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Abstract
The Cohn–Umans (FOCS ’03) group-theoretic framework for matrix multiplication produces fast
matrix multiplication algorithms from three subsets of a finite group G satisfying a simple com-
binatorial condition (the Triple Product Property). The complexity of such an algorithm then
depends on the representation theory of G. In this paper we extend the group-theoretic framework
to the setting of infinite groups. In particular, this allows us to obtain constructions in Lie groups,
with favorable parameters, that are provably impossible in finite groups of Lie type (Blasiak, Cohn,
Grochow, Pratt, and Umans, ITCS ’23). Previously the Lie group setting was investigated purely as
an analogue of the finite group case; a key contribution in this paper is a fully developed framework
for obtaining bona fide matrix multiplication algorithms directly from Lie group constructions.

As part of this framework, we introduce “separating functions” as a necessary new design
component, and show that when the underlying group is G = GLn, these functions are polynomials
with their degree being the key parameter. In particular, we show that a construction with “half-
dimensional” subgroups and optimal degree would imply ω = 2. We then build up machinery
that reduces the problem of constructing optimal-degree separating polynomials to the problem of
constructing a single polynomial (and a corresponding set of group elements) in a ring of invariant
polynomials determined by two out of the three subgroups that satisfy the Triple Product Property.
This machinery combines border rank with the Lie algebras associated with the Lie subgroups in a
critical way.

We give several constructions illustrating the main components of the new framework, culminating
in a construction in a special unitary group that achieves separating polynomials of optimal degree,
meeting one of the key challenges. The subgroups in this construction have dimension approaching
half the ambient dimension, but (just barely) too slowly. We argue that features of the classical
Lie groups make it unlikely that constructions in these particular groups could produce nontrivial
bounds on ω unless they prove ω = 2. One way to get ω = 2 via our new framework would be to lift
our existing construction from the special unitary group to GLn, and improve the dimension of the
subgroups from dim G

2 − Θ(n) to dim G
2 − o(n).
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1 Introduction

Matrix multiplication is a fundamental algebraic operation with myriad algorithmic ap-
plications, and as such, determining its complexity is a central question in computational
complexity. Since Strassen’s 1969 discovery [26] that one could beat the straightforward
O(n3) method with one that used only O(nlog2 7) = O(n2.81...) arithmetic operations, there
has been a long line of work improving upper bounds on the complexity of matrix multi-
plication. It is standard to define the exponent ω of matrix multiplication as the smallest
number such that n × n matrices can be multiplied using nω+o(1) arithmetic operations, and
a somewhat surprising folklore conjecture is that ω = 2, which would mean matrices can be
multiplied asymptotically almost as quickly as they can be added. The current best bound
is that ω ≤ 2.371339 [29], and proving or disproving that ω = 2 remains a longstanding open
question.

In [14], an approach towards this problem was proposed based on embedding matrix
multiplication into the multiplication operation in the group algebra of a finite group. Group
algebra multiplication then reduces to the multiplication of block-diagonal matrices, where
the sizes of these blocks are determined by the (typically well-understood) representation
theory of the group. Ultimately, one hopes to reduce a single matrix multiplication to the
multiplication of (many) smaller matrices. Within this very general framework, certain
families of groups have subsequently been shown to have structural properties that prevent
a reduction that would yield ω = 2 using this framework [7, 8, 9]. Other groups remain
potentially viable, and the overall approach remains one of the two main lines of research
towards improving upper bounds on ω, the other being the traditional “direct” tensor methods
(e. g., [24, 27, 15, 28, 16, 21, 2, 18]), which also seem to be running up against several barrier
results [3, 12, 1, 11].

In more detail, the reduction to group algebra multiplication is possible when one identifies
a finite group G and sets X, Y, Z ⊆ G satisfying the triple product property (TPP): for any
x, x′ ∈ X, y, y′ ∈ Y , and z, z′ ∈ Z,

xx′−1yy′−1zz′−1 = 1G ⇐⇒ x = x′, y = y′, z = z′.

If X, Y, Z ⊆ G satisfy the TPP, then we can multiply two complex matrices A and B, of
sizes |X| × |Y | and |Y | × |Z|, resp., as follows. Index A with X × Y , with A[x, y] denoting
the x, y entry of A, and index B with Y × Z. Then we define the elements

A =
∑
x,y

A[x, y](xy−1) and B =
∑
y,z

B[y, z](yz−1)

of the group ring C[G] and observe that the TPP implies that

A · B =
∑
x,z

(AB)[x, z](xz−1) + E, (1.1)
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where E ∈ C[G] is supported on XY −1Y Z−1 \ XZ−1. It is a standard fact of representation
theory that, as algebras, C[G] ∼=

⊕
i Mdi

(C), where Mdi
denotes the ring of di × di matrices,

the sum is over the irreducible representations of G, and the di are the dimensions of those
representations. This leads to the inequality:

▶ Theorem 1.1 ([14, Theorem 4.1]). If X, Y, Z satisfy the TPP in a finite group G, then

(|X| |Y | |Z|)ω/3 ≤
∑

i

dω
i ,

where di are the dimensions of the irreducible representations of G.

