
DULL: A Fast Scalable Detectable Unrolled
Lock-Based Linked List
Ahmed Fahmy #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Wojciech Golab #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Abstract
Persistent memory (PM) has emerged as a promising technology that enables data structures to
preserve their consistent state after recovering from system failures. Detectable data structures
have been proposed to detect the response of the last operation of a crashed process. Various
lock-free detectable and recoverable concurrent data structures have been developed in the literature.
However, designing detectable lock-based structures is challenging due to the need to preserve the
correctness properties of the underlying locks, such as mutual exclusion and deadlock-freedom, across
failures. Therefore, lock-based detectable and persistent data structures are not as common as
lock-free structures. In this work, we introduce DULL: a fast, scalable and Detectable Unrolled
Lock-based Linked list. This paper presents the design and implementation of DULL, along with an
evaluation of its recoverability and scalability. Experimental Results show that DULL is several-fold
faster than the competition in all workloads that involve updates. Moreover, as opposed to some
of the previous works, our algorithm is scalable when the multiprocessor is oversubscribed. DULL
is a demonstration of the feasibility of using lock-based data structures with detectability in PM
environments. We believe that DULL opens up new research directions for designing and analyzing
detectable lock-based data structures.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms; Software
and its engineering → Mutual exclusion; Computer systems organization → Reliability

Keywords and phrases detectability, lock-based, mutual exclusion, linked list, fault-tolerance,
persistent memory, concurrency

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.6

Funding This research is supported by an Ontario Early Researcher Award, a Google Faculty
Research Award, as well as the Natural Sciences and Engineering Research Council of Canada
(NSERC).

Acknowledgements We would like to thank the OPODIS review committee for their valuable
comments and helpful suggestions.

1 Introduction

Non-volatile random access memory, or persistent memory (PM), has been a research focus
for the past few years. Such a technology enables computer systems to maintain data in
memory across transient failures, such as power outages. The evolution of PM blurs the
line in current computer architectures between the primary dynamic random-access memory
(DRAM) and the secondary long-term storage (e.g., solid-state drives). In lieu of utilizing the
DRAM for high-speed memory access and the secondary storage for data recovery, the PM
promises the best of the two worlds: performance and durability. PM is byte-addressable
like the DRAM, allowing computer programs to directly recover in-memory data structures
without transferring data from the block oriented secondary storage. The durability of
PM created the opportunity for designing data structures that are aware of the underlying
memory hardware to leverage its recovery feature.

© Ahmed Fahmy and Wojciech Golab;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 6; pp. 6:1–6:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a7fahmy@uwaterloo.ca
https://orcid.org/0000-0003-3700-2301
mailto:wgolab@uwaterloo.ca
https://orcid.org/0000-0002-8891-256X
https://doi.org/10.4230/LIPIcs.OPODIS.2024.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

With the emergence of PM, data structure algorithms are potentially able to preserve
their consistent state after recovering from a crash failure. Nowadays, most multiprocessors
use the cache-coherent (CC) memory model, where each processor has a local cache while all
processors share memory modules that can be accessed through some interconnect. Designing
recoverable, or persistent, data structures for CC systems is challenging. In such systems,
caches constitute a volatile level in the memory hierarchy that falls between the processing
units and the PM. If a data structure changed its state based on data in a volatile cache that
is not yet written back to memory, a subsequent system-wide failure erases those data, and
recovering from that crash naively might lead to inconsistency. Therefore, persistent data
structures should be designed carefully to establish consistency. For example, instructions
for writing back cache lines and memory fences can impose order in which data are written
into memory. Intel has introduced a new technology on the 3rd generation Xeon processors,
called the extended asynchronous DRAM Refresh (eADR), that includes CPU caches into the
system-wide failure protected domain [33]. Such a technology removes the need for cache line
write-back instructions. However, the protected domain excludes the CPU volatile registers.
Hence, memory fences and recovery protocols are still required to ensure consistency.

Many recoverable concurrent data structures have been presented [52, 17, 6, 35, 19,
22, 51, 3]. The strongest correctness property for such structures is strict linearizability
[1] as it requires crashed operations to either take effect before the crash or never take
effect. Some data structures are said to be detectable [5, 7, 8, 22], which enables detecting
the response of a crashed operation. Published lock-based detectable and persistent data
structures [13, 31, 45, 49] are not as common or practical as lock-free structures. For example,
some algorithms [13, 31] use logging, which degrades performance. Others [45, 49] adopt
privileged persistence instructions (e.g. flush-the-whole-cache) and specific techniques that
limit scalability, such as flat-combining.

Designing detectable lock-based data structures is challenging. The correctness properties
of the underlying locks, such as mutual exclusion and deadlock-freedom, must be preserved
across failures when adding persistence or detectability. In this work, we introduce DULL: a
fast, scalable and Detectable Unrolled Lock-based Linked list.

2 Literature Review

Various recoverable concurrent data structures have been presented in the literature [52, 17,
6, 35, 19, 22, 51, 3]. Researchers have established recoverability with different techniques.
(see Appendix A for more details). Herlihy and Wing’s linearizability [30], a widely used
correctness property for concurrent data structures, does not consider crash failures explicitly.
Therefore, other variants of the correctness property have been proposed to accommodate
failures [1, 27, 10, 9]. Strict linearizability [1] is the strongest among the other variants as
it requires crashed operations to either take effect before the crash or never take effect. In
addition, it is compatible with different process naming schemes, including the notion that a
process is resurrected after a failure and attempts to detect the outcome of its last operation.
We adopt this correctness property in our work.

Some data structures are said to be detectable [22, 5, 7, 8], which is an additional
feature on top of recoverability that enables detecting the response of a crashed operation.
In, [5] and [8], Attiya et al. and Ben-David et al. presented a detectable persistent CAS
synchronization primitive that uniquely identifies each operation. One of the queues proposed
by Friedman in [22] offered detectability at the expense of using bookkeeping logs. The
lower and upper bound of the space complexity associated with achieving detectability was



A. Fahmy and W. Golab 6:3

investigated by Ben-Baruch et al. [7]. They also presented a detectable CAS with bounded
space complexity. Until recently, there was no formal definition for detectability. Attiya et al.
in [5] defined detectability through a correctness property they have proposed, nesting-safe
recoverable linearizability (NRL). NRL assumes that a crashed process can be restarted
from its innermost recoverable operation, which requires some kind of persistent call stack.
Additionally, it does not consider the possibility that a crash failure may occur outside of
any recoverable operation. The applicability of such assumptions is not clear in a practical
setting. Li and Golab [42] formalized a more robust definition by providing a systematic
approach of obtaining a detectable sequential specification (DSS) of an object type from
its non-detectable sequential specification. The resultant sequential specification has to be
paired with a correctness property, like strict linearizability, as opposed to other detectability
definitions [44]. Using DSS, [42] presented a detectable lock- and log-free queue. Based on
Li and Golab’s work, Moridi et al. [44] proposed a new correctness definition, called unified
detectable sequential specification (UDSS), that has a simpler interface at the small expense
of performance. In addition, they presented a black box approach that transforms a DSS
object into a UDSS one.

Researchers are currently active in developing persistent and detectable lock-free algo-
rithms [3, 4, 56, 34, 52, 21, 23]. Attiya et al. built on top of the work in [3] and presented
in [4] a technique to obtain a detectable persistent implementation of lock-free data struc-
tures. Zuriel et al. [56] designed an efficient persistent concurrent set. Izadpanah et al. [34]
proposed PETRA, an optimization to persistent transactional memory (PTM) introduced
by Wang et al. [54]. NVTraverse [21] is a general transformation by Friedman et al. that
automatically makes a lock-free data structure persistent. However, it requires changing its
representation into a traversal form, which needs programming expertise and potentially
degrades performance [23]. Friedman et al. [23] presented another transformation, called
Mirror, where a copy of the base data structure is stored in each of the DRAM and PM,
resulting in a faster lock-free recoverable data structures than NVTraverse. It uses atomic
operations and sequence numbers to ensure consistency and durable linearizability. Mirror is
specifically designed for lock-free algorithms and is not suitable for lock-based structures.

Published lock-based detectable and persistent data structures are less common and
practical compared to lock-free structures. Atlas [13], by Chakrabarti et al., identifies
failure-atomic regions using locks in lock-based data structures to simplify recovery, but
the intensive use of logs in critical sections degrades both performance and recovery time.
Ching-Hsiang et al. [31] use mutexes to coarsely divide the code into synchronization points of
consistent states, recording buffered writes between these points to reduce logging overhead.
Nawab’s Dali hashmap [45] is lock-based but relies on the privileged x86 instruction to flush
the entire cache, often flushing and invalidating useful cache lines. A detectable lock-based
flat-combining technique [49] was proposed by Rusanovsky et al., providing a generic method
to build detectable lock-based data structures. Flat-combining involves a single thread
performing operations submitted by other threads, utilizing the cache more efficiently but
limiting scalability. Appendix A provides further discussion of related works.

3 System Model

This section describes the system model adopted in this work. Our focus is on the cache-
coherent (CC) model where each process stores a local copy of the variable in its local cache
for faster subsequent access to the data. Data in volatile caches are not guaranteed to be
written back to the memory unless explicit cash-line write-back instructions are used. In

OPODIS 2024



6:4 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

addition, the order of writing back cache lines to the memory is not ensured. The order can
be enforced by using memory fences. In current computer architectures, a flush instruction
in C/C++ is implemented as a cache-line write-back intrinsic followed by a store fence.

An algorithm for a data structure can be executed concurrently by N asynchronous
processes, or threads, (p1, p2, ..., pN ) prone to crash failures. A process executing an algorithm
can take three types of steps: an ordinary step, a flush step or a (system-wide) crash step.
An ordinary step is an operation in which a process accesses a shared variable. A flush
step is a persistence operation that writes the contents of a cache line back to memory and
then imposes a memory fence and may (or may not) invalidate the current cache state. A
crash step is a system-wide failure that resets all processes to their initial state and clears all
volatile caches.

We use the notion of unified detectable sequential specification (UDSS) [44] to define
detectable object semantics. A UDSS object is a (base) object that is equipped with an
auxiliary procedure to resolve each of the object operations. Specifically, for each operation
op of the base object, a procedure Detectable-op is defined to perform op on the object in
a detectable manner. For convenience, we use op to represent Detectable-op in this work.
In addition, the auxiliary procedure Resolve is defined to resolve a process’ last detectable
operation, if it exists. The auxiliary procedures enable recovering detectable objects to
resolve operations interrupted by crash failures and potentially complete the operations.

