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Abstract
Given a weighted graph G = (V, E, w), a (β, ε)-hopset H is an edge set such that for any s, t ∈ V ,
where s can reach t in G, there is a path from s to t in G∪H which uses at most β hops whose length
is in the range [distG(s, t), (1 + ε)distG(s, t)]. We break away from the traditional question that asks
for a hopset H that achieves small |H| and small diameter β and instead study the sensitivity of H,
a new quality measure. The sensitivity of a vertex (or edge) given a hopset H is, informally, the
number of times a single hop in G ∪ H bypasses it; a bit more formally, assuming shortest paths in
G are unique, it is the number of hopset edges (s, t) ∈ H such that the vertex (or edge) is contained
in the unique st-path in G having length exactly distG(s, t). The sensitivity associated with H is
then the maximum sensitivity over all vertices (or edges). The highlights of our results are:

A construction for (Õ(
√

n), 0)-hopsets on undirected graphs with O(log n) sensitivity, comple-
mented with a lower bound showing that Õ(

√
n) is tight up to polylogarithmic factors for any

construction with polylogarithmic sensitivity.
A construction for (no(1), ε)-hopsets on undirected graphs with no(1) sensitivity for any ε > 0 that
is at least inverse polylogarithmic, complemented with a lower bound on the tradeoff between
β, ε, and the sensitivity.
We define a notion of sensitivity for β-shortcut sets (which are the reachability analogues of
hopsets) and give a construction for Õ(

√
n)-shortcut sets on directed graphs with O(log n)

sensitivity, complemented with a lower bound showing that β = Ω̃(n1/3) for any construction
with polylogarithmic sensitivity.

We believe hopset sensitivity is a natural measure in and of itself, and could potentially find
use in a diverse range of contexts. More concretely, the notion of hopset sensitivity is also directly
motivated by the Differentially Private All Sets Range Queries problem [Deng et al. WADS 23]. Our
result for O(log n) sensitivity (Õ(

√
n), 0)-hopsets on undirected graphs immediately improves the

current best-known upper bound on utility from Õ(n1/3) to Õ(n1/4) in the pure-DP setting, which
is tight up to polylogarithmic factors.

2012 ACM Subject Classification Theory of computation → Shortest paths; Theory of computation
→ Sparsification and spanners

Keywords and phrases Hopsets, Shortcuts, Sensitivity, Differential Privacy

Digital Object Identifier 10.4230/LIPIcs.ITCS.2025.13

Related Version Full Version: https://arxiv.org/abs/2407.10249 [4]

Funding Aaron Bernstein: Funding through Sloan Fellowship, Google Research Award, and NSF
Grant 1942010.
Jie Gao: Ashvinkumar, Deng and Gao would like to acknowledge funding through NSF IIS-2229876,
DMS-2220271, DMS-2311064, CCF-2208663, CCF-2118953.

© Vikrant Ashvinkumar, Aaron Bernstein, Chengyuan Deng, Jie Gao, and Nicole Wein;
licensed under Creative Commons License CC-BY 4.0

16th Innovations in Theoretical Computer Science Conference (ITCS 2025).
Editor: Raghu Meka; Article No. 13; pp. 13:1–13:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:va264@rutgers.edu
mailto:ab3599@nyu.edu
https://orcid.org/0000-0002-7599-2679
mailto:cd751@rutgers.edu
mailto:jg1555@rutgers.edu
https://orcid.org/0000-0001-5083-6082
mailto:nswein@umich.edu
https://orcid.org/0000-0003-2792-2374
https://doi.org/10.4230/LIPIcs.ITCS.2025.13
https://arxiv.org/abs/2407.10249
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Low Sensitivity Hopsets

Nicole Wein: This work was done while the author was at DIMACS, Rutgers University, supported
by a grant to DIMACS from the Simons Foundation (820931).

Acknowledgements The authors would like to thank Greg Bodwin for helpful discussions about
hopsets.

1 Introduction

Many fundamental graph-theoretic problems involve the computation of reachability and
shortest path distances. In a variety of computation models (e.g. parallel, distributed,
streaming, dynamic), the computation of shortest paths of most state-of-the-art algorithms
scales with the hop-diameter [7, 12, 13, 24–26, 28, 29, 33–35]. The hop-diameter of a graph
refers to the maximum hop-length over reachable pairs of vertices, where the hop-length from
vertex s to vertex t is the minimum number of edges in a shortest st-path. Motivated by the
goal of reducing hop-diameter, Thorup introduced the notion of a shortcut set [44], which
is a set of edges H added to a given graph G such that: G ∪H has the same reachability
structure as G (i.e. for all vertices s and t, s can reach t in G∪H if and only if s can reach t

in G) and G∪H has small hop-diameter. The shortcut set was later generalized to the hopset
by Cohen [16] (also informally by [35,41]) which preserves (weighted) shortest distances in
addition to reachability. Formal definitions are given below.

▶ Definition 1 (Shortcut Set). Given a graph G = (V, E), a β-shortcut set of G is a set of
edges H ⊆ V × V such that: (1) Every edge (s, t) ∈ H is in the transitive closure of G. (2)
For every vertex pair (s, t) in the transitive closure of G, there is an st-path in G ∪H with
at most β edges.

▶ Definition 2 (Hopset). Given a weighted graph G = (V, E, w), a (β, ε)-hopset of G is
a set of weighted edges H ⊆ V × V such that: (1) Every edge (s, t) ∈ H has a weight of
distG(s, t), where distG(s, t) stands for the shortest distance between s, t in graph G. (2) For
every vertex pair (s, t) in the transitive closure of G, there is an st-path Pst in G ∪H with
at most β edges, and the weight of Pst is at most (1 + ε)distG(s, t).

A (β, 0)-hopset is sometimes called an exact hopset, while (β, ε)-hopsets for ε > 0 are
called approximate hopsets. For both shortcut sets and hopsets, a natural measure of their
cost is their size (i.e. the number of edges added). There has been a rich literature studying
the tradeoff between the size of a shortcut/hopset and the hop-diameter for both directed
and undirected graphs [2, 6, 8, 11,20,21,30,31,36–40,46,47].

A New Problem: Low-Sensitivity Hopsets

In some settings, measuring the cost of a hopset by its total number of edges provides
information that is too coarse and not descriptive enough to capture the problem. In this
work, we instead consider a notion of cost that is more local to individual vertices and edges.
Specifically, we define the notion of the sensitivity of a hopset1.

Informally, given a graph G = (V, E) and a hopset H, the sensitivity of a vertex v is the
number of hopset edges that bypass v. We say a hopset edge (s, t) ∈ H bypasses v if v is on
the unique2 st-path in G having length exactly distG(s, t). The vertex sensitivity associated

1 To avoid redundancy, we use hopset as a general term for shortcut/approximate/hopset unless specified
otherwise.

2 We assume shortest paths are unique now. Later we formally define the conditions for non-unique
shortest paths.
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with H is then the maximum sensitivity over all vertices. The edge sensitivity is defined in a
similar way. We denote the hopset vertex/edge sensitivity by ∥>v∥∞ and ∥>e∥∞

3, and defer
the formal definitions to Section 3.1.

We say a hopset H has low sensitivity if it has a vertex/edge sensitivity of polylog(n).
We also define an analogous notion of a low-sensitivity shortcut set. Since shortcut sets
pertain to reachability instead of shortest paths, and there could be many paths between a
vertex pair s, t, it is not clear a priori which path should absorb the sensitivity of a shortcut
edge from s to t. We allow the algorithm to specify the paths; that is, the input is a graph,
and the output is a path between each pair of vertices as well as a shortcut set that has low
sensitivity with respect to the chosen paths.

A closely related concept is the support size of a hopset, first studied in [22] to get recently
improved path-reporting distance oracles (PRDOs); see [14] for the latest on PRDOs. The
support size of a hopset H is, loosely speaking, the number of edges in G that are bypassed
by edges from H. This can be seen as the ℓ0 norm of a certain vector whereas, in contrast,
hopset sensitivity is the ℓ∞ norm of the same vector (as the notation ∥>e∥∞ suggests4).

At any rate, we investigate tradeoffs between hopset sensitivity and hop-diameter in
this work. We believe hopset sensitivity is a natural measure in and of itself, and could
potentially find use in a diverse range of contexts. In fact, low-sensitivity hopsets have
already been implicitly studied in several prior works [15,18,23]. These prior works come
from the area of differential privacy where sensitivity is a crucial concept since it captures the
effect of the perturbation of individual data points on the output of an algorithm. Our new
low-sensitivity hopset constructions directly improve the bounds from [18] for the problem of
Differentially Private Range Queries. More details on this concrete application, as well as
other applications of a more speculative nature, can be found in Section 1.2.

1.1 Our Results

We study upper and lower bounds for low-sensitivity shortcut sets, exact hopsets, and
approximate hopsets, on both undirected and directed graphs.

To give context to our results, we draw parallels to the different regimes for traditional
hopsets. For hopsets with O(n) edges, there are essentially three diameter regimes: (1)
directed shortcut/hopsets as well as undirected exact hopsets all provably require polynomial
hop-diameter, (2) approximate hopsets for undirected graphs require only no(1) hop-diameter,
and (3) undirected shortcut sets trivially achieve diameter 2. Roughly speaking, these
diameter regimes also hold for the low-sensitivity counterparts.

Our results focus on low-sensitivity undirected exact hopsets and directed shortcut sets
from regime 1, as well as low-sensitivity approximate undirected hopsets from regime 2. For
all of these, we prove both upper and lower bounds.

An overview of upper and lower bound results of all settings is shown in Table 1. Observe
that the edge sensitivity of a hopset is always no more than the vertex sensitivity (formally
proved in Section 3.2). Thus, it is always more desirable to have upper bounds for vertex
sensitivity and lower bounds for edge sensitivity. All of our results are of this form.

3 The arc is meant to be evocative of bypassing hopset edges. When they bypass vertices, we draw the
arc over the symbol v and when they bypass edges, we draw the arc over the symbol e.

4 In fact, we also look at the ℓ1 norm in the proofs of our lower bounds in Section 5.
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Table 1 Our Results for sensitivity and hop-diameter for shortcut sets, exact hopsets, and (1 + ε)
hopsets. Regarding the undirected approximate hopset, the upper bound has ε > 0 at least inverse
polylogarithmic and, in the lower bound, k is any positive integer and ∆ is any small positive
constant.

Shortcut Set Hopset (1 + ε) Hopset

Undirected

U. B.

β = O(log2 n) β = O(
√

n log n) β = no(1)

∥>v∥∞ = O(log n) ∥>v∥∞ = O(log n) ∥>v∥∞ = no(1)

( [23]) (Details in full version [4]) (Details in full version [4])

L. B. –
∥>e∥∞ · β2 = Ω(n)

β = Ok((1/ε)k)

⇒ ∥>e∥∞ = Ω(n
1

2k−1
−∆)

(Section 5.1) (Details in full version [4])

Directed

U. B.

β = O(
√

n log3 n) β = O(
√

n log n) β = O(
√

n log n)

∥>v∥∞ = O(log n) ∥>v∥∞ = O(
√

n log n) ∥>v∥∞ = O(
√

n log n)

(Details in full version [4]) ( [15,18]) (Implied by directed exact hopset)

L. B.
∥>e∥∞ · β = Ω(n1/3) ∥>e∥∞ · β2 = Ω(n) ∥>e∥∞ · β = Ω(n1/3)

(Section 5.1) (Implied by undirected hopset) (Implied by directed shortcut set)

Undirected Exact Hopsets

Our first result is for low-sensitivity exact hopsets on undirected graphs. We show it is
possible to achieve hop-diameter Õ(

√
n) and O(log n) vertex sensitivity.

▶ Theorem 3 (Undirected Exact Hopset Upper Bound). There exists an algorithm producing
an (O(

√
n log n), 0)-hopset with ∥>v∥∞ = O(log n) over undirected and directed acyclic graphs.

We complement our upper bound with a lower bound showing that a hop-diameter of
Õ(
√

n) is tight up to polylogarithmic factors, for any hopset with polylogarithmic (vertex- or
edge-) sensitivity.

▶ Theorem 4 (Undirected Exact Hopset Lower Bound). Any construction of (β, 0)-hopsets H

must have ∥>e∥∞ · β2 = Ω(n) for a graph G on n vertices.

Our lower bound exhibits a smooth trade-off between hop-diameter and sensitivity.
One could ask whether such a trade-off exists for upper bounds as well. As we show (see
Remark 34), such a trade-off would imply the non-existence of certain perfect path systems,
which is a big open problem in network design. The existence of such perfect path systems
would imply, for example, better lower bounds for distance preservers [17].

Directed Shortcut Sets

For directed shortcut sets, we prove an upper bound with similar guarantees to our upper
bound for undirected exact hopsets.

▶ Theorem 5 (Directed Shortcut Set Upper Bound). There exists an algorithm producing an
O(
√

n log3 n)-shortcut set with ∥>v∥∞ = O(log n) for directed graphs.

We complement our upper bound with a lower bound.
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▶ Theorem 6 (Directed Shortcut Set Lower Bound). Any construction of β-shortcut sets H

must have ∥>e∥∞ · β = Ω(n1/3) for a directed graph G on n vertices.

Unlike our bounds for exact undirected hopsets, our results for directed shortcut sets
are not tight. In particular, for polylogarithmic vertex-sensitivity, there is a gap between
hop-diameter Õ(n1/3) and Õ(

√
n), which we leave as an open problem.

Undirected Approximate Hopsets

For undirected approximate hopsets, we prove that one can achieve much better hop-
diameter than the polynomial bounds for the previously mentioned problems. In particular,
we prove bounds of no(1) for both sensitivity and hop-diameter when ε > 0 is at least inverse
polylogarithmic.

▶ Theorem 7. There exists an algorithm which produces a
(
O

(
(k/ε)k log2 n

)
, ε

)
-hopset H

with ∥>v∥∞ = O(kn1/k log2 n) for undirected graphs. For any ε > 0 that is at least inverse
polylogarithmic, setting k = Θ(

√
log n) gives a (no(1), ε)-hopset with ∥>v∥∞ = no(1).

We complement our upper bound with a lower bound.

▶ Theorem 8. Fix a positive integer k and parameter ε > 1/no(1). Any construction of

(β, ε)-hopsets H with β = O

((
1

2k−2(2k−1)ε

)k
)

has ∥>e∥∞ ≥ n
1

2k−1
−∆, ∆ > 0.

This lower bound is an exact analogue of the best known lower bound on the size of
approximate hopsets in [2] (we just divide their size bound by n to get our sensitivity bound).
For ε > 0 exactly inverse polylogarithmic, this lower bound says that it is not possible to
have sensitivity and hop-diameter be polylogarithmic simultaneously, so we can only hope
to improve either the sensitivity or diameter under this regime. We leave open whether
we can get sensitivity and diameter simultaneously polylogarithmic when ε is larger than
polylogarithmic (for example, constant ε).