The upper bound on ω from Theorem 1.1 depends on a trade-off between the size of
the matrix multiplication that can be embedded into C[G] (reflected in |X|, |Y |, |Z|) and
the dimensions of the irreducible representations of G. In abelian groups, the latter are
optimal: all di are 1. However, already in [14] it was observed that abelian groups cannot do
better than the trivial construction X = G and Y = Z = {1}, and thus cannot yield any
bound better than the trivial bound ω ≤ 3. It was shown in [13] that non-abelian groups
can achieve highly nontrivial bounds on ω (including many of the state-of-the-art bounds
over the last decade), but obtaining such bounds requires a careful interplay between the
size of the construction and the representation dimensions. Several families of groups have
been shown not to admit constructions for which Theorem 1.1 would give ω = 2, although
many families of groups remain possibilities.

Because of the difficulty of finding such constructions, it is useful to look for other potential
sources of examples of groups and group-like objects that could yield such constructions.
Cohn and Umans [14] gave a construction of a TPP triple in the infinite group GLn(R),
despite having, at the time, no way of getting a (finite) matrix multiplication algorithm from
such a construction.

One natural approach (that ends up not working) is to take a construction in a Lie
group and try to transfer it to a finite group of Lie type, such as taking a construction in
GLn(R) and attempting an analogous construction in GLn(Fq). Indeed, a construction in
GLn(R) was given in [14] using the lower unitriangular, orthogonal, and upper unitriangular
subgroups; this inspired a nontrivial TPP in the finite group SL2(Fq), where the orthogonal

group is replaced by matrices of the form
(

1 + a a

−a 1 − a

)
. However, in that example, we

have |X| = |Y | = |Z| = q, but SL2(Fq) has irreducible representations of dimension q + 1,
and reducing a q × q matrix multiplication to a (q + 1) × (q + 1) matrix multiplication doesn’t
give any bound on ω. More generally, in [9] it was shown that one cannot achieve ω = 2 via
Theorem 1.1 in any finite groups of Lie type, ruling out any such construction in GLn(Fq) or
similar groups (though possibilities remain open to use related groups such as direct products
of finite groups of Lie type). Thus, the Lie-type constructions remained only an analogy.

1.1 First main contribution: algorithms from infinite groups
In this paper, one of our main innovations is to extend the group-theoretic framework
[14] to allow finite matrix multiplication algorithms from constructions in arbitrary – even
infinite – groups. To achieve this, rather than using the entire group algebra C[G], which is
infinite-dimensional when G is infinite, we focus only on sets of functions G → C that (1) are
linearly computable from a finite set of finite-dimensional representations of G (even when G

is infinite) and (2) “separate” the elements in the group algebra that are in the linear span
of XY −1Y Z−1 (the support of (1.1)), in a sense made precise below (Definition 2.1). Our
first main theorem in this generalized framework is then:

ITCS 2025
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▶ Theorem A (Theorem 2.2). Let G be a group (not necessarily finite), with finite subsets
X, Y, Z satisfying the TPP. If Rsep is a set of finite-dimensional complex representations of
G whose matrix entries separate XY −1Y Z−1 (see Definition 2.1), then

(|X| |Y | |Z|)ω/3 ≤
∑

ρ∈Rsep

(dim ρ)ω.

It is even conceivable that this result could be used to improve the bounds from known
constructions of TPPs in finite groups, by using only a subset of the group’s irreducible
representations rather than all of them.

But perhaps the main payoff of Theorem A is that it allows, for the first time, the
derivation of matrix multiplication algorithms from infinite groups. This opens a huge variety
of potential constructions to explore, even beyond those in Lie groups that will be the focus
of the rest of the paper.

1.2 Second main contribution: quantitative targets for proving ω = 2 in
classical Lie groups

Another main contribution in this paper is to develop a series of tools and techniques, and to
identify key targets to aim for, for getting good constructions using Theorem A in Lie groups
such as GLn(R), GLn(C), or the unitary group Un. Lie groups are defined as groups that
are also smooth manifolds, and where the group multiplication and inverse are continuous in
terms of the manifold topology. In fact, all of our constructions in this paper will be in one
of these three groups, though much of the machinery we develop works for general matrix
Lie groups, and it would be interesting to explore constructions in other Lie groups such as
symplectic groups, orthogonal groups, exceptional simple Lie groups, or nilpotent or solvable
Lie groups.

Before coming to the constructions, we highlight how the framework of Theorem A
allows us to take the analogy from [14, 9], and turn it into a formal implication whose
conclusion is a bound on ω. To briefly recall the analogy: elementary arguments show that
any TPP triple in a finite group must satisfy |X| |Y | |Z| ≤ |G|3/2, called the packing bound
because of the nature of the proof. Because

∑
d2

i = |G| in finite groups, it follows that any
sequence of constructions that achieves ω = 2 via Theorem 1.1 (not our new Theorem A)
must asymptotically meet the packing bound, in the sense that |X| |Y | |Z| ≥ |G|3/2−o(1).
The analogy studied in [14, 9] is to think of Lie subgroups of dimension d as “roughly
corresponding” to finite subsets of size qd. Under this analogy, if Xn, Yn, Zn are families of
Lie subgroups of Lie groups Gn that satisfy the TPP, then meeting the packing bound is
analogous to the condition

dim Xn + dim Yn + