length k. Fix such a history H and let H ′ be an extension of H by another step
σ by some process pi. Let L and L′ denote the strict linearizations of H and H ′, respectively.
We proceed by a case analysis on σ. Steps where pi accesses RM , or where pi merely reads
a program variable, are excluded from the analysis since the lemma follows directly from the
induction hypothesis in those cases. The same principle applies to crash steps.
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Case A. σ assigns C[i] = 1 at line 1 of detectable-FAϕ. It follows from Assumption 1
that pi can only invoke detectable-FAϕ if this is pi’s first operation invocation, or if its last
operation was a complete execution of detectable-FAϕ or resolve. Then CH [i] = 0 holds
either by initialization or by the action of pi’s last operation, and so the induction hypothesis
states that AL[i] = NextOpH [i], TL[i] = NextTagH [i], RL[i] = NextRetH [i], and sL = SH .
The lemma requires AL′ [i] = NextOpH′ [i], TL′ [i] = NextTagH′ [i], RL′ [i] = NextRetH′ [i],
and sL′ = SH′ since CH′ [i] = 1. The lemma follows from the induction hypothesis since σ

maintains L′ = L, and does not affect any variable aside from C[i].
Case B. σ updates PrevOp[i], PrevTag[i] or PrevRet[i] at lines 2 to 4 of detectable-FAϕ.
Then CH [i] = 1 holds by pi’s earlier execution of line 1. The induction hypothesis states
that AL[i] = NextOpH [i], TL[i] = NextTagH [i], RL[i] = NextRetH [i], and sL = SH . The
lemma requires AL′ [i] = NextOpH′ [i], TL′ [i] = NextTagH′ [i], RL′ [i] = NextRetH′ [i], and
sL′ = SH′ since CH′ [i] = 1. The lemma follows from the induction hypothesis since σ