To briefly address the problems that we do not focus on (recall that we focus on undirected
exact hopsets, directed shortcut sets, and approximate undirected hopsets): Low-sensitivity
undirected shortcut sets are simple (but not quite as trivial as in the traditional setting) as
noted by prior work and in Observation 22. For directed hopsets, the upper bounds implicit
in prior work [15,18] remain the best-known, and from the lower bounds side, our results
for undirected exact hopsets and directed shortcut sets immediately carry over to exact and
approximate directed hopsets, respectively.

1.2 Applications
Our motivation for studying low-sensitivity hopsets is two-fold. The more concrete motivation
is that they are already implicitly used in the problem of differentially private range queries,
and our new upper bound for low-sensitivity hopsets (Theorem 3) immediately implies
improved results for this problem (details below).

More generally, we believe that sensitivity is a natural measure for evaluating hopsets, as
it is one way of modeling the “robustness” of a hopset: low sensitivity means that changing
a vertex/edge in the underlying graph G only affects a small number of shortcuts in H.
This corresponds, for example, to the following real-world scenario. In computer networking
the notion of an overlay network [43] considers logical links layered on top of a physical
network. The logical links support functionality in the overlay protocol but they are actually
implemented along a physical path in the underlying network. Overlay networks have been

ITCS 2025



13:6 Low Sensitivity Hopsets

widely adopted in practice (e.g. VPN, VoIP, content delivery, P2P services) due to benefits
such as encapsulation, ease of deployment, and quality of service requirements. The design
of an overlay network could benefit from the resilience of low sensitivity hopsets – changes in
one vertex or one edge in the underlying network only affect relatively few overlay links.

1.2.1 Differentially Private Range Query

Low-sensitivity hopsets have (implicitly) found applications in differential privacy (DP) [19];
this is the problem setting with which we are primarily motivated by. On a high level,
differential privacy protects sensitive information by introducing perturbation, such that the
output stays immune to the presence or absence of any individual’s data. More formally,

▶ Definition 9 (Differential Privacy). For databases Y and Y ′ that differ on one data entry and
ϵ > 0, δ ≥ 0, a randomized algorithm M is (ϵ, δ)-differentially private, if for any measurable
set A in the range of possible outputs, it holds that: Pr[M(Y ) ∈ A] ≤ eϵ Pr[M(Y ′) ∈ A] + δ.

The algorithm M is called pure-DP if δ = 0 and approximate-DP otherwise5.
Low-sensitivity hopsets have a direct application to the All Sets Range Queries (ASRQ)

problem in differential privacy [18]. The input to ASRQ is an undirected graph G with public
topology and shortest paths, and each edge is associated with a private attribute (which can
be distinct from its weight). The output of ASRQ is an n× n matrix M , where entry (u, v)
contains the summation of edge attributes along a shortest path between the vertex pair
u, v. The DP-ASRQ problem asks for a private mechanism to output a matrix M ′ with
the DP guarantee, while minimizing the utility or additive error, i.e. ℓ∞ of M −M ′. The
best-known upper bound of the additive error from prior work is Õ(n1/3) for the pure-DP
setting and Õ(n1/4) for the approximate-DP setting. The latter is tight up to polylogarithmic
factors [10]. As we outline next, our low-sensitivity exact hopsets imply an improvement of
the Õ(n1/3) bound for the pure-DP setting, down to the tight bound of Õ(n1/4), matching
the approximate-DP setting.

We are able to show the connection between low-sensitivity hopsets and the DP-ASRQ
problem by the following theorem, which is shown implicitly in [18].

▶ Theorem 10. If there exists a (β, 0)-hopset H with edge-sensitivity ∥>e∥∞ for any given
undirected graph, then for any ϵ > 0, there exists an ϵ-DP algorithm for the ASRQ problem
such that the additive error is at most Õ( 1

ϵ ·
√
∥>e∥∞ · β) with high probability.

Plugging into Theorem 10 our (
√

n log n, 0)-hopset with ∥>v∥∞ = O(log n) (and thus
∥>e∥∞ = O(log n)) from Theorem 3, we obtain the following result:

▶ Theorem 11 (ϵ-DP upper bound). There exists an ϵ-DP algorithm for the ASRQ problem
such that the additive error is at most Õ( n1/4

ϵ ) with high probability.

We show the proof of Theorem 11 in the full version [4] of the paper. We remark that
low-sensitivity hopsets are also implicitly used in another problem studied in differential
privacy: All Pairs Shortest Distances. However a direct relation like Theorem 10 is not
available. We further discuss this problem in the full version [4] of the paper.

5 Note that we are using “epsilon” in two different ways in this paper, but we disambiguate the symbols:
ϵ for the differential privacy parameter, and ε for the approximation parameter of hopsets.
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1.3 Organization
We first provide, in Section 2, a high-level overview of the technical challenges and ideas
in our results. Formal preliminaries are then given in Section 3. Next, we show an upper
bound for undirected exact hopsets in Section 4, leaving the upper bound for directed exact
hopsets to the full version [4] of the paper. Our upper bounds for undirected approximate
hopsets can also be found in the full version [4] of the paper. In Section 5, we show lower
bounds on the sensitivity-diameter tradeoff for shortcut sets and hopsets, leaving bounds in
the approximate setting to the full version [4] of the paper. We finish by listing several open
problems in Section 6.

2 Technical Overview

In this section we outline the key technical ideas in our constructions. A natural starting
point for proving upper and lower bounds for low-sensitivity hopsets is to simply look at
bounds for traditional hopsets. As it turns out, these ideas can sometimes be massaged into
the low-sensitivity setting, but they do not always give the best sensitivity bounds, which
necessitates the development of new techniques.

We begin by discussing a technique from prior work on low-sensitivity hopsets that
illuminates a key difference between the traditional and low-sensitivity settings.

Techniques from Prior Work: Heavy-Light Decomposition

We will start with a simple example: shortcut sets for undirected graphs. For traditional
shortcut sets, this is a trivial problem. Simply add a star centered at an arbitrary vertex v

to get a shortcut set with n− 1 edges and diameter only 2. If we consider the sensitivity of
this construction, we quickly realize that v has sensitivity n− 1. Thus, this trivial solution
does not work in the low-sensitivity setting. However, as noted implicitly in prior work [23],
there is quite a simple construction that does work.

The solution is to use a heavy-light decomposition of the tree of routing paths rooted
at v. A heavy-light decomposition partitions the edges of a tree into “light” edges and
“heavy” paths, where any root-to-leaf path has O(log n) light edges. This is useful because we
can independently shortcut each of the (vertex-disjoint) heavy paths down to diameter and
sensitivity O(log n) using standard methods (see e.g. Figure 1). This results in a shortcut set
with vertex-sensitivity O(log n) and diameter O(log2 n). See Section 3.3.2 for more details.

This solution suggests a more general technique for constructing low-sensitivity hopsets:
whenever a traditional hopset contains a star, simply replace it by the above heavy-light
decomposition shortcutting scheme. This technique works, for instance, to translate the
folklore exact hopset into the low-sensitivity setting. The folklore hopset with Õ(n) edges
and Õ(

√
n) hop-diameter is the following: randomly sample a set S of Õ(

√
n) vertices and

add a hopset edge between all pairs of reachable vertices in S (where the edge weight is the
distance between its endpoints). Viewing each vertex in S as the center of a star, we can
apply the heavy-light decomposition transformation to achieve both vertex-sensitivity and
hop-diameter Õ(

√
n) [15, 18]. This remains the best-known result for exact and approximate

low-sensitivity directed hopsets.
We remark that it would also be natural to try to adapt Kogan and Parter’s recent

Õ(n1/3)-diameter directed shortcut set [38] on Õ(n) edges, to the low-sensitivity setting. In
short, it is not clear how to do this. The first step of their construction picks Õ(n2/3) chains
on Õ(n1/3) vertices each, and shortcuts each of them. Shortcutting a single chain could
add sensitivity to Ω(n) vertices and edges (since it is a chain, not a path). So, shortcutting
Õ(n2/3) chains could already incur vertex and edge sensitivity Õ(n2/3).

ITCS 2025
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Our Main Technical Contribution

Although the known constructions for low-sensitivity hopsets use the strategy of starting
with traditional hopsets and applying the above heavy-light decomposition transformation,
it is not clear that this is the optimal strategy. In particular, the low-sensitivity setting
permits us freedom not allowed in the traditional setting: we can add as many edges as we’d
like, as long as the sensitivity of each individual vertex is bounded. Thus, we would like to
take advantage of our ability to add many edges, while ensuring that not too many of our
added edges have overlapping underlying routing paths. In light of this new goal, we examine
low-sensitivity hopsets from scratch, developing a new technique that is conceptually very
different from any known techniques for the traditional setting.

Our main new technique allows us to improve above exact undirected hopset of prior
work [15, 18] from vertex sensitivity Õ(

√
n) all the way down to O(log n). Our resulting

hopset with O(log n) vertex-sensitivity and Õ(
√

n) hop-diameter is tight up to polylogarithmic
factors in both parameters.

This technique heavily relies on the assumption that the routing paths are chosen to be
consistent; that is, each pair of overlapping paths overlaps at one single contiguous subpath.
This assumption holds for shortest paths in undirected graphs and DAGs (with a consistent
tie-breaking scheme), but not for shortest paths in general directed graphs. This is why our
technique does not apply to exact or approximate directed hopsets. But it does apply to
directed shortcut sets when we use the technique on the DAG of SCCs, in combination with
other ingredients such as carefully choosing routing paths.

Now, we outline the technique. It is a greedy algorithm for processing routing paths in a
carefully chosen order. Each time we process a routing path, we shortcut the path using a
simple and standard method (see Figure 1) which incurs O(log n) sensitivity. We need to
be careful because if we shortcut a path that overlaps with a previously shortcutted path,
the vertices in the overlap incur double the sensitivity. For this reason, when we process a
path we only shortcut the segments of a path that have not been previously shortcutted. We
think of it this way: every time a path is shortcutted, it cast “shadows” on other overlapping
paths, and we only shortcut the non-shadowed segments of each path.

Using this method, it is immediate from the standard method for shortcutting a path,
that the vertex-sensitivity is only O(log n). However, the hop-diameter is in question. The
hop-diameter can be determined by roughly the number of shadows cast onto a path, since
each shadow chops the path into more segments, and so the goal is to bound the number of
shadows cast onto each path. Since the routing paths are consistent, we know that when
we process a path it only casts at most one new shadowed segment (which may be further
segmented by already existing shadows) onto every other path. This helps, but we still
need to choose the order to process the paths carefully. Even with the consistency property,
processing the paths in the wrong order could lead to Ω(n) vertex-sensitivity.

To choose the processing order, we carefully define a potential function and choose the
path with maximum potential. The potential of a path P is rather simple to define and
fast to implement: the number of vertices on P that are not on any previously chosen path.
In our analysis, we show that this potential function yields an algorithm with the desired
hop-diameter of Õ(

√
n).

Techniques for Lower Bounds

For our lower bounds, we use modifications of constructions that have previously been
applied to traditional hopsets as well as spanners, emulators, distance preservers, reachability
preservers, and related problems. These graph constructions are layered graphs defined by
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a collection of perfect paths, which are unique paths (or unique shortest paths, depending
on the setting) that go from the first to last layer and are pairwise edge-disjoint. These
graphs are useful for traditional hopsets because their properties imply that the addition of
a single edge can only decrease the hop-length of one perfect path. This condition is useful
for low-sensitivity hopsets too, but the situation is more nuanced. When we add a single
edge to a traditional hopset it simply counts 1 towards our budget of edges, whereas in the
low-sensitivity setting the total amount of sensitivity added depends on the “length” of the
added edge. Thus, we need to take into account all possible edge lengths, and consider their
contributions to both sensitivity and diameter.

As a separate issue, we are interested in edge sensitivity for lower bounds. For this reason
we modify known perfect path constructions by replacing each vertex by an edge, which
requires a slightly more careful analysis.

Our final construction begins with a known perfect path construction and optimizes the
parameters for the low-sensitivity hopset setting (which results in different graph parameters
than constructions for traditional hopsets). We obtain a lower bound showing that to achieve
polylogarithmic vertex or edge-sensitivity for exact undirected hopsets, the hop-diameter
must be Ω̃(

√
n), which is tight with our aforementioned upper bound. We also obtain lower

bounds for low-sensitivity directed shortcut sets and low-sensitivity approximate undirected
hopsets, both by again appealing to known constructions of layered graphs.

▶ Remark 12. Bodwin and Hoppenworth [11] are able to prove stronger lower bounds on
the number of edges in a hopset by relaxing the requirement that perfect paths are disjoint.
Unfortunately, their relaxation does not immediately seem to be useful for lower bounding
the sensitivity of a hopset; see the full version [4] of the paper for more details.

Techniques for Approximate Undirected Hopsets

For traditional hopsets with O(n) size, as noted in Section 1, there are essentially 3 diameter
regimes: (1) directed shortcut/hopsets as well as undirected exact hopsets all require
polynomial hop-diameter, (2) approximate hopsets for undirected graphs require only no(1)

hop-diameter, and (3) undirected shortcut sets trivially achieve diameter 2. In the low-
sensitivity setting, we have mainly discussed the polynomial diameter regime so far, but it
also makes sense to consider the no(1)-hop-diameter regime for low-sensitivity approximate
undirected hopsets. To this end, we extend known results for traditional approximate
undirected hopsets to the low-sensitivity setting, achieving both vertex-sensitivity and
hop-diameter no(1) for any ε > 0 that is at least inverse polylogarithmic.

In the traditional setting, Huang-Pettie and Elkin-Neiman [20,31] showed that Thorup-
Zwick emulators [45] are optimal hopsets. Examining this construction, it is not clear if
it has low vertex and edge sensitivity. Instead, we begin with the similar construction of
Thorup-Zwick spanners (also in [45]). Recall that emulators and spanners are both sparse
graphs that approximately preserve distances in graphs, but a spanner is a subgraph while
an emulator can have added edges. Thus, it makes sense to consider an emulator as a hopset,
but not a spanner (since it has no added edges). However, we can use the heavy-light tree
decomposition shortcutting on top of the Thorup-Zwick spanner to obtain a construction
that is similar to the Thorup-Zwick emulator, but now it has low sensitivity. Then, we can
leverage the hopset analysis tools of Huang-Pettie to show that our no(1) vertex sensitivity
hopset also has hop-diameter no(1) for any ε > 0 that is at least inverse polylogarithmic.
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3 Preliminaries

3.1 Notations and Definitions
With the aim of formally defining vertex and edge sensitivity, we first introduce a couple of
notions.

▶ Definition 13 (Routing Paths). Given a graph G = (V, E) we call P a set of routing paths
for G if for all s, t ∈ V such that s can reach t, there is exactly one path P ∈ P such that P

is a path in G with starting point s and ending point t. If G is weighted, we stipulate that
the paths in P must be shortest paths in G.

