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Abstract
In several two-sided markets, including labor and dating, agents typically have limited information
about their preferences prior to mutual interactions. This issue can result in matching frictions, as
arising in the labor market for medical residencies, where high application rates are followed by a
large number of interviews. Yet, the extensive literature on two-sided matching primarily focuses
on models where agents know their preferences, leaving the interactions necessary for preference
discovery largely overlooked. This paper studies this problem using an algorithmic approach,
extending Gale-Shapley’s deferred acceptance to this context.

Two algorithms are proposed. The first is an adaptive algorithm that expands upon Gale-
Shapley’s deferred acceptance by incorporating interviews between applicants and positions. Similar
to deferred acceptance, one side sequentially proposes to the other. However, the order of proposals
is carefully chosen to ensure an interim stable matching is found. Furthermore, with high probability,
the number of interviews conducted by each applicant or position is limited to O(log2 n).

In many seasonal markets, interactions occur more simultaneously, consisting of an initial
interview phase followed by a clearing stage. We present a non-adaptive algorithm for generating a
single stage set of in tiered random markets. The algorithm finds an interim stable matching in such
markets while assigning no more than O(log3 n) interviews to each applicant or position.
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1 Introduction

In many two-sided matching markets used for dating or allocating labor, agents often interact
prior to forming matches in order to gain information about their potential partners. These
interactions, meant for learning preferences, can generate congestion, resulting in market
inefficiencies. For example, in the market for fellowships in sports medicine, on average
more than 23 applicants interview for each slot [33]. Similarly, in dating markets, such as
the popular platform Tinder, only a small fraction of online conversations culminate in an
in-person meeting [20, 15].

This paper considers the problem of how to alleviate interview congestion and improve
welfare in two-sided matching markets. We take an algorithmic approach to form interviews
and find stable matches while minimizing congestion.

We study this question in the classic two-sided marriage problem by [14]. In the model,
there are n applicants and n positions. Each applicant ai and position pj has a publicly
known value of ui and vj , respectively. The subjective interest of ai for matching with pj ,
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12:2 Stable Matching with Interviews

denoted by εA
ij is unknown unless the parties meet each other. The observed utility of ai in

pj is vj + εA
ij if ai and pj have met, and equal to vj otherwise. The distributions of εA

ijs are
known, they are all independent, and their expected value is zero. The subjective interest
εP

ji and the observed utility of positions in the applicants are defined similarly.
A matching is interim-stable if (i) all the matched pairs have interviewed each other and

(ii) there are no blocking pairs with respect to the observed utilities. One simple approach for
finding an interim stable matching is to ask all pairs to interview each other and then find a
stable matching with respect to the observed utilities. That involves n interviews per agent.
On the other hand, even in the special case in which all the uis and vjs are equal to each
other, finding an interim-stable matching requires at least Ω(logn) interviews per agent.

The main result of the paper is to show that the number of interviews needed to find an
interim-stable matching is much closer to the above lower-bound than the upper bound. In
fact, it is possible to find an interim stable matching by assigning only a polylogarithmic
number of interviews to each applicant or position. This is shown for both adaptive and
non-adaptive models.

1.1 Approach

Adaptive algorithm. We present an adaptive algorithm that finds an interim stable matching
while requiring that each applicant and position engage in at most O(log2 n) interviews. The
algorithm is applicable to a general setting, where the publicly known values assigned to
applicants and positions can vary arbitrarily, and the subjective interests are independent
and identically distributed.

▶ Theorem (See Theorem 1). There exists an adaptive algorithm that finds an interim
stable matching between n positions and n applicants such that with high probability every
applicant and position participates in at most O(log2 n) interviews.

The proposed algorithm expands upon deferred acceptance [14] by dividing the process
into distinct interview and proposal stages. Specifically, in the applicant-optimal version,
each applicant submits a proposal to the position offering the highest observed utility. The
position will accept the “highest” proposal or assign an interview if the proposing applicant
has the potential to create a blocking pair, taking into account potential changes in the
observed value following the interview.

The main technical ingredient of the analysis is to show the probability that an applicant
gets rejected by more than O(log2 n) consecutive positions is very small. More precisely, with
probability at least 1−n−3, each applicant ai is matched to position pj for j ≤ i+O(log2 n).

Non-adaptive algorithm. In the adaptive model, the algorithm is allowed to determine
the sequence of interviews based on the results of previous ones. However, in practice,
many markets favor a non-adaptive approach in which the interview lists are predetermined
beforehand to allow the parties to streamline scheduling and the rest of the logistics.

We present a non-adaptive algorithm for interim stable matching with a poly-logarithmic
number of interviews per agent. The algorithm works in tiered markets in which applicants
and positions are partitioned into multiple tiers. Two applicants ai and ai′ in the same tier
have the same publicly known value, i.e., ui = ui′ . On the other hand, if an applicant ai is
in a higher tier than ai′ , then it is always preferred independent of the interview outcomes,
i.e., for all position pj , Pr[ui + εP

ji > ui′ + εP
ji′ ] = 1.
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▶ Theorem (See Theorem 19). There exists a non-adaptive algorithm that, with high
probability, finds an interim stable matching for tiered markets with no more than
O(log3 n) interviews for each applicant or position.

The design of the non-adaptive algorithm incorporates two key technical components.
First, we observe that in markets where all applicants and positions are in a single tier,
requiring each applicant to interview a set of O(log2 n) positions chosen uniformly at random
combined with an applicant-optimal Gale-Shapley algorithm results in an interim stable
matching.

On the other hand, when all positions are in the same tier while applicants are in
individual tiers, random interviews prove to be ineffective. This is primarily due to positions
exhibiting a preference for applicants in the corresponding higher tiers. Consequently, these
higher-tier applicants are given higher priority in the matching process. The challenge arises
for the lowest-tier applicant who, despite undergoing a poly-logarithmic number of random
interviews, struggles to find the sole available position among the interviewed positions. To
address this, a different approach is taken. By fixing the order of positions, interviews are
assigned to each applicant with consecutive positions whose indices closely match the tier
number of the applicant. This strategy ensures that applicants with similar tier numbers
have a substantial overlap of interviews. Consequently, positions that are interviewed by
higher-tier applicants will be matched to them and will not be available options for lower-tier
applicants.

The non-adaptive algorithm combines the above two technical ingredients with a few
other ideas. Specifically, it creates a sequence of bipartite graphs Gi(Ai, Pi, Ei), where each
Gi may be a random graph like the first special case we considered, a sequential graph like
the second special case, or a small complete bipartite graph when we have two small tiers.
We refer the reader to Section 3.3 for the details of the algorithm and its analysis.

Further, in Section 3.4, we demonstrate that if applicants and positions have individual
preferences within the tiers prior to the interviews, the exact same ideas and proofs presented
in Section 3.3 carry over, with some mild assumptions about the distribution of individual
preferences before the interviews and subjective interest arising from the interview.

The extensive literature on two-sided matching has led to a rich theory and successful
designs in practice. However, most of the existing work focuses on models in which agents
know their own preferences. Little is known about the interaction period in which agents learn
about their preferences by interacting with each other. This paper attempts to address this
gap by looking at this problem with an algorithmic lens, focusing on extending Gale-Shapley’s
deferred acceptance to this setting.

1.2 Related literature

Congestion and frictions in the early stages of two-sided markets stem from the lack of
complete information and competition. Several approaches have been proposed to improve
the screening process, including signaling, limiting the number of applications, and even
coordinating interviews.

Signaling allows applicants to send programs “interest” signals [19, 10, 16], which intend
to improve efficiency by helping in screening applications and interviewing applicants that
are typically beyond reach. The literature has investigated how a limited number of signals
indicating special interest can enhance efficiency. [16] demonstrate the impact of different
signal quantities on the matching outcome. Signaling is used in the Economics job mar-
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ket [9] and experimented in residency and fellowship markets [28, 30]. Instead of signaling
mechanisms, this paper proposes interview mechanisms that address interview congestion by
eliminating interviews that are unlikely to form a match.

Another approach considered is to limit the number of applications applicants can send.
[1, 6, 32] demonstrate the benefit of limiting the number of applications when agents have
complete information about their own preferences. We note that [6] and [32] further assume
that agents are ex-ante symmetric.1

Several papers analyzed games induced by inviting agents for interviews [11, 17], demon-
strating various frictions. Other CS papers study how to make interview decisions in the
worst-case towards reaching a stable matching [12, 29].

A related approach for how to coordinate interviews is also studied. Specifically, [23]
and [2] find that the match rate is high when agents have a similar number of interviews.
[18] propose the idea of incorporating overlaps between positions. Our preference model
allows for a more heterogeneous tiered market structure, which results in the non-adaptive
algorithm assigning agents possibly an unequal number of interviews.

Our paper is inspired by [25, 24] who propose to conduct an interview match that will limit
the number of interviews. Similar to our paper, [2] study non-adaptive interview mechanisms
that generate many-to-many matching in large random markets with interim stability in the
limit. In their model different applicants (positions) have heterogeneous pre-interview utilities
of being matched to some position (applicant). Their heterogeneous utilities are a summation
of common scores (generated from a continuous distribution) and idiosyncratic scores (and in
particular the market is not tiered). Instead, we consider arbitrary homogeneous pre-interview
utilities (i.e., just common scores) and propose an adaptive algorithm generating an interim
stable matching for any finite market size. [2] further points to the challenge of handling
tiered markets.2 Instead our non-adaptive algorithm generates an interim-stable matching in
every homogeneous tiered market.

This paper relies on the existing literature on random two-sided matching markets. Our
non-adaptive algorithm incorporates the findings of [5] and [7] as a fundamental component.
These prior studies specifically examine the average ranking of the matched positions for
individual applicants in the applicant-proposing Gale-Shapley algorithm when preference
lists are randomized. We further extend the tiered market model in [4] to allow for noisy
preferences. [4] focuses on minimizing communication to reach an exact stable matching with
high probability in a random market when agents know their own preferences. Instead, agents
in our model know the public values and have perfect information only over public values
and we seek to minimize the number of interviews required to learn about post-interview
preferences in order to reach interim stability.

The concurrent work [3] extends our framework in two notable ways. First, it exam-
ines markets with heterogeneous pre-interview utilities, addressing scenarios where agents
have differing pre-interview preferences. Second, it explores simple decentralized signaling
mechanisms to determine which pairs should interview each other.

The authors demonstrate that in a single-tiered random market with sparse signals
(d = ω(1)), almost interim stability can be achieved. Specifically, the matching becomes
perfectly interim stable after removing a vanishingly small fraction of agents. Furthermore,
in the case of dense signals (d = Ω(log2 n/p)), perfect interim stability can be attained in

1 Limiting applications has also been proposed in for medical markets [31, 8, 26].
2 They offer a heuristic for two-tiered markets; this heuristic adds to higher tier agents, safety interviews

with lower tier agents.
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imbalanced markets through short-side signaling. Additionally, they extend their results to
multi-tiered markets and identify conditions under which signaling mechanisms are incentive
compatible.

Finally, there is a growing literature in Economics that studies the structure stable
matchings when agents have partial knowledge of their own preferences Liu et al. [22],
Liu [21]. This literature does not consider the matching dynamics that arise prior to being
matched. An exception is [13], which contributes to our understanding of the stages that
occur prior to a match.

1.3 Our Model
Let A = {a1, a2, . . . , an} and P = {p1, p2, . . . , pn} denote the set of applicants and positions
respectively. The utility of applicant ai for position pj , vij can be written as vj + εA

ij . The
quantity vj reflects the characteristics of the position, like working hours, salary, or prestige,
and is public knowledge. Applicant ai’s subjective interest in position pj is captured by
εA

ij , which will only be revealed to the applicant after the interview. We assume εA
ij ’s are

independently sampled from a known symmetric distribution with mean zero. Define the
utility of position j in applicant i, uij = ui + εP

ji similarly. Note that εA
ij ’s and εP

ji’s are also
independent from each other.

We define interim stable matchings. Let the observed utility of ai in pj , vo
ij be vj + εA

ij if
ai and pj have interviewed, and equal to vj otherwise. Define uo

ji’s or the observed utility of
positions in the applicants similarly. A matching µ is interim stable if all the matched pairs
have interviewed with each other and there are no blocking pairs with respect to observed
utilities. In other words, {ai, pj} ∈ µ and {ak, pl} ∈ µ imply either vo

ij ≥ vo
il or uo

ji ≥ uo
jk.

Throughout the paper, we assume the applicants and positions prefer being matched to
someone to remaining unmatched.

For ease of notation, we use µ(ai) and µ(pj) to refer to the position or the applicant they
are matched to, respectively. Define µ(ai) = ∅ if ai is not matched. We also use ≻a and ≻p

to denote the preferences of applicants and positions, e.g., pj ≻ai pj′ if and only if vo
ij > vo

ij′ .
We will study adaptive and non-adaptive algorithms for finding interim stable matching.

Adaptive algorithms use the outcome of previous interviews to propose the next one. In
contrast, non-adaptive algorithms determine the interviews that should be conducted between
all the applicants and agents in one shot.

2 An Adaptive Algorithm

In this section, we present an adaptive algorithm for finding an interim stable matching. Our
algorithm extends Gale-Shapley’s deferred acceptance to incorporate interviews between the
applicants and positions. Just like in deferred acceptance, one side makes proposals to the
other sequentially, but the order of proposals is chosen carefully so that with high probability,
the number of interviews needed to obtain interim stability is no more than O(n log2 n).

▶ Theorem 1. Algorithm 1 finds an interim stable matching between n positions and n

applicants. Moreover, with high probability, the number of interviews done by each applicant
or position is at most O(log2 n).

Let us start with an informal overview of the algorithm. Consider the applicant-proposing
deferred acceptance mechanism. In the beginning, p1 has the largest expected utility and
is, therefore, the first choice for all applicants. Similarly, since a1 is the applicant with the
largest expected utility, it is p1’s first choice. The algorithm asks p1 and a1 to interview each

ITCS 2025
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other. The interview may change a1 and p1’s preferences. If they are still at the top of each
other’s preference list, we can match them and reject all other applicants for p1; otherwise,
we update the preference list of p1 and a1 and continue the process.

For an unmatched applicant a, let β(a) be the most preferred position from which the
applicant is not yet rejected. At any time, β(a) is the position to which applicant a is going
to propose next. At each step, we consider the position pj with the smallest j such that
there exists an applicant ai where β(ai) = pj .

Suppose that among all proposals that pj is receiving, ai is the one that has the largest
observed utility, i.e. i = arg maxi u

o
ij . If pj and ai have already interviewed each other, then

the process is similar to deferred acceptance: if µ(pj) ≻pj
ai, position pj rejects applicant ai;

otherwise, pj rejects µ(pj) and matches to ai.
Now consider the case where pj has not interviewed ai. If µ(pj) ≻pj

ai and j < i, pj

rejects ai without an interview. Otherwise, pj and ai interview each other and update their
observed utility and preference list. The algorithm ends when all agents are matched. See a
formal description below.

Algorithm 1 Adaptive Algorithm for Interim Stable Matching.

1 Initialize µ(a) = ∅ for a ∈ A ∪ P , and ∀i, j, vo
ij = vj , u

o
ji = ui.

2 while ∃ an unmatched applicant do
3 Let j∗ be the smallest index where β(ai) = pj∗ , for some unmatched applicant ai.
4 Let ai∗ be position pj∗ ’s favorite applicant from the set {ai|β(ai) = pj∗ , µ(ai) = ∅}.
5 if (ai∗ , pj∗) have not interviewed and (i∗ ≤ j∗ or ai∗ ≻pj∗ µ(pj∗)) then
6 Position pj∗ interviews applicant ai∗ ; update uo

i∗j∗ , vo
j∗i∗ .

7 else
8 if µ(pj∗) ≻pj∗ ai∗ then pj∗ rejects applicant ai∗ .
9 else

10 pj∗ rejects applicant µ(pj∗) if it is not ∅.
11 µ(ai∗)← pj∗ and µ(pj∗)← ai∗ .

12 return matching µ.

2.1 Analysis of Algorithm 1

We will prove Theorem 1 in the rest of this section. We will show that in the course of
the algorithm, all positions interview candidates that have a fairly similar global ranking.
More specifically, with high probability, every position pj only interviews applicants ai where
j −O(log2 n) ≤ i ≤ j +O(logn).

We start with a few simple observations about the algorithm. First, note that similar to
the Gale-Shapley algorithm, when a position pj gets matched to an applicant ai, it remains
matched until the end of the algorithm. Further, pj may only reject ai to match with a more
preferable applicant.

▷ Claim 2. Suppose that unmatched position pj and applicant ai interview each other
at some point during the algorithm and both observe non-negative εA

ij and εP
ji. Then, the

algorithm (tentatively) matches them to each other. Subsequently, pj may only interview
applicants ai′ for which i′ < max(i, j + 1).
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Proof. If εA
ij ≥ 0 and εP

ji ≥ 0, the interview does not change β(ai) and applicant ai remains
the most preferable applicant proposing to pj . Hence, the algorithm matches applicant ai to
position pj in the next iteration.

Now, observe that, based on Algorithm 1 of Algorithm 1, pj is going to interview an
applicant ai′ if either i′ ≤ j or if ui′ > ui + εP

ji > ui, which implies i′ < i. ◁

▶ Observation 3. If position pj interviews applicant ai and i < j, then ai is interviewed by
all pj′ where i ≤ j′ < j.

Proof. Before proposing to pj , ai proposes to all positions pj′ with j′ < j. Also, based on
Algorithm 1 of the algorithm, when i ≤ j′, pj′ does not reject ai without an interview. ◀

The next lemma establishes that positions do not interview any applicant with a signific-
antly higher index. Moreover, we show that with the possible exception of 8 logn positions
with the highest index (and lowest expected utility for the applicants), the positions get
matched sequentially in the increasing order of their index.

▶ Lemma 4. With probability of at least 1 − n−2, if pj and ai interview each other, then
i ≤ j + 8 logn. Also, at the time an applicant ai proposes to pj,

If j < n− 8 logn, then µ(pj′) ̸= ∅ for j′ < j,
If j ≥ n− 8 logn, then µ(pj′) ̸= ∅ for j′ < n− 8 logn.

Proof. The first part of the lemma holds trivially when j ≥ n − 8 logn. So suppose
j < n− 8 logn and let S be the set of agents ai with i < j + 8 logn. At most j − 1 agents
from S can be matched to position pj′ for j′ < j at any time. Further, applicants propose to
positions in the increasing order of their index. Hence, in order for pj to get matched to an
applicant ai′ with i′ > j + 8 logn, it should reject at least 8 logn applicants from set S. We
will show that such an event is extremely unlikely.

Let I be the set of the indices of the first 8 logn applicants interviewed by pj . By the
above argument, I ⊆ S. By Claim 2, if pj interviews some applicant ai and observes that
both εA

ij and εP
ji are non-negative, then pj and ai get matched. Since εA

ij and εP
ji are drawn

independently at random from a symmetric distribution with mean zero, Pr[εA
ij ≥ 0 and εP

ji ≥
0] ≥ 1/4. Therefore,

Pr[ ̸ ∃i ∈ I εA
ij ≥ 0 and εP

ji ≥ 0] =
∏
i∈I

Pr[εA
ij < 0 or εP

ji < 0] ≤
(

3
4

)8 log n

≤ n−3.

A union bound over the above events implies the probability that there exists an i such that
ai and pj interview each other and i > j + 8 logn is at most n−2.

The second part of the lemma follows by observing that as long as each position pj with
j < n− 8 logn gets matched to one of its first 8 logn proposals, pj+1 does not receive any
proposals before pj is matched. ◀

For the rest of the section, we condition on the high probability events stated in Lemma 4.
For k ∈ [n], let Ak = {ak, ak+1, . . . , an} and Pk = {pk, pk+1, . . . , pn}. Also, let Āk = A \Ak

and P̄k = P \ Pk.

▷ Claim 5. For any k ∈ [n],∣∣∣{(ai, pj) ∈ µ|i ≥ k, j < k}
∣∣∣ ≤ 8 logn.

ITCS 2025
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Proof. Since we condition on Lemma 4, {(ai, pj) ∈ µ|i ≥ k, j < k − 8 logn} = ∅. Therefore,∣∣∣{(ai, pj) ∈ µ|i ≥ k, j < k}
∣∣∣ =

∣∣∣{(ai, pj) ∈ µ|i ≥ k, k − 8 logn ≤ j < k}
∣∣∣ ≤ 8 logn. ◀

▷ Claim 6. Suppose that the algorithm is considering the proposal between applicant ai∗

and position pj∗ . Then, for any k ≤ j∗,∣∣∣{(ai, pj) ∈ µ|i < k, j ≥ k}
∣∣∣ ≤ 8 logn.