maintains L′ = L, and does not affect any variable aside from PrevOp[i], PrevTag[i], and
PrevRet[i].
Case C. σ assigns C[i] = 2 at line 5 of detectable-FAϕ. Then CH [i] = 1 holds by
pi’s earlier execution of line 1. The induction hypothesis states that AL[i] = NextOpH [i],
TL[i] = NextTagH [i], RL[i] = NextRetH [i], and sL = SH . The lemma requires AL′ [i] =
PrevOpH′ [i], TL′ [i] = PrevTagH′ [i], RL′ [i] = PrevRetH′ [i], and sL′ = SH′ since CH′ [i] = 2.
Step σ maintains L′ = L and does not affect any variable other than C[i], and so the
lemma holds by pi’s prior execution of lines 2 to 4, which copy NextOp[i], NextTag[i] and
NextRet[i] to PrevOp[i], PrevTag[i] and PrevRet[i], respectively.
Case D. σ updates NextOp[i], NextTag[i] or NextRet[i] at lines 6 to 11 of detectable-
FAϕ. Then CH [i] = 2 holds by pi’s earlier execution of line 5. The induction hypothesis
states that AL[i] = PrevOpH [i], TL[i] = PrevTagH [i], RL[i] = PrevRetH [i], and sL = SH .
The lemma requires AL′ [i] = PrevOpH′ [i], TL′ [i] = PrevTagH′ [i], RL′ [i] = PrevRetH′ [i],
and sL′ = SH′ since CH′ [i] = 2. The lemma follows from the induction hypothesis since
σ maintains L′ = L, preserves CH′ [i] = 2, and does not affect any variable aside from
NextOp[i], NextTag[i], and NextRet[i].
Case E. σ assigns C[i] = 3 at line 17 of detectable-FAϕ. Then CH [i] = 2 holds by
pi’s earlier execution of line 5. The induction hypothesis states that AL[i] = PrevOpH [i],
TL[i] = PrevTagH [i], RL[i] = PrevRetH [i], and sL = SH . The lemma requires AL′ [i] =
PrevOpH′ [i], TL′ [i] = PrevTagH′ [i], RL′ [i] = PrevRetH′ [i], and sL′ = SH′ since CH′ [i] = 3
and since pi has not yet applied a state transition to S at line 18. The lemma follows from
the induction hypothesis since σ maintains L′ = L and does not affect any variable other
than C[i].
Case F. σ updates Help[P ] at line 14 or updates P at line 15 of detectable-FAϕ. Then
CH [i] = 3 holds by pi’s earlier execution of line 17. The induction hypothesis states that
AL[i] = PrevOpH [i], TL[i] = PrevTagH [i], RL[i] = PrevRetH [i], and sL = SH since
pi has not yet applied a state transition to S at line 18. Similarly, the lemma requires
AL′ [i] = PrevOpH′ [i], TL′ [i] = PrevTagH′ [i], RL′ [i] = PrevRetH′ [i], and sL′ = SH′ . The
lemma follows from the induction hypothesis since σ maintains L′ = L and does not affect
any variable other than Help[P ] or P .
Case G. σ applies a nontrivial state transition to S at line 18 of detectable-FAϕ. In this
case L′ extends L by one detectable-FAϕ operation, SH′ ̸= SH , and CH [i] = 3 holds by
pi’s earlier execution of line 17. The induction hypothesis states that AL[i] = PrevOpH [i],
TL[i] = PrevTagH [i], RL[i] = PrevRetH [i], and sL = SH . The lemma requires AL′ [i] =
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NextOpH′ [i], TL′ [i] = NextTagH′ [i], RL′ [i] = NextRetH′ [i], and sL′ = SH′ where AL′ [i],
TL′ [i], and RL′ [i] refer to pi’s current detectable-FAϕ operation. It follows from pi’s
earlier execution of line 6 that AL′ [i] = NextOpH′ [i], as required. It follows from pi’s
earlier execution of line 7 that TL′ [i] = NextTagH′ [i], as required. It follows from pi’s
earlier execution of line 11 and from the fact that updates to S are protected by RM that
NextRetH′ [i] = NextRetH [i] = SH , where RL′ [i] = SH since σ is the linearization point of
pi’s current detectable-FAϕ operation. Thus, RL′ [i] = NextRetH′ [i] holds, as required.
Finally, sL′ = SH′ follows by the action of step σ, which updates S to the new abstract value
computed via the function ϕ, and where the input to ϕ is SH since pi holds the recoverable
mutex RM while reading and writing S at line 18. Thus, the lemma holds.

Case H. σ applies a trivial state transition to S at line 18 of detectable-FAϕ. In this case
L′ = L, SH′ = SH , and CH [i] = 3 holds by pi’s earlier execution of line 17. The induction
hypothesis states that AL[i] = PrevOpH [i], TL[i] = PrevTagH [i], RL[i] = PrevRetH [i],
and sL = SH . The lemma requires AL′ [i] = PrevOpH′ [i], TL′ [i] = PrevTagH′ [i], RL′ [i] =
PrevRetH′ [i], and sL′ = SH′ . The lemma follows from the induction hypothesis since σ

maintains L′ = L and does not affect any variable aside from S, where SH′ = SH .

Case I. σ assigns C[i] = 0 at line 20 of detectable-FAϕ. Then CH [i] = 3 holds by pi’s
earlier execution of line 17. The lemma requires AL′ [i] = NextOpH′ [i], TL′ [i] = NextTagH′ [i],
RL′ [i] = NextRetH′ [i], and sL′ = SH′ . where AL′ [i], TL′ [i], and RL′ [i] refer to pi’s current
detectable-FAϕ operation.

Subcase I1. pi applied a nontrivial state transition to S earlier at line 18. In this case
pi’s current detectable-FAϕ operation already reached its linearization point prior to
step σ. The induction hypothesis states that AL[i] = NextOpH [i], TL[i] = NextTagH [i],
RL[i] = NextRetH [i], and sL = SH . The lemma follows from the induction hypothesis since
σ maintains L′ = L and does not affect any variable aside from C[i].