Routing paths are meant to model paths that are deemed critical. In the context of
hopsets, the routing paths must thus be shortest paths, whereas in the context of shortcut
sets, any path may be chosen as a routing path.

▶ Definition 14 (Span). Given a graph G = (V, E) and a tuple of a set of routing paths and
a shortcut/hopset A(G) = (P, H), we define the span of an edge e = (s, t) ∈ H to be the
unique path in P with starting point s and ending point t; we denote this with spanA(G)(e).
When the context is clear, we omit the subscript and write span(e).

We are now ready to define vertex and edge sensitivity. These are properties of (the
inputs) graphs, together with (the outputs) a set of routing paths and a shortcut/hopset.

▶ Definition 15 (Vertex Sensitivity). Given a graph G = (V, E) and a tuple of a set of routing
paths and a shortcut/hopset A(G) = (P, H), the vertex sensitivity vector, indexed by V , is
denoted with >vG,A(G). When the context is clear, we omit any subset of the subscripts: >v.

The value of >v at index v is

>v(v) = |{f ∈ H : v ∈ V (span(f))}|.

The worst case vertex sensitivity (given G,A(G)) is

∥>v∥∞ = max
v∈V

>v(v).

▶ Definition 16 (Edge Sensitivity). Given a graph G = (V, E) and a tuple of a set of routing
paths and a shortcut/hopset A(G) = (P, H), the edge sensitivity vector, indexed by E, is
denoted with >eG,A(G). When the context is clear, we omit any subset of the subscripts: >e.

The value of >e at index e is

>e(e) = |{f ∈ H : e ∈ E(span(f))}|.

The worst case edge sensitivity (given G,A(G)) is

∥>e∥∞ = max
e∈E

>e(e).

A reason behind our choice of using vector notation to describe sensitivity is as follows:
We sometimes consider the total sensitivity ∥>e∥1 =

∑
e

>e(e) and even the sum of sensitivities
over a set T ⊆ E which we write with 1T · >e where 1T is the indicator vector of T and “·”
denotes the usual inner product over vectors.

Next, we define the notion of consistency, which will prove to be a very useful property
of carefully chosen routing paths in our upper bound constructions.
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▶ Definition 17 (Consistency (Modification from [17])). A pair of paths P, P ′ are said to be
consistent if their intersection contains at most one connected component. A set of paths P
is said to be consistent if every pair of paths P, P ′ ∈ P are consistent.

A shortest path tiebreaking function chooses for each pair of vertices s, t ∈ V , where
s can reach t, exactly one shortest path from s to t. We say a shortest path tiebreaking
function is consistent if its image is consistent.

Our lower bounds go through via constructions of graphs inspired by [2, 9]; in fact we
directly use Theorems 5 and 6 from the first paper and Theorem 4.6 from the second paper
for our constructions, but our proofs and the way we invoke the theorems differ. A common
object that appears in both papers, and that we use, are layered graphs.

▶ Definition 18 (Layered Graphs). A graph G = (V, E) is layered if the vertex set can be
partitioned into V = V1 ⊔ V2 ⊔ . . . ⊔ Vℓ such that every edge goes between two consecutive
parts Vi and Vi+1. If G is directed, then edges are oriented towards the parts with larger
indices.

3.2 Relationship Between Vertex and Edge Sensitivity

We discuss how different notions of sensitivity relate to each other. First, observe that for a
fixed shorctut/hopset H, its ∥>v∥∞ and ∥>e∥∞ could differ drastically. For example, consider
an n/2-tipped star with tips of length 2; any H comprising of all edges from the center
c to the ends of all the tips would have >v(c) = n/2 but >e(e) = 1 for all edges e. More
generally, the shortcut/hopset edges with endpoint v contribute one each to >v(v) whereas
their contribution to the edge sensitivity can be dispersed over the routing paths incident to
v. At any rate, observe that the edge sensitivity being no more than the vertex sensitivity
generalizes to any graph.

▶ Observation 19. ∥>eG,A(G)∥∞ ≤ ∥>vG,A(G)∥∞.

Proof. Consider the edge e = (u, v) where >e(e) = ∥>e∥∞. Observe in particular that
>e(e) ≤ >v(u) since every edge in A(G) contributing to >e(e) also contributes to >v(u). We
therefore conclude that ∥>eG,A(G)∥∞ ≤ ∥>vG,A(G)∥∞. ◀

It follows from Observation 19 that proving upper bounds for ∥>v∥∞ gets us the same
bound for ∥>e∥∞ and, in the contrapositive, proving lower bounds for ∥>e∥∞ gets us the same
bound for ∥>v∥∞. We thus strive to prove upper bounds on ∥>v∥∞ and lower bounds on ∥>e∥∞
throughout the paper; all results presented here are of this form.

It is also useful to note that |H| ≤ n∥>v∥∞ which says that small sensitivity implies hopset
sizes which are not much larger than linear (i.e. none of our results produce prohibitively
large hopsets). This follows, informally, since every vertex “sees” at most ∥>v∥∞ hopset edges
(the ones contributing to its sensitivity) and each hopset edge is “seen” at least once. Similar
arguments will be described more formally in our lower bound proofs.

3.3 Algorithmic Building Blocks

In this section we describe primitive subroutines used in our constructions of shortcut/hopsets.
The first tool addresses how to “shorten” paths; the second, which can be viewed as a
generalization of the first, addresses how to shorten trees.
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3.3.1 Path Shortcutting
Path-Hopset is a well-known primitive which, when given a path, reduces hop-lengths
of shortest paths to O(log n) while adding no more than O(log n) sensitivity to any vertex.
Intuitively, Path-Hopset adds an edge between the two endpoints of the path, then partitions
the path into two equally sized subpaths and recurses into each of them. An example of the
output of Path-Hopset is depicted in Figure 1.

Path-Hopset
Input: A path P from v0 to vℓ

1. If ℓ < 2 then return {}
2. Return {(v0, vℓ)} ∪Path-Hopset(P [v0..v⌊ℓ/2⌋]) ∪Path-Hopset(P [v⌊ℓ/2⌋..vℓ])

Figure 1 An example of Path-Hopset on a path of length 8 with vertices v0, . . . , v8. The
collection of blue edges is the shortcut/hopset output.

▶ Observation 20. Given a path P = v0, v1, . . . , vn (possibly oriented in the (vi, vi+1)
direction), Path-Hopset outputs a O(log n)-shortcut/hopset with ∥>v∥∞ = O(log n).

For completeness, we provide a proof in the full version [4] of the paper.

3.3.2 Tree Shortcutting via the Heavy-light Decomposition
Tree-Hopset, described in [23], reduces the problem of shortcutting trees to that of
shortcutting paths, where the instances passed to Path-Hopset are found via a heavy-
light decomposition of the tree. A heavy-light decomposition [27] (also termed heavy path
decomposition) of a rooted tree is a partitioning of its edges into “heavy” paths and “light”
edges such that any root-to-leaf path passes through at most O(log n) light edges, which is
captured by Proposition 21.

▶ Proposition 21 ([27]). Given a tree T of size n, there is a heavy-light decomposition such
that

any root-to-leaf path has at most O(log n) light edges;
all heavy paths are vertex disjoint.

Using the above proposition, Tree-Hopset is specified as follows.

Tree-Hopset
Input: A tree T rooted at v

1. Return Path-Hopset(P ) for all heavy paths P in a heavy-light decomposition of T
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▶ Observation 22. Given a tree T rooted at v (with possibly all edges oriented away
from the root or all edges oriented towards the root), Tree-Hopset outputs an O(log2 n)-
shortcut/hopset with ∥>v∥∞ = O(log n).