Proof. We need to prove the statement for k < n− 8 logn. By Lemma 4, when the algorithm
is considering pair (ai∗ , pj∗), we have µ(pj′) ̸= ∅ for j′ < k. By Claim 5,∣∣∣{(ai, pj) ∈ µ|i ≥ k, j < k}

∣∣∣ ≤ 8 logn

which implies,∣∣∣{(ai, pj) ∈ µ|i < k, j < k}
∣∣∣ ≥ (k − 1)− 8 logn. (1)

On the other hand,∣∣∣{(ai, pj)|i < k, j ≥ k}
∣∣∣ ≤ (k − 1)−

∣∣∣{(ai, pj)|i < k, j < k}
∣∣∣

≤ 8 logn (By Equation (1)) ◁

▶ Lemma 7. With a probability of at least 1 − 1/n, if position pj interviews applicant ai

then j ≤ i+ 2000 log2 n.

Proof. Let δ = 8 logn and γ = 1999 log2 n. The statement holds for i ≥ n − γ − δ since
n − i ≤ γ + δ < 2000 log2 n. Suppose for some i < n − γ − δ, applicant ai and position
pi+γ+1 interview each other at some point during the algorithm. At that time, by Lemma 4,
all positions with index smaller than i + γ + 1 are matched to an applicant. Also, by
Observation 3, all positions in {pi, pi+1, . . . , pi+γ} have already interviewed ai, but none of
them is matched to ai. We will show that the probability of such an event is at most n−4.

Consider all positions pl for i ≤ l ≤ i+ γ and define

Sl = {ai, ai+1, . . . , al+δ} \ {µ(pj′)|i ≤ j′ < l}.

By Claim 6, there are at most δ positions in the set of {pj′ |i ≤ j′ < l} which are matched
to an applicant with an index smaller than i. The rest are matched to an applicant in
{ai, ai+1, . . . , al+δ}. Therefore, |Sl| ≤ 2δ.

Define Yl to be indicating whether pl’s utility for matching to ai is higher than being
matched to all elements in Sl and Xl to be Yl = 1, εP

li ≥ 0, and εA
li ≥ 0. By Claim 2, Xl = 1

implies that pl can not be matched to an applicant with an index more than i. Further, by
Claim 6 at most δ positions in {pi, pi+1, . . . , pi+γ} may be matched to an applicant with
index less than i, so it is sufficient to bound the probability that X =

∑i+γ
j=i Xj ≤ δ.

Observe that Pr[Yl = 1] ≥ 1/(2δ) for all l. Also, note that because of the independence
of the subjective component of utilities, Yl’s are independent. Further, E[Xl] = 1/4E[Yl] ≥
1/(8δ). Using Chernoff bound,

Pr[X ≤ δ] ≤ Pr[|X −E[X]| ≥ γ

16δ ] ≤ 2 exp
(
−γ

2/(16δ)2

3γ/(8δ)

)
≤ 2 exp

(
− γ

96δ

)
≤ n−2.

The first inequality is due to E[X]− γ
16δ ≥

γ+1
8δ −

γ
16δ >

γ
16δ ≥ δ, assuming n is sufficiently

large. Applying union bound over all applicants completes the proof. ◀
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Proof of Theorem 1. The statements of Lemma 4 and Lemma 7 hold with high probability,
for all applicants ai. Therefore, every ai is interviewed only by positions pj where j ∈
[max(1, i− 8 logn), i+ min(n, 2000 log2 n)]. Similarly, for every position pj in Algorithm 1,
the position only interviews ai’s for which i ∈ [max(1, j − 2000 log2 n),min(n, j + 8 logn)].
Therefore, the number of interviews done by each applicant or position is at most O(log2 n).

The proof of stability is fairly similar to the analysis of deferred acceptance. Suppose there
exists a blocking pair (ai, pj). This implies that ai ≻pj

µ(pj) and pj ≻ai
µ(ai). Therefore, ai

must have been rejected by pj during one of the iterations of Algorithm 1. This implies that
position pj is matched with an applicant who has a higher observed utility, and the current
match of pj should not be worse than ai, i.e., µ(pj) ≻pj ai. That is a contradiction, as we
initially assumed that (ai, pj) is a blocking pair. ◀

3 A Non-Adaptive Algorithm for Tiered Markets

The algorithm in the previous section forms the sequence of interviews adaptively, suggesting
each interview based on the outcome of the earlier ones. However, many markets operate
in a more simultaneous manner, where there is a stage of interviews followed by a clearing
phase. Therefore, it may be more efficient if the interview lists are decided either in advance
or independently for each position.

In this section, we present a non-adaptive algorithm for the problem in markets in which
applicants and positions are partitioned into tiers, extending the model in [4] to allow for
post interaction noise. Applicants have the same ex-ante utility for two positions in the same
tier but prefer a position in a higher tier to a lower-tier position with probability 1. The
same is true for positions.

More formally, let 0 = τ0 < τ1 < . . . < τM = m denote the tiers of positions. Remember
the utility of an agent ai for position pj , vij = vj + εA

ij . We will assume that vj = vk if and
only if pj and pk are in the same tier, i.e., j, k ∈ [τl + 1, τl+1] for some l, and vj >> vk if
pj is in a higher tier than pk, i.e. j ≤ τl < k for some l. Further, εA

ij ’s are all independent
and identically distributed, and their distributions are bounded and symmetric around 0.
Therefore, Pr[vij ≥ vik] = 1/2 if pj and pk belong to the same tier and equal to 1 otherwise.
We use relative index of a position to show the index of the position within the tier it belongs
to. Formally, for position pj where τl−1 < j ≤ τl, the relative index is equal to j − τl−1.
Define the tiers 0 = γ0 < γ1 < . . . < γN = n for applicants similarly. We assume that the
number of applicants and positions are equal in the general tiered markets, i.e. n = m, and
every applicant and position will be matched. However, to develop the algorithm for the
general tiered market, we use two subroutines that might need to solve a subproblem with
n ̸= m case (see Section 3.1 and Section 3.2).

Our non-adaptive algorithm works in two phases. In the first phase, the algorithm
proposes a set of interviews between the two sides. We represent this by a bipartite graph
G(A,P,E), where each edge e ∈ E denotes an interview between its endpoints. In the second
phase, after the interviews are conducted and the corresponding εA

ij , ε
P
ji for (ai, pj) ∈ E are

revealed, the algorithm finds an interim stable matching between two sides. The main result
of this section is that the proposed interviews in the first phase are such that (i) no agent
or position has more than O(log3 n) interviews, and (ii) after the interviews are done, the
algorithm can find an interim stable matching supported by G(A,P,E) with high probability.