4 Persistent Objects

Before getting into the algorithmic details of DULL, three persistent objects are defined to
be used as building blocks: PMptr is a pointer designed to work with persistent memory
mapped files, PMpair is a tuple to store a key-value pair atomically in the PM, and descriptor
is an object that stores information related to the last operation initiated, which may or may
not be completed, by a process to facilitate list detectability.

4.1 Persistent Pointers
A persistent pointer, PMptr, handles two problems: address space layout randomization
(ASLR) [32] and efficiently persisting pointers. As a result of ASLR, dereferencing a pointer
on PM that stores the address of a persistent object after recovering from a system failure
might result in accessing an invalid memory location. The PMptr compensates for ASLR by
storing each pointer as an offset from the base address of the persistent memory-mapped file
and calculating the pointer value on every access. Persisting the offset upon every read and
write is a conservative approach to ensure correctness. However, this might be inefficient
since each update needs to be flushed only once to the PM for a subsequent recovery. PMptr
persists the offset more efficiently. The idea is borrowed from the work of Wang et al. in
[53]. The offset variable is a tuple comprising the offset value intended to be persisted and a
“dirty bit” that indicates whether the current offset value has ever been persisted (0) or not
(1). A PMptr object can be accessed through two operations: Set and Persist (SaP) and
Get and Persist (GaP). See Appendix B for PMptr implementation details.

4.2 Persistent Pairs
A persistent key-value pair, PMpair, comprises a single variable and three associated functions.
The variable pair is a tuple ⟨key, value, flag⟩, where key and value are variables that store
a key and its corresponding data, respectively, and flag is a dirty bit set to 1 if key and
value are not persisted and 0 otherwise. Accessing pair is governed by three functions: Set,
Get and Persist. The function Set stores a key-value pair, given as an argument, into



A. Fahmy and W. Golab 6:5

pair and marks the tuple as not persisted. The key and value stored in pair are retrieved
by the procedure Get, ignoring the dirty bit state. Neither function flushes the key-value
pair object. Persisting pair is delegated to a separate procedure, Persist, for performance
purposes. See Appendix C for more implementation details of the PMpair object.

4.3 Descriptors
A descriptor object is defined in Algorithm 1. To achieve detectability, each process accessing
an instance of DULL has an auxiliary descriptor object. At the beginning of a detectable
operation, a process shall store some operation-related information in its descriptor, i.e.
prepare the operation, through the function Prep-op. Preparing an operation is designed
such that all changes to the descriptor variables appear to be atomic. That is, either all
changes take effect or none at all. To achieve atomicity, each descriptor object consists of
two instances of its variables, called units, and a Boolean variable, curr, that points to the
current unit, where the other instance is called the next unit.

Algorithm 1 Variables and functions of a descriptor object.

Define Unit
op: int ∈ {Insert, Remove, ⊥}, init⊥
args: tuple ⟨key, value⟩ , init ⟨⊥, ⊥⟩
result: int ∈ {true, false, ⊥}, init⊥
offset: pointer of a node, init 0

Define Descriptor
units[0, 1]: array of struct Unit
curr : int ∈ {0, 1}, init 0

Procedure SetResult (res)
1 units[curr].result := res // Set result
2 Flush (units[curr].result) // Persist to PM

Procedure SetNode (ptr)
3 units[curr].offset := ptr − BaseAddress
4 Flush (units[curr].offset) // Persist to PM

Procedure Prep-op (key, value)
5 next := 1 − curr
6 units[next].op := op // init next unit
7 units[next].args := ⟨key, value⟩
8 units[next].result := ⊥
9 units[next].offset := 0

10 Flush (units[next]) // Persist next unit
11 curr := next // make next unit current
12 Flush (curr) // Persist curr to PM

Procedure Resolve
// get resolved state

13 op := units[curr].op
14 ⟨key, value⟩ := units[curr].args
15 result := units[curr].result
16 return ⟨op, key, value, result⟩

In Prep-op, the next unit variables are initialized with the appropriate parameters (Lines
6-9), then curr is flipped to switch the next and current units (Line 11). Note that, all
the descriptor variables in the next unit are persisted to PM at Lines 10 and 12 before the
next unit becomes the current one. The preparation process is marked as completed only
if curr is updated. If a crash occurs before persisting curr, then re-invoking the function
Prep-op upon recovery repeats the whole procedure, making it failure-atomic. The function
SetNode is used for check-pointing (more in Section 4.6), and SetResult marks the end of
the prepared operation (op) by storing the result in the descriptor. Furthermore, a process
can resolve its last operation at any point in time by invoking the idempotent Resolve
procedure of its descriptor object.

This section presents the implementation details of DULL. Our detectable implementation
is based on the unrolled linked list by Platz et al. [46]. Although our focus is on persistence
and detectability, a full description of the proposed DULL algorithm, including overlaps with
the algorithm in [46], is provided in this section for completeness. In the search, insertion,
and removal operations, the lines of added or modified steps are highlighted in red, and
corresponding line numbers are underlined to clearly distinguish our contributions from the
original work. The remaining operations are key components of our contribution.

OPODIS 2024



6:6 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

4.4 Linked List Structure

In designing DULL, persistent unrolled nodes are used as building blocks. Node unrolling,
initially proposed by Shao et al. [50], involves the storage of multiple elements in an array
within each node. Each node comprises the following variables:

count: the number of key-value pairs stored in the node.
marked: a Boolean indicating whether the node has been logically removed from the list.
m: a volatile mutex lock used only during insertions and removals in the list.
anchor : the key that uniquely characterizes a node such that if a key exists in a node,
then the key ≥ the anchor of that node and < the anchor of the successor node. Nodes
are thus sorted in ascending order by their anchor keys.
next: a persistent pointer (PMptr) to the successor node.
pairs[0..K − 1]: an array of up to K unordered variables of type PMpair, where K is the
maximum number of pairs in a node.

In addition to persistent nodes, a DULL instance has an array D[1..N ] of N descriptor
objects, where N is the number of processes. Moreover, a DULL object has at least three
persistent nodes at all times: the head and tail sentinel nodes and one non-sentinel node.
Sentinel nodes do not store key-value pairs. The head and the non-sentinel node anchor keys
are −∞, and the tail anchor key is ∞, where −∞ is some key < the minimum key in the
key space, and ∞ is some key > the maximum key in the key space.

4.5 Traversal and Search

Traversing a DULL is separated into two functions: Scan and Seek. Both procedures are
presented in Algorithm 2. The function Scan searches the list for a target key starting from
the first non-sentinel node in line 18, while tracking the predecessor (pred) and successor
(succ) of each (curr) node. The search ends by reaching a node, curr, where the target key
might exist, i.e., the successor’s anchor key is greater than the target key (Line 20). Finally,
the function Scan returns the three tracked pointers at Line 24. The while-loop at Line 20 is
guaranteed to terminate since the tail’s anchor key is greater than all keys in the key space.
The procedure Seek takes a pointer to some node curr and a target key, and it linearly
searches for the key in the array pairs of curr (Line 25). If the target key is found, the
function returns the index of its key-value pair at Line 29, otherwise, the procedure returns
⊥ at Line 30, indicating that the key is absent in curr.

A Contains operation, presented in Algorithm 2, searches for the node, curr, that
potentially contains the argument target key by invoking the procedure Scan at Line 31.
The array pairs of the node curr is searched for the target key by calling the function Seek
at Line 32. If the key is found, Seek returns a valid index (Line 33) of the corresponding
pair, which is atomically read and then persisted at Lines 34 and 35, respectively. The key
of the read pair is checked at Line 36 before returning its value at Line 37. If Seek does not
find key and returns ⊥, or the check at Line 36 fails, the operation returns ⊥ at Line 38,
indicating that the list does not contain the target key. Note that all traversed pointers are
flushed at least once through the function GaP at Line 23, and each pair read is persisted
through the Persist function at Line 27. Additionally, the function Contains persists the
found pair (Line 35) after the atomic read at Line 34. All persistence operations occur before
returning from the corresponding procedures to preserve strict linearizability.



A. Fahmy and W. Golab 6:7

Algorithm 2 List traversal.

Procedure Scan (key)
17 pred := head.GaP() // Skip head
18 curr := pred.next.GaP()
19 succ := curr.next.GaP()
20 while succ.anchor ≤ key do
21 pred := curr
22 curr := succ
23 succ := succ.next.GaP()
24 return (pred, curr, succ)

Procedure Seek (curr, key)
25 for j := 0 to K − 1 do

// Read pair atomically
26 ⟨k, v⟩ := curr.pairs[j].Get()
27 curr.pairs[j].Persist()
28 if k = key then
29 return j // Return index if found

30 return ⊥ // Otherwise return Nil

Procedure Contains (key)
31 (_, curr, _) := Scan(key) // Get the containing node
32 j := Seek(curr, key) // Get the index of key in curr
33 if j ̸= ⊥ then // If key is found
34 ⟨k, v⟩ := curr.pairs[j].Get() // Read pair atomically
35 curr.pairs[j].Persist() // Persist pair to PM
36 if k = key then // Return value if key still in pairs
37 return v

38 return ⊥ // Otherwise return Nil

4.6 Insertion
Given a pair, key and value, an Insert operation, shown in Algorithm 3, calls Prep-Insert
of the executing process’ descriptor to initialize it at Line 39. Subsequently, the operation
finds the appropriate node (curr) to store the pair, and its predecessor (pred), by calling
the function Scan at Line 40. The predecessor lock is acquired at Line 41 to prevent any
simultaneous update to curr, pred and the linking pointer, pred.next. The validation in [29]
is then applied to check that pred.next still points to curr and that neither node is marked
as removed (Line 42). If the validation fails, then the predecessor’s mutex is released and the
insertion operation is restarted. Otherwise, Line 45 calls the function Seek, searching for
key in curr ’s array. If the returned index (j) from Seek is valid, then the function marks
the insert operation as completed, unlocks the predecessor’s lock and returns false (Lines
47-49), indicating that the key already exists.1 Otherwise, an empty slot in the array pairs is
searched for by the function Seek at Line 51. Consequently, there are two possible scenarios:
(1) There is an empty slot in pairs and Seek returns its index, or (2) the array is full and
Seek returns ⊥. If (1), then the empty slot in pairs is set to key and value and is persisted at
Lines 53 and 54, respectively, and the counter of curr is incremented at Line 55. If (2), then
curr is split into two nodes, new1 and new2, using the helper procedure Split, called at Line
57. The Split function creates two new nodes (new1 and new2) to replace curr, where each
stores roughly half of the pairs in curr. The implementation details of the Split function are
presented in Appendix E.

Subsequently, the given pair is inserted into new1 if the pair’s key is strictly less than the
anchor key of new2. Otherwise, the pair is inserted into new2. In both cases, the counter
of the node where the pair is inserted is incremented. Note that if the target key is not
found at Line 45, it will eventually be inserted regardless of whether case 1 or 2 occurs. To
maintain such an effect in the presence of a crash failure, the pointer pred is stored in the
descriptor D[i] as a checkpoint marker at Line 50. That is, if a process pi crashes after
persisting D[i].offset (Line 4), the operation can be resumed during recovery (Section 4.8).

1 Instead, the value in a found pair can be updated and the algorithm remains correct.

OPODIS 2024



6:8 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

Algorithm 3 Key-value pair insertion.

Procedure Insert (key, value)
39 D[i].Prep-Insert(key, value)

while true do
40 (pred, curr, _) := Scan(key)
41 pred.m.Lock() // Lock the predecessor node

/* Validate curr is the pred of next and that
both are not deleted */

42 if pred.marked∨curr.marked∨pred.next.GaP() ̸=
curr then
// If not valid, unlock pred and retry

43 pred.m.Unlock()
44 continue
45 j := Seek(curr, key) // Get the index of key
46 if j ̸= ⊥ then // If the key is found

// Mark op as completed
47 D[i].SetResult(false)
48 pred.m.Unlock()
49 return false

// Set pred in descriptor
50 D[i].SetNode(pred)
51 j := Seek(curr, ⊥) // Get empty slot
52 if j ̸= ⊥ then // If found

// Set key-value pair
53 curr.pairs[j].Set(key, value)

54 curr.pairs[j].Persist()
55 curr.count := curr.count + 1

else
56 curr.m.Lock() // lock curr if full

/* Split into new1, new2 and insert pair
into the appropriate node */

57 (new1, new2) := Split(curr)
58 if key < new2.anchor then
59 new1.pairs[new1.count].Set(key, value)
60 new1.count := new1.count + 1

else
61 new2.pairs[new2.count].Set(key, value)
62 new2.count := new2.count + 1

// Persist and logically insert new nodes
63 new1.PersistNode()
64 new2.PersistNode()
65 pred.next.SaP(new1)
66 curr.marked := true
67 curr.m.Unlock()

// Mark op as completed
68 D[i].SetResult(true)
69 pred.m.Unlock()
70 return true

Finally, curr is marked to prevent erroneous subsequent updates to the removed node
(Line 66), the locks in curr and pred are released (Lines 67 and 69), and the value true is
returned (Line 70) to indicate that the pair is successfully inserted into the list. Before the
procedure Insert returns, pi marks its operation as completed by setting the result field of
its descriptor object through calling SetResult at Line 68.

To ensure recoverability, the next pointers of the new replacement nodes are persisted in
the Split function. The other variables are persisted using PersistNode (Lines 63 and 64)
before the nodes are inserted and accessible by other threads (Line 65), maintaining atomicity
in the split process. PersistNode sequentially issues a cache-line write-back for each node
variable, followed by a store fence. If the system fails before replacing curr with the new
nodes (Line 65), then the incomplete split can be, optionally, re-invoked upon recovery since
it has not taken effect. If a failure occurs after Line 65 takes effect, then the recovery protocol
(Section 4.8) recovers the new nodes.

4.7 Removal
Algorithm 4 shows the procedure of removing a key-value pair from a DULL instance. First,
the descriptor of the executing process is initialized at Line 71. Given a target key, invoking
Remove finds the node (curr), and its predecessor (pred), that potentially stores the key
via the function Scan at Line 72. The lock in pred is acquired at Line 73 to prevent any
simultaneous update to the curr and pred nodes. The algorithm validates that the next
pointer or pred still points to curr and that both nodes are not marked as removed (Line
74). If the validation fails, then the mutex of pred is unlocked and the removal operation is
restarted. If the validation succeeds, the function Seek searches for the target key at Line
77. If the key is not found, then the function marks the operation as completed, unlocks
the lock of pred and returns false (Lines 79-80). Otherwise, pi stores the offset of pred in its
descriptor object at Line 81 to detect and optionally resume the operation upon recovery
(Section 4.8). Then, the pair containing the target key is removed and persisted at Lines 81
and 82, respectively, and the node’s counter is decremented at Line 82.



A. Fahmy and W. Golab 6:9

Algorithm 4 Key-value pair removal.

Procedure Remove (key)
71 D[i].Prep-Remove(key, ⊥)

while true do
72 (pred, curr, _) := Scan(key)
73 pred.m.Lock()

/* Validate curr is the pred of next and that
both are not deleted */

74 if pred.marked∨curr.marked∨pred.next.GaP() ̸=
curr then

75 pred.m.Unlock()
76 continue
77 curr := Seek(curr, key)
78 if curr = ⊥ then

// mark op as completed
79 D[i].SetResult(false)

pred.m.Unlock()
80 return false

// Set pred in descriptor
81 D[i].SetNode(pred)

curr.pairs[curr].Set(⊥, ⊥) // Remove pair
82 curr.pairs[curr].Persist()

curr.count := curr.count − 1
83 if curr.count < MinFull then
84 curr.m.Lock()
85 succ := curr.next.GaP()

86 if curr.count = 0 ∧ curr.anchor ̸= −∞ then
// If empty and not last non-sentinel

87 pred.next.SaP(succ) // Remove curr
88 curr.marked := true
89 else if succ.anchor ̸= +∞ then

// otherwise, merge or redistribute
90 succ.m.Lock()
91 if curr.count + succ.count < MaxMerge then
92 new1 := Merge(curr, succ)

else
93 (new1, new2) := Redist(curr, succ)
94 new2.PersistNode()
95 new1.PersistNode()
96 pred.next.SaP(new1)
97 curr.marked := true
98 succ.marked := true
99 succ.m.Unlock()

100 curr.m.Unlock()
// mark op as completed

101 D[i].SetResult(true)
102 pred.m.Unlock()
103 return true

Consequently, if the counter is less than a predefined constant (MinFull ≤ K/2), some
actions are taken to reduce the variation in the number of pairs across all nodes. In the
general case where curr is not the only non-sentinel node and its successor (succ) is not the
tail, there are three possible scenarios: (1) curr is empty, (2) curr is not empty, and the sum
of the counters of curr and succ is less than some predefined constant (MaxMerge), or (3)
curr is not empty, and the sum of the counters of curr and succ is greater than or equal
to MaxMerge. If (1), then curr is logically removed (Line 87) from the list and marked to
prevent invalid subsequent changes to the node. If (2), then curr and succ are merged into a
new node by invoking the helper function Merge at Line 92. If (3), then the pairs stored
in curr and succ are redistributed into two new replacement nodes, by calling the helper
procedure Redist at Line 93, such that both nodes contain roughly the same number of pairs.
Due to space constraints, the steps for the helper subroutines Merge and Redist are moved
to Appendix F. In cases (2) and (3), the new nodes are persisted and logically inserted into
the list (Lines 94-96), and curr and succ are marked at Lines 97 and 98, respectively. Finally,
at Lines 99-103, all acquired locks are released, the operation is marked as completed, and
the Remove procedure returns true, indicating that the pair was successfully deleted.

4.8 Recovery
The recovery protocol, defined in Algorithm 5, is a procedure that is invoked, by a single
thread, after a crash failure. First, D, head and tail are initialized to the addresses of the
descriptors array, head node and tail node (Lines 104-106), respectively (refer to Appendix
D for details about the memory mapped file layout). Then, the recovered head and tail are
used to traverse the list (Line 108) and recover the variables of each node.

Adding persistent nodes to the list – which may occur when inserting or removing a key –
comprises creating new nodes and persisting their anchor, pairs and next variables before
the new nodes are logically inserted into the list. Throughout a node life-cycle, anchor does
not change after it is first initialized. As for the next pointers, traversing the list (Section
4.5) is designed such that the value of a next pointer is persisted by the GaP function upon
reading. In addition, each element in the array pairs is persisted on update. As a result,

OPODIS 2024



6:10 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

Algorithm 5 Recovery protocol.

Procedure Recover
104 D := BaseAddress + 8 // Recover descriptors

// Recover head
105 head := D + N × SizeOf(Descriptor)
106 tail := head + SizeOf(Node) // Recover tail
107 ptr := head // Recover nodes from head to tail
108 while ptr ̸= BaseAddress do // While ptr ̸= ⊥
109 count := 0 // Recover the current node counter
110 for i := 0 to K − 1 do
111 if ptr.pairs[i].Get() ̸= ⟨⊥, ⊥⟩ then
112 count := count + 1

113 ptr.count := count
114 ptr.m := new Mutex // Reset the node lock
115 ptr := ptr.next.GaP()
116 incompleteOp := new Map // Map nodes to PIDs
117 for i := 1 to N do // For every process i
118 tmp := D[i].units[D[i].curr] // Get current unit
119 pred := tmp.offset + BaseAddress // Get pred
120 ⟨op, key, value, res⟩ := D[i].Resolve()
121 if res = ⊥ ∧ op ̸= ⊥ ∧ pred ̸= BaseAddress then
122 incompleteOp[pred] := i // Map pred to PID
123 else if res = ⊥ ∧ op ̸= ⊥ then // no effect
124 D[i].curr := 1 − D[i].curr // clean descriptor

125 foreach pred ∈ list of nodes from tail to head do
126 if pred ∈ incompleteOp then
127 curr := pred.next.GaP()
128 succ := curr.next.GaP()
129 i := incompleteOp[pred] // Get PID
130 ⟨op, key, value, res⟩ := D[i].Resolve()
131 curr := Seek(curr, key) // find key in curr
132 if op = Insert then
133 if succ.anchor < key ∨ curr ̸= ⊥ then

// If split is done or key in curr
134 D[i].SetResult(true)

else // Resume insertion
135 Execute Lines 51-70 of Insert except for

(un)locking mutexes

else
136 if index ̸= ⊥ then // If found, remove pair

Execute Lines 81-82 of Remove
// Resume merge/redistribute if needed

137 Execute Lines 83-103 of Remove except for
(un)locking mutexes

a node is simply recovered by resetting its mutex (Line 114) and deriving the value of the
variable count. A node’s count is inferred by traversing the array pairs and counting all valid
key-value pairs (Lines 109-113).

