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Abstract
We present the notion of multilevel slashing, where proof-of-stake blockchain validators can obtain
gradual levels of assurance that a certain block is bound to be finalized in a global consensus
procedure, unless an increasing and optimally large number of Byzantine processes have their staked
assets slashed – that is, deducted – due to provably incorrect behavior. Our construction is a highly
parameterized generalization of combinatorial intersection systems based on finite projective spaces,
with asymptotic high availability and optimal slashing properties. Even under weak conditions, we
show that our construction has asymptotically optimal slashing properties with respect to message
complexity and validator load; this result also illustrates a fundamental trade off between message
complexity, load, and slashing. In addition, we show that any intersection system whose ground
elements are disjoint subsets of nodes (e.g. “committees” in committee-based consensus protocols)
has asymptotic high availability under similarly weak conditions. Finally, our multilevel construction
gives the flexibility to blockchain validators to decide how many “levels” of finalization assurance
they wish to obtain. This functionality can be seen either as (i) a form of an early, slashing-based
block finalization; or (ii) a service to support reorg tolerance.
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1 Introduction

Blockchains are distributed systems with the task of (i) collecting concurrent transactions that
originate from its users; (ii) order these transactions into a history, which is often expressed
as a linear sequence of blocks, with each block containing an internal sequence of transactions;
and (iii) maintain such history stored into a permanent, distributed ledger that reflects a
global system state given the history. The ledger state could represent monetary balances or
even the state of replicated programs (smart contracts) that execute in a virtual machine
collectively simulated by participant nodes [26, 6, 33, 16, 2, 19]. Throughout this paper, we
may refer to participant nodes, processes, and blockchain validators interchangeably.

Deciding how to group transactions into blocks and how to order blocks into the blockchain
ledger is an application of Byzantine consensus, typically with some other properties and
requirements in place, including: (i) participants always use digital signatures when they
interact with the system; (ii) participation is dynamic, meaning that nodes join and leave
the system at undetermined times; and (iii) in certain cases, participation is permissionless,
meaning that certain system actions (say, performing transactions or even participating
in the consensus itself) require no previous global registration or identity-based approval.
For example, Bitcoin participation is permissionless as any node that can produce a token
demonstrating the completion of a certain computationally-expensive hashing task is allowed
to participate in the consensus protocol, regardless of that node’s identity. This is called a
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8:2 Optimal Multilevel Slashing for Blockchains

proof-of-work blockchain. Note that any two nodes could produce the tokens mentioned above
roughly at the same time, so the ledger can fork during the system execution, and participants
then heuristically define the longest chain of blocks as the authoritative one. In contrast,
systems such as [6, 33, 16, 2, 19] work overall as follows. Discrete time slots are defined,
each associated with a committee of participants. At each slot, the corresponding committee
produces or acknowledges the next block of transactions by having some well-defined fraction
of its participants to attest – that is, vote – for such next block. If a Byzantine committee
participant votes for two conflicting blocks (on different branches), which is prohibited by the
voting mechanics, the participant is subject to slashing: the participant’s pre-deposited assets
(called its stake) are penalized, and the deducted penalty is distributed to other participants in
the system. Having such pre-deposited assets is a prerequisite for participating in committees
(and thus in the consensus protocol), and slashing is the incentive for nodes to behave
correctly. This setting characterizes a proof-of-stake blockchain.

An operational advantage of using committees rather than having a global vote procedure
is that committees can initially restrict expensive communication primitives [37, 4, 7] to its
own participants, and later generate a compact committee signature that indicates internal
agreement on a certain next block v (say, using a threshold signature scheme such as [3, 36]).
Those compact committee signatures can then be communicated globally with the intention
to reach global consensus on v.

Just as in proof-of-work systems, the ledger in proof-of-stake systems can also fork because
committees can be temporarily or permanently isolated from the network due to technical
outages, making attestations arrive asynchronously in different parts of the network, and thus
creating multiple descendants of a given block. Hence, it is common to have a heuristic-based
fork-choice rule that constantly defines the “best chain” of ongoing operations1, along with a
separate finalization gadget, which chooses one unique, canonical chain to be “final” [29, 5, 38].
The blockchain literature often refers to the fork-choice’s “best chain” as the available chain,
because its relatively simple heuristics allow applications to identify it quickly, thus settle
quickly on the current state of the system. That is in contrast with what is often referred
as the final chain, which has been subject to the finalization gadget, and often depends on
partially-synchronous assumptions for progress ([9, 40] among many others).

The problem we solve is that blockchain applications often need to know whether a
transaction is “confirmed” (perhaps to settle a sale), which requires (a) observing a ledger
block that includes such transaction; and (b) obtaining some guarantee that this block will be
finalized later. However, currently, applications can either (i) quickly identify the transaction
in the available chain, but have no guarantees that this chain will eventually be finalized; or
(ii) slowly identify the transaction in the finalized chain, but be subject to an infeasible wait
time that might completely break the application’s functional requirements (user satisfaction,
quick response to financial events, etc).

Our solution creates a “sliding window” in the latency-trust spectrum in settling
transactions, and the applications can tradeoff speed and certainty according to their
very particular functional requirements. In other words, applications will not only have
the fork-choice rule (a temporary “accounting mechanism”) or the finalization event (the
permanent but slowly-moving global consensus) to deem that a particular block (or a
particular transaction therein) is “confirmed”. Specifically, we create a distributed mechanism
where increasing levels of trust can be obtained at increasing latency costs by querying other

1 Just like Bitcoin does, except that Bitcoin’s heuristic is simply defined as the longest chain.
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participant nodes as well as passively observing network events. Importantly, our design does
not introduce any central control or “hotspots”, as it is defined using the highly symmetrical
mathematical structure of projective spaces over finite fields.