This result is implicitly shown in the analysis of [23], but we provide a proof (in a
differential-privacy-free language) in the full version [4] of the paper for completeness.
Elementary use of Tree-Hopset yields the following quick results. A O(log2 n)-shortcut set
construction with ∥>v∥∞ = O(log n) on undirected graphs. A directed (O(

√
n log n), 0)-hopset

construction with ∥>v∥∞ = O(
√

n log n). See the full version [4] of the paper for details.

4 Upper Bounds via a New Greedy Approach

This section describes a new way to construct low-sensitivity shortcut/hopsets when we are
able to choose consistent routing paths; this is always possible, for example, in undirected
graphs and DAGs. Using this approach, we can quite immediately get Theorem 3. With
some slight care, we apply this approach to shortcut sets on directed graphs and obtain
Theorem 5.

4.1 The Greedy Construction
At a schematic-level, the construction is very simple to describe: for each routing path P ,
processed in some order, apply Path-Hopset to the uncovered pieces of P . The details are
filled in as follows.

Finding an Order to Process Paths

The order for which we process the shortest paths is described via a potential function Φ on
routing paths P , which counts the number of vertices in P that have not yet been contained
in a path that has thus far been processed.

▶ Definition 23. Let P be the set of all routing paths, and let P ′ ⊆ P be a subset of the set
of all routing paths. We define, for all P ∈ P, the potential

ΦP′(P ) = |{v ∈ V (P ) : v ̸∈ V (P ′) for all paths P ′ ∈ P ′}|.

If it is clear from the context, we omit the subscript and write Φ(P ).

The ith routing path in the order is then the one which maximizes ΦP(i−1) , where P(i−1) is
the set of the first i− 1 routing paths in the order (that is, the ones that have already been
processed).

The following is an observation that we will make use of later; it says that the potential
of a path P is weakly decreasing throughout the construction process, which can be seen by
noting that if P is processed then it has 0 potential and, otherwise, its vertices that are not
contained in already processed paths can only drop as more and more paths are processed.

▶ Observation 24. ΦP(i) is weakly decreasing in i.

Processing a Path

The uncovered pieces of an unprocessed path P depend on the the history of the algorithm
up to the point where P is processed. These are the maximal subpaths of P for which no
vertex is part of an already processed path.
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▶ Definition 25 (Uncovered pieces of a shortest path). Let P ′ be the set of paths processed
over so far. The uncovered pieces of P , given P ′, are then the maximal connected components
of {v ∈ V (P ) : v ̸∈ V (P ′) for all paths P ′ ∈ P ′}.

A path P is processed by running Path-Hopset on each of its uncovered pieces.

Putting Things Together

The algorithm producing an Õ(
√

n, 0)-hopset with ∥>v∥∞ = O(log n) is then described by
Greedy-Hopset which selects the path that maximizes the potential Φ and processes it as
above, repeating until every path is processed.

Greedy-Hopset
Input: A graph G = (V, E, w) with a consistent set of routing paths P.
1. P ′ ← ∅, H ← ∅
2. While |P ′| <

(
n
2
)

a. Select the next routing path P ∗ ← arg max
P ∈P\P′

ΦP′(P ), breaking ties arbitrarily

b. H ← H ∪Path-Hopset(p) for all uncovered pieces p of P ∗

c. P ′ ← P ′ ∪ {P ∗}
3. Return H

One can quickly observe that Greedy-Hopset produces a low-sensitivity shortcut/hop-
set.

▶ Observation 26. The hopset produced by Greedy-Hopset has ∥>v∥∞ = O(log n).

Proof. Let v be an arbitrary vertex. Its sensitivity is only ever increased in one iteration of
Greedy-Hopset, namely the first time a path P is chosen such that v ∈ V (P ). We know
from Observation 20 that the contribution to >v(v) in one iteration is bounded by O(log n),
completing the proof. ◀

Before we turn to the remaining claim that Greedy-Hopset is an Õ(
√

n, 0)-hopset,
we need a couple of definitions. Henceforth, let the paths be processed in the order
P1, P2, . . . , PO(n2). First we define the shadows and penumbras cast onto Pi. Shadows
are, loosely speaking, complementary to the uncovered pieces of Pi when it is processed; they
serve two main purposes: (i) to bound the number of uncovered pieces when Pi is processed,
and (ii) as shortcuts that can be used to traverse the covered pieces of Pi.

▶ Definition 27 (Shadows, Penumbras). For any j < i, the shadows cast by Pj onto Pi are
the segments of Pj that coincide with Pi after removing all shadows cast before Pj onto Pi.
Formally, they are the maximal subpaths of

P
(j)
i = {v ∈ Pi | v ∈ Pj and v ̸∈ Pk for k < j},

defined for all j < i.
Let S be a shadow cast onto Pi. We call the edges in E(S, Pi \ S) the penumbras of S

cast onto Pi, where E(S, Pi \ S) denotes the edges with one endpoint in S and the other in
Pi \ S.

Observe that a single path Pj may cast Ω(j) shadows onto Pi. Nevertheless, if Pi has
many shadows cast onto it, there must be almost as many paths which cast shadows onto Pi.
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▶ Observation 28. Suppose after iterating P1 through to Pt, there are k shadows cast onto
Pi for i > t. Then, at least (k − 1)/2 distinct paths among P1 through to Pt cast at least one
shadow onto Pi.

Proof. First, note that since there are k shadows cast onto Pi, there are at least k − 1 edges
in Pi which are penumbras. While the path Pj may cast many penumbras onto Pi for j < i,
by the consistency of routing paths Pj casts at most 2 penumbra onto Pi that have not
already been cast before Pj ; these edges are namely the ones incident to boundary of the
intersection between Pj and Pi (see Figure 2). We conclude that there are at least (k − 1)/2
distinct paths among P1 through to Pt that cast at least one shadow onto Pi. ◀

Pi

Pj

Pj′ , j
′ < j

SP P ′

Figure 2 The penumbra P of S (a shadow cast by Pj onto Pi) is new, but the penumbra P ′ of S

is also the penumbra of a shadow cast by Pj′ and is thus not new.

Suppose a routing path P from s to t has no more than k shadows cast onto it. Then
the G ∪ Greedy-Hopset(G) hop-length from s to t is at most Õ(k); each shadow has
shortcut-distance at most O(log n) by an application of Observation 20 to the time the
shadow was first cast, and the remaining parts of P , of which there are O(k) of them, each
have shortcut-distance at most O(log n) by another application of Observation 20 at the
time P is processed. Motivated by this, we now show that every routing path has at most
O(
√

n) shadows cast onto it and every shadow on P has hop-length O(log n).

▶ Lemma 29. Pi has O(
√

n) shadows cast onto it, for all i.

Proof. Suppose, for a contradiction, that there is a routing path Pi which has at least 4
√

n

shadows cast onto it. We aim to show that there are many “highly disjoint” paths that cast
at least one shadow onto Pi, which will lead to a contradiction since too many such paths
imply G has more than n vertices.

Towards this, let Pt for t < i be the first path processed after which Φ(Pi) <
√

n. Such a t

must exist since, otherwise, we can invoke the monotonicity of Φ, which is weakly decreasing
(see Observation 24), and Observation 28, which says that there must be at least (4

√
n− 1)/2

distinct paths casting shadows onto Pi, to show that G has
√

n · (4
√

n− 1)/2 > n vertices
which is a contradiction.