After initializing the list variables from PM, the recovery protocol uses the recovered
descriptors to resolve and resume interrupted operations. Locks properties should not be
violated during recovery. That is, resuming incomplete operations in arbitrary order violates
strict linearizability. For example, consider the following problematic scenario: Suppose there
exist two processes, pi and pj , that are performing an insertion on two consecutive fully-filled
nodes such that the curr node of pi is the pred of pj . Since the curr nodes of pi and pj are
full of key-value pairs, both processes split their curr nodes (Line 52), or crash. During a
failure-free execution, pi would split its curr node only after pj finishes splitting its curr
node and releases its pred’s lock (Line 69), which is curr.m of pi. Such a sequential order of
execution, imposed by the mutex locks, prevents invalid states from occurring. Now, suppose
a crash failure occurs after both processes store and persist their pred pointer values into
their descriptors (Line 50) but before linking their split nodes at Line 65. Upon recovery,
if pi splits its node first, deleting its curr node (i.e. pj ’s pred node), then pj would create
two nodes, new1 and new2, while splitting its curr and erroneously set the next pointer of
the removed pred node to new1 (Line 65). Therefore, the sequential execution imposed by
the locks must be preserved to avoid inconsistencies. To solve this problem, we observe that
locks of consecutive nodes are always acquired in one direction, from head to tail, and always
released in the opposite direction. Hence, resuming incomplete operations in the reverse
order of the corresponding pred nodes position in the linked list (Lines 117-137), from tail to
head, guarantees that all locks are released before being acquired by other processes.

The for-loop at Line 117 iterates through each descriptor object and reads its current
unit (Line 118). From each descriptor unit, the last operation of each process is resolved
(Line 120) and then checked if it needs to be resumed (Line 121). Incomplete operations
(i.e. its result = ⊥) of which the corresponding variable offset is initialized with a valid node
address shall be resumed. Such operations are logged in an associative array such that each
predecessor node address is mapped to the ID of the process by which the operation was



A. Fahmy and W. Golab 6:11

being executed when the crash failure occurred. Subsequently, the for-each-loop at Line 125
resolves (Line 130) and resumes the interrupted operations (Lines 132-137) in the reverse
order of the associated predecessor nodes in the linked list. For each insertion operation, if
the successor’s anchor key is less than the key to be inserted, then the node split, and the key
insertion, must have been done before the crash. If the key has been found in curr, then the
key has been inserted without splitting the node. In both cases, the recovery protocol just
marks the operation as completed (Line 134). Otherwise, the Insert procedure is resumed
starting from Line 51 without accessing the locks. As for interrupted key removals, the key
is removed at Line 135 if it is found upon recovery (Line 136). Then, Lines 83-103 of the
function Remove is executed to merge or redistribute if necessary. Similarly to insertion
operations, steps for acquiring and releasing locks are skipped when resuming key removals.
Note that executing Lines 83-103 is idempotent. That is, the checks at Lines 83 and 91
ensure that the nodes are redistributed or merged at most once.

4.9 Analysis
▶ Theorem 1. DULL is strictly-linearizable and deadlock-free.

The proof is omitted due to space consideration.

5 Experimental Evaluation

The recoverability of the proposed algorithm is tested using a strict-linearizability checker,
and its performance is evaluated against the state-of-the-art lock-free and lock-based solutions
[18, 48, 49, 28], as well as its non-recoverable variant [46]. The constants MinFull and
MaxMerge are set to K/4 and 3×K/4, respectively, and K = 8 is used in all our experiments.
All lists are implemented in C++ with the -funroll-loops optimization flag using gcc 9.3.0
on Ubuntu 20.04.1. A flush instruction is implemented as a CLWB (_mm_clwb) compiler
intrinsic followed by a memory store fence (_mm_sfence). The server used in our experiments
has a 2.1 GHz Intel Xeon processor that has 20 physical cores, in which CLWB instructions
are supported. Turbo boost is disabled to obtain consistent evaluation results. Moreover, the
server has 6 Intel Optane modules of 128GB, PM is accessed using the PMDK 1.7 library
through memory-mapped files in App-Direct mode. The performance of the following list
implementations is evaluated:

Vanilla-ULL-NONE-PM: the original, non-recoverable, unrolled linked list [46], runs
on PM with no memory reclamation.
DULL-DEBRA-PM: our proposed algorithm runs on PM and uses Brown’s distributed
EBR variant, DEBRA [12], for node reclamation, with a custom bitmap allocator. Upon
recovery, the allocator is reset and reinitialized by traversing the list to prevent memory
leaks from crashes. We also replace our hand-tuned persistence mechanism (based on
[53]) with the FliT library [55] and compare its performance to our custom solution.
DFC-ULL-NONE-PM: a detectable unrolled linked list implemented using the flat-
combining technique proposed in [49]. In DFC-ULL, insertions and removals are submitted
to a global array and then handled by a combiner thread. DFC-ULL runs on PM with
no memory reclamation.
OneFile-LL-PM: a recoverable singly-linked list implemented using a lock-free persistent
transactional memory (PTM) algorithm [48], where updates are performed using transac-
tions, each has a unique ID. Inserting, or removing, an item and updating the transaction
ID occurs atomically using double-word-compare-and-swap (DCAS). OneFile-LL runs on
PM and uses transactions to reclaim nodes.

OPODIS 2024



6:12 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

Romulus-LL-PM: A recoverable singly-linked list uses a lock-based PTM algorithm
[18]. Romulus maintains two copies of the list. Updates modify the primary copy first,
with the other updated afterward. In case of a crash, the consistent copy is used for
recovery. Romulus-LL runs on PM and uses transactions for node reclamation.
Harris-LL-Hazard-DRAM: the non-recoverable Harris’ lock-free list, runs on DRAM
and uses Michael’s lock-free Hazard pointers [43] to reclaim nodes.
Harris-LL-DEBRA-DRAM: Harris’ lock-free linked list, runs on DRAM and uses
Brown’s distributed variant of EBR, DEBRA [12], to reclaim nodes.
PMDK-LL-PM: a recoverable singly-linked list that is based on the undo-logging
algorithm provided by the PMDK object library (libpmemobj). PMDK runs on PM and
uses transactions to reclaim nodes.

The source code for OneFile, Romulus, and PMDK was obtained from [47], and the source
code for FliT was acquired from [16]. Note that only DULL and DFC-ULL are detectable,
while all lists are recoverable except for the Vanilla-ULL and Harris lists. Although the
Vanilla-ULL is not recoverable, its variables are stored in PM to assess the overhead of DULL.
Our evaluation includes experiments conducted under various workloads: an all-read workload,
comprising 100% search operations; a balanced workload, with 25% insertions, 25% removals,
and 50% searches; and an all-write workload, consisting of 50% insertions and 50% removals.
In all experiments, the lists are pre-filled with random key-value pairs to reach their expected
size. The expected size of a list is estimated based on the key space and the ratio of insertions
to removals. Mathematically, the expected size is Insertions(%)

Removals(%)+Insertions(%) × Key Space.
Additionally, various key spaces are used to evaluate list performance.

5.1 Results
When evaluating performance we focus on crash-free executions2 as applications are expected
to run free of failures most of the time. Flush instructions are used in our failure-free
experiments to reflect the lists’ practical performance. Each run involves multiple threads
that continuously insert, remove and lookup key-value pairs for a specific period of time.
The metric used for evaluating throughput is the total number of operations per second over
a varying number of threads. Experiments engage up to 250 threads in three different modes:
The first mode uses only physical cores where up to 20 threads are one-to-one mapped to
processor cores. The second mode utilizes hyper-threading in addition to physical cores and
goes up to 40 threads. The third mode over-subscribes the 40 logical cores with up to 250
threads. The first two modes evaluate the scalability and performance of each list under
consideration. The goal of the third mode is to assess system behaviour under high thread
preemption. Empirical results are presented, in Figure 1, as graphs in which each point
denotes the median of three consecutive runs of five seconds. For each point, there is an
error bar that represents ± one standard deviation.

In all-write and balanced workloads, Figures 1a-1c, DULL outperforms all the other lists
by several-fold in all of the three modes when considering a key-space of 1000 and 5000.
The FliT-based DULL algorithm performed second best in terms of overall performance.
FliT, designed as a general-purpose transformation tool, provides persistence by utilizing a
custom persistent atomic type in place of the standard atomic library, making it particularly
effective for persisting word-sized variables like pointers [55]. However, we found that FliT’s
generalized approach is not as efficient when persisting complex objects containing multiple

2 We also experimentally tested the recoverability of DULL. See Appendix G for more details.



A. Fahmy and W. Golab 6:13

Vanilla-ULL-NONE-PM
DULL-DEBRA-PM
DULL-DEBRA-PM + FliT

Harris-LL-DEBRA-DRAM
Harris-LL-Hazard-DRAM
DFC-ULL-NONE-PM

OneFile-LL-PM
Romulus-LL-PM
PMDK-LL-PM

1 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0
25

0

Threads

105

106

107

Th
ro

ug
hp

ut
 O

p/
s

Ph
y-

co
re

s
Hyp

er
-

th
re

ad

Ove
rsu

bs
cr

ipt
ion

Performance - 1000 - 50read

(a) Balanced workload – key space of 1000.

1 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0
25

0

Threads

104

105

106

Th
ro

ug
hp

ut
 O

p/
s

Ph
y-

co
re

s
Hyp

er
-

th
re

ad

Ove
rsu

bs
cr

ipt
ion

Performance - 5000 - 50read

(b) Balanced workload – key space of 5000.

1 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0
25

0

Threads

105

106

107

Th
ro

ug
hp

ut
 O

p/
s

Ph
y-

co
re

s
Hyp

er
-

th
re

ad

Ove
rsu

bs
cr

ipt
ion

Performance - 1000 - 50ins-50del-0read

(c) All-write workload – key space of 1000.

1 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0
25

0

Threads

105

106

107

Th
ro

ug
hp

ut
 O

p/
s

Ph
y-

co
re

s
Hyp

er
-

th
re

ad

Ove
rsu

bs
cr

ipt
ion

Performance - 1000 - 100read

(d) All-read workload – key space of 1000.