In essence, our construction can be interpreted as an intermediary, flexible trust phase
between the initial attestation tallying and the finalization. In this phase, a participant can
obtain information from multiple sets of validators – which we call quorums – indicating that
a block v is about to be finalized. If another participant obtains the same information for
a different block v′, the intersection property of our structural construction will result in
a significant amount of funds being slashed from the adversary. Importantly, we give the
applications the flexibility to choose the balance of trust and potential adversarial slashing
with our construction.

We note that this functionality, if further integrated into a blockchain system, can also
be seen as (i) a form of an early, slashing-based block finalization, as the block confirmation
guarantees are now much more continuous between the quick, yet unreliable, fork-choice rule
and the slow, yet reliable, finalization; or (ii) a service for reorg tolerance. Reorgs [35, 30]
are situations where applications consider some chain v as the logical continuation of the
blockchain ledger because a fraction of nodes attest v, but later are forced to consider v′ as
such because a (typically larger) fraction of nodes became visible while attesting v′. In our
system, once applications obtain a certain number of levels of assurance that v is the next
block to be finalized, a different block v′ that takes its place will incur significant adversarial
slashing, optimal with respect to the magnitude of assurance levels originally obtained.

Our technical contributions are described below at a high level, but with pointers to
the sections where we present our concrete constructions and proofs.
1. We design a distributed architecture to support multilevel slashing by applying projective

spaces over finite fields to committee-based consensus (Section 3), a generalization of a
previous approach that only used projective planes [32] in a context where slashing was
irrelevant.

2. We define and analyze slashability – the relation of the query size/time and the magnitude
of slashing associated with a level of trust. In particular, we show that our construction is
optimal with respect to worst-case message complexity and validator load, demonstrating
a fundamental trade off between slashability, message complexity, and load (Section 4).

3. We prove that a general class of similarly-designed intersection systems based on disjoint
subsets of elements achieve asymptotic high availability under reasonable conditions
(Section 5).

Our construction creates an intersection pattern among sets of blockchain nodes in a
manner that is reminiscent of quorum systems [27, 23, 24, 8, 14] (among others, discussed in
Section 6), but our purpose – and design – are not the same. Specifically, the mathematical
intersections among sets of nodes intentionally uses a projective-space-based construction in
order to define an additional level of transaction confirmation on top of existing blockchains
that follow the availability-finality paradigm of [29]. We note that obtaining the higher-
dimensional structures used to define our quorums is expensive, but can be done a priori for
reasonable parameters, and later mapped to a running system, which we consider viable in
practice. We discuss some practical scenarios in Section 3.

In addition to the core technical sections pointed to above, we include background
on intersection systems and projective spaces in Section 2; we present our system design
concretely in Section 3; we discuss related work in Section 6; and we conclude with final
remarks in Section 7.

OPODIS 2024



8:4 Optimal Multilevel Slashing for Blockchains

2 Intersection Systems and Projective Spaces

In this section, we present basic definitions on intersection systems and projective spaces over
finite fields, used in our intersection system construction, provided in Section 3. In this paper
we use the following standard combinatorial notation: for a positive integer m, we denote by
[m] the set {1, . . . , m}. For probability computations, P(A) denotes the probability of an
event A and EX denotes an expectation of a random variable X.

2.1 Intersection Systems
Let us start with a definition of intersection system, below:

▶ Definition 1 (Intersection System). An intersection system is simply a nonempty finite
collection of finite sets Q such that any two sets A, B ∈ Q have a nonempty intersection.
The sets in Q are called quorums, and we refer to

⋃
Q as the ground set of Q.

Intersection systems provide a framework for ensuring trust among decided or finalized
blocks. Let P be a set of n processes. Suppose the ground set of an intersection system Q
is the set of processes P. Then if all processes in some quorum A ∈ Q attest to a block v

and all processes in some quorum B ∈ Q attest to v′ ̸= v, all processes will eventually learn
this information (since every message is attached with a digital signature and the network
is partially synchronous). We will therefore be able to deduce that every process in the
nonempty set A ∩ B attested to different blocks and can slash these processes’ staked assets.
It is important to note that honest validators (those that do not attest to different blocks)
never have their stake slashed with this protocol, even if they attest to a block that is not
finalized.

Now, observe that if every quorum contains an adversarial process, these processes can
simply be silent forever, which means that no decision can ever be made with this protocol,
even if every correct process attested to the same block. This motivates Definition 2.

Note that Definitions 2 and 6 are similar to concepts in [27], but their context is on
replicated databases, not blockchain applications.

▶ Definition 2 (Availability). Let Q be an intersection system. Give each element of
⋃

Q a
fixed probability of availability p, so the elements are independently non-faulty with probability
p and faulty (Byzantine) with probability 1 − p. Let Fp(Q) denote the probability that every
quorum in Q has at least one faulty element. The quantity Ap(Q) := 1 − Fp(Q) is called the
availability of Q with respect to p.

Another potential problem is that it is possible for two processes to trust different blocks
if every process in A ∩ B is Byzantine, for quorums A, B ∈ Q. Thus if minA,B∈Q |A ∩ B| is
small, then it is possible for an adversary to make processes finalize different blocks with
only a small amount of its stake being slashed. Thus, a desirable property of intersection
systems is that |A ∩ B| should be large for all A, B ∈ Q.

▶ Definition 3 (Slashability). For an intersection system Q, define the slashability of Q to
be the quantity minA,B∈Q |A ∩ B|. The slashability of Q is denoted slash(Q).

This definition of slashability is most relevant when validators have uniform stake. In
practice, for heterogeneous validator stakes, committee-based constructions like ours in
Section 3 could be adapted using techniques such as node virtualization, where high-stake
nodes “simulate” multiple nodes proportional to their stake.