In order to explain the main ideas of the algorithm, it will be instructive to look at two
special cases in the following subsections.
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12:10 Stable Matching with Interviews

3.1 Example 1: Single Tier Structure
In the first example, the applicants and positions are each in their own single tier, i.e.
N = M = 1. The number of applicants and positions can be different3 but assume that
n and m are sufficiently large, and without loss of generality, n ≤ m. In this case, first
form G by connecting each applicant to δ positions chosen uniformly at random from the
P ′ = {p1, p2, . . . , pn}.

Each applicant ai interviews with δ positions and the distribution of εA
ij ’s are symmetrically

distributed around 0. So, for every i, δ/2 of the εA
ij ’s are going to be non-negative in

expectation. In fact, a simple Chernoff bound shows that with high probability, for every
applicant ai, at least δ/3 of positions pj interviewing the applicant have a non-negative εA

ij .

▷ Claim 8. Among δ positions pj that applicant ai is interviewing, at least δ/3 of them
have εA

ij ≥ 0 with probability 1− exp(−δ/36).

Let πA
i be the preference list of applicant ai in the decreasing value of εA

ij (break ties
randomly). It is not hard to see that each πA

i is a random permutation chosen over the
ordering of positions. Following the same argument, we can form πP

j to be the random
permutations representing the preference list of position pj according to the decreasing values
of εP

ji. The above observation allows us to take advantage of the following lemma.

▶ Lemma 9 ([27], Theorem 6.1). Suppose that we run the applicant-proposing Gale-Shapley
algorithm for the above random permutations. With probability 1−O(m−ct), each applicant
ai gets matched to a position with a rank less than (2 + t) log2 m in permutation πA

i , where
ct = 2t[3 + (4t+ 9)1/2]−1.

The above lemma combined with Claim 8 implies that every applicant ai is matched with
a position pj where εA

ij > 0.

▶ Lemma 10. For any t and δ such that δ ≥ 3(2+t) log2 m, with probability 1−exp(−δ/36)−
O(m−ct), each applicant ai gets matched to a position pj that has interviewed ai and εA

ij > 0,
where ct = 2t[3 + (4t+ 9)1/2]−1.

3.2 Example 2: One Large Tier vs Multiple Singleton Tiers
In this example, all positions belong to the same tier, but each applicant is in a tier of its
own. In other words, the applicants are ex-ante indifferent among positions, but all positions
prefer applicant ai to aj when i < j.

Before presenting our solution, it may be worthwhile to understand why forming the
interview graph randomly in the same fashion as our previous example is not suitable for
this variation of the problem. First, note that since agent a1 is the first choice for all
the positions, a1 should be matched to its most preferred position in every interim stable
matching. Removing applicant a1 and that position, the same argument applies to applicant
a2, and so on.

Now suppose that each applicant interviews δ random positions similar to the algorithm
in Section 3.1. Since we choose δ random positions for applicant a1 to interview and then
applicant a1 chooses the most preferred position after the interviews, all positions have

3 Note that in the setting of the general tiered market, we assume n = m, however, the single tier
structure serves as a subroutine of the algorithm for the general tiered market and might need to solve
a subproblem with n ̸= m.
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the same probability of being the most preferred position for applicant a1 in this process.
Therefore, the process is equivalent to the case that we choose a random position for applicant
a1 and remove both, then we choose a random position for a2 and remove both, and so on.
Suppose the algorithm successfully matches the first n−1 applicants to their positions. When
only the last applicant an remains, it is crucial to show that the only remaining position
should be one of the positions that an interviewed. Otherwise, the resulting matching is
not interim stable. Since we are removing positions randomly, the probability that the last
remaining position is among the δ position that an interviewed is δ/m. Therefore, we cannot
find an interim stable matching supported within G if we want δ = poly(logm).

Instead, for this example, our algorithm forms G by connecting every agent ai to positions
pj such that j ∈ [max(1, i− θ),min(n, i+ δ)], where θ = Θ(log3 m) and δ = Θ(log2 m). Note
that the degree of applicants with an index close to 1 or n may be smaller than the rest of
the applicants.

In this construction, applicants whose tiers are close to each other interview for sets of
positions that are similar. Therefore, there is a high correlation between the positions to
which they get matched. As a result, with high probability, for every i, the set of positions
that have interviewed ai and are not matched to one of the higher-tier applicants is non-empty.
Further, ai can find a stable match in this set. We will prove this statement in more generality
in the next section when analyzing the algorithm for the general case.

3.3 An Algorithm for General Tiered Markets
We are now ready to present our algorithm and its analysis for tiered markets in their full
generality. As we said before, the algorithm works in two phases. In phase 1, Algorithm 2
constructs a bipartite interview graph G(A,P,E) between applicants and positions. This is
done possibly in several iterations. In each iteration, i, the algorithm adds an edge set Ei

between two subsets Ai ⊆ A and Pi ⊆ P to E. Further, it identifies whether the applicants or
positions are going to be the proposing side in this part of the graph. Note that an applicant
or a position can be in multiple Ais or Pis.

In the second phase, Algorithm 3 conducts the interviews between all the pairs in E and
updates the preferences of the two sides. Then, in each iteration i, it removes vertices that
are matched in earlier iterations and implements either a position or applicant-proposing
deferred acceptance algorithm between Ai and Pi. We discuss the details of this algorithm
later in the section.

In practice, one should first implement Algorithm 2 to construct the interview graph and
then Algorithm 3 to implement the interviews and find the stable matching. But it will be
useful for the analysis to couple the two algorithms and consider them together after each
iteration i.

Algorithm 2 considers applicants and positions starting from the top. Let X and Y be the
set of top-tier applicants and positions. Label the sets X and Y in such a way that |X| ≤ |Y |.
We will consider three different cases: (1) If both |X| and |Y | are relatively small, i.e. |X| ≤ δ
and |Y | ≤ δ for δ = Θ(log2 n), we can afford to set up an interview for each pair between X
and Y . (2) If |X| ≤ δ and |Y | > δ, we choose a set S of size δ comprised of vertices of Y
with the lowest index and set up an interview between each pair in S and X. (3) If both
|X| and |Y | are large than δ, we use the same approach as Section 3.1. Specifically, for each
vertex in X, we choose δ random vertices from the first |X| positions in Y to interview.

When both |X| and |Y | are larger than δ, we can remove both X and the first |X| vertices
of Y from A and P and move to the next iteration of the algorithm. The situation is more
subtle when for a short tier X, we choose a set S ∈ Y which has a size larger than |X|. In this
case, in the same iteration of Algorithm 3, some of the vertices of S will remain unmatched.
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A priori, and without knowing the outcome of the interviews between these two sets, we
do not know which vertices of S are going to remain unmatched. Therefore, we will not
remove any vertex from Y immediately. Because of this subtlety, we will have to keep track
of the “effective cardinality” e(X) and e(Y ). They are updated to be equal to the number of
unmatched vertices in X and Y , respectively, at the same iteration in Algorithm 3.

The algorithm continues in the same fashion. At every step, the top non-empty tiers X
and Y from each side are selected and named so that e(X) ≤ e(Y ). We call X the short side
and Y the long side.