Figure 1 Throughput of state-of-the-art lists under different workloads and key spaces.

variables, such as our descriptors. Specifically, our custom method, which issues a cache-line
write-back instruction for all descriptor variables followed by a single store fence, achieves
faster performance. This optimization is valid when the object variables are exclusively read
and written by a single thread in the absence of failures, with other processes accessing them
only during recovery after a crash. While FliT’s generalization does not take advantage of
such specific optimizations, it offers broader applicability, which limits its ability to maximize
performance in our case. The two non-recoverable Harris lists are faster than the other
algorithms at high concurrency levels. Note that Harris lists are faster than other lists
because, unlike other algorithms, they run on DRAM and are not recoverable. Nevertheless,
Harris lists are surpassed by our proposed algorithm.

In the first mode, where threads are one-to-one mapped to physical cores, the DFC-
ULL algorithm comes in second place when comparing recoverable solutions in most of the
workloads, except for the all-write workload when the key space is 1000 as Romulus-LL has
higher throughput. In addition, Romulus-LL surpasses OneFile-LL and PMDK-LL in all
scenarios. PMDK-LL is dominated by all algorithms except in all-read workloads, Figure
1d, where it yields higher throughput than OneFile-LL. The reason is, for every node while

OPODIS 2024



6:14 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

traversing the list, OneFile-LL performs a more complex load interposition that involves
two acquire-locks and may search the write-set [48]. On the other hand, DULL, DFC-ULL,
Romulus-LL and PMDK-LL employ simpler loads.

In hyper-threading mode, the throughput of DULL increases in high concurrency levels,
unlike the other recoverable algorithms in all-write and balanced workloads. This shows
the scalability of our proposed algorithm. The performance of DFC-ULL, Romulus-LL
and OneFile-LL degrades when more hyper-threaded cores are used in update workloads.
The DFC-ULL and Romulus-LL are flat-combining techniques. Therefore, more concurrent
updates raise the global combining overhead, which prolongs blocking other threads. The
OneFile-LL behaviour is expected as PTMs tend not to scale in scenarios of high degree of
simultaneous updates. On the other hand, our proposed algorithm does not require adding
locks, or transactions, beyond the ones required for the correctness of the non-recoverable
variant. In DULL, we utilize the fact that the unrolled linked list is already lock-based
to achieve detectability. Therefore, in high levels of concurrency (>20 threads), DULL is
significantly more scalable than the competition.

In over-subscription mode, the performance of DULL, Romulus-LL and OneFile-LL is
shown to be stable and saturated as the number of threads increases in all-write and balanced
workloads. The DFC-ULL performance, in contrast, drops significantly when the concurrency
level rises. It was interesting at first to see the DFC-ULL algorithm collapses in scalability
compared to the Romulus-LL, although both algorithms are based on flat-combining. This
observation can be explained as a result of the reduction step in DFC-ULL. In DFC, the
combiner first examines the submitted requests by other threads and attempts to reduce the
number of operations by elimination. For example, the combiner may resolve the result of
each simultaneous pair of opposite operations (an insertion and a removal of the same key)
without modifying the data structure. Such a technique is mostly advantageous when used
in implementing abstract data types (ADTs) that have a parameterless remove procedure,
like stacks, queues and deques, where a removal can be matched and eliminated with any
concurrent insertion. In contrast, for a correct set ADT implementation, like a linked list, a
key removal can only be eliminated by a simultaneous insertion of the same key.

The results considering all-read workloads are demonstrated in Figure 1d. The overhead
of adding recoverability while traversing DULL is found to be small when compared to
the Vanilla-ULL, thanks to the efficient flush-on-read implemented as part of the PMptr

and PMpair persistent objects. The same is noticeable for the DFC-ULL as well. In fact,
DFC-ULL is slightly faster than DULL since it does not add flush steps to the original
traversing algorithm. The Romulus-LL, OneFile-LL and PMDK-LL are slower compared to
the DULL and DFC-ULL in all-read workloads as a consequence of using the unrolled list as
the underlying list algorithm.

Figure 1b illustrates the throughput considering a balanced workload and a key space of
5000 to assess and compare the list algorithms for a larger list size, roughly 2500 key-value
pairs. When compared to balanced workloads with key space of 1000, Figure 1a, a similar
pattern with a consistent lower performance is observable in all algorithms, except for DFC-
ULL. That is, the DFC-ULL is impacted the least when increasing the key space and list size.
The fact that the degradation in performance of the DFC-ULL algorithm is barely noticeable
shows that the DFC component is the limiting factor of the list scalability. Specifically,
although a larger list slows down traversal, the flat-combining on updates is relatively more
complex and, hence, is the performance bottleneck in the DFC-ULL algorithm. The results
for all-write and all-read workloads for key space of 5000 are very similar to the results for
key space of 1000. Therefore, such outcomes are omitted due to lack of space.



A. Fahmy and W. Golab 6:15

As Vanilla-ULL demonstrates the fastest performance among all the algorithms due to
its unrolled nodes and lack of recoverability mechanisms, we used it as a baseline to evaluate
the performance of each algorithm over different list sizes. Figure 2 illustrates the relative
throughput of each list compared to Vanilla-ULL using 20 threads, a balanced workload
consisting of 50% reads and 50% updates, and varying key spaces.

128 256 512 1000 2500 5000
Key Space

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
Th

ro
ug

hp
ut

Varying Key Space - 20 threads - 50read

Vanilla-ULL-NONE-PM
DULL-DEBRA-PM
DULL-DEBRA-PM + FliT
Harris-LL-DEBRA-DRAM
Harris-LL-Hazard-DRAM
DFC-ULL-NONE-PM
OneFile-LL-PM
Romulus-LL-PM

Figure 2 Throughput relative to the Vanilla-ULL – 20 threads – balanced workload.

Since key insertions and removals are uniformly distributed across the key space, the list
sizes are approximately half the key space. Based on the experimental results presented in
Figure 2, we observe that Harris-LL achieves throughput nearly identical to Vanilla-ULL for
smaller list sizes, specifically when the key space is 128, corresponding to approximately 64
list elements. DULL follows, achieving about one-third of the throughput of Vanilla-ULL
and Harris-LL, primarily due to the additional overhead introduced by the recoverability
and detectability mechanisms in DULL.

As the key space – and consequently, the list size – increases, the relative performance
of Harris-LL compared to Vanilla-ULL declines sharply, as does DULL’s. This decline is
attributable to lock contention: with smaller lists, lock-based algorithms experience higher
contention overhead when accessing locks. However, this performance bottleneck diminishes
as list sizes grow. Therefore, when the key space exceeds 512, DULL outperforms all other
algorithms, demonstrating at least a 2x improvement in throughput compared to Harris-LL
and several-fold improvements over the remaining recoverable competitors.

6 Conclusion and Future Work

The emergence of PM allows data structures to preserve their state after a crash failure.
Designing detectable and recoverable lock-based data structures is challenging because they
must deal with both concurrency and failures. In this work we introduced DULL: a fast,
scalable and Detectable Unrolled Lock-based Linked list. Outcomes demonstrate that DULL
outperforms all competing recoverable algorithms as it is faster by more than one order
of magnitude in all workloads that involve updates. Moreover, our proposed algorithm
dominates most of the other algorithms in read-only workloads.

As of future work, we are investigating the challenges and potential advantages of using
recoverable (RME) locks [26] in the context of detectability. Additionally, we are studying
the algorithmic differences between DULL implementations in system-wide and independent
crash failure models. Moreover, we are working on a generic transformation based on our
detectability technique used in designing DULL to transform lock-based data structures into
detectable ones.

OPODIS 2024



6:16 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

References

1 Marcos K. Aguilera and Svend Frølund. Strict linearizability and the power of aborting.
Technical Report HPL-2003-241, HP Labs, 2003.

2 Eric Anderson, Xiaozhou Li, Mehul A. Shah, Joseph Tucek, and Jay J. Wylie. What consistency
does your key-value store actually provide? In Proceedings of the Sixth International Conference
on Hot Topics in System Dependability, HotDep’10, pages 1–16, 2010.

3 Hagit Attiya, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler, and Eleftherios Kosmas.
Tracking in order to recover: Recoverable lock-free data structures. ArXiv, 2019. doi:
10.48550/arXiv.1905.13600.

4 Hagit Attiya, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler, and Eleftherios Kosmas.
Detectable recovery of lock-free data structures. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’22, pages 262–277,
2022. doi:10.1145/3503221.3508444.

5 Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-safe recoverable linearizability:
Modular constructions for non-volatile memory. In Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing, PODC ’18, pages 7–16, 2018. doi:10.1145/3212734.
3212753.

6 Hillel Avni and Trevor Brown. Persistent hybrid transactional memory for databases. Proceed-
ings VLDB Endow., 10(4):409–420, 2016.

7 Ohad Ben-Baruch, Danny Hendler, and Matan Rusanovsky. Upper and lower bounds on the
space complexity of detectable objects. In Proceedings of the 39th Symposium on Principles of
Distributed Computing, PODC ’20, pages 11–20, 2020. doi:10.1145/3382734.3405725.

8 Naama Ben-David, Guy E. Blelloch, Michal Friedman, and Yuanhao Wei. Delay-free concur-
rency on faulty persistent memory. In The 31st ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’19, pages 253–264, 2019. doi:10.1145/3323165.3323187.

9 Naama Ben-David, Michal Friedman, and Yuanhao Wei. Survey of persistent memory
correctness conditions, 2022. doi:10.48550/arXiv.2208.11114.

10 Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust Shared Objects for Non-
Volatile Main Memory. In 19th International Conference on Principles of Distributed Systems
(OPODIS 2015), volume 46 of Leibniz International Proceedings in Informatics (LIPIcs), pages
1–17, 2016. doi:10.4230/LIPICS.OPODIS.2015.20.

11 Vibhor Bhatt and Prasad Jayanti. Specification and constant rmr algorithm for phase-fair
reader-writer lock. In Proceedings of the 12th International Conference on Distributed Comput-
ing and Networking, ICDCN ’11, pages 119–130, 2011. doi:10.1007/978-3-642-17679-1_11.

12 Trevor Alexander Brown. Reclaiming memory for lock-free data structures: There has to
be a better way. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC ’15, pages 261–270, 2015. doi:10.1145/2767386.2767436.

13 Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging locks for
non-volatile memory consistency. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’14, pages
433–452, 2014.

14 David Yu Cheng Chan and Philipp Woelfel. Recoverable mutual exclusion with constant
amortized rmr complexity from standard primitives. In Proceedings of the 39th ACM Symposium
on Principles of Distributed Computing, PODC ’20, pages 181–190, 2020. doi:10.1145/
3382734.3405736.