In our design, the elements of the quorums are disjoint committees, which are sets of
processes in P.



K. Wood, H. Mendes, and J. Pulaj 8:5

▶ Definition 4. If Q is an intersection system whose elements are disjoint committees and
r ∈ ( 1

2 , 1), we denote by Pr(Q) the intersection system

Pr(Q) = {S ⊆ P : ∃Q ∈ Q, ∀Q ∈ Q, |Q ∩ S| ≥ r|Q|} .

That is, a set of processes forms a quorum in Pr(Q) if it contains at least an r-fraction of
every committee inside a quorum Q ∈ Q. The number r is said to be the threshold of Pr(Q).

The following definitions have fundamental connections to slashability, as seen in Section 4.
In our system, we assume that processes actively participate in obtaining quorums to reduce
message complexity. In particular, committees select quorums uniformly at random to which
they query messages. Thus, having small quorums is necessary, motivating the following
definition.

▶ Definition 5 (Message Complexity). Given an intersection system Q, let the maximum size
of a quorum in Q be called the message complexity of Q, denoted msg(Q).

Additionally, with this system of actively obtaining quorums, we would like to ensure
that no committee is overly busy handling queries, motivating another concept:

▶ Definition 6 (Load). Given an intersection system Q, the load of some C ∈
⋃

Q, denoted
loadQ(C), is the probability that a quorum of Q selected uniformly at random contains
C. The load of Q is defined to be the maximum load of any element of

⋃
Q: load(Q) :=

maxC∈
⋃

Q loadQ(C).

When Q is clear from context, we simply write load(C) instead of loadQ(C), where C ∈
⋃

Q.
There is a connection between the load of an element of an intersection system and the
degree of that element (using terminology from graph theory).

▶ Definition 7 (Degree). Given an intersection system Q, the degree of some C ∈
⋃

Q in
Q, written degQ(C), is the number of quorums of Q containing C. The maximum degree of
any element of

⋃
Q is denoted ∆(Q).

When Q is clear from context, we write deg(C) instead of degQ(C), where C ∈
⋃
Q. The

following result should be clear from the definition of load and uniform selection.

▶ Observation 8. If Q is an intersection system and C ∈
⋃

Q, then

load(C) = deg(C)
|Q|

and load(Q) = ∆(Q)
|Q|

.

2.2 Projective Spaces
Projective geometry provides a rich source of intersection systems that are highly symmetric
(having a transitive automorphism group). Most of the definitions and notation in this
section are similar to those presented in [11]. To begin, it is known that finite fields have
prime power order, and for each prime power q, there exists a unique finite field of order q,
up to isomorphism. Thus, given a prime power q, we may let Fq denote the finite field of
order q. For the following definitions, let V be a vector space over a field F.

▶ Definition 9 (Projective Space). The projective space of V , denoted PG(V ), is the set
of 1-dimensional vector subspaces of V . In the case when F = Fq for a prime power q and
V = Fk+1, we may write PG(k, q) instead of PG(V ). If V is finite-dimensional, then the
projective dimension of PG(V ) is dim PG(V ) = dim V − 1.

OPODIS 2024



8:6 Optimal Multilevel Slashing for Blockchains

▶ Definition 10 (Projective Subspace). If U is a vector subspace of V , then PG(U) is a
projective subspace of PG(V ).

▶ Definition 11. If d ≥ 0, let PGd(V ) be the set of all projective subspaces of PG(V ) with
(projective) dimension d. Just as before, if F = Fq and V = Fk+1, we write this as PGd(k, q).

The following result will be useful for analyzing the slashability of our system design.

▶ Proposition 12. Let k ≥ d ≥ 0 and let q be a prime power. Then for any S, T ∈ PGd(k, q),
then S ∩ T is a projective subspace of PG(k, q) of dimension at least 2d − k. If 2d ≥ k, this
bound is sharp for some S, T ∈ PGd(k, q).

Proof. Please refer to Appendix A. ◀

▶ Corollary 13. If 2d > k and q is any prime power, then PGd(k, q) is an intersection
system.

The following is a known result. Given nonnegative integers r, s and q ≥ 2, recall the
known q-Gaussian binomial coefficient by the following equality, which yields Proposition 14.(

s

r

)
q

= (qs − 1)(qs − q) · · · (qs − qr−1)
(qr − 1)(qr − q) · · · (qr − qr−1) .

▶ Proposition 14. For all k ≥ d ≥ 0 and prime powers q, we have

|PGd(k, q)| =
(

k + 1
d + 1

)
q

and |PG(k, q)| = qk+1 − 1
q − 1 .

3 System Design

Consider a system of n processes P = {P1, . . . , Pn}. We assume that processes are non-faulty
independently with probability p (and faulty with probability 1 − p); similar failure models
have been used in [27, 32]. For practical applications, we use values p of the form 2

3 + ϵ

for a small ϵ, so that the probability that at least 1/3 of nodes display Byzantine behavior
is negligible (so basic network primitives such as [4, 37] work). We assume authenticated
channels, that is, every message sent has a digital signature for which it is computationally
infeasible for an adversary to forge.

We now describe a multilevel intersection system where, each level has an intersection
system of its own with ground set composed of committees in P. Obtaining a quorum
asserting block v within each level will increase the assurance that a v is bound to be finalized
in the global consensus – that is, increase the associated slashing in case v is not finalized.
We do this while allowing small quorums relative to system size (thus less communication
complexity) and very high slashing relative to the size of the quorums. Our system also
ensures a small load, as every committee is in the same number of quorums and no committee
is particularly over-represented. Our construction is defined as follows.
1. Assume a set-up procedure to generate |PG(k, q)| committees that equitably partition2

the set of processes P, where k ≥ 0 is an integer and q is a prime power such that
n ≥ |PG(k, q)|. Note that when q is a prime power, this is always well-defined. Denote
the set of these committees by C, so that |C| = |PG(k, q)|.