Subcase I2. pi applied a trivial state transition to S earlier at line 18. In this case
pi’s current detectable-FAϕ operation takes effect at step σ, and so L′ extends L by
one detectable-FAϕ operation. The induction hypothesis states that sL = SH . The
lemma requires AL′ [i] = NextOpH′ [i], TL′ [i] = NextTagH′ [i], RL′ [i] = NextRetH′ [i], and
sL′ = SH′ , where AL′ [i], TL′ [i], and RL′ [i] refer to pi’s current detectable-FAϕ operation.
It follows from pi’s earlier execution of line 6 that AL′ [i] = NextOpH′ [i], as required. It
follows from pi’s earlier execution of line 7 that TL′ [i] = NextTagH′ [i], as required. It follows
from pi’s earlier execution of line 11 and from the fact that updates to S are protected by
RM that NextRetH′ [i] = NextRetH [i] = SH , where RL′ [i] = SH since σ is the linearization
point of pi’s current detectable-FAϕ. Thus, RL′ [i] = NextRetH′ [i] holds, as required.
Finally, sL′ = sL follows despite L′ ̸= L since pi applied a trivial state transition in its
current detectable-FAϕ operation, sL = SH follows from the induction hypothesis, and
SH = SH′ follows since σ does not update S. Thus, sL′ = SH′ holds as required, and the
lemma holds.

Case J. σ assigns C[i] = 0 at line 27 of resolve. Then CH [i] = 1 by pi’s earlier execution
of line 26 and branch to line 27. The induction hypothesis states that AL[i] = NextOpH [i],
TL[i] = NextTagH [i], RL[i] = NextRetH [i], and sL = SH . The lemma requires AL′ [i] =
NextOpH′ [i], TL′ [i] = NextTagH′ [i], RL′ [i] = NextRetH′ [i], and sL′ = SH′ . The lemma
follows from the induction hypothesis since σ maintains L′ = L and does not affect any
variable aside from C[i].
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Case K. σ updates NextOp[i], NextTag[i], or NextRet[i] at lines 29 to 31 of resolve. Then
CH [i] = 2 by pi’s earlier execution of line 26 and branch to line 27. The induction hypothesis
states that AL[i] = PrevOpH [i], TL[i] = PrevTagH [i], RL[i] = PrevRetH [i], and sL = SH .
The lemma requires AL′ [i] = PrevOpH′ [i], TL′ [i] = PrevTagH′ [i], RL′ [i] = PrevRetH′ [i],
and sL′ = SH′ . The lemma follows from the induction hypothesis since σ maintains L′ = L,
and since step σ does not modify S, PrevOp[i], PrevTag[i], or PrevRet[i].

Case L. σ assigns C[i] = 0 at line 32 of resolve. Then CH [i] = 2 by pi’s earlier execution
of line 28 and branch to line 29. The induction hypothesis states that AL[i] = PrevOpH [i],
TL[i] = PrevTagH [i], RL[i] = PrevRetH [i], and sL = SH . The lemma requires AL′ [i] =
NextOpH′ [i], TL′ [i] = NextTagH′ [i], RL′ [i] = NextRetH′ [i], and sL′ = SH′ . The lemma
follows from the induction hypothesis, since σ maintains L′ = L and step σ does not modify S,
and also from pi’s earlier execution of lines 29 to 31, where pi restores NextOp[i], NextTag[i],
and NextRet[i] from PrevOp[i], PrevTag[i], and PrevRet[i].

Case M. σ updates NextOp[i], NextTag[i], or NextRet[i] at lines 38 to 40. Then CH [i] = 3
by pi’s earlier execution of line 33 and branch to line 34. Furthermore, the value of pi’s private
variable cmp equals the value of S as of when pi failed during its last execution of detectable-
FAϕ by Theorem 6. Then pi’s execution of lines 38 to 40 implies that LastS[i] = cmp held
at line 37, where LastS[i] is the value pi fetched from S at line 12 during its last detectable-
FAϕ operation before assigning C[i] = 3 at line 17. This implies that pi never reached line 18,
or it did reach this line but applied a trivial state transition to S, given our earlier conclusion
regarding the value of cmp and the fact that RM protects lines 12 to 18. In either case, pi’s
last detectable-FAϕ operation did not take effect, and so the induction hypothesis states
that AL[i] = PrevOpH [i], TL[i] = PrevTagH [i], RL[i] = PrevRetH [i], and sL = SH . The
lemma requires AL′ [i] = PrevOpH′ [i], TL′ [i] = PrevTagH′ [i], RL′ [i] = PrevRetH′ [i], and
sL′ = SH′ . The lemma follows from the induction hypothesis since σ maintains L′ = L and
does not affect any variable aside from NextOp[i], NextTag[i], and NextRet[i].