15 David Yu Cheng Chan and Philipp Woelfel. Tight lower bound for the rmr complexity of
recoverable mutual exclusion. In Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, PODC ’21, pages 533–543, 2021. doi:10.1145/3465084.3467938.

16 CMU Parlay Group. Source Code for FliT: A Library for Simple and Efficient Persistent
Algorithms. https://github.com/cmuparlay/flit, 2024.

https://doi.org/10.48550/arXiv.1905.13600
https://doi.org/10.48550/arXiv.1905.13600
https://doi.org/10.1145/3503221.3508444
https://doi.org/10.1145/3212734.3212753
https://doi.org/10.1145/3212734.3212753
https://doi.org/10.1145/3382734.3405725
https://doi.org/10.1145/3323165.3323187
https://doi.org/10.48550/arXiv.2208.11114
https://doi.org/10.4230/LIPICS.OPODIS.2015.20
https://doi.org/10.1007/978-3-642-17679-1_11
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/3382734.3405736
https://doi.org/10.1145/3382734.3405736
https://doi.org/10.1145/3465084.3467938
https://github.com/cmuparlay/flit


A. Fahmy and W. Golab 6:17

17 Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit
Jhala, and Steven Swanson. Nv-heaps: Making persistent objects fast and safe with next-
generation, non-volatile memories. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI,
pages 105–118, 2011. doi:10.1145/1950365.1950380.

18 Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: Efficient algorithms for
persistent transactional memory. In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures, SPAA ’18, pages 271–282, 2018. doi:10.1145/3210377.3210392.

19 Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor Zablotchi. Log-free
concurrent data structures. In Proceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’18, pages 373–385, 2018. URL: https:
//www.usenix.org/conference/atc18/presentation/david.

20 Sahil Dhoked and Neeraj Mittal. An adaptive approach to recoverable mutual exclusion. In
Proceedings of the 39th ACM Symposium on Principles of Distributed Computing, PODC ’20,
pages 1–10, 2020. doi:10.1145/3382734.3405739.

21 Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch, and Erez Petrank.
Nvtraverse: In nvram data structures, the destination is more important than the journey. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2020, pages 377–392, 2020. doi:10.1145/3385412.3386031.

22 Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. A persistent lock-
free queue for non-volatile memory. In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’18, pages 28–40, 2018. doi:
10.1145/3178487.3178490.

23 Michal Friedman, Erez Petrank, and Pedro Ramalhete. Mirror: Making lock-free data
structures persistent. In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2021, pages 1218–1232, 2021.
doi:10.1145/3453483.3454105.

24 Wojciech Golab and Danny Hendler. Recoverable mutual exclusion in sub-logarithmic time.
In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC ’17,
pages 211–220, 2017. doi:10.1145/3087801.3087819.

25 Wojciech Golab and Danny Hendler. Recoverable mutual exclusion under system-wide failures.
In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC
’18, pages 17–26, 2018. doi:10.1145/3212734.3212755.

26 Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. Distributed Computing,
32(6):535–564, 2019. doi:10.1007/S00446-019-00364-0.

27 R. Guerraoui and R.R. Levy. Robust emulations of shared memory in a crash-recovery model.
In 24th International Conference on Distributed Computing Systems, 2004. Proceedings., pages
400–407, 2004.

28 Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceedings of
the 15th International Conference on Distributed Computing, DISC ’01, pages 300–314, 2001.
doi:10.1007/3-540-45414-4_21.

29 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer, and
Nir Shavit. A lazy concurrent list-based set algorithm. In James H. Anderson, Giuseppe
Prencipe, and Roger Wattenhofer, editors, Principles of Distributed Systems, pages 3–16,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

30 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/
78969.78972.

31 Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, K. Keeton, and Patrick Th. Eugster.
Nvthreads: Practical persistence for multi-threaded applications. Proceedings of the Twelfth
European Conference on Computer Systems, 2017.

OPODIS 2024

https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/3210377.3210392
https://www.usenix.org/conference/atc18/presentation/david
https://www.usenix.org/conference/atc18/presentation/david
https://doi.org/10.1145/3382734.3405739
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/3087801.3087819
https://doi.org/10.1145/3212734.3212755
https://doi.org/10.1007/S00446-019-00364-0
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972


6:18 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

32 IBM. Overview: Address space layout randomization. https://www.ibm.com/docs/en/zos/2.
4.0?topic=overview-address-space-layout-randomization, 2023. Accessed: 2024-03-22.

33 Intel. eadr: New opportunities for persistent memory applications, 2021. URL: https://
www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-
opportunities-for-persistent-memory-applications.html.

34 Ramin Izadpanah, Christina Peterson, Yan Solihin, and Damian Dechev. Petra: Persistent
transactional non-blocking linked data structures. ACM Trans. Archit. Code Optim., 18(2),
2021. doi:10.1145/3446391.

35 Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent memory
updates via justdo logging. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’16, pages
427–442, 2016. doi:10.1145/2872362.2872410.

36 Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In Distributed Computing, pages
313–327, 2016. doi:10.1007/978-3-662-53426-7_23.

37 Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. Optimal recoverable mutual exclusion
using only fasas. In Proceedings of the 6th International Conference on Networked Systems,
NETYS 2018, pages 191–206. Springer, 2019. doi:10.1007/978-3-030-05529-5_13.

38 Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. A recoverable mutex algorithm with sub-
logarithmic rmr on both cc and dsm. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC ’19, pages 177–186, 2019. doi:10.1145/3293611.3331634.

39 Prasad Jayanti and Anup Joshi. Recoverable FCFS Mutual Exclusion with Wait-Free Recovery.
In Proceedings of 31st International Symposium on Distributed Computing, volume 91 of DISC,
pages 30:1–30:15, 2017. doi:10.4230/LIPICS.DISC.2017.30.

40 Prasad Jayanti and Anup Joshi. Recoverable mutual exclusion with abortability. In Proceedings
of the 7th International Conference on Networked Systems, NETYS 2019, pages 217–232.
Springer, 2019. doi:10.1007/978-3-030-31277-0_14.

41 Daniel Katzan and Adam Morrison. Recoverable, abortable, and adaptive mutual exclusion
with sublogarithmic rmr complexity. In Proceedings of the 24th International Conference
on Principles of Distributed Systems, volume 184 of OPODIS 2020, pages 15:1–15:16, 2021.
doi:10.4230/LIPICS.OPODIS.2020.15.

42 Nan Li and Wojciech Golab. Brief announcement: Detectable sequential specifications for
recoverable shared objects. In Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, PODC’21, pages 557–560, 2021. doi:10.1145/3465084.3467943.

43 Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst., 15(6):491–504, 2004. doi:10.1109/TPDS.2004.8.

44 Mohammad Moridi, Erica Wang, Amelia Cui, and Wojciech Golab. A closer look at detectable
objects for persistent memory. In Proceedings of the 2022 Workshop on Advanced Tools,
Programming Languages, and PLatforms for Implementing and Evaluating Algorithms for
Distributed Systems, ApPLIED ’22, pages 56–64, 2022. doi:10.1145/3524053.3542749.

45 Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R. Chakrabarti,
and Michael L. Scott. Dalí: A Periodically Persistent Hash Map. In 31st International
Symposium on Distributed Computing (DISC 2017), volume 91 of LIPIcs, pages 37:1–37:16,
2017. doi:10.4230/LIPICS.DISC.2017.37.

46 Kenneth Platz, Neeraj Mittal, and S. Venkatesan. Practical concurrent unrolled linked lists
using lazy synchronization. Journal of Parallel and Distributed Computing, 139:110–134, 2020.
doi:10.1016/J.JPDC.2019.11.005.

47 Tiago Pramalhe. Onefile: Concurrent programming simplified. https://github.com/
pramalhe/OneFile, 2023. Accessed: 2024-03-22.

48 Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen. Onefile: A wait-free
persistent transactional memory. In 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 151–163, 2019. doi:10.1109/DSN.2019.
00028.

https://www.ibm.com/docs/en/zos/2.4.0?topic=overview-address-space-layout-randomization
https://www.ibm.com/docs/en/zos/2.4.0?topic=overview-address-space-layout-randomization
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://doi.org/10.1145/3446391
https://doi.org/10.1145/2872362.2872410
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-030-05529-5_13
https://doi.org/10.1145/3293611.3331634
https://doi.org/10.4230/LIPICS.DISC.2017.30
https://doi.org/10.1007/978-3-030-31277-0_14
https://doi.org/10.4230/LIPICS.OPODIS.2020.15
https://doi.org/10.1145/3465084.3467943
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/3524053.3542749
https://doi.org/10.4230/LIPICS.DISC.2017.37
https://doi.org/10.1016/J.JPDC.2019.11.005
https://github.com/pramalhe/OneFile
https://github.com/pramalhe/OneFile
https://doi.org/10.1109/DSN.2019.00028
https://doi.org/10.1109/DSN.2019.00028


A. Fahmy and W. Golab 6:19

49 Matan Rusanovsky, Hagit Attiya, Ohad Ben-Baruch, Tom Gerby, Danny Hendler, and Pedro
Ramalhete. Flat-combining-based persistent data structures for non-volatile memory. In
Colette Johnen, Elad Michael Schiller, and Stefan Schmid, editors, Stabilization, Safety, and
Security of Distributed Systems, pages 505–509, Cham, 2021. Springer International Publishing.
doi:10.1007/978-3-030-91081-5_38.

50 Zhong Shao, John H. Reppy, and Andrew W. Appel. Unrolling lists. In Proceedings of the
1994 ACM Conference on LISP and Functional Programming, LFP ’94, pages 185–195, 1994.
doi:10.1145/182409.182453.

51 Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H. Campbell.
Consistent and durable data structures for non-volatile byte-addressable memory. In Proceedings
of the 9th USENIX Conference on File and Stroage Technologies, FAST’11, page 5, 2011.

52 Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight persistent
memory. In Proceedings of the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XVI, pages 91–104, 2011.
doi:10.1145/1950365.1950379.

53 Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. Easy lock-free indexing in non-
volatile memory. In 2018 IEEE 34th International Conference on Data Engineering (ICDE),
pages 461–472, 2018.

54 Zhaoguo Wang, Han Yi, Ran Liu, Mingkai Dong, and Haibo Chen. Persistent transactional
memory. IEEE Computer Architecture Letters, 14(1):58–61, 2015. doi:10.1109/LCA.2014.
2329832.