2 An equitable partition of a finite set S is a partition of S such that the sizes of the sets in the partition
differ by at most 1.
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2. Next, define a one-to-one correspondence com : PG(k, q) → C, and two weakly increasing
sequences with length ℓ, the total number of levels:

(dj)j∈[ℓ] of integers in
(

k
2 , k
)
;

(rj)j∈[ℓ] of real numbers in
( 1

2 , p
)
.

3. For each level j ∈ [ℓ], the jth level committee intersection system is defined to be

Qj = {com(S) : S ∈ PGdj
(k, q)}.

4. Finally, for all j ∈ [ℓ], the jth level process intersection system is defined as

Qj = Prj
(Qj).
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Figure 1 A tetrahedral visualization of P G(3, 2), which contains 15 points, 15 planes, and 35
lines (circles are viewed as lines in projective geometry). More details in the text.

Notice that each Qj is indeed an intersection system as PGdj
(k, q) is an intersection

system by Corollary 13. In addition, observe that for all 1 ≤ i < j ≤ ℓ, every quorum in
Qj contains a quorum in Qi; since every dj-dimensional projective subspace of PG(k, q)
contains a di-dimensional projective subspace (this follows from d1 ≤ d2 · · · ≤ dℓ). Thus,
we say that a process trusts a block v with j degrees of assurance if that process obtains a
quorum accepting v from Qj .
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Visualization. To motivate the geometry of our construction with an example, in Figure 1
we give a tetrahedral visualization of PG(3, 2), the smallest three-dimensional projective
space. While the dimensions are low enough to allow a visualization, they only allow for
a single level in our construction (with d1 = 2). Nevertheless, they should be useful to
comprehend the system in higher dimensions. For the sake of simplicity, we disregard r and
focus on Q1. By definition PG2(3, 2) is the set of planes in PG(3, 2), where each plane is
isomorphic to the Fano plane. In (i), the outer faces of the tetrahedron are each a Fano
plane. In (ii), the internal “wedge” planes are represented, with two planes highlighted. In
(iii), we show Fano planes that are isomorphic to the additional planes inside the tetrahedron.
Mapping the points in each Fano plane to corresponding points in the tetrahedron and
preserving the incidence structure recovers the original plane. Our intersection system Q1
is set of all the visualized Fano planes. It is straightforward to check that any two distinct
quorums intersect in a line, in other words they share three committees.

Choice of Parameters (Example). It is crucial that parameters are chosen carefully, or
the number of quorums at each level can quickly become too large. In that case, even the
idea of precomputing quorums and later have them mapped to committees at runtime would
be impractical. But many reasonable choices might exist: for example, consider a network
of 2 million nodes, with committee sizes of about 8000 nodes. We can set k = 7, q = 2
and have d1 = 4, d2 = 5, and d3 = 6, which creates a 3-level intersection system with sizes
|Q1| =

(8
5
)

2 = 97155, |Q2| =
(8

6
)

2 = 10795 and |Q3| =
(8

7
)

2 = 255 (Proposition 14). In
the first level, applications need to obtain assurances only from 4 committees forming a
quorum (d1 = 4) out of 97155 quorums available (|Q1|). Any conflicting quorum intersects
in 22·4−7+1 − 1 = 3 committees in common (Lemma 16). If we assume that applications get
threshold signatures from committees representing a fraction of r = 60% of their size, this
must expose 3 · (0.2 · 8000) Byzantine nodes to slashing3. In the second level, applications
get one extra committee (d2 = 5), essentially choosing one quorum out of 10795 options
(|Q2|). Now, the number of committees in common jumps to 22·5−7+1 −1 = 15, thus exposing
15 · (0.2 · 8000) Byzantine nodes. In the third level, once again, applications get one extra
committee (d3 = 6), essentially choosing one quorum out of 255 options (|Q3|). Now, the
number of committees in common jumps to 22·6−7+1 − 1 = 63, thus exposing 63 · (0.2 · 8000)
Byzantine nodes. Note how applications have many quorum choices at each level.

Implementation. While the system as described above is mathematically elegant, and
achieves asymptotically optimal slashing (Section 4) and high availability (Section 5), the
above example points out that the number of quorums per level may become too large.
As we (reasonably) assume that there is an operational network cost to keep track of
quorums (for instance, joining gossip channels in [39]), the applicability is compromised. In
addition, calculating such large sets would be expensive. A probabilistic solution for reducing
the number of quorums that works for reasonable choices of parameters is the following
(reasonable meaning that committee size is large enough so that k, q are small enough).

The first two steps from the above construction remain the same, except, now we have
additional parameters that heuristically bound the number of quorums in each level. Let
(δj)j∈[ℓ] be a weakly increasing list of positive integers such that there exists δj distinct dj-
dimensional projective subspaces of PG(k, q) with a nonempty intersection. The construction
of the jth level committee intersection system is now defined as follows. Define a random

3 Two subsets of 60% of a ground set S must intersect in 20% of the nodes in S.
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map Nj : PG(k, q) → 2PGdj
(k,q) by setting Nj(A) to be a set of δj distinct dj-dimensional

projective subspaces of PG(k, q) that contain A, chosen uniformly at random4. Then, the
jth level committee intersection system will be

Q′
j =

com(S) : S ∈
⋃

A∈PG(k,q)

Nj(A)

 ,

and the corresponding jth level process intersection system is still

Q′
j = Prj

(Q′
j).