Algorithm 2 The Algorithm for Constructing the Interview Graph.

1 Let δ = 36 log2 n and θ = 72 log3 n.
2 Initialize e(X) = |X| for all tiers X as the number of unmatched vertices in the tier.
3 Initialize G(A,P,E) to be an empty graph, D ← [], and k ← 1.
4 while A ̸= ∅ and P ̸= ∅ do
5 Consider the top non-empty tiers of A and P and label them X and Y s.t.

e(X) ≤ e(Y ).
6 if e(Y ) ≤ δ then
7 Let Ek be the set of all edges between X and Y . ▷ Case 1
8 e(Y )← e(Y )− e(X).
9 else if e(X) ≤ δ then

10 Let S be the set of δ + |Y | − e(Y ) vertices in Y with the lowest index. ▷ Case 2
11 Let Ek be the set of all edges between X and S.
12 e(Y )← e(Y )− e(X).
13 else
14 Let S be the set of e(X) + |Y | − e(Y ) vertices in Y with the lowest index. ▷ Case

3
15 Form Ek by connecting each x ∈ X to δ + |Y | − e(Y ) random vertices of S.
16 Remove all vertices of S from Y and then e(Y )← e(Y )− e(X) = |Y |.
17 if X is in applicant side then D(k)← ’applicant proposing’;
18 else D(k)← ’position proposing’;
19 Remove all vertices of X and e(X)← 0.
20 if e(Y ) = 0 then remove all vertices of Y ;
21 if |Y | − e(Y ) ≥ θ then remove the |Y | − e(Y )− θ vertices of Y with lowest indices;
22 k ← k + 1.
23 return G(A,P,E =

⋃
i<k Ei), D, k.

In the rest of this section, we prove the correctness of the algorithm and give an upper
bound on the number of interviews done by every applicant or position. First, we show that
at any time during the algorithm e(X) is close to |X|.
▶ Invariant 11. For a tier X, after every iteration during the course of Algorithm 2,
e(X) ≤ |X| < e(X) + θ.
Proof. We prove this by induction on the number of iterations. Initially, |X| = e(X). Now
assume that e(X) ≤ |X| < e(X)+θ before the ith iteration. If X is the short side in iteration
i, then all vertices of X will be removed after this iteration, and thus |X| = e(X) = 0. Also,
if X is the long side and the algorithm is in case 3, then |X| = e(X) by Algorithm 2 of
Algorithm 2.

In all other cases, e(X) decreases after the iteration. Further, by Algorithm 2, if
|X| − e(X) ≥ θ, we remove vertices of X for which |X| < e(X) + θ. ◀
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Also, it is not hard to see that all applications and positions will be removed by the end
of Algorithm 2.

▶ Observation 12. After the last iteration of Algorithm 2, all applicants and positions are
removed.

Proof. Let X1, . . . , XτM
be all tiers of positions and Y1, . . . , YτN

be all tiers of applicants.
Note that

∑τM

i=1 e(Xi) =
∑τN

i=1 e(Yi) at all times during the execution of Algorithm 2 since
in all three cases, the effective cardinality of the short side tier is subtracted from both∑τM

i=1 e(Xi) and
∑τN

i=1 e(Yi). Since the algorithm does not terminate until either or both∑τM

i=1 e(Xi) = 0 or
∑τN

i=1 e(Yi) = 0, then all vertices are removed when the algorithm
terminates. ◀

Algorithm 3 Algorithm for Finding a Stable Matching after the Interviews.

1 Let G(A,P,E), D, and k be the output of Algorithm 2.
2 Interview all edges of G.
3 for i = 1 to k − 1 do
4 if Di = ’applicant proposing’ then
5 Run applicant proposing Gale-Shapley on the unmatched endpoints of Ei.
6 else
7 Run position proposing Gale-Shapley on the unmatched endpoints of Ei.

8 return the matching.

We let Ai be the set of applicants that are endpoints of Ei. We define Pi similarly.
Moreover, let A′

i ⊆ Ai and P ′
i ⊆ Pi be the set of applicants and positions that are endpoints

of Ei, and are unmatched when we run Gale-Shapley in Algorithm 3 between Ai and Pi.
Therefore, if Ai and Pi belongs to tiers X and Y , then |A′

i| = e(X) and |P ′
i | = e(Y ) at the

time of iteration i. As we mentioned before, a vertex may appear in multiple Ais or Pis. We
will show that such sets are consecutive. To do so, we first give a helpful property of the
algorithm.

▷ Claim 13. For a tier X that has interview with tiers Y1, Y2, . . . , Yr where e(Yi) ≤ δ

for all i, define Xj−1 be tier X before interviewing with Yj in Algorithm 2 for j ∈ [1, r].
Suppose e(Xj−1) > δ for j ∈ [1, r], then all vertices in Xj−1 with relative indices at most
S(X) + δ − e(Xj−1) will be selected for interview with Yj , and e(Xj) = e(Xj−1) − e(Yj),
where S(X) is the initial size of tier X before the execution of Algorithm 2.

Proof. The algorithm always chooses vertices with the lowest index from the long side to
interview. Consider the interview with Yj , those are the vertices with a relative index of
S(X)− |Xj−1|+ 1 to (S(X)− |Xj−1|) + (δ+ |Xj−1| − e(Xj−1)) = S(Z) + δ− e(Xj−1). And
by definition of Algorithm 2, e(Xj) = e(Xj−1)− e(Yj). ◁

▷ Claim 14. For each vertex v, there exist L and R such that v is in Ai or Pi iff L ≤ i ≤ R.

Proof. Let Z be the tier containing v and S(Z) be the initial size of tier Z at the start of
Algorithm 2. Also, let L be the first iteration considering v and e(Z) be the effective size of
tier Z at that point. It is not hard to see that if Z is the short side in this iteration, or if the
short side Z ′ has size e(Z ′) > δ, all the vertices of Z that have an interview in this iteration
will be removed, and we are done. When Z is the long side and e(Z) ≤ δ, every vertex in Z
will be interviewed.

ITCS 2025



12:14 Stable Matching with Interviews

The only remaining case to consider is where Z is on the long side, e(Z) > δ, and the
tiers considered alongside v are Y1, Y2, . . . Yr, where e(Yi) ≤ δ for all i. From Claim 13 and
the fact that e(Z) decreases monotonically, as long as v is not removed from the graph, it
will be selected for interview, which means it will be the endpoint of at least one edge in Ei.
That implies v is in Ai or Pi by definition. ◁

▶ Lemma 15. Suppose ar ∈ A′
i, |A′

i| ≤ |P ′
i |, and |P ′

i | ≥ δ. Then, with probability 1−O(1/n2),
ar gets matched in iteration i of Algorithm 3 to some position pj ∈ P ′

j such that εA
rj > 0.