After Pt is processed, there can be at most
√

n more shadows cast onto Pi since Φ(Pi) <
√

n

and each shadow cast onto Pi reduces Φ(Pi) by at least 1. There are therefore at least 3
√

n

shadows cast onto Pi by paths processed before Pt (inclusive). Then, we can repeat the same
argument as before: by Observation 24 and Observation 28 G has

√
n · (3

√
n − 1)/2 > n

vertices, leading to a contradiction. ◀

ITCS 2025



13:16 Low Sensitivity Hopsets

▶ Observation 30. Let P be a routing path, and let S be any shadow with endpoints s, t cast
onto P . Then the G∪Greedy-Hopset(G) hop-length from s to t (using edges contained in
S or whose span is contained in S)6 is bounded by O(log n).

Proof. Let Q be the routing path casting S onto P . The claim goes through since at the
time Q is processed, S is contained in an uncovered piece of Q; Greedy-Hopset makes a
call to Path-Hopset on the uncovered piece of Q containing S when Q is being processed,
finishing things up by Observation 20. ◀

4.2 An Upper Bound for Undirected Exact Hopsets
We are able to get upper bounds for exact hopsets on undirected graphs and DAGs immediately
using Greedy-Hopset.

▶ Theorem 3 (Undirected Exact Hopset Upper Bound). There exists an algorithm producing
an (O(

√
n log n), 0)-hopset with ∥>v∥∞ = O(log n) over undirected and directed acyclic graphs.

Proof. We show the theorem for Greedy-Hopset. This follows from combining Lemma 29
and Observation 20, and also Observation 30. To spell things out, let G be an undirected
or directed acyclic graph. Any routing path in G has O(

√
n) shadows, each shadow can be

crossed within O(log n) hops (in the correct direction since G is undirected or a DAG), and
the uncovered pieces of P at the time it is being processed (of which there are O(

√
n) many)

can be crossed within O(log n) hops since Greedy-Hopset makes a call to Path-Hopset
on each of these pieces.

The sensitivity claim follows directly from Observation 26. ◀

We leave our upper bound for directed exact hopsets, proving Theorem 5, to the full
version [4] of the paper.

5 Lower Bounds: Sensitivity-Diameter Tradeoffs

In this section we show unconditional lower bounds for how low both the sensitivity and
diameter of a construction can simultaneously be. Namely, we show Theorems 4 and 6 in
Section 5.1 and leave the proof of Theorem 8 to the full version [4] of the paper.

5.1 Tradeoffs via Perfect Paths
Our lower bounds for exact hopsets and shortcut sets go through layered graphs endowed
with a set of so-called perfect paths.

▶ Definition 31 (Perfect Paths, Definition 8 in [9]). Let G = (V1 ⊔ V2 ⊔ . . . ⊔ Vℓ, E) be a
layered graph. A set of paths Π is perfect if each π ∈ Π is the unique shortest path between
its endpoints, each π starts in V1 and ends in Vℓ with exactly one node in each layer, and
each e ∈ E is in exactly one π ∈ Π.

Layered graphs with perfect paths have been used to prove lower bounds for traditional
shortcut/hopsets [17,30,32,37], and here we repurpose these constructions, with some changes,
for our lower bounds. The “engine” of this section is Theorem 32 below, for which we first
give some context before proving.

6 This is an important constraint, since we wish for this claim to apply to (β, 0)-hopsets
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▶ Theorem 32. If there exists an ℓ-layered graph G with n nodes in each layer, and a set of
perfect paths Π, then there exists a 2ℓ-layered graph G′ with n nodes in each layer such that
any ℓ-shortcut set or (ℓ, 0)-hopset H on G′ must have ∥>e∥∞ ≥ |Π|

2n .

Simplifying Assumptions

First, observe that if G is unweighted and we are concerned with directed ℓ-shortcut sets,
then for any s that reaches t, the length of any st-path is completely determined by the
layers they belong to; any shortcut set on G is thus also a hopset on G (where all edges of G

are given weight 1). It is therefore sufficient to show the theorem for (ℓ, 0)-hopsets.

Definition of the graph G′

We can show a lower bound for vertex sensitivity using G from the hypothesis of Theorem 32
directly (in fact, the proof is simpler). However, to get a lower bound for edge sensitivity, a
little more care needs to be taken: we add a 0 weight edge in the “middle” of each vertex of
G, which gives us G′. We now describe G′ more formally.

G′ is a standard transformation of G comprising of (i) vertices vin, vout for all v ∈ V (G);
(ii) 0 weight edges (vin, vout) for all v ∈ V (G); (iii) edges (uout, vin) for all (u, v) ∈ E(G),
with the same weight. The proof will only look at the set of paths Π′ in G′ which are “lifted”
from Π (dually, which project down back to Π), formally defined as follows:

Π′ =
{

(vin
1 , vout

1 , vin
2 , vout

2 , . . . , vin
ℓ , vout

ℓ ) : (v1, v2, . . . , vℓ) ∈ Π
}

.

Observe that every path π′ ∈ Π′ is the unique shortest path between its endpoints (which
starts in the first layer and ends in layer 2ℓ), a property inherited from Π being a set of
perfect paths. From this, notice that there is no choice in selecting the routing path from s

to t for any s, t ∈ π′ for all π′ ∈ Π′; any such routing path must be the subpath of π′ from s

to t since π′ is the unique shortest path between its endpoints, and so the span of hopset
edges (s, t) are fixed. Moreover, each edge of the form (uout, vin) is in exactly one π′ ∈ Π′

since Π is perfect. Finally, note that |Π′| = |Π|. We are now ready to state the proof.

Proof of Theorem 32. Let G′ and Π′ be defined as above, and let H be any (ℓ, 0)-hopset
for G′. Let H ′ ⊆ H be a minimal set of edges which ensures that there are ℓ hop-length
shortest paths in G′ ∪ H ′ between the endpoints of π′ for all π′ ∈ Π′. Observe that
∥>eG′,H∥∞ ≥ ∥>eG′,H′∥∞ since H ′ ⊆ H and so it suffices to lower bound the latter which we
now write without subscripts.

Let T be the set of all edges of the form (vin, vout) and 1T be its indicator vector; note
for later that |T | = ∥1T ∥1 = nℓ. We will lower bound the total sensitivity of edges in T and
use an averaging argument to get a bound on ∥>e∥∞. More specifically, we will show

∥>e∥∞ ≥ 1T · >e/∥1T ∥1 ≥ x/2

where ∥>e∥∞ ≥ >e ·1T /∥1T ∥1 comes from a simple averaging argument7. To this end, consider
the process where we add the edges of H ′ =

{
e1, e2, . . . , e|H′|

}
to G′ one by one so that

H ′
0 = {} and H ′

i = H ′
i−1 ∪ {ei}, and define the potential

Φi =
∑

π′∈Π′

∣∣∣E(PG′∪H′
i
(π′))

∣∣∣
where PG′∪H′

i
(π′) denotes a shortest path in G′ ∪H ′

i with the smallest hop-length between
the endpoints of π′. Φi is then the sum of said hop-lengths running over π′ ∈ Π′ at stage i.

7 To be overly indulgent, from an application of Hölder’s inequality.
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Observe that the initial value Φ0 is 2|Π|ℓ (since there are |Π| = |Π′| paths in Π′, each with
hop-length exactly 2ℓ), and the final value Φ|H′| is at most |Π|ℓ (since H ′ is an (ℓ, 0)-hopset).
Moreover, at most one summand of Φi differs from the corresponding summand of Φi−1 for
the following reason: span(ei) is contained entirely and only in one π′ ∈ Π′ by the minimality
of H ′ and uniqueness of π′. For the same reason, span(ei) alternates between edges not in
T and edges in T and so twice the contribution of ei to 1T · >e is at least the decrease in
potential Φi−1 − Φi. That is,

Φi + 21T · >eG′,H′
i

> Φi−1 + 21T · >eG′,H′
i−1

.