With this construction, each committee is in approximately the same number of quorums
in Q′

j with high probability, and we always have that the size of each quorum in Q′
j equals

the size of each quorum in Qj . Thus the load of Q′
j is approximately equal to the load of Qj ,

and the message complexities of Q′
j and Qj are the same (refer to Definitions 6 and 5, and

Observation 8). We also know that Q′
j ⊆ Qj by construction, which immediately implies

that the slashability of Q′
j (resp. Q′

j) is at least that of Qj (resp. Qj), and equal with very
high probability. The availability results we prove in Section 5 only depend on C, so we
obtain the same results with Qj and with Q′

j . However, the number of quorums using this
method is significantly reduced. In particular, by Proposition 14,

|Q′
j | =

∣∣∣∣∣∣
⋃

A∈PG(k,q)

Nj(A)

∣∣∣∣∣∣ ≤
∑

A∈PG(k,q)

|Nj(A)| = δj |C|

|Qj | =
(

k + 1
dj + 1

)
q

≈ q(k−dj)(dj+1) ≥ qkdj−dj ≈ |C|dj−
dj
k ≥ |C|dj−1.

Depending on the application, a more dense or less dense intersection system may be
desirable. For example, the density (number of quorums out of all possible) may be related to
resilience to an adversary that can target specific processes, instead of a case where Byzantine
failures are independent and randomly distributed. However, analysis in different failure
models is outside the scope of this paper and relegated to future work.

4 Slashability

In this section, we show that our intersection system Qj has asymptotically optimal slashabil-
ity, over a general class of intersection systems constructed from committees. We prove a form-
alization of the following: The slashability of the jth-level intersection system Qj = Prj (Qj)
is asymptotically optimal over all intersection systems built with the same set of committees
and the same threshold (rj) with at least as good overall message complexity and load,
allowing a certain trade off between the two quantities.

The proof of the statement above is given in Theorem 20, following some useful lemmas.
First, let us compute the size of the quorums in Qj and the slashability of Qj .

Consider the system with parameters as above, all viewed as a function of the number
of processes n. Fix some j ∈ [ℓ] (also a function of n). For a more formalized treatment of
asymptotic notations as in this section, see Section 5. Given functions f and g from N to R,
we say f and g are asymptotically equivalent, written f ∼ g, if limn→∞

f(n)
g(n) = 1.

These first two lemmas compute msg(Qj) and slash(Qj).

4 Given a set S, 2S denotes the power set of S.

OPODIS 2024
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▶ Lemma 15. The size of each quorum in Qj is precisely qdj +1−1
q−1 . If q = ω(1), then this

quantity is asymptotically equivalent to qdj .

Proof. Consider any Q ∈ Qj . Then there exists some S ∈ PGdj
(k, q) such that com(S) = Q.

This implies that S is a dj-dimensional projective subspace of PG(k, q). Hence S is isomorphic
to PG(dj , q), which has exactly qdj +1−1

q−1 elements, by Proposition 14. Since com is a bijection,
it follows that |S| = |Q| = qdj +1−1

q−1 . The second statement follows immediately. ◀

▶ Lemma 16. The slashability of Qj is precisely q2dj −k+1−1
q−1 . If q = ω(1), then this quantity

is asymptotically equivalent to q2dj−k.

Proof. Suppose Q, R ∈ Qj . Then there exist S, T ∈ PGdj (k, q) where com(S) = Q and
com(T ) = R. By Proposition 12, S ∩ T is a projective subspace of PG(k, q) of dimension
at least 2dj − k. By Proposition 14, this implies that |S ∩ T | ≥ q2dj −k+1−1

q−1 . Since com
is a bijection, this implies that slash(Qj) ≥ q2dj −k+1−1

q−1 . However, since the bound in
Proposition 12 is sharp, this shows slash(Qj) = q2dj −k+1−1

q−1 . The second statement follows
immediately. ◀

Then Lemmas 15 and 16 show that if q = ω(1),

slash(Qj) ∼ q2dj−k = (qdj )2− k
dj ∼ msg(Qj)2− k

dj .

Hence slash(Qj) ∼ msg(Qj)2− k
dj .

In the following result, we assume each committee has the same size, but loosening this
restriction does not change the result and is only for simplification.

▶ Proposition 17. Suppose every committee in C contains exactly c processes such that
rjc ∈ Z. Then

slash(Qj) = (2rj − 1)c · slash(Qj) = (2rj − 1)cq2dj−k+1 − 1
q − 1 = (2rj − 1)q2dj−k+1 − 1

qk+1 − 1 n.

If q = ω(1),

slash(Qj) ∼ (2rj − 1)q2dj−2kn

Proof. Suppose S, T ∈ Qj . Then there exists S, T ∈ Qj such that S contains at least rjc

processes from each committee in S, and similarly for T . Then for each C ∈ S ∩ T , we have

|S ∩ T ∩ C| = |(S ∩ C) ∩ (T ∩ C)|
= |S ∩ C| + |T ∩ C| − |(S ∩ C) ∪ (T ∩ C)|
≥ rjc + rjc − c = (2rj − 1)c.

Also, |S ∩ T | ≥ slash(Qj). Hence

|S ∩ T | =
∑
C∈C

|S ∩ T ∩ C|

≥
∑

C∈S∩T
|S ∩ T ∩ C|

≥ (2rj − 1)c · slash(Qj).

It follows that slash(Qj) ≥ (2rj − 1)c · slash(Qj).
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To prove equality, consider S, T ∈ Qj such that |S ∩ T | = slash(Qj). In the following,
we say that the identity of process Pi ∈ P is i; the set of process identities is thus [n]. Let
S ⊆ P be defined by the following: for all X ∈ S, pick each of the rjc processes in X with
the least identities to be in S. Define T ⊆ P similarly, by selecting the rjc processes of each
X ∈ T with the greatest identities to be in T . Since rj > 1

2 , for all X ∈ S ∩ T , we have
(S ∩ X) ∪ (T ∩ X) = X, so that

|S ∩ T ∩ X| = |S ∩ C| + |T ∩ C| − |(S ∩ C) ∪ (T ∩ C)| = rjc + rjc − c = (2rj − 1)c.

Hence

|S ∩ T | =
∑

X∈S∩T
|S ∩ T ∩ X| = (2rj − 1)c · slash(Qj).

It follows that slash(Qj) = (2rj − 1)c · slash(Qj).
Since C is a partition of P, we know c|C| = n, so

c = n

|C|
= n

|PG(k, q)| = n(q − 1)
qk+1 − 1 ,

by Proposition 14. Substituting this expression for c applying Lemma 16, we obtain

slash(Qj) = (2rj − 1)cq2dj−k+1 − 1
q − 1 = (2rj − 1)q2dj−k+1 − 1

qk+1 − 1 n.

The simplified asymptotic expression for slash(Qj) when q = ω(1) follows immediately. ◀

Let us now show the asymptotic optimality of our system. Denote m = |C|, so m is
the number of committees. Recall Definitions 5 and 6. The following defines the set of
intersection systems over which we prove optimality.

▶ Definition 18. Given r ∈ ( 1
2 , 1), λ ∈ (0, 1), and a positive integer 1 ≤ µ ≤ m, let S(µ, λ, r)

be the set of all intersection systems of the form Pr(Q), where Q is an intersection system
with ground set C such that the product of its message complexity and its load is at most
µ · λ; that is, msg(Q) · load(Q) ≤ µ · λ.

Since we will prove the optimality of Qj , we are interested in the maximum slashability
of any intersection system in S(msg(Qj), load(Qj), rj). A special case of an intersection
system in this set is Prj (Q), where

⋃
Q = C and msg(Q) ≤ msg(Qj) and load(Q) ≤ load(Qj),

although we prove optimality in a more general setting.

▶ Lemma 19. Suppose each committee has size c and rc is an integer. Let 1 ≤ µ ≤ m and
λ ∈ (0, 1). For all Q ∈ S(µ, λ, r), we have slash(Q) ≤ (2r − 1)c · µ · λ.

Proof. Let Q ∈ S(µ, λ, r); let Q be an intersection system such that Q = Pr(Q). Then
msg(Q) · load(Q) ≤ µ · λ. Select A, B ∈ Q independently and uniformly at random. Then
slash(Q) ≤ |A ∩ B|, so slash(Q) ≤ E|A ∩ B|. For each committee C ∈

⋃
Q, let XC be

the indicator random variable for C ∈ A and C ∈ B, so that |A ∩ B| =
∑

C∈C XC . By
linearity of expectation, E|A ∩ B| =

∑
C∈C EXC . A simple double counting argument

shows that
∑

C∈C deg(C) =
∑

S∈Q |S| ≤ msg(Q) · |Q|, therefore, by Observation 8, we have∑
C∈C load(C) ≤ msg(Q). Also, load(C) ≤ load(Q) for all C ∈ C. Since for all C ∈ C,

the events C ∈ A and C ∈ B are independent with probability load(C), it follows that
EXC = P(C ∈ A, C ∈ B) = P(C ∈ A) · P(C ∈ B) = load(C)2. Hence,

slash(Q) ≤ E|A ∩ B| =
∑
C∈C

load(C)2 ≤
∑
C∈C

load(Q) · load(C) ≤ load(Q) · msg(Q) ≤ µ · λ.

By the proof of Proposition 17, slash(Q) = (2r − 1)c · slash(Q) ≤ (2r − 1)c · λ · µ. ◀
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We now come to our main result with respect to slashability, which is a formalization of
the informal statements outlined in the beginning of this section.

▶ Theorem 20. Suppose each committee in C contains c processes and rjc ∈ Z. Then
Qj ∈ S(msg(Qj), load(Qj), rj) and if q = ω(1), then

slash(Qj) ∼ max {slash(Q) : Q ∈ S(msg(Qj), load(Qj), rj)} .

Proof. It is clear by definition that Qj ∈ S(msg(Qj), load(Qj), rj). Suppose q = ω(1). It is
also easy to see that

lim
n→∞

slash(Qj)
max {slash(Q) : Q ∈ S(msg(Qj), load(Qj), rj)} ≤ 1.

By Proposition 14, msg(Qj) = qdj +1−1
q−1 . Since every committee in C has the degree ∆(Qj) in

Qj and every quorum has size msg(Qj), we also have

m · ∆(Qj) =
∑
C∈C

degQj
(C) =

∑
Q∈Qj

|Q| = |Qj | · msg(Qj).

It follows by Observation 8 that load(Qj) = ∆(Qj)
|Qj | = msg(Qj)

m .