Proof. Let X and Y be two tiers that vertices of Ai and Pi belong to, respectively. Also,
by the definition of A′

i, we have |A′
i| = e(X) at the time of ith iteration. If e(X) ≤ δ, since

|P ′
i | ≥ δ, we choose a subset S of Y with size δ + |Y | − e(Y ) and interview all edges. This

set contains δ vertices that are not matched at ith iteration. By Lemma 10, if we choose
t = 10 log2 n/ log2 e(Y ), then ct > 2 logn/ log e(Y ) and with probability

1− exp(−δ/36)−O
(
e(Y )−2 log n/ log e(Y )

)
≥ 1−O

(
1
n2

)
,

ar will match to a position pj ∈ P ′
i such that εA

rj > 0.
Similarly, if e(X) > δ, we choose a subset S of Y that contains e(X) unmatched

vertices. For each vertex of A′
i we interview δ random positions in P ′

j . Hence, if we choose
t = 10 log2 n/ log2 e(X) in Lemma 10, then ct > 2 logn/ log e(X), and with probability

1− exp(−δ/36)−O
(
e(X)−2 log n/ log e(X)

)
≥ 1−O

(
1
n2

)
,

ar will match to a position pj ∈ P ′
i such that εA

rj > 0. ◀

▶ Lemma 16. With probability 1−O(1/n2), if a vertex is removed in iteration i of Algorithm 2,
it will get matched via an edge in ∪j≤iEj.

Proof. Without loss of generality, assume that the removed vertex in iteration i is applicant
ar in tier X. Let Y be the tier of the other side that the algorithm considers in iteration
i. First, assume that X is the short side, e(X) ≤ δ, and e(Y ) ≤ δ at iteration i. According
to Case 1 of Algorithm 2, all vertices of X interview all vertices of Y , hence, the statement
hold with probability 1. Now suppose that X is the short side and e(Y ) > δ at iteration
i. Hence, by definition, we have |A′

i| ≤ |P ′
i | and |P ′

i | > δ. Therefore, by Lemma 15, ar is
matched to a position pj such that εA

ij > 0 with probability 1−O(1/n2), which implies that
(ar, pj) ∈ Ei. Furthermore, if e(X) > δ, e(Y ) > δ, and X is the long side, |A′

i| = |P ′
i |. Since

for this case we run a position-proposing Gale-Shapley in Algorithm 3, by Lemma 15, all
positions in P ′

i get matched to applicants in A′
i with edges Ei. Thus, all vertices of A′

i are
matched to positions in P ′

i using edges Ei since we have |A′
i| = |P ′

i |.
The only case that remains to be investigated is when X is the long side in several

iterations until ar is removed at iteration i, i.e. ar ∈ Aj , |A′
j | ≥ |P ′

j | for j ∈ [l, i] and |P ′
j | ≤ δ.

Also, let Yl, Yl+1, . . . , Yi be the tiers of the other side in each iteration. Let Cr =
∑

l≤j≤i e(Yj).
First, we prove that Cr ≥ θ.

Let Xj−1 be tier X before the jth iteration of Algorithm 2 for j ∈ [l, i+ 1]. Also, let ψ
be the relative position of ar in tier X before any iteration. During iteration j ∈ [l, i], since
|e(Yj)| ≤ δ, Claim 13 shows that (1) every vertex in Xj with index at most S(X)+δ−e(Xj−1)
is in Aj ; (2) e(Xj) = e(Xj−1)− e(Yj). For X l−1, the first case is that e(X l−1) = |X l−1| and
S(X)− e(X l−1) + 1 ≤ ψ when there is no iteration on X before or when |Yl−1| > δ, and the
second case is that ψ > S(X) + δ − e(X l−2) ≥ S(X) + e(Yl−1)− e(X l−2) ≥ S(X)− e(X l−1)
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when |Yl−1| ≤ δ. In both cases, we have ψ ≥ S(X)− e(X l−1) + 1. Since ar is removed in
iteration i, we have S(X)−(e(Xi)+θ)+1 ≥ ψ, thus Cr =

∑
l≤j≤i e(Yj) = e(X l−1)−e(Xi) ≥

θ.

Now consider iteration j and suppose that ar is not matched yet. Then, with a probability
of at least |P ′

j |/δ, applicant ar will be matched in iteration j because all applicants of A′
j

are in the same tier, and subjective interests are i.i.d. Moreover, |P ′
j | = e(Yj) by definition.

Therefore, the probability that ar remains unmatched after iteration i is at most

i∏
j=l

(
1−
|P ′

j |
δ

)
=

i∏
j=l

(
1− e(Yj)

δ

)
≤ exp

(
−Cr

δ

)
≤ exp

(
−θ
δ

)
,

which completes the proof because of our choice of δ and θ. ◀

Using a similar argument as Lemma 16, the next lemma gives a bound on the degree of
every node in G.

▶ Lemma 17. The number of interviews assigned to every position or applicant is at most
O(log3 n)

Proof. We will show the above for every applicant ar. The proof for positions is the same.
Let X be the tier that ar belongs to. If X is the tier of the short side at iteration i, then ar

has at most O(θ) incident edges in Ei by definition of Algorithm 2 and Invariant 11. Also, if
both |A′

i| > δ and |P ′
i | > δ, by Case 3 of the Algorithm 2 and Invariant 11, each vertex in

Ai or Pi has at most O(θ) interviews in iteration i. Note that each vertex is in one of the
above scenarios at most in one iteration since after that it gets removed. Therefore, similar
to the proof of the previous lemma, it only remains to show that the number of interviews is
bounded when X is the long side in several iterations until ar is removed at iteration i, i.e.
ar ∈ Aj , |A′

j | ≥ |P ′
j | for j ∈ [l, i], and |P ′

j | ≤ δ. Let Yl, Yl+1, . . . , Yi be the tiers of the other
side in each iteration.

Define Cr, ψ, and Xj for j ∈ [l − 1, i] as before. With a similar argument, we have
ψ ≤ S(X) + δ − e(X l−1), and

ψ ≥ S(X)− |Xi−1|+ 1 ≥ S(X)− e(Xi−1)− (|Xi−1| − e(Xi−1)) + 1
≥ S(X)− e(Xi−1)− θ
≥ S(X)− e(Xi)− (e(Xi)− e(Xi−1))− θ
≥ S(X)− e(Xi)− (θ + δ)

Thus, Cr ≤ e(X l−1)− e(Xi) ≤ θ + 2δ. Note that the number of interviews for ar is equal to∑
i≤j≤i |Yj |. For all tiers except Yl, we have e(Yj) = |Yj | at the time of the iteration j. Also,

by Invariant 11, we have |Yl| ≤ e(Yl) + θ. Therefore,∑
i≤j≤i

|Yj | ≤ e(Yl) + θ +
∑

l<j≤i

e(Yj) = Cr + θ ≤ 2(θ + δ),

which implies the total number of interviews for vertex ar is at most O(θ) = O(log3 n) before
it gets removed which concludes the proof. ◀

▶ Lemma 18. The matching produced by the algorithm is an interim stable matching with
probability 1−O(1/n).
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Proof. By Observation 12, all applicants and positions are removed from the graph after
Algorithm 3 finishes. Using union bound for all vertices in Lemma 16, with probability
1 − O(1/n), all vertices are matched using an edge in E. Consider tiers X and X ′ from
applicants and tiers Y and Y ′ from positions and suppose that X is a higher tier than X ′

and Y is higher than Y ′. Let H1 = X × Y ′ and H2 = X ′ × Y . We claim that at most one of
the following holds: H1 ∩ E ≠ ∅ or H2 ∩ E ≠ ∅. Without loss of generality, suppose that
H1 ∩E ̸= ∅. This implies that at some iteration i of the Algorithm 2, the algorithm considers
tiers X and Y ′ in Algorithm 2. Hence, all vertices of Y should be already removed, which
implies H2 ∩ E = ∅.