55 Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and Erez Petrank. Flit:
a library for simple and efficient persistent algorithms. In Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’22, pages
309–321, 2022. doi:10.1145/3503221.3508436.

56 Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank. Efficient
lock-free durable sets. Proceedings ACM Programming Languages (OOPSLA), 3(128), 2019.
doi:10.1145/3360554.

A More Related Works

Various recoverable concurrent data structures have been developed in the literature [52, 17,
6, 35, 19, 22, 51, 3]. Researchers have established recoverability with different techniques.
Volos et al. [52] and Coburn et al. [17] employed redo and undo logging to track threads’
progress prior to a crash. A persistent hybrid algorithm was proposed by Brown and Avni
[6] that utilizes software and hardware transactional memory in PM. These approaches
depend on logging, which comes with a significant performance overhead. An efficient logging
technique, JUSTDO, presented by Izraelevitz et al. minimizes the log size via tracking
the most recent store instruction only, enabling instant operation recovery after a crash
without the need for rolling back [35]. JUSTDO assumes non-volatile caches, which requires
additional specific hardware to flush caches on system-wide failures. Other researchers
designed log-free recoverable concurrent data structures [19, 22, 51, 3]. David et al. [19]
presented set of approaches to construct log-free persistent data structures from their volatile
original algorithms. Friedman et al. [22] presented three novel concurrent lock-free queue
algorithms with different persistence guarantees. Venkataraman et al. [51] developed a
persistent concurrent B-Tree using a log-free versioning scheme that enables instant roll-back.
Attiya et al. [3] provided a generic tracking technique aimed at lock-free data structures
that achieves recoverability. Dali is a persistent hashmap proposed by Nawab et al. [45]
that relies on periodic persistence rather than flushing every update to the PM. The idea
is to adopt a weaker correctness property, buffered durable linearizability [36], for better

OPODIS 2024

https://doi.org/10.1007/978-3-030-91081-5_38
https://doi.org/10.1145/182409.182453
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1109/LCA.2014.2329832
https://doi.org/10.1109/LCA.2014.2329832
https://doi.org/10.1145/3503221.3508436
https://doi.org/10.1145/3360554


6:20 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

overall performance. Some data structures are said to be detectable [22, 5, 7, 8], which is an
additional feature on top of recoverability that enables detecting the response of a crashed
operation. In, [5] and [8], Attiya et al. and Ben-David et al. presented a detectable persistent
CAS synchronization primitive that uniquely identifies each operation. One of the queues
proposed by Friedman in [22] offered detectability in the expense of using bookkeeping logs.
The lower and upper bound of the space complexity associated with achieving detectability
was investigated by Ben-Baruch et al. [7]. They also presented a detectable CAS with
bounded space complexity.

Achieving detectability and recoverability when designing lock-based data structures
is challenging. According to [23], “. . . lock-free data structures are a natural choice for
being adapted to persistence.” One of the reasons is the challenges associated pertaining
locks’ correctness properties (e.g. mutual exclusion and deadlock-freedom) when imposing
persistence. This problem was recently formalized by Golab and Ramaraju as the novel
recoverable mutual exclusion (RME) problem that considers crash failures [26]. Several RME
algorithms have been published in the literature [25, 24, 39, 38, 20, 26, 14, 37, 40, 41]. In
[24], Golab and Hendler’s (GH) RME algorithm was proposed to solve the RME problem
in CC systems with a sub-logarithmic Remote memory reference (RMR) complexity. RMR
complexity is a standard complexity measure for RME algorithms [15]. An RMR is a
costly memory operation that uses the interconnect between processor and memory [25].
The RMR complexity of an RME algorithm is the number of RMRs incurred by a single
process while acquiring and releasing a lock once [11]. The GH [24] algorithm provides fault
tolerance against failures of one process at a time. However, a new transformation of GH was
introduced in [25] to accommodate simultaneous (system-wide) failures of processes. Another
sub-logarithmic algorithm is Jayanti, Jayanti, and Joshi’s (JJJ) [38], which guarantees the
same complexity bound as GH in both distributed shared memory (DSM) and CC systems.
Dhoked and Mittal [20] proposed an adaptive approach that improves performance, compared
to previous works, in case of frequent failures. The idea is to use a (weaker) variant of the
RME problem that violates the ME property, allowing multiple threads to be in their critical
section simultaneously but in a controlled manner, and use that variant as a building block.
A recent publication by Chan and Woelfel [15] proved that a deadlock-free n-process RME
algorithm has a tight bound of sub-logarithmic RMR complexity, showing that GH [24] and
JJJ [38] are optimal.

B Persistent Pointer

The persistent pointer object is defined in Algorithm 6. A persistent pointer consists of the
variable offset, which is a tuple ⟨value, f lag⟩ where value is an address offset from the PM
base address, and flag is 1 if offset is persisted and 0 otherwise. Operating systems randomize
the address space layout upon loading applications into the memory. This is known as address
space layout randomization (ASLR). After recovering from a system failure, dereferencing a
pointer on PM that stores the address of a persistent object might result in accessing an
invalid memory location. The PMptrcompensates for ASLR by storing each pointer as an
offset from the base address of the persistent memory-mapped file and calculating the pointer
value on every access. BaseAddressis initialized every time the program is (re)started to
ensure valid referencing when using PMptr pointers.

Algorithm 6 also handles persisting PMptr pointers. In some scenarios, values read from
or written to persistent variables must be flushed before being used. Consider the following
example: Assume there exists a concurrent singly-linked list that realizes an unordered
set, and that the set only contains the value 5 at the head node. Consider two concurrent



A. Fahmy and W. Golab 6:21

Algorithm 6 Variables and functions of a PMptr object.

Variables:
offset: tuple ⟨pointer, Boolean⟩, init ⟨0, 0⟩

Procedure SaP (ptr)
138 value := ptr − BaseAddress // Get the offset

// Mark not persisted and store offset atomically
139 offset := ⟨value, 1⟩
140 Flush(offset) // Persist to PM
141 CAS(offset, ⟨value, 1⟩ , ⟨value, 0⟩) // Mark persisted

Procedure GaP
142 ⟨value, flag⟩ := offset // Read the offset atomically
143 if flag = 1 then // Check if offset is not persisted
144 Flush(offset) // Persist to PM
145 CAS(offset, ⟨value, 1⟩ , ⟨value, 0⟩) // Mark persisted

146 return BaseAddress + value // Return the address

operations Remove (5) and Contains (5). Suppose that the former changed the head
pointer of the list to ⊥, then the latter dereferenced the head pointer and returned false,
indicating that 5 is removed from the list. Now, if the system crashes before Remove (5)
persists the value (⊥) of the head pointer, then, after recovery, a subsequent Contains
(5) would return True which contradicts that 5 has been removed from the set. A possible
solution is to persist the head pointer after reading it in Contains (5) before returning.

Persisting variables upon each read and write is a conservative approach to ensure
correctness. However, this might be a performance overkill since each update needs to be
flushed once to the PM for a subsequent recovery. Using PMptr enables persisting the offset
more efficiently. The idea is borrowed from the work in [53]. The offset variable is a tuple of
the offset value intended to be persisted and a “dirty bit” that indicates whether the current
offset value was never persisted (1) or it was flushed at least once (0). As shown in Algorithm
6, a PMptr object can be accessed through two operations: Set and Persist (SaP) and Get
and Persist (GaP).

The function SaP takes a pointer to a persistent object (ptr) and calculates the offset
value (value) at Line 138. Then, offset is set to ⟨value, 1⟩, setting its value to the calculated
offset and marking the offset as not persisted. The SaP operation flushes offset (Line 140)
and then attempts to mark it as persisted by resetting the dirty bit to 0 through a CAS
operation (Line 141). The CAS at Line 141 is required to avoid erroneously overwriting a
value set by another concurrent SaP operation.

The GaP operation reads the tuple offset (Line 142) and checks whether it was flushed or
not by examining the dirty bit (Line 143). If the dirty bit is set to 1, then offset is persisted
at Line 144, and the dirty bit is reset to 0 through a CAS operation at Line 145. Similar
to SaP, the CAS at Line 145 is needed to prevent potential incorrect changes to updates
occurred by a concurrent SaP operation.

C Persistent Pair

The persistent key-value pair object is defined in Algorithm 7. A persistent key-value pair
object comprises a single variable and three associated functions. The variable pair is a tuple
⟨key, value, flag⟩, where key and value are variables that store a key and its corresponding
data, respectively, and flag is a dirty bit set to 1 if pair is persisted and 0 otherwise.

OPODIS 2024



6:22 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

Algorithm 7 Variables and functions of a PMpair object.

Variables:
pair : tuple ⟨key, value, Boolean⟩, init ⟨⊥, ⊥, 0⟩.

Procedure Set (⟨key, value⟩)
// Store the key-value pair and mark not persisted

147 pair := ⟨key, value, 1⟩

Procedure Get
148 ⟨key, value, _⟩ := pair // Read key-value pair
149 return ⟨key, value⟩

Procedure Persist
150 ⟨key, value, flag⟩ := pair // Read the pair atomically
151 if flag = 1 then // Check if the pair is not persisted
152 Flush (pair) // Persist to PM
153 CAS (pair, ⟨key, value, 1⟩ , ⟨key, value, 0⟩) // Mark

Accessing pair is governed by three functions: Set, Get and Persist. The function Set
stores a key-value pair, given as an argument, into pair and marks the tuple as not persisted.
The key and value stored in pair are retrieved by the procedure Get, ignoring the dirty bit
state. Both functions do not flush the key-value pair object. Persisting pair is delegated to a
separate procedure, Persist, for performance purposes. This function reads the tuple pair
(Line 150) and checks the dirty bit (Line 151). If the dirty bit is set to 1, then pair is not
persisted, and the function flushes pair to the PM at Line 152. Finally, pair is marked as
persisted by resetting the dirty bit to 0 through a CAS at Line 153. The CAS primitive at
Line 153 is used for the same reason as at Lines 141 and 145.

D Memory Layout

The memory mapped file is organized as follows: The first 8 bytes are reserved for Nil
pointer. Subsequently, N descriptor objects – one per process – are allocated. The next 2x
node-size bytes are used for the head and tail nodes. The rest of the memory-mapped file
is utilized as a pool for node allocation. The memory layout is illustrated in Figure 3. We
implement and use a simple recoverable bitmap fixed-size memory allocator.

