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Abstract
We consider the problem of graph exploration by energy sharing mobile agents that are subject
to crash faults. More precisely, we consider a team of two agents where at most one of them may
fail unpredictably, and the considered topology is that of connected acyclic graphs (i.e. trees).
We consider both the asynchronous and the synchronous settings, and we provide necessary and
sufficient conditions about the energy.
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1 Introduction

Swarm robotics research has focused on the capabilities of groups of autonomous mobile robots,
or agents, with limited individual abilities. These agents collaborate to achieve complex
tasks such as pattern formation, object assembly, search, and exploration. Collaboration
provides several benefits, including accelerated task completion, fault tolerance potential,
reduced construction costs, and energy efficiency compared to larger, more complex agents.
This paper investigates the collective exploration of a known edge-weighted graph by mobile
agents originating from arbitrary nodes. The objective is to traverse every edge at least once,
with edge weights indicating their lengths. Each agent possesses a battery with an initial
energy level (that may differ among agents). An agent’s battery is depleted by x when it
travels a distance of x.

A recently examined collaboration mechanism among agents is energy sharing, which
permits one agent to transfer energy to another upon encountering them. This ability
introduces new possibilities for tasks that can be accomplished. Energy-sharing capabilities
facilitate graph exploration in scenarios where it would otherwise be unattainable. Conversely,
an exploration algorithm incorporating energy sharing must assign trajectories to agents to
collectively explore the entire graph and schedule feasible energy transfers, making it more
intricate to design. This paper also considers the possibility for an agent to crash, or cease
functioning indefinitely and unpredictably. An exploration algorithm must now account for
not only the feasibility of energy sharing, but also the feasibility of any plan that considers
an agent crashing at any point during its prescribed algorithm.
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9:2 Crash-Tolerant Exploration of Trees by Energy-Sharing Mobile Agents

1.1 Energy-constrained agents

Chalopin et al. [5] study mobile agents with limited energy that must collaboratively deliver
data from network sources to a central repository. It turns out that the decision problem
is NP-hard for a single source, and they present a 2-approximation algorithm to find the
minimum energy assignable to each agent to deliver data. In a follow-up paper, Chalopin et
al. [6] study n mobile agents with limited energy on a straight line that must collectively
deliver data from source point s to target point t, and show that deciding if agents can deliver
data is (weakly) NP-complete. Bärtschi et al. [3] study delivering m messages between source-
target pairs in an undirected graph using k mobile agents initially at distinct nodes. Anaya
et al. [1] study the problem of broadcast and convergecast with energy aware mobile agents.
In the centralized setting, they give a linear-time algorithm to compute optimal battery
power and strategy for convergecast and broadcast on a line. Finding the optimal battery
power for trees is NP-hard. They also give a polynomial algorithm for 2-approximation for
convergecast and 4-approximation for broadcast in arbitrary graphs. Czyzowicz et al. [9]
studied broadcast and exploration in trees, and give an O(n log n) time algorithm to solve
the problem in a n-nodes tree T . If the number of agents is at least equal to the number of
leaves of T , their approach results in an O(n) time algorithm. Bärtschi et al. [2] consider the
possibility of gathering k energy-constrained mobile agents in an undirected edge-weighted
graph. The authors study three variants of near-gathering to minimize: (i) the radius of
a ball containing all agents, (ii) the maximum distance between any two agents, or (iii)
the average distance between agents. They prove that (i) is polynomial-time solvable, (ii)
has a polynomial-time 2-approximation with matching NP-hardness lower bound, and (iii)
admits a polynomial-time 2(1− 1

k )-approximation but no FPTAS unless P=NP. Czyzowicz
et al. [11] studied the exit search problem for two robots on an infinite line, starting at
the origin. Time-energy trade-offs for this evacuation problem are studied. Contrary to all
aforementioned works, the energy consumption of a robot traveling a distance x at speed s

is measured as xs2.

1.2 Energy transfer

Energy transfer by mobile agents was previously considered by Czyzowicz et al. [8]. Agents
travel and spend energy proportional to distance traversed. Some nodes have information
acquired by visiting agents. Meeting agents may exchange information and energy. They
consider communication problems where information held by some nodes must be communi-
cated to other nodes or agents. They deal with data delivery and convergecast problems
for a centralized scheduler with full knowledge of the instance. With energy exchange, both
problems have linear-time solutions on trees. For general undirected and directed graphs,
these problems are NP-complete. Then, Czyzowicz et al. [7] consider the gossiping problem
in tree networks. In an edge-weighted tree network, agents spend energy while traveling
and collect copies of data packets from visited nodes. They deposit copies of possessed data
packets and collect copies of data packets present at the node. Czyzowicz et al. [7] prove
that gossiping can be solved in O(k2n2) time for an n-node tree network with k agents.

Most related to our paper are the works by Czyzowicz et al. [10], Sun et al. [12], and
Bramas et al. [4]. On the one hand, Czyzowicz et al. [10] study the collective exploration of
a known n-node edge-weighted graph by k mobile agents with limited energy and energy
transfer capability. The goal is for every edge to be traversed by at least one agent. For an
n-node path, they give an O(n + k) time algorithm to find an exploration strategy or report
that none exists. For an n-node tree with ℓ leaves, they provide an O(n + ℓk2) algorithm
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to find an exploration strategy if one exists. For general graphs, deciding if exploration
is possible by energy-sharing agents is NP-hard, even for 3-regular graphs. However, it’s
always possible to find an exploration strategy if the total energy of agents is at least twice
the total weight of edges; this is asymptotically optimal. Next, Sun et al. [12] examines
circulating graph exploration by energy-sharing agents on an arbitrary graph. They present
the necessary and sufficient energy condition for exploration and an algorithm to find an
exploration strategy if one exists. The exploration requires each node to have the same
number of agents before and after. Finally, Bramas et al. [4] considered the problem of
exploring every weighted edge of a given ring-shaped graph using a team of two mobile
energy-sharing agents. They introduce the possibility for one of the two agents to fail
unpredictably and cease functioning permanently (i.e., crashing). In this context, Bramas
et al. [4] considered two scenarios: asynchronous (where no limit on the relative speed of
the agents is known), and synchronous (where the two agents have synchronized clocks and
operate at the same speed).

1.3 Our Contribution
We consider the problem of graph exploration by energy-sharing mobile agents that are
subject to crash faults. More precisely, we consider a team of two agents where at most one
of them may fail unpredictably, and the considered topology is that of connected acyclic
graphs (i.e. trees). We assume that agents initially know the entire topology, as well as
their starting locations. Under these strong assumptions, the lower-bounds we provide are
interesting, as they also apply to more general case settings. The algorithms we present for
the same setting demonstrate that the lower bounds are tight for path graphs, and almost
tight for general trees. In the following, en0 and en1 denote the initial energy of the first
and second agents, respectively. Also, x denotes the initial distance between the agents.

On the positive side, we show that, two asynchronous agents can explore a weighted tree
T with diameter d and total weight W if (Theorem 7):

(en0 ≥ x) ∧ (en1 ≥ x) ∧ (en0 + en1 ≥ 2W + 2d⌈log3/2 W ⌉+ x + 2)

On the negative side, we provide a lower bound (Theorem 1) on the total energy for weighted
star graphs (each edge has a weight d/2, d ∈ N): en0 + en1 cannot be in 2W + d log(o(|E|)).

In the synchronous case, a sufficient condition (Theorem 9) is:

(en0 ≥ x) ∧ (en1 ≥ x) ∧ (en0 + en1 ≥ 2W + d + x)

On the other hand (Theorem 2), we show that there exists an infinite family of trees such
that the required total energy is at least 2W + d

2 − 3.
We also provide tight bounds for the case of path graphs, regardless of the initial locations

of agents. The algorithms we provide when agents are not initially collocated assume that
the agents may initially exchange information, and we discuss the trade-off between the
amount of information exchanged and the solvability of the problem in this case. Due to
space constraints, some proofs are omitted from the conference version of this paper.

2 Model

Our model is similar to that proposed by Bramas et al. [4]. We are given a weighted graph
G = (V, E) where V is a set of n nodes, E is a set of m edges, and each edge ei ∈ E is
assigned a positive integer wi ∈ N+, denoting its weight (or length). We have k mobile agents

OPODIS 2024



9:4 Crash-Tolerant Exploration of Trees by Energy-Sharing Mobile Agents

(or agents for short) r0, r1, . . . , rk−1 respectively placed at some of the nodes s0, s1, . . . sk−1
of the graph. We allow more than one agent to be located in the same place. Each agent ri

initially possesses a specific amount eni of energy for its moves. An agent has the ability to
travel along the edges of graph G in any direction. It can pause its movement if necessary
and can change its direction either at a node or while traveling along an edge. The energy
consumed by a moving agent is equal to the distance x it moved. An agent can move only if
its energy is greater than zero. Now, the distance between two agents (that is, the minimum
sum of the weights for all the paths connecting them) is the smallest amount of energy
needed for them to meet at some point.

In our setting, agents can share energy with each other. When two agents, ri and rj ,
meet at a vertex or edge, ri can take some energy from rj . If their energy levels at meeting
time are en′

i and en′
j , then ri can take an amount of energy 0 < en ≤ en′

j from rj . After the
transfer, their energy levels are en′

i + en and en′
j − en, respectively.

Each agent adheres to a pre-established trajectory until encountering another agent. At
this point, the agent determines if it acquires energy, and calculates its ensuing trajectory.
The definition of a trajectory depends on the synchrony model:

In the synchronous model, a trajectory is a sequence of pairs ((u0, t0), (u1, t1), . . .),
where ui is a node, and ti denotes the time at which the agent should reach ui. For each
i ≥ 0, ti < ti+1, and ui+1 is either equal to ui (i.e., the agent waits at ui between ti and
ti+1), or is adjacent to ui (i.e., the agent leaves ui at time ti and arrives at ui+1 at time
ti+1). For simplicity, we assume in our algorithm that the moving speed is always one (it
takes time d to travel distance d, so if ui ̸= ui+1 and the weight of edge (ui, ui+1) is w,
then ti+1 − ti = w).
In the asynchronous model, a trajectory is just a sequence of nodes (u0, u1, u2, . . .),
ui+1 being adjacent to ui for each i ≥ 0, and the times at which it reaches the nodes are
determined by an adversary.

In other words, in the synchronous model, the agent controls its speed and its waiting time
at nodes, while an adversary decides them in the asynchronous model.

The computation of the trajectory and the decision to exchange energy is based on a
deterministic localized algorithm (that is, an algorithm executed by the agent). In a given
execution, the configuration, which consists of each agent’s location and remaining energy, at
time t is denoted by Ct.

Localized algorithm. A localized algorithm fi executed by an agent ri at time t takes as
input the pasts of ri and its collocated agents, and returns (i) its ensuing trajectory traji

and (ii) the amount of energy takei,j taken from each collocated agent rj . The past Pasti(t)
of ri at time t corresponds to the path already traversed by ri union the pasts of all the
previously met agents. More formally:

Pasti(t) = {pathi(t)} ∪ {Pastj(t′) | ri met rj at time t′ ≤ t}

A set of localized algorithms is valid for a given initial configuration c if, for any execution
starting from c, agents that are ordered to move have enough energy to do so and when an
agent ri takes energy from an agent rj at time t, then rj does not take energy from ri at t.

In this paper, we consider the possibility of agent crashes. At any point in the execution,
an agent ri may crash and stop operating forever. However, if ri has remaining energy
en′

i > 0, then other agents meeting ri may take energy from ri (and are still able to read its
memory without knowing it is crashed). Now, a set of localized algorithms is t-crash-tolerant
if it is valid even in executions where at most t agents crash.

We are interested in solving the problem of t-crash-tolerant collaborative exploration:
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t-crash-tolerant collaborative exploration. Given a weighted graph G = (V, E) and k mobile
agents r0, r1, . . . , rk−1 together with their respective initial energies en0, en1, . . . , enk−1 and
positions s0, s1, . . . , sk−1 in the graph, find a valid set of localized algorithms that explore
(or cover) all edges of the graph despite the unexpected crashes of at most t < k agents.

This paper focuses on the 1-crash-tolerant collaborative exploration of trees by two agents.

3 Lower Bounds

In this section, we present two lower bounds, one for the case of asynchronous unweighted
stars, and one for the case of synchronous trees. The lower bound for stars is asymptotically
tight even considering more general trees, as it matches the complexity of our algorithm
solving the exploration in arbitrary asynchronous trees. Only the factor in front of the
logarithmic term is different. In the synchronous case, the lower bound is also tight for
the factor W , but the coefficient of d in from of the logarithmic term in our algorithm’s
complexity is larger by a factor of 2.

3.1 Asynchronous Stars
For asynchronous stars, we first show a lower bound of the total energy consumption.

▶ Theorem 1. Consider a star of size ∆ + 1 where the weight of each edge is d/2. If two
asynchronous agents start at the center of the star, then the total energy consumption of any
algorithm cannot be in 2W + d log(o(∆)) = 2W + d log(o(W/d)), where W = d∆/2 (i.e., the
total weight).

Proof. Assume for the purpose of contradiction that there exists an algorithm that explores
any such star of degree ∆ with 2W + d log(∆/g(∆)) total energy in the worst case, with a
non-decreasing function g in ω(1) (also g ∈ O(∆) as we know 2W is a trivial lower bound)1.

Consider a ∆-star and assume the total amount of energy is 2W + d log(∆/g(∆)). If it
is possible for the scheduler to ensure that the two agents, following the paths dictated by
the algorithm, never meet, then each agent must have enough energy to explore the whole
star, i.e., 2W − d/2. Thus, the total amount of energy is 4W − d, which is a contradiction.
This means that the two paths chosen by the algorithm for the two agents correspond to two
walks, with opposite directions, on the same cycle C covering a sub-star. The scheduler can
ensure that the agents meet at a leaf node. When this happens, then d|C|/2 energy has been
spent, where |C| is the number of edges in C. The agents have explored a star of degree
at most |C|/2. Since, before they start, they must each have enough energy to explore the
entire cycle, it follows that d|C|/2 ≤W + d log(∆/g(∆))/2. Before using the complexity of
the algorithm recursively on the remaining star, we can ensure that the degree of the star
that the agents have explored is close to the upper bound (which is in fact the best case
for the agents). This can be done by activating one agent until the degree ∆′ of the star
explored by the agent is (with 1 > a ≥ 0)

∆′ = W + d log(∆/g(∆))/2
d

−a = ∆ + log(∆/g(∆))
2 −a ⇒ ∆−∆′ = ∆− log(∆/g(∆))

2 +a

(1)

1 It is equivalent to say that there exists f in O(log(∆)) and in ω(1) such that the algorithm uses
2∆ + 2 log(∆)− f(∆), and then define g(x) = 2f(x)

OPODIS 2024
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The remaining unexplored edges form a (∆−∆′)-star. The agents must first move towards
this new star, which uses 2× d/2 = d energy. So the total remaining energy is

R = 2W + d log(∆/g(∆)− d∆′ − d = W + d log(∆/g(∆)
2 + d(a− 1)

Then, by using the same algorithm, this star is explored, in the worst case using

d(∆−∆′) + d log
(

∆−∆′

g (∆−∆′)

)
energy. We show that there exists a ∆ large enough so that the remaining energy is not
enough to explore the remaining star in the worst case.

Replace ∆−∆′ by its computed value (thanks to Equation (1)) and we obtain that in the
worst case, the energy required to explore the remaining star is at least (for ∆ large enough)

d(∆− log(∆/g(∆))
2 + a) + d log(∆− log(∆/g(∆)) + 2a

2g( ∆−log(∆/g(∆)+2a)
2 )

)

≥ d(∆− log(∆/g(∆))
2 + a) + d log

(
∆− log(∆)

2g (∆/2)

)
where the a in the denominator can be removed because it is smaller than log(∆/g(∆)) when
∆ is large enough. Hence, the previous value is equal to

= W + d log(∆/g(∆))
2 + d(a− 1)− d log(∆/g(∆)) + d + d log

(
∆− log(∆)

g (∆/2)

)
+ d log

(
1
2

)

= W + d log(∆/g(∆))
2 + d(a− 1) + d log

(
g(∆)

∆
∆− log(∆)

g (∆/2)

)
= R + d log

(
g(∆)

g (∆/2)

(
1− log(∆)

∆

))
To show the contradiction, it is sufficient to show that, for a value ∆ large enough, the factor
inside the logarithm is strictly greater than 1. Indeed, this implies that the amount of energy
required in the worst case is strictly more than R, a contradiction. Assume that

g(∆) ≤ g (∆/2) 1(
1− log(∆)

∆

)
for all ∆, in particular for 2i for all i ≥ 0. Then,

g(2k) ≤ g (1)
k∏

i=1

1(
1− i

2i

)
This is bounded as the product series converges, contradicting that g is in ω(1). ◀

3.2 Synchronous Trees
We now present a lower bound on the total energy for exploring a weighted tree with the
total weight W and a diameter d.

▶ Theorem 2. There exists an infinite family of trees such that the required total energy by
two synchronous agents is at least 2W + d

2 − 4
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Proof. In the proof, we assume trees are unweighted, that is, w(e) = 1 for each edge e. The
theorem for weighted trees is obtained by setting the weight of each edge to some appropriate
value w so that the total cost becomes W .

Let d ≥ 5 and consider the sequence m5, m6, . . . , md such that mi = 3i+1 − 2. Let Td be
the following tree of diameter d:

vd vd−1 vd−2 v5 v4

u

md md−1 md−2 m5

Figure 1 Illustration of the tree Td of diameter d. mi = 3i+1 − 2, so that Td has 6 + 9
2 (3d − 81)

nodes.

By convention, let T4 be the perfect binary tree of height 2 (visible in the figure as the
bottom-sub-tree rooted at v4).

Assume both agents are initially located at vd. We show by induction on d that exploring
Td requires a total of 2|E|+ d− 4, where

|E| = 6 +
∑
i=5

(mi + 2) = 6 + 9
2(3d − 81).

If d = 4, then one can see that if an agent crashes at a leaf, then the required total energy is
2|E|+ 4 − 4. Indeed, if an agent crashes at a leaf, the energy to reach the leaf where the
crashed agent is 2, which has been consumed twice (by the crashed and by the non-crashed
agent). Then, all the other edges are explored twice except for the path to the last leaf (of
length 2), so in total it is 2 + 2|E| − 2 = |E|.

Now assume that the result is true for any d′ such that 4 ≤ d′ < d, then we prove the
result for d > 4.

We consider two cases, depending on whether u is visited before at least one of the md

nodes below vd, or if the md nodes below vd are all visited before u (or at the same time as).
If the md = 3d+1 − 2 nodes below vd are explored before node u (or at the

same time), then, if the total energy is at most 2|E|+ d− 4, we can show that the first
bottom-edge of vd has been traversed by the two agents (hence 4 times). Indeed, one agent
cannot explore alone the bottom-sub-tree of vd since it requires 2md + 2 energy to be visited
(and come back to vd) and the other agent needs to keep 2md energy in case the first one
crashes. So it requires at least 4md +2 = 4×(3d+1−2)+2 = 4×3d+1−6 but the total amount
of energy available is at most 2|E|+d−4 = 2(9(3d−81)/2+6)+d−4 = 3d+2−721+d, which
is less than 4× 3d+1 − 6 when d ≥ 0. So the exploration of the bottom-sub-tree of vd and of
the edge vdvd−1 costs at least 2md +4+2. The remaining tree is exactly Td−1, rooted at vd−1,
and we know by induction that the exploration of Td−1 requires 2(|E|−md−2)+(d−1)/2−4.
The energy consumed to explore the tree Td is at least the sum of the energy consumed to
explore each sub-tree so in total, the energy consumed is at least

2(|E| −md − 2) + (d− 1)/2− 4 + 2md + 4 + 2 = 2|E|+ d/2− 5/2

OPODIS 2024
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Now consider the case where u is visited first, say by r1. If the agents remain
together, then the path vdu is traversed 4 times. Otherwise, when the two agents split, r0 is
left with EN0 energy and r1 with EN1. Consider for simplicity that split before an agent
travels edge vdvd−1 (if the agents travel together a path vdvd′ then in the end this path is
traversed four times, and the remaining result holds).

Before the agents meet again, r1 is exploring a subtree T ′ containing u with at most
EN1/2 edges, and we know that EN1 ≥ d− 2 because T ′ contains u. Let d1 be the smallest
index such that the tree below vd1 contains a leaf that is not in T ′. If r1 does not crash, it
has to meet with r0 again, before all the leaves below vd1 are explored, so an agent has to
traverse the path vdvd1 again to explore the unexplored leaves below vd1 . So in the end, the
path vdvd1 , of length d− d1, is traversed at least three times. In total, at least 2|E|+ d− d1
energy is consumed when the exploration is complete.

Now consider that r1 crashes at u. When r0 realizes that r1 is crashed, it can explore some
edges and it then eventually reaches u (it has to do so, at least to confirm the exploration
of the tree). Let d0 be the largest index such that the sub-tree below vd0 contains a leaf
that is not explored by r0 before r0 reaches u. After visiting u, r0 has to visit a leaf below
vd0 so the path vd0u, of length d0 − 2, is traversed at least three times. So in total, at least
2|E| − 2 + d0 − 2 energy is consumed when the exploration is complete. So in the worst case,
in total, at least Emax = max(2|E|+ d0 − 4, 2|E|+ d− d1) energy is consumed.

Assume EN0 + EN1 ≤ 2|E|+ d/2− 4 (otherwise the theorem is proved). We now prove
that d0 ≥ d1. Indeed, if we assume for the sake of contradiction that d0 < d1, it means that,
when r1 crashes while exploring a subtree that includes u, and when r0 realizes that r1 is
crashed, then r0 visits all the subtrees below vi, i ≥ d0, and then has to be able to visit all
the subtrees below vi, i ≤ d1 since r1 can be crashed in any of these nodes. If d0 < d1, this
means that r0 must be able to visit the entire Td tree, so EN0 ≥ 2|E|−2. Since EN1 ≥ d−2,
we obtain EN0 + EN1 > 2|E|+ d/2− 4, a contradiction.

Hence we have d0 ≥ d1, so either d1 ≥ d/2, which implies d0 − 4 ≥ d/2 − 4 and
Emax ≥ 2|E| + d/2 − 4, or d1 < d/2, which implies d − d1 > d/2 and Emax ≥ 2|E| + d/2.
Hence the Theorem is proved. ◀

4 Crash-tolerant algorithms for two energy-sharing agents in trees

Our algorithms are presented as a set of rules. Each rule is composed of a condition (that
must be true to execute the rule action) and an action (the rest of the rule, that is executed
when the condition is satisfied). Each action can be:

A move in a prescribed direction toward a node or an agent. For example, in the line
topology, “(v0)← ” prescribes the agent to go left until node v0 is reached, while “→ (r1)”
prescribes the agent to go right until agent r1 is met.
A sequence of actions, two consecutive actions being separated by a semicolon “;”.
Sometimes, a sequence is given a name for brevity. For example, EulerianExplore(T ) (resp.
ReverseEulerianExplore(T )) performs a clockwise Eulerian (resp. a counter clockwise
Eulerian) tour of tree T .
An alternation of actions, depending on a Boolean condition. For example, “if c then
a1 else a2” prescribes that action a1 should be executed if condition c is satisfied, while
action a2 should be executed otherwise. The condition can be related to the topology
(e.g., the agent is closer to a point p1 than a point p2) or be related to a collocated agent
and its past (e.g., the collocated agent is coming from a given edge). In the line, we
consider only three conditions: (i) ←−r returns true if agent r was going left, and false
otherwise; (ii) −→r returns true if agent r was going right, and false otherwise; and (iii)
p1 ≺ p2 returns true if p1 is closer to the observing agent than p2, and false otherwise.
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When agent are synchronous, a waiting instruction, that is stopped either if the other
agent is met, or after a given number of time instants. For example, “wait t time units
for r1 then a1 timeout a2” prescribes the agent to wait at most t time instants for
agent r1 to meet at the current position. If the agent meets r1, then execute a1, otherwise
execute a2.

Before presenting our algorithms for trees, we show two general Lemmas that hold
regardless of the topology, and give necessary conditions about the initial energy of the
agents. The third Lemma presents two general properties of crash-tolerant exploration
algorithms on trees.

▶ Lemma 3. Let G = (V, E) be a connected graph to be explored by two agents r0 and r1. If
the initial distance between r0 and r1 is dinit, then en0 ≥ dinit and en1 ≥ dinit are necessary
for exploring G.

▶ Lemma 4. Let G = (V, E) be a connected graph to be explored by two agents r0 and r1. If
the total weight of G is W , then en0 + en1 ≥W is necessary for exploring G.

▶ Lemma 5. In any crash-tolerant exploration algorithm A by two agents on a tree T , the
following holds:
1. Each agent has to eventually move unless it confirms the completion of exploration.
2. Each agent r confirms the completion of exploration only when, for each leaf u, u is

visited by r or r meets the other agent that already visited leaf u.

4.1 Asynchronous trees
We now consider the case of two asynchronous agents in trees. Let T = (V, E) be a weighted
tree of n nodes, and let d be the weighted diameter of T . First, we construct a family of k

connected non-empty subtrees of T named T1, T2, . . . , Tk, where Ti = (Vi, Ei) and (Ei)1≤i≤k

forms a partition of E. At the beginning, the agents meet to share energy. Then the agents
repeat a procedure explore(Ti) for all i ∈ {1, . . . , k} from 1 to k. The procedure assumes
that the agents are initially at the same location (possibly on an edge), and ensure that after
execution the agents are at the same location (not necessarily the same as the initial one) if
i < k (when i = k the agents can terminate anywhere on completion of the exploration).

Agent r0 (resp. r1) executing explore(Ti) first moves to the closest node vi of Ti,
executes EulerianExplore(Ti) (resp. ReverseEulerianExplore(Ti)), and moves back to its
initial location, until it meets the other agent, and Ti is explored. If the agents meet before
ending this sequence of moves and Ei is explored, then the procedure terminates. This
occurs during the exploration of the Eulerian tour from vi, or when one of the agents r

comes back from vi to its initial location after completing its Eulerian tour while the other
has not started it (it is still moving towards vi from the location where it started executing
explore(Ti)).

Since the length of the Eulerian tour is 2w(Ti) (where w(Ti) denotes the weight of Ti) and
the distance to vi from their initial location is d in the worst case, each agent must have, at
the beginning of the procedure, the energy of at least 2d + 2w(Ti) if i < k (to terminate even
when the other agent remains at the initial location), at least d + 2w(Ti) if i = k. When the
procedure terminates the total energy consumed during the procedure is at most 2d + 2w(Ti)
(because every edge traversed in the procedure is traversed exactly twice if i < k, and at
most twice if i = k).
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Consequently, to complete all explore(Ti), for every i, sequentially, our algorithm requires
that the total remaining energy ENi at the beginning of the procedure explore(Ti) is as
follows, where x is the initial distance between the agents:

ENk ≥ 2d + 4w(Tk)
ENi ≥ max (2d + 2w(Ti) + ENi+1, 4d + 4w(Ti)) (2 ≤ i ≤ k − 1)
EN1 ≥ x+max (2d + 2w(T1) + EN2, 4d + 4w(T1)) where x is the initial weighted distance
between the agents.

Moreover, the total energy consumption for exploring T is at most x+
∑

i=1..k(2d+2w(Ti)) =
2W + 2kd + x.

We now have to construct the partition T1, T2, . . . , Tk of T so that k should be small to
reduce the number of calls to explore(), but each w(Ti) should not be too large to avoid
increasing the energy required at the beginning of explore(Ti). A good partition could be
to have w(Tk) = 1 and w(Ti) = 2w(Ti+1), which results in k = ⌈log W ⌉. In general trees,
such a partition does not exist, but we can obtain a similar result using the centroid-based
partition recursively.

Let T = (V, E) be a weighted tree with total weight W . The centroid of T is defined as
follows. In the following, for a tree T and a node u of T , T can be regarded as a rooted tree,
denoted by T u, rooted at u. For the root u and its neighbor v, let T u

v be the subtree of T u

rooted at v.

1. When there exists an edge (u, v) ∈ E satisfying w(T u
v ) < W/2 and w(T v

u ) < W/2, the
centroid of T is the point p on edge (u, v) such that w(T u

v ) + w(v, p) = w(T v
u ) + w(u, p) =

W/2. We call p the edge centroid.
2. When there exists a node u ∈ V satisfying w(T u

v ) + w(u, v) ≤W/2 for each neighbor v of
u, the centroid of T is node u. We call u the node centroid.

▶ Lemma 6. Any weighted tree T = (V, E) has a unique centroid.

We now construct a new tree T ′ = (V ′, E′) from T by inserting nodes onto edges when
necessary to simplify the construction of the partition. Observe that exploring the edges of
T ′ is equivalent to exploring the edges of T , as exploring the two edges obtained after adding
a node is equivalent to exploring the initial edge.

To construct T ′ = (V ′, E′) and obtain T1, T2, . . . , Tk of subgraphs of T ′, we recursively
use the centroid-based partition of a tree. Let T ′ = T temporally and c be the centroid of
T ′. If c is an edge centroid on an edge e, T ′ is updated by inserting a node at c to partition
e into two edges. We denote the inserted node as c. So now, c is the node centroid of T ′.
Consider the subtrees T ′c

u for each neighbor u of c.
We can show that there exists a subset N ′(c) ⊂ N(c) of neighbors of c such that

W/3 ≤
∑

u∈N ′(c)(w(T c
u) + w(c, u)) ≤W/2. Let T1 be the connected subtree of T ′ consisting

of nodes ∪u∈N ′(c)V (T c
u) ∪ {c} and edges among them, where V (T c

u) denotes the set of nodes
in T c

u. Hence T1 satisfies

W/3 ≤ w(T1) ≤W/2 (2)

Temporary tree T ′ is further updated (if necessary) and T2 is obtained by applying the
same method to the remaining tree consisting of the node set V ′ \ ∪u∈N ′(c)V (T c

u). Trees
T3, T4, . . . are obtained by recursively applying the same method until the weight of the
remaining tree becomes one or smaller, where the last subtree Tk is the remaining tree. Each
time the method is applied, the weight of the remaining tree is reduced by at least 2/3, which
implies the method is applied at most k = ⌈log3/2 W ⌉ times. Thus, the initial amount of the
total energy should be at least 2W + 2d⌈log3/2 W ⌉+ x. Actually, we can derive the following
sufficient condition on the initial amount of the energy.
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ct1 : (en0 ≥ x) ∧ (en1 ≥ x) ∧ (en0 + en1 ≥ 2W + 2d⌈log3/2 W ⌉+ x)

The following shows the actions of the agents. It is assumed that subtrees T1, T2, . . . Tk

(k ≤ ⌈log3/2 W ⌉) are a priori determined by the recursive centroid-based partitions.

Step 0: The agents meet on the shortest path between their initial locations. (This is
executed only once at the beginning of the execution.) Set i = 1.

Step 1: When they meet at a point, say p (possibly on an edge), they evenly share the
remaining energy.

Step 2 Agent r0 (resp. r1) performs the following sequence of moves: move to the nearest
node vi of Ti; traverse Ti along a Eulerian tour of Ti in the clockwise direction (resp. the
counter-clockwise direction) until the agent (i) meets the other, or (ii) completes the
Eulerian tour traversal without meeting the other; move toward p until the agent meets
the other in case of ii) if i < k; If i < k, set p be the meeting point, set i = i + 1, and
continue from Step 1.

▶ Theorem 7. If condition ct1 holds, then if at most one agent crashes, two asynchronous
agents executing the localized algorithms prescribed above explore the entire tree.

Notice that in unweighted stars of degree ∆, hence with W = ∆, we have k = ⌈log ∆⌉
holds for the number of the subtrees T1, T2, . . . , Tk and the closest node vi of Ti is the center
node of the star graph for each i (1 ≤ i ≤ k). Consequently, the sufficient condition is refined
and becomes tight.

▶ Corollary 8. The prescribed algorithm explores the entire unweighted star of degree ∆ when
the following condition is satisfied:

(en0 ≥ x) ∧ (en1 ≥ x) ∧ (en0 + en1 ≥ 2∆ + 2⌈log ∆⌉+ x)

4.2 Synchronous trees
We now present an upper bound for synchronous tree exploration. Our proof is constructive,
as we present an algorithm to solve the problem. Our strategy for exploring T is as
follows. First, the two agents meet at the initial location v0 of agent r0, then they execute
SyncTreeExplore(T ) that orders one agent to explore all the subtrees T1, . . . , Tk−1, rooted
at the children of v0, except Tk with the largest weight. When only Tk is unexplored, the
agents both move towards its root and execute recursively SyncTreeExplore(Tk). If the
exploring agent crashes, the other one can reach it to retrieve the remaining energy and
explore the remaining edges on its own. The pseudo-code of SyncTreeExplore is given in
Algorithm 1 and is illustrated by Figure 2.

We now give a more formal description of the algorithm. First, the two agents meet at
the node v0 where agent r0 is initially located. If x is the initial distance between the two
agents, r0 waits for r1 until the time x, the time r1 should take to reach v0 without crashing.
If r1 does not reach v0 by the time, r0 moves toward the initial location of r1 until it meets
r1. When the agents are collocated, a total of x energy is consumed. If r1 is crashed, r0
retrieves all the energy from r1 and explores the entire tree using at most 2W energy.

If both agents are in v0, then the agents execute SyncTreeExplore as follows. Consider
T as a tree rooted at v0 and let Ti (1 ≤ i ≤ k) be the subtree rooted at a child vi of v0, and
let wi = w(Ti) + w(v0, vi) . Without loss of generality, assume that wk is the largest among
all wi (1 ≤ i ≤ k). Then, we explain how to explore T1, T2, . . . , Tk−1 (subtrees except for Tk)
one by one, followed by the exploration of Tk in a recursive way.
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Algorithm 1 SyncT reeExplore(T ), executed by collocated agents.

r0 and r1 evenly share their energy ;
Let T1, . . . , Tk be the subtrees rooted at the children of the current node ;
for i = 1, . . . , k − 1 do

r0 executes EulerianExplore(Ti) in time 2wi;
if r0 is crashed then

r1 executes ReverseEulerianExplore(Ti) until it meets r0 and Ti is explored, takes all the
energy from r0, then explores the remaining unexplored edges on its own ;

return
end
r0 and r1 share their energy ;

end
Move to the root of Tk ;
if ri is crashed, i ∈ {0, 1} then

r1−i takes all the energy from ri, then explores the remaining unexplored edges on its own;
return

end
Execute SyncT reeExplore(Tk) ;

To explore Ti (1 ≤ i ≤ k − 1), the agents first evenly share energy so that each has the
energy of at least 2wi, which is sufficient to solely complete the exploration of Ti and come
back to v0. Agent r0 moves to the root of Ti, traverses Ti along an Eulerian tour, and then
comes back to v0. While r0 explores Ti, r1 is waiting at v0. If r0 does not come back to
v0 in time 2wi after leaving v0 for Ti (which implies r0 crashes during the traversal), r1
explores Ti along the same Eulerian tour of Ti but in the opposite direction until it meets r0
and Ti is completely explored. When r1 meets r0, it gets all the remaining energy from r0,
comes back at v0 and explores all the remaining part Ti+1, Ti+2, . . . , Tk by itself. The energy
consumption for exploring Ti is 2wi with additionally at most d (the diameter) if r0 crashes
during the exploration (but this can occur at most once). If r0 does not crash and completes
the exploration of Ti, then the agents share their energy and r0 explores Ti+1 in a similar
way. If agent r0 explores T1, T2, . . . , Tk−1, then the agents evenly share the remaining energy,
move to the root of Tk, and explore Tk using the same algorithm SyncTreeExplore(Tk).

The remarkable point is that the edge between v0 and the root of Tk is traversed by the
two agents together but is never traversed afterward. Hence each edge is traversed exactly
twice if no crash occurs. If a crash occurs, each edge is traversed at most twice, except for a
path of length at most d that is traversed three times. Thus, the total energy consumption
for exploring T is at most 2W + d + x; x moving to v0 and 2W + d for exploring the tree.

The condition for the above method is as follows.
ct2 : (en0 ≥ x) ∧ (en1 ≥ x) ∧ (en0 + en1 ≥ 2W + d + x)

▶ Theorem 9. If condition ct2 holds, then if at most one agent crashes, two synchronous
agents executing the localized algorithms prescribed above explore the entire unweighted tree.

5 Optimal algorithms in lines

5.1 Asynchronous Lines
Let G = (V, E) be a path graph (called line thereafter) such that V = {v0, v1, . . . , vn−1} and
E = {ei = (vi, vi+1) | 0 ≤ i < n− 1}. We consider that vi is on the left of vi+1 and says, for
example, “an agent moves left”. Let wi be the weight of edge ei. For each node vi, let dis(vi)
be the weighted distance from v0 to vi, that is, dis(vi) =

∑
j=0..i−1 wj , and let ℓ be the total

weight of G, that is, ℓ = dis(vn−1). Consider that agents r0 and r1 are initially located at
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v0

T1 T2

v0

T1 T2

r0

r0 r0 r1

r1

r0

r1

×r0

r1

Figure 2 (left) Exploration of T1 while r1 is waiting at v0, then r0 and r1 move to the root of
T2 to execute the same algorithm recursively. (right) If r0 crashes during the exploration of T1, r1

explore T1 using the same Eulerian path but in the opposite direction until it reaches r0, then it
moves to v0 and explores T2 on its own.

v0

r0
s0

r1
s1 vn−1

dis(s0) = x

dis(s1) = y

dis(vn−1) = ℓ

Figure 3 A line of n nodes with two agents r0 and r1 hosted by nodes s0 and s1, respectively.

nodes s0 and s1 respectively. For convenience, we assign x = dis(s0) and y = dis(s1), and
assume without loss of generality that x ≤ y and x ≤ ℓ − y 2. Figure 3 illustrates these
notations.

Let en0 and en1 be the initial energy of agents r0 and r1 respectively. The four conditions
for the rules are:
c1 : (en0 ≥ x + y) ∧ (en1 ≥ y) ∧ (en0 + en1 ≥ 2ℓ + x + y)
c2 : (en0 ≥ ℓ− x) ∧ (en1 ≥ 2ℓ− (x + y)) ∧ (en0 + en1 ≥ 4ℓ− (x + y))
c3 : (en0 ≥ ℓ + x) ∧ (en1 ≥ 2ℓ− y)
c4 : (en0 ≥ y − x) ∧ (en1 ≥ y − x) ∧ (en0 + en1 ≥ min(3ℓ + y − x, 2ℓ− x + 3y))
The corresponding actions are denoted by ai, i ∈ {1, . . . , 4}.
a1 :

r0 : (v0)←; → (vn−1)
r1 : (r0)← ; if ←−r0 then (v0)← ; → (vn−1) else → (vn−1)

a2 :
r0 : → (r1) ; if −→r1 then → (vn−1) ; (v0)← else (v0)←
r1 : → (vn−1); (v0)←

a3 :
r0 : (v0)←; → (vn−1);
r1 : → (vn−1); (v0)←

a4 :
r0 : → (r1) ; if v0 ≺ vn−1 then (v0)← ; → (vn−1) else → (vn−1) ; (v0)←

r1 : (r0)← ; if v0 ≺ vn−1 then (v0)← ; → (vn−1) else → (vn−1) ; (v0)←

2 If x > ℓ− y, one can reverse the order of the nodes on the line, exchange the positions of r0 and r1, and
the condition is satisfied in the new graph.
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In the above algorithms, when two agents meet, they share energy equally. In more detail,
if the energy levels when meeting are en′

i and en′
j with en′

i < en′
j , then ri takes an amount of

energy (en′
j − en′

i)/2 from rj . After the transfer, their energy levels are both (en′
i + en′

j)/2.

▶ Lemma 10. For i ∈ {1, . . . , 4}, if ci is satisfied and ai is executed, then asynchronous
exploration completes if at most one agent crashes.

In the following, we show that satisfying at least one of the conditions c1, c2, c3 or c4 is
necessary for two asynchronous agents to complete exploration of lines. We first state some
general facts about asynchronous line exploration in the following Lemma.

▶ Lemma 11. Any line exploration algorithm for two asynchronous agents satisfies:
1. Consider the configuration that two agents meet. Suppose v0 (resp. vn−1) is unvisited

although vn−1 (resp. v0) is already visited by either of the agents, each agent has to have
enough energy to visit v0 (resp. vn−1).

2. Consider the configuration that two agents meet and both v0 and vn−1 are unvisited by
either of the agents. Then each agent has to have enough energy to visit v0 and vn−1 (the
amount of energy required is ℓ plus the distance to the closest extremity).

▶ Lemma 12. If for every i ∈ {1, . . . , 4}, ci is not satisfied, then asynchronous exploration
assuming at most one agent crashes is impossible.

For two agents without energy sharing, the following lemma shows the amounts of the
initial energy of the agents necessary and sufficient for exploration of lines.

▶ Lemma 13. If r0 and r1 don’t share energy, then exploring the line assuming at most one
crash is possible if and only if en0 ≥ x + ℓ and en1 ≥ min{x, ℓ− y}+ ℓ hold.

5.2 Synchronous Lines
In this subsection, we consider synchronous lines. We assume that two agents start execution
at the same time, and it takes time d for each agent to travel distance d. A remarkable feature
of synchronous lines is that an agent can detect the crash of the other when it does not show
up as scheduled. This feature enables energy saving with respect to the asynchronous case.
We consider four possible conditions that enable exploration:

c1 : (en0 ≥ x + y) ∧ (en1 ≥ y) ∧ (en0 + en1 ≥ max(ℓ + x + y, 2ℓ + x− y))
c2 : (en0 ≥ ℓ− x) ∧ (en1 ≥ 2ℓ− (x + y)) ∧ (en0 + en1 ≥ 3ℓ− x− y)
c3 : (en0 ≥ ℓ + x) ∧ (en1 ≥ 2ℓ− y)
c4 : (en0 ≥ y − x) ∧ (en1 ≥ y − x) ∧ (en0 + en1 ≥ 2ℓ− x + y)
The corresponding actions are denoted by ai, i ∈ {1, . . . , 4} in Figure 4.

In the synchronous setting, when two agents meet, each agent can detect whether the
other agent is crashed or not (the other agent is considered crashed if a timeout occurs).
Upon meeting, if the other agent is not crashed (yet), the agents share energy so that both
have the same amount. Otherwise, if an agent r crashes, then the other agent takes all the
remaining energy from r.

As for the asynchronous line, we now prove that the four conditions are necessary and
sufficient for the synchronous line in the two following Lemmas.

▶ Lemma 14. For i ∈ {1, . . . , 4}, if ci is satisfied and ai is executed, then synchronous
exploration completes if at most one agent crashes.

▶ Lemma 15. If for every i ∈ {1, . . . , 4}, ci is not satisfied, then synchronous exploration
assuming at most one agent crashes is impossible.
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Action a1

r0 : (v0)←; → (vn−1)

r1 :

wait x + y time units for r0 then
→ (vn−1)

timeout
(r0)← ;
if ←−r0 then

(v0)← ; → (vn−1)
else → (vn−1) ;

end

Action a2

r0 :

wait 2ℓ− (x + y) time units for r1

then
(v0)←

timeout
→ (r1) ;
if −→r1 then
→ (vn−1) ; (v0)←

else (v0)← ;
end

r1 : → (vn−1); (v0)←

Action a3

r0 : (v0)←; → (vn−1);
r1 : → (vn−1); (v0)←

Action a4

r0 :

wait y − x time units for r1 then
wait 2x time units for r1 then
→ (vn−1)

timeout
(r1)← ;
if −→r1 then → (vn−1)
else (v0)← ; → (vn−1)

end
timeout
→ (r1) ;
if v0 ≺ vn−1 then

(v0)← ; → (vn−1) ;
else → (vn−1) ; (v0)← ;

end
r1 : (v0)←; → (vn−1)

Figure 4 Actions for synchronous line exploration.

6 Conclusion

We characterized the solvability of exploration with two crash-prone energy-sharing mobile
agents in the case of tree topologies, both in the synchronous and in the asynchronous
settings. Obvious open questions include further closing the gap between necessary and
sufficient conditions for the initial amounts of energy in the case of trees that are not reduced
to a line, solving the problem with more than two agents, and considering other topologies,
such as grid, tori, and general graphs.

Also, our model for energy transfer is very simple (all energy can be transferred instanta-
neously between two agents, at no cost). It would be interesting to study non-linear battery
models (where the capacity decreases faster if more instantaneous current is drawn, and the
capacity increases less if faster charge is executed) in this context.
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