Now, consider applicant ai and position pj that are not matched to each other. We
prove that (ai, pj) is not a blocking pair. Let µ(ai) and µ(pj) be the matches of ai and pj ,
respectively. Also, let X and Y be the tiers that include ai and pj , respectively. We use
X ≻ X ′ to show tier X is preferable to tier X ′. If µ(ai) ∈ Y ′ such that Y ′ ≻ Y , then this
pair is not a blocking pair since µ(ai) ≻ai

pj . A similar argument works for µ(pj). By the
above argument, µ(ai) and µ(pj) does not belong to tiers Y ′ and X ′ such that X ≻ X ′ and
Y ≻ Y ′. Hence, either or both µ(ai) ∈ Y and µ(pi) ∈ X. Thus, X and Y are once considered
at the same time in one iteration in Algorithm 2 of Algorithm 2.

Without loss of generality, suppose that at iteration r, the algorithm considers X and
Y in Algorithm 2 and X is the short side. By definition, we have ai ∈ A′

r. If pj /∈ P ′
r, then

|P ′
r| ≥ δ, which implies that εA

iµ(ai) > 0. Thus, (ai, pj) is not a blocking pair. If pj ∈ P ′
r,

since the algorithm finds a stable matching between A′
r and P ′

r, then (ai, pj) is not a blocking
pair, which finishes the proof. ◀

▶ Theorem 19. There exists a non-adaptive algorithm that finds an interim stable matching
for tiered ranking agents with high probability such that the number of interviews done by
each applicant or position is at most O(log3 n).

Proof. By Lemma 18, the matching returned by the algorithm is interim stable. Furthermore,
by Lemma 16, each applicant or position has at most O(log3 n) interviews. ◀

3.4 Extension
In the aforementioned tiered market scenario, we presume the absence of ex-ante preferences
within a tier. However, agents may have distinct individual preferences within tiers. For
example, in the medical context preferences can be shaped by various factors, including geo-
graphical location, the availability of extracurricular activities, specific research laboratories
they aspire to join, etc. To capture this characteristic of the market, we introduce the follow-
ing model. Applicant ai’s utility vij for position pj is now defined to be vij = vj + ηA

ij + εA
ij ,

where vj = vk if and only if pj and pk are in the same tier, and vj >> vk if pj is in a higher
tier; ηA

ij is a small random perturbation of the ex-ante preference which is known before the
interview; For now, we assume that ηA

ijs and εA
ijs are all drawn from the uniform distribution

over [-1,1] independently. The same applies to positions.
We first briefly argue that our algorithm works for the extended tiered markets. Consider

the first subproblem, Single Tier Structure.
Using the same Chernoff bound arguments, we can prove that for each applicant, there is
a constant c such that δ/c of the interviewed position has ηA

ij + εA
ij > 1.

In the extended model, the preference lists are still random permutations over the
randomness of both η and ε, thus each applicant will be matched to a position with a
high rank.



I. Ashlagi, J. Chen, M. Roghani, and A. Saberi 12:17

Combine the above facts, we can give a similar argument as Lemma 10 that each applicant
gets matched to an interviewed position with ηA

ij + εA
ij > 1. In this way, when we use it as a

subroutine, it still satisfies the property that the applicant would never want to switch to
positions that are not interviewed in the same tier since ηA

ik < 1.
Consider the second subproblem, One Large Tier v.s. Multiple Singleton Tiers. Using a

similar Chernoff argument as above, it is guaranteed that a higher-tier applicant is matched
to the most preferred available position that is interviewed with ηA

ij + εA
ij > 1. Thus they

have no incentive to switch.
The proof for the extended general case is a combination of the two extended subproblems,

and can be modified from the current one by changing the arguments in Lemma 15 from
εA

ij > 0 to ηA
ij + εA

ij > 1.

▶ Remark. Although the boundedness of uniform distribution plays an important role in the
analysis, more general distributions work, as long as with constant probability ηA

ij + εA
ij is

larger than the maximum of n i.i.d. ηA
iks.

4 Conclusion

The extensive body of work on two-sided matching has given rise to a comprehensive theory
and efficient implementations in real-world scenarios. The majority of these studies assume
that agents are fully aware of their preferences. This leaves a critical aspect – the interaction
period where agents learn about their preferences via mutual interaction – largely under-
explored. The current paper ventures into this area, using an algorithmic lens to extend
Gale-Shapley’s deferred acceptance to this setting.

We present an algorithmic approach that extends Gale-Shapley’s deferred acceptance to
include situations where agents form preferences during the interaction period. We propose
two algorithms. The first, an adaptive algorithm, integrates interviews between applicants
and positions into Gale-Shapley’s deferred acceptance. Like deferred acceptance, one side
sequentially proposes to the other. However, the order of proposals is arranged to increase the
chances of achieving an interim stable match. Further, our analysis shows that the number
of interviews conducted by each applicant or position is, with high probability, limited to
O(log2 n).

We also propose a non-adaptive algorithm for markets where the dynamics consist of an
initial interview phase followed by a clearing stage. In these situations, having prearranged
interview lists for each position may be necessary. Our non-adaptive algorithm creates these
lists simultaneously. It aims to find a stable match in markets where applicants and positions
are divided into tiers, and it limits the number of interviews for each applicant or position to
no more than O(log3 n).

We point out that the algorithms in this work do not account for the incentives of
applicants or positions, i.e., mechanisms induced by the algorithm don’t carry the dominant
strategy incentive compatible (DSIC) property as the Gale-Shapley’s algorithm.
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A Deferred Proofs

▷ Claim 8. Among δ positions pj that applicant ai is interviewing, at least δ/3 of them
have εA

ij ≥ 0 with probability 1− exp(−δ/36).

Proof. Denote Xij as the indicator random variable of whether εA
ij ≥ 0, set Pi as the set

of positions that applicant ai is interviewing, and Xi =
∑

pj∈Pi
Xij as the total number of

interviewed positions with εA
ij ≥ 0. By definition, we know that Xij ’s are i.i.d. Bernoulli

random variables with mean 1/2. By Chernoff bound, we have

Pr
[
Xi ≤

δ

3

]
≤ Pr

[
Xi ≤

(
1− 1

3

)
δ

2

]
≤ exp

(
− δ

36

)
,

which finishes the proof. ◁
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