Using our observation about the initial and final values of Φ, we conclude that

|Π|ℓ + 21T · >e ≥ Φ|H′| + 21T · >e > Φ0 + 21T · >eG′,H′
0

= 2|Π|ℓ

=⇒ 1T · >e ≥ |Π|ℓ2

=⇒ 1T · >e
∥1T ∥1

≥ |Π|2n
. (∥1T ∥1 = nℓ)

We conclude from the last line that ∥>e∥∞ ≥ |Π|
2n . ◀

Finally, we can invoke Theorem 32 with known constructions to get unconditional lower
bounds on the sensitivity-diameter tradeoff.

▶ Proposition 33 (Theorem 5 of [9], earlier versions of which appear in [17, 42]). For any
integers n, ℓ ≤ n, and x ≤ n/ℓ, there is an ℓ-layered weighted graph G with n nodes in each
layer and a set of perfect paths Π such that each node is in exactly x paths in Π.

▶ Theorem 4 (Undirected Exact Hopset Lower Bound). Any construction of (β, 0)-hopsets H

must have ∥>e∥∞ · β2 = Ω(n) for a graph G on n vertices.

Proof. For large enough N , we invoke Proposition 33, setting
n← N

2β

ℓ← 2β

x← N
4β2 ;

call this graph GN . Note that |Π|/(2n) = x/2. We then pass each GN into Theorem 32 to
get

∥>e∥∞ ≥
x

2 = N

8β2 =⇒ ∥>e∥∞ · β2 ≥ N

8 ,

which completes the proof. ◀

Observe that Theorem 4 shows that Theorem 3 is tight up to polylogarithmic factors,
but it remains open whether we can explicitly trade between the sensitivity and diameter.
For example, can we find a (Õ(n1/2−c), 0)-hopset with ∥>v∥∞ = Õ(n2c) for any c? We close
the discussion on exact hopsets with a remark on a connection between the problem of
packing perfect paths in layered graphs and a possible threshold effect in the upper bounds
for sensitivity-diameter tradeoffs.
▶ Remark 34. Observe that Theorem 32 connects the existence of layered graphs with many
perfect paths to sensitivity-diameter tradeoffs, and this concretely manifests as a ∥>e∥∞β2 =
Ω(N) bound by using the construction of Proposition 33. What are the ramifications of
being able to pack even more perfect paths into an ℓ-layered graph? Let us explore one
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particular hypothetical scenario. Suppose it is possible to pack N perfect paths into
√

N -
layered graphs. Then, we are able to show (in exactly the same way as Theorem 4, but with
different parameters) an ∥>e∥∞β = Ω(N) bound for β ≤

√
N/2. It is conceivable that such a

construction may exist8. If such a packing does indeed exist for infinitely many values of
N , this would rule out the possibility of achieving a smooth sensitivity-diameter tradeoff on
the upper bound side. By Theorem 3, Greedy-Hopset produces a (Õ(

√
n), 0)-hopset with

O(log n) sensitivity, and any polynomial improvement to β would raise the sensitivity very
abruptly from O(log n) to Ω(

√
n). That is to say, a (Õ(n1/2−c), 0)-hopset construction could

hope for no better than ∥>v∥∞ = Ω̃(n1/2+c) if we can pack N perfect paths into
√

N -layered
graphs. On the flip side, this means that achieving a tradeoff like a (Õ(n1/2−c), 0)-hopset
construction with ∥>v∥∞ less than Õ(n1/2+c) by a polynomial factor, for some constant c > 0,
would rule out the existence of

√
N -layered graphs packed with N perfect paths. A similar

line of reasoning also shows that any polynomial improvement to β (keeping ∥>v∥∞ = Õ(
√

n))
over Folklore-Hopset will rule out the existence of

√
N -layered graphs packed with N

perfect paths. The existence of layered graphs packed with as many perfect paths as possible
is an open problem related to many lower bounds in the hopset/distance preservers/etc
literature [11, 17]; particularly, we would get more streamlined lower bounds for hopsets
matching the result of [11].

We next show a lower bound for reachability in directed graphs.

▶ Proposition 35 (Theorem 6 of [9], earlier versions of which appear in [1,3,5,17,32]). For
any integers n, d ≥ 2, ℓ ≤ n1/d, and

x = O
(

n
d−1
d+1 ℓ−d d−1

d+1

)
,

there is an ℓ-layered unweighted graph G with n nodes in each layer and a set of perfect paths
Π such that each node is in exactly x paths in Π.

▶ Theorem 6 (Directed Shortcut Set Lower Bound). Any construction of β-shortcut sets H

must have ∥>e∥∞ · β = Ω(n1/3) for a directed graph G on n vertices.

Proof. For large enough N , we invoke Proposition 35, setting
n← N

2β

d← 2
ℓ← 2β

x← Θ( N1/3

β );
call this graph GN . Note that |Π|/(2n) = x/2. We then pass GN into Theorem 32 to get

∥>e∥∞ ≥
x

2 = Θ(N1/3

β
) =⇒ ∥>e∥∞ · β ≥ Ω(N1/3),

which completes the proof. ◀

Curiously, none of our upper bounds and lower bounds for directed shortcut/hopsets
match each other. New ideas are probably needed to better understand sensitivity-diameter
tradeoffs (for both shortcut sets and hopsets) in the directed setting.

To see our lower bounds for approximate hopsets, proving Theorem 8, see the full
version [4] of the paper.

8 And such a construction does not contradict Theorem 3 since, there, β ≥
√

N log n >
√

N/2.
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6 Open Problems

In this section we collect a list of problems left open by our results. First and foremost, the
picture pertaining to directed graphs is least clear.

The bounds for shortcut sets (see Theorem 5 and Theorem 6) on directed graphs are not
tight. Can we provide tight results for any specific value of sensitivity (say O(log n)) if
not for all values?
The best known upper bound for directed exact hopsets is based on the folklore algorithm
for traditional hopsets. It had been a long standing open problem whether this was the
best we could do, and it is only within the last year that the folklore algorithm has been
shown to be optimal [11]. Can similarly fresh ideas close the gap between the folklore
algorithm and lower bounds here?
We know essentially nothing insightful about the situation for directed approximate
hopsets, besides the fact that our shortcut set lower bound in Theorem 6 applies (since a
directed approximate hopset is a directed shortcut set). Find a non-trivial upper bound.

While more is known for undirected graphs, there are certainly gaps left to fill.
The upper bound given by Greedy-Hopset only works for a specific sensitivity regime
(i.e. it completes the picture for only one point on the tradeoff curve). Find a non-trivial
algorithm, that outputs hopsets close to the curve of Theorem 4, where the sensitivity
is tunable to values larger than polylogarithmic. See Remark 34 for more context
surrounding this problem.
Our lower bounds for undirected approximate hopsets in Theorem 8 are not tight; they
do not address the regime when ε is a constant well. For a constant ε > 0, do there
exist (β, ε)-hopsets with β and ∥>v∥∞ simultaneously polylogarithmic, or must one of the
quantities necessarily be superpolylogarithmic?

Finally, we believe that hopset sensitivity is a natural notion which should have concrete
algorithmic applications beyond differential privacy. Where else can low-sensitivity hopsets
can be used as a primitive?
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