Also, by Proposition 14, m = |C| = |PG(k, q)| = qk+1−1
q−1 . By Proposition 17, slash(Qj) =

(2rj − 1)c q2dj −k+1−1
q−1 . By Lemma 19, we then have

slash(Qj)
max {slash(Q) : Q ∈ S(msg(Qj), load(Qj), rj)} ≥

(2rj − 1)c q2dj −k+1−1
q−1

(2rj − 1)c · msg(Qj) · load(Qj)

=
q2dj −k+1−1

q−1
msg(Qj)2

m

= q2dj−k+1 − 1
q − 1 ·

qk+1−1
q−1(

qdj +1−1
q−1

)2

= (q2dj−k+1 − 1)(qk+1 − 1)
(qdj+1 − 1)2 ∼ 1,

as n → ∞, where the last 1 denotes the constant function on N that is always equal to the
number 1. It follows that slash(Qj) ∼ max {slash(Q) : Q ∈ S(msg(Qj), load(Qj), rj)} . ◀

5 Availability

In this section we demonstrate that under only mild assumptions, any multilevel intersection
system that generalizes our approach has an asymptotically high availability (including the
case when the number of levels is 1). We consider the results of this section relevant on
their own, thus the results will be presented with a more general notation (from Section 2),
rather than relying on specific notation from of our concrete construction in Section 3. With
inspiration from some proof ideas seen in [32], we prove a formalized version of the following:
Suppose processes are available with probability p. Suppose C is a partition of the processes
into committees and Q is any intersection system with ground set C. If 1

2 < r < p and the
smallest committee has size Ω(log n), then the intersection system Pr(Q) has availability
converging to 1.
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The formal statement and proof of this statement is concluded in Corollary 24, following
some useful lemmas below. Lets start by formalizing our assumptions. For each n ≥ 1, let
Cn be a partition of an n-element set of processes, and let Qn be an intersection system with
ground set Cn. Let p be the probability a process is available in its steady-state, with p > 1/2.
For each n ≥ 1, let rn ∈ ( 1

2 , p) so that (rn)n∈N is weakly increasing and r := supn∈N rn < p.5
Finally, define cn = minC∈Cn |C|; that is, cn the smallest size of any set within the partition
Cn (that, more generally, models committees).

Now let us bound the probability that a committee of size c does not have at least rc

available processes. Denote this probability by Fp(c; r). Define the function a1(x) = (p−x)2

2−p−x

for x ∈ [0, r].

▶ Lemma 21. Suppose 0 < r < p < 1. We have Fp(c; r) ≤ e−a1(r)·c.

Proof. Let Z be the number of unavailable processes in a committee of size c. It is easy to
see that Z is a binomial random variable with parameters c and q = 1 − p. Then we have

Fp(c; r) = P(Z > c − rc) ≤ P
(

Z ≥ 1 − r

q
· cq

)
= P

(
Z ≥

(
1 + 1 − r − q

q

)
· cq

)
.

Using δ = 1−r−q
q = p−r

q in Lemma 25 from Appendix B (δ > 0 since r < p), we obtain

Fp(c; r) ≤ exp
(

− 1
2 + p−r

q

(
p − r

q

)2
cq

)
= exp

(
− (p − r)2

2 − p − r
· c

)
◀

▶ Lemma 22. For all positive integers n, we have

Ap(Prn(Qn)) ≥ 1 − n

cn
· e−a1(r)·cn .

Proof. Recall r = supn∈N rn < p. Fix some positive integer n. For each C ∈ Cn, let EC be
the event that at least rn|C| of the processes in C are available. Then each EC is independent
since the sets in Cn are pairwise disjoint. Hence, by Lemma 21,

Ap(Prn(Qn)) ≥ P
( ⋂

C∈Cn

EC

)
=
∏

C∈Cn

P(EC)

=
∏

C∈Cn

(1 − Fp(|C|; rn)) ≥
∏

C∈Cn

(1 − exp (−a1(rn) · |C|)) .

A straightforward computation shows that for x ∈ [0, r], we have a′
1(x) = (x−p)(4−3p−x)

(2−p−x)2 ;
since 0 ≤ x ≤ r < p, we have x − p < 0, 4 − 3p − x > 0, and (2 − p − x)2 > 0, which
implies a′

1(x) < 0 on [0, r]. Thus a1(x) is decreasing on [0, r]. Since rn ≤ r < p, this shows
a1(rn) ≥ a1(r). Also, |C| ≥ cn for all C ∈ Cn implies |Cn| ≤ n

cn
. Putting these results

together, we obtain

Ap(Prn (Qn)) ≥
∏

C∈Cn

(1 − exp(−a1(r) · cn)) =
(
1 − e−a1(r)·cn

)|Cn|
≥
(
1 − e−a1(r)·cn

) n
cn .

Recall that for all k ≥ 1 and 0 ≤ y ≤ x ≤ 1, the following known inequality k(x−y) ≥ xk −yk

holds. Using k = n
cn

(which is at least 1 since cn ≤ n), x = 1, y = 1 − e−a1(r)·cn yields
n
cn

(1 − (1 − e−a1(r)·cn)) ≥ 1 −
(
1 − e−a1(r)·cn

) n
cn , which, following algebraic manipulations,

implies the desired bound. ◀

5 Note that the r’s presented in this section are not related to the ℓ different r-values used to define our
multilevel intersection system in Section 3.
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Now we are ready to prove our main theorem. We say a property R(n) that is true or
false for every positive integer n holds for sufficiently large n if there exists a positive integer
N such that n ≥ N implies R(n) is true.

▶ Theorem 23. Suppose a > 0 such that for all sufficiently large n, we have cn ≥ a log n. If
a = b+1

a1(r) = 2−p−r
(p−r)2 (b + 1) for some constant b, then

Ap(Prn(Qn)) ≥ 1 − 1
a · nb · log n

= 1 − O

(
1

nb · log n

)
.

Proof. Using the bound in Lemma 22, for sufficiently large n, we obtain

Ap(Prn
(Qn)) ≥ 1 − n

cn
· e−a1(r)·cn ≥ 1 − n

a log n
· e−a1(r)·a log n

= 1 − n

a log n
· n−a1(r)a = 1 − 1

a · na1(r)a−1 · log n
= 1 − 1

a · nb · log n
. ◀

This immediately leads to the following corollary.

▶ Corollary 24. Suppose a and b are constants satisfying the hypotheses of Theorem 23. If
b ≥ 0, then limn→∞ Ap(Prn(Qn)) = 1.