Figure 3 Memory layout for DULL.

E Split

Algorithm 8 defines the subroutine Split. This function creates two new nodes to replace
curr, where each stores roughly half of the pairs in curr. The procedure starts by creating a
local copy, tmp, of the pairs array in curr at Line 154 and sorting it by key at Line 155. New
nodes, new1 and new2, are allocated (Lines 156 and 157), and the smallest share (⌊K/2⌋) of



A. Fahmy and W. Golab 6:23

Algorithm 8 Helper function Split.

Procedure Split (curr)
154 tmp := curr.pairs // Get local copy of the array pairs
155 Sort(tmp) // Sort pairs by key
156 new1 := new Node // Create two new nodes
157 new2 := new Node

// Copy half pairs to new1 and the rest to new2
158 for j := 0 to K − 1 do
159 ⟨k, v⟩ := tmp[j].Get()
160 if j ≤ ⌊K/2⌋ then
161 new1.pairs[j].Set(k, v)
162 else
163 new2.pairs[j].Set(k, v)

164 new1.anchor := curr.anchor // Set other node variables
165 new1.count := ⌈curr.count/2⌉
166 ⟨kmin, _⟩ := new2.pairs[0].Get()
167 new2.anchor := kmin
168 new2.count := ⌊curr.count/2⌋
169 new1.next.SaP(new2) // Link and persist the next pointers
170 new2.next.SaP(curr.next.GaP())
171 return (new1, new2)

the pairs in tmp are copied to new1, and the rest of tmp is copied to new2 (Lines 158-163).
The anchor key of new1 is set to the anchor key of curr at Line 164. The anchor key of new2
is set to the key of the first pair (Line 167), which has the smallest key in new2 since the
node’s array is sorted by key. The counter of each new node is set to the corresponding
number of copied pairs from curr at Lines 165 and 168. Finally, the next pointers of new1
and new2are set to new2 and the successor of curr at Lines 169 and 170, respectively, before
returning to Insert.

F Merge and Redistribute

Algorithms 9 and 10 show the steps for the helper subroutines Merge and Redist, respectively.

Algorithm 9 Helper function Merge.

Procedure Merge (curr, succ)
172 new1 := new Node // Create a new node
173 j := 0 // Copy valid pairs from curr and succ to new_1
174 for i := 0 to K − 1 do
175 ⟨kcurr, vcurr⟩ := curr.pairs[i].Get()
176 ⟨ksucc, vsucc⟩ := succ.pairs[i].Get()
177 if kcurr ̸= ⊥ then
178 new1.pairs[j].Set(kcurr, vcurr)
179 j := j + 1
180 if ksucc ̸= ⊥ then
181 new1.pairs[j].Set(ksucc, vsucc)
182 j := j + 1

183 new1.anchor := curr.anchor // Set other node variables
184 new1.count := curr.count + succ.count
185 new1.next.SaP(succ.GaP())
186 return new1

Merging the current node and its successor involves creating a new node at Line 172 and
copying all valid pairs from the current and successor nodes to the newly created node at
Lines 174-182. The merged node’s anchor key is set to the current node’s anchor key (Line
183) as it is less than or equal to all keys in the current and successor nodes. The counter of
the new node is the sum of counters of the two nodes to be replaced (Line 184), the current

OPODIS 2024



6:24 DULL: A Fast Scalable Detectable Unrolled Lock-Based Linked List

Algorithm 10 Helper function Redist.

Procedure Redist (curr, succ)
187 new1 := new Node // Create two new nodes
188 new2 := new Node
189 for i := 0 to K − 1 do // Copy valid pairs from curr to new_1
190 ⟨k, v⟩ := curr.pairs[i].Get()
191 if k ̸= ⊥ then
192 new1.pairs[new1.count].Set(k, v)
193 new1.count := new1.count + 1

// Number of pairs to move from succ to curr

194 M :=
⌈

curr.count+succ.count
2

⌉
− curr.count tmp := succ.pairs // Get local copy of the array pairs

195 Sort (tmp) // Sort pairs by key
196 for i := 0 to M − 1 do

// Copy the first M pairs in tmp to new_1 and the rest to new_2
197 ⟨k, v⟩ := tmp[i].Get()
198 new1.pairs[curr.count + i].Set(k, v)
199 for i := M to succ.count − 1 do
200 ⟨k, v⟩ := tmp[i].Get()
201 new2.pairs[i − M ].Set(k, v)
202 new1.anchor := curr.anchor // Set other node variables
203 new1.count := curr.count + M
204 ⟨kmin, _⟩ := new2.pairs[0].Get()
205 new2.anchor := kmin
206 new2.count := succ.count − M
207 new1.next.SaP(new2) // Link and persist the next pointers
208 new2.next.SaP(curr.GaP())
209 return (new1, new2)

and successor nodes. The new node’s next pointer is set to the next pointer of the successor
node at Line 185 to replace both merged nodes when the predecessor’s next pointer is set to
the new node at Line 96 of Remove.

If merging the current and the successor nodes is not possible (Line 91), the pairs stored
in these two nodes are roughly evenly redistributed across them by calling the helper function
Redist, shown in Algorithm 10. The helper subroutine replaces a current node and its
successor with two new nodes, new1 and new2, respectively. The current node’s pair count is
< MinFull (Line 83), the total pair count of the current and successor nodes is ≥ MaxMerge
(Line 91) ≥ (2 × MinFull) − 1 > 2× the current node’s count. This implies that the current
node pair count is < the successor’s. To evenly redistribute pairs among the two nodes,
each node should store curr.count+succ.count

2 pairs. Since the current node has fewer pairs,
M := ⌈ curr.count+succ.count

2 ⌉ − curr.count pairs should be moved from the successor to the
current node (Line 194). The procedure Redist copies all pairs stored in the current node
to new1 in Lines 189-193. Subsequently, the function copies the smallest M pairs from the
successor node to new1 and the rest of pairs to new2 at Lines 194-201. The anchor key of
new1 is set to the current node’s anchor key (Line 202) as it is less than or equal to all keys
in the current and successor nodes. The keys in new2 are sorted since they are copied in
order from the sorted array tmp. Hence, the anchor key of new2 is set to the key of its first
pair, which is the smallest key in new2, at Line 205. The counter of new1 is set to the pair
count of the current node plus the number of pairs copied from the successor (M) at Line
203, and the counter of new2 is set to the number of the remaining pairs (succ.count − M)
at Line 206. Finally, the function Redist links the new nodes together by setting the new1’s
next pointer to new2 (Line 207), and connects the two nodes to the list by setting the new2’s
next pointer to the next node of the successor (Line 208). The next pointers of the two new
replacing nodes are persisted by the SaP function, before they are returned to and used in
the Remove procedure.



A. Fahmy and W. Golab 6:25

G Recoverability Testing

To test the recoverability of the proposed linked list, we have instrumented the code base
such that each thread logs the invocation and response for each of the following operations:
Contains, Insert and Remove. The result is a sub-history file per thread of sequential
operations, which later are combined into one history file of interleaving operations. We
implemented an extended variant of the algorithm proposed by Anderson et. al. [2] to
examine the produced execution history for strict linearizability violations. When creating
history files to test recoverability, the benchmark ensures that the assumptions in [2] are
satisfied, including:

All procedures are reduced to read and write operations.
Contains (key): a failed search is recorded as a read of the pair (key, ⊥)3 while a
successful search is logged as a read of (key, value), for some value ̸= ⊥.
Insert (key, value): a failed insertion is a read of (key, value), for some value ≠ ⊥,
while a successful insertion is logged as a read of (key, ⊥) followed by a write of
(key, value).
Remove (key, value): a failed removal is a read of (key, ⊥) while a successful insertion
is logged as a read of (key, value), for some value ̸= ⊥, followed by a write of (key, ⊥).

Each key-value pair is unique.
Insertion: Insertions of all pairs with the same key are guaranteed to have unique
values. Thus, a key can be reinserted but with different values.
Removal: Absence of a key is represented using distinct values. A key that was never
inserted has the value value = Init. A key’s value is assigned to ⊥ at most once, when
it is firstly removed. Any subsequent successful removal of the same key only marks
the value as deleted (value to value′) without actually removing the key from the list.
Marking a value is implemented as follows: Bit-wise shift all values to the left upon
logging. Use the least significant bit as the marker (1 for deleted and 0 otherwise).

The linearizability checker in [2] is based on the original definition of linearizability [30],
where failure-free executions are assumed. Therefore, we extended the code to accommodate
strict linearizability. When the application is restarted after a crash, the last entry of each
history file is examined for an incomplete operation op. If op is a read, then op is removed
from the log file. If op is a write, then the PM content is examined to check whether the
written value exists in memory. If the value is found in the PM, then the response of the write
operation is appended. Otherwise, the write operation is removed from the log file. Removing
an incomplete write operation w(k, v) or appending its response based on the existence of the
pair (k, v) in PM comes from the following intuition: If (k, v) is in PM, then a write operation
w′(k, v) must have written and persisted the pair (k, v). According to Algorithms 3 and 4,
the thread that has started w(k, v) must have locked the predecessor (Lines 41 and 73) of
the node containing (k, v) and then found that k is not in PM (Lines 45 and 77). Therefore,
w(k, v) must be the operation that has written (k, v), i.e. w′(k, v). Otherwise, w(k, v) and
w′(k, v) would have simultaneously acquired the predecessor’s lock, which contradicts the
safety property of the mutex locks. The linearizability check is implemented in python and
used for assessment.

We tested the algorithm initially by crashing the program (via kill -9), and then by
repeatedly power-cycling the server to evaluate recoverability under system-wide failure.4
The resultant history files were fed into the implemented linearizability checker, and no
violations were reported.

3 A unique value outside the key space is used to represent ⊥.
4 A test script was used to crash the server repeatedly for days.

OPODIS 2024


	1 Introduction
	2 Literature Review
	3 System Model
	4 Persistent Objects
	4.1 Persistent Pointers
	4.2 Persistent Pairs
	4.3 Descriptors
	4.4 Linked List Structure
	4.5 Traversal and Search
	4.6 Insertion
	4.7 Removal
	4.8 Recovery
	4.9 Analysis

	5 Experimental Evaluation
	5.1 Results

	6 Conclusion and Future Work
	A More Related Works
	B Persistent Pointer
	C Persistent Pair
	D Memory Layout
	E Split
	F Merge and Redistribute
	G Recoverability Testing