Subcase N. σ assigns C[i] = 0 at line 41 of resolve. Then CH [i] = 3 by pi’s earlier
execution of line 33 and branch to line 34. The lemma requires AL′ [i] = NextOpH′ [i],
TL′ [i] = NextTagH′ [i], RL′ [i] = NextRetH′ [i], and sL′ = SH′ . If pi’s last detectable-FAϕ

operation took effect by applying a nontrivial state transition to S then the induction
hypothesis states that AL[i] = NextOpH [i], TL[i] = NextTagH [i], RL[i] = NextRetH [i],
and sL = SH . In this case the lemma follows from the induction hypothesis since σ

maintains L′ = L and does not affect any variable other than C[i]. Otherwise pi’s last
detectable-FAϕ operation either applied a trivial state transition to S, or did not reach
line 18 at all, and hence did not take effect. In this case the induction hypothesis states
that AL[i] = PrevOpH [i], TL[i] = PrevTagH [i], RL[i] = PrevRetH [i], and sL = SH . Now
consider pi’s earlier comparison of cmp against LastS[i] at line 37, and note that LastS[i]
is the value pi fetched from S at line 12 during its last detectable-FAϕ operation before
assigning C[i] = 3 at line 17. Furthermore, the value of pi’s private variable cmp equals the
value of S as of when pi failed during its last execution of detectable-FAϕ by Theorem 6.
Since pi never reached line 18, or it did reach this line but applied a trivial state transition
to S, and since RM protects lines 12 to 18, it follows that LastS[i] = cmp held at line 37.
Thus, pi branched to line 38 and executed lines 38 to 40 prior to reaching line 41. Given the
induction hypothesis, lines 38 to 40 ensure that AL′ [i] = NextOpH′ [i], TL′ [i] = NextTagH′ [i],
and R′L[i] = NextRetH′ [i] by copying PrevOp[i], PrevTag[i] and PrevRet[i] to NextOp[i],
NextTag[i] and NextRet[i], respectively. Finally, sL′ = SH′ holds since σ maintains L′ = L

and does not write S. Thus, the lemma holds. ◀

This concludes the proof of Theorem 1. ◀
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A.2 Proof of Theorem 2
Proof. Aside from accesses to the recoverable mutex RM at lines 8 to 9, line 19, lines 23 to 25,
the operations detectable-FAϕ and resolve are wait-free and have O(1) step complexity.
Termination and RMR complexity therefore both depend on RM . This mutex is accessed
correctly in the generic construction, meaning that its recovery, entry, and exit sections
are called in the correct order, and that Recover is always called after a crash outside
the non-critical section due to Assumption 1. Thus, each passage through RM terminates
eventually in any infinite fair history by the starvation freedom of RM , and incurs O(R)
RMRs in any history. Since each detectable-FAϕ and resolve operation makes at most
one passage through RM , it follows that the worst-case RMR complexity per operation in
the generic construction is O(R). ◀

B Adapting the Detectable Construction for FCFS

While our generic construction of detectable objects does not preserve wait-freedom due to
the use of an RME lock in the detectable-FAϕ operation, there are several concrete ways
in which it can guarantee partial wait freedom. Several techniques were discussed already in
Section 4, and so we focus here on optimizations related to supporting first-come-first-serve
(FCFS) fairness in RME and RME-like algorithms based on our detectable objects.

If the recoverable mutex RM supports first-come-first-serve (FCFS) (Definition 7) then
it can be shown that the detectable-FAϕ operation always appears to take effect inside
the doorway of RM . Such operations are thus wait-free up to their linearization point
provided that RM also provides bounded recovery. Note that steps taken up to the end
of the doorway of RM at line 9 do not by themselves decide whether or not a particular
detectable-FAϕ operation will take effect since the latter depends on a process subsequently
reaching line 18 or line 20 before crashing (see Table 4 in Appendix A). Thus, the exact order
of linearization points is not necessarily determined without some busy-waiting, for example
where p1 completes the doorway of RM before p2 starts the doorway, p2 then waits for p1 to
complete the CS of RM , p1 crashes before starting the CS, p2 finally updates S at line 18,
and only then it becomes irrevocable that p2’s detectable-FAϕ operation takes effect while
p1’s does not. However, this limitation is not restrictive if the implemented detectable-FAϕ

operation is by itself used to enforce FCFS fairness in some recoverable mutex RM ′ that uses
detectable base objects, meaning that the recovery section and doorway of RM at lines 8
to 9 become the doorway of RM ′. In this specific use case, the relative order of doorway
executions only matters under Definition 7 for pairs of processes that actually enter the CS
of RM ′ in their corresponding passages, which occurs only after completing the entry section
of RM ′ failure-free, including the entire detectable-FAϕ operation under consideration;
this ensures that the linearization points are well-defined.

▶ Definition 7 (FCFS). An RME algorithm satisfies first come first serve (FCFS) if for any
two passages by distinct processes p1 and p2, if p1 completes the doorway before p2 starts the
doorway and both processes enter the CS in the corresponding passages then p1 enters the CS
before p2.

▶ Theorem 8. Suppose that RM supports the FCFS property. Then detectable-FAϕ

operations appear to take effect in the doorway of RM , meaning that for every history H

of the generic construction, there is a strict linearization S such that the total order of
operations in S is consistent with the partial order of doorway executions corresponding to
line 9. Specifically, if op1 <S op2 holds then op2 <D op1 is false, where <S is the total order
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over operations in S, and <D is the partial order over operations in S such that op1 <D op2
if (and only if) op1 and op2 are both detectable-FAϕ operations and the doorway of RM is
completed in op1 before it is started in op2.

Proof. It follows from Theorem 1 that H has a strict linearization S consistent with the
linearization points defined in Table 4 (see Appendix A). Take any such S, and let <S denote
the corresponding total order of operations, including both detectable-FAϕ and resolve.
Now suppose for contradiction that op1 <S op2 and op2 <D op1 both hold for some pair of
operations, and so the doorway in op2 was completed before the doorway in op1 was started.
It follows from op1 <D op2 and the FCFS property of RM that if the CS is entered in both
op1 and op2 then it is entered in op2 before op1. Since each operation in S linearizes at a
point inside the CS according to Table 4, the actual order of CS executions in H implies
that op2 <S op1, which contradicts our earlier supposition. ◀

A slightly weaker result can be shown if RM only supports the k-FCFS property [25] for
some k, stated below in Theorem 9, which refers to the concepts of failure-concurrency and
interfering super-passages. A super-passage by a process pi is 0-failure-concurrent (0-FC)
if pi crashes in this super-passage. Two super-passages interfere if neither super-passage
ends (with a complete failure-free passage) before the other starts. A super-passage is
k-failure-concurrent (k-FC) for some k ≥ 1 if it interferes with some (k −1)-FC super-passage
(possibly of the same process). A passage is k-FC for some k ≥ 1 if it belongs to a k-FC
super-passage.

▶ Definition 9 (k-FCFS). An RME algorithm satisfies k-FCFS for some k ≥ 0 if for any
two passages by distinct processes p1 and p2, if p1 completes the doorway before p2 starts the
doorway and both processes enter the CS in the corresponding passages then p1 enters the CS
before p2 unless at least one of these passages is k-FC.

To connect the k-FCFS property of RM to the behavior of our generic construction, we
generalize the concepts of super-passages and k-FC to object implementations. A super-
passage of a process pi with respect to the generic construction is a maximal contiguous
sequence of operations by pi where at most the last operation in the sequence is complete. For
example, a single complete execution of detectable-FAϕ is a super-passage, and similarly
for an execution of detectable-FAϕ that is interrupted by a crash followed by one or more
executions of resolve where only the last resolve operation is complete. We say that a
super-passage of the generic construction by pi is 0-FC if it contains at least one operation
interrupted by pi’s crash, which in this context implies that the first operation in the
super-passage is the interrupted one. Two super-passages interfere if neither super-passage
ends (with a completed operation) before the other starts. A super-passage of the generic
construction is k-FC for some k ≥ 1 if it interferes with some (k − 1)-FC super-passage. An
operation applied to the generic construction is k-FC for some k ≥ 1 if it belongs to a k-FC
super-passage.

▶ Theorem 10. Suppose that RM supports the k-FCFS property for some k ≥ 0. Then
detectable-FAϕ operations appear to take effect in the doorway of RM in all super-passages
of the generic construction that are not k-FC, meaning that for every history H of the generic
construction, there is a strict linearization S such that the total order of operations in S is
consistent with the partial order of doorway executions corresponding to line 9 in operations
that are not k-FC. Specifically, if op1 <S op2 holds then op2 <D op1 is false for any pair
of operations op1 and op2 that are not k-FC, where <S is the total order over operations
in S, and <D is the partial order over operations in S such that op1 <D op2 if (and only
if) op1 and op2 are both non-k-FC detectable-FAϕ operations and the doorway of RM is
completed in op1 before the doorway of RM is started in op2.

OPODIS 2024



5:26 RMR-Efficient Detectable Objects for Persistent Memory and Their Applications

Proof. We proceed roughly as in the proof of Theorem 8. It follows from Theorem 1 that
H has a strict linearization S consistent with the linearization points defined in Table 4
(see Appendix A). Take any such S, and let <S denote the corresponding total order of
operations, including both detectable-FAϕ and resolve. Now suppose for contradiction
that op1 <S op2 and op2 <D op1 both hold for some pair of operations, and so the doorway
in op2 was completed before the doorway in op1 was started, where neither op1 nor op2 is
k-FC. It follows from op1 <D op2 and the k-FCFS property of RM that if the CS is entered
in both op1 and op2 then it is entered in op2 before op1. Since each operation in S linearizes
at a point inside the CS according to Table 4, the actual order of CS executions in H implies
that op2 <S op1, which contradicts our earlier supposition. ◀

C Bounding Space Complexity in the Detectable Object Construction

The space complexity of the algorithm can be bounded by reclaiming and reusing the queue
nodes allocated at line 58. In the absence of failures, each process can maintain a single node
and reuse it safely across consecutive passages, but crash failures introduce the risk of an unsafe
memory operation where a predecessor process signals its successor redundantly by executing
line 71 of Exit from line 57 of Recover, after the successor has already repurposed its queue
node for a new passage. This particular use-after-free scenario can be made safe by storing a
pointer to the predecessor’s queue node in the locked field instead of a boolean, similarly to
Algorithm 3 in [13]. The domain of values for locked must also include a designated initial
value ⊥, as well as a special value ⊤ indicating that the queue node was already locked and
then unlocked. The algorithm is revised slightly in several places: at line 51 of Recover the
condition qi.locked = false is replaced with qi.locked = ⊥; at line 60 of Enter qi.locked is
initialized to ⊥ instead of false; at line 64 of Enter qi.locked is set to prev instead of true; at
line 66 of Enter the condition qi.locked ̸= true is replaced with qi.locked = ⊤; and at line 71
of Exit the assignment qi.next.locked := false is replaced with qi.next.locked.CAS(qi, ⊤).
Another potentially unsafe memory access occurs when a successor links with a predecessor
at line 65 of Enter from line 52 of Recover, however this is already addressed by the
condition at line 51 (now modified to prev ̸= ⊥ ∧ prev.next = ⊥ ∧ qi.locked = ⊥). The latter
ensures that line 52 is reached only if lines 64 to 65 have not yet been executed, and accounts
for the possibility that the predecessor has already moved on to its next passage, in which
case prev.next = ⊥ may hold but qi.locked = ⊥ is false since the predecessor has already
completed the revised line 71 at least once and updated qi.locked to ⊤.
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