6 Related Work

It is common practice [6, 33, 16, 2, 19] for proof-of-stake blockchains to employ fork-choice
rules in order to define an available chain, and rely in an additional “finalization gadget” to
execute global consensus. In particular, we note the role of Casper in Ethereum [5], and
point to a well-documented conceptual separation of available vs. final chains in [29]. The
later paper also points to the fact that this separation, besides practical, is also more general
in the sense that a diverse set of consensus algorithms [9, 40, 10] (among others) could be
applicable. Reorg attacks [35, 30] are also related to our work as our multilevel construction
can precisely quantify a lower bound on slashing if a reorg were to take place – so our work
could be seen as a tool to mitigate the functional effects of reorgs.

As noted in the introduction, our work is reminiscent to (and certainly it is inspired by)
previous work in quorum systems. Quorum systems are set structures whose elements are
typically distributed processes (say, servers in a distributed system), so that any two such
sets (called quorums) intersect in at least one process. The idea is that applications can
obtain an acknowledgment of an operation from all members of a chosen quorum, so that any
two such acknowledgements are consistent, due to the intersecting property. Quorum systems
have been studied extensively [27, 24, 15], with applications to consensus [25], database
synchronization [1], finite-state-machine replication [17], mutual exclusion [22], among many
others.

We are interested in some crucial metrics, such as server load and system availability,
that are also found in the extensive literature of quorum systems, for example in [27, 31].
We note that quorum system design is also quite diverse, being highly impacted by its target
applications. For abstract-data-type replication, ADT-specific information can play a role
[17, 18]. Another interesting application showing high impact on quorum design is federated
Byzantine consensus: in this case, non-uniform quorum systems, where each participant
has its own notion of membership, are studied in [15], with ideas originating from practical
systems such as the Stellar consensus protocol [25]. An additional important considerations
for quorum design are whether the system allows dynamic participation [28, 8].
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Block designs are well-studied structures in combinatorics [12] which provide a rich family
of parameterized quorum systems [13]. A well-known family of block designs corresponds to
finite projective planes and their respective quorum systems. One of its earliest applications
in distributed systems is an algorithm that uses O(

√
n) messages to create mutual exclusion

in a network, where n is the number or nodes [22]. Although finite projective planes that yield
small quorums are desirable due to reduction in communication complexity, asymptotically
their availability goes to zero [32, 20]. However, a construction with finite projective planes
where points are disjoint subsets that cover the ground set and quorums are achieved on an
r fraction of elements in the subsets yields asymptotic high availability [32]. A novel way of
leveraging projective spaces in quorum systems for the in-network data storage paradigm is
introduced and explored in [34, 21], where a 2D network is “lifted” onto a sphere using a
projective map to enable more flexible quorums.

7 Conclusion

In this work, we propose an application of combinatorial designs using projective spaces
over finite fields to provide gradual levels of consensus – that is, getting gradual assurance
that a certain block is bound to be finalized in a global consensus procedure. We combine
our design with a committee-based approach, in order to provide high availability. In fact,
we prove not only that our construction is subject to high availability, but we show that
any approach that uses our “sliding window” of obtaining attestations in the range strictly
between 1

2 and the individual process availability also forms a highly available intersection
system. In addition, we demonstrate that our construction has optimal slashability – the
extent we penalize an adversary’s assets upon protocol non-compliance – compared to other
systems that operate under similar load and message complexity.

We consider the potential applicability of our system very exciting, as we envision that
highly-connected participant nodes can even buy and sell “trust certificates” associated
with assurances that a block is bound to be finalized. That is, nodes obtain collections of
individual and threshold signatures that form multiple quorums, and then offer these trust
certificates as insurance to blockchain applications.

Having a more gradual consensus – a “sliding window” of trust – can enable large improve-
ments in blockchain usability, providing services such as early slashing-based finalization,
reorg tolerance, and even supporting transaction insurance for reorgs. We are excited to
spearhead initial theoretical work in this direction.
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A Projective Geometry Proofs

Proof of Proposition 12. Suppose S, T ∈ PGd(k, q). Then there exists (d + 1)-dimensional
vector subspaces U, W ⊆ Fk+1

q such that S = PG(U) and T = PG(W ). It follows that
S ∩ T = PG(U ∩ W ), so S ∩ T is indeed a projective subspace of PG(k, q). Since U + W is a
subspace of Fk+1

q , U + W has dimension at most k + 1, which shows
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dim(S ∩ T ) = dim PG(U ∩ W ) = dim(U ∩ W ) − 1
= dim U + dim W − dim(U + W ) − 1
≥ dim U + dim W − (k + 1) − 1
= 2(d + 1) − k − 2 = 2d − k.

To show that this bound is sharp for some choice of S and T , suppose 2d ≥ k and consider
any basis v1, . . . , vk+1 of Fk+1

q . Let

U = span(v1, . . . , vd+1) and W = span(vk+1, vk, . . . , vk−d+1).

Clearly both U and W are vector spaces of dimension d + 1. Also,

U ∩ W = span(vk−d+1, . . . , vd+1),

which is a vector space of dimension (d + 1) − (k − d + 1) + 1 = 2d − k + 1. Hence,
PG(U), PG(W ) ∈ PGd(k, q) and PG(U) ∩ PG(W ) = PG(U ∩ W ) is a projective subspace of
PG(k, q) with projective dimension dim(U ∩ W ) − 1 = 2d − k, as desired. ◀

B Chernoff Bound

▶ Lemma 25 (Chernoff Bound). Let Z be a binomial random variable with parameters n and
q. If δ > 0, then

P(Z ≥ (1 + δ)nq) ≤ exp
(

− δ2nq

2 + δ

)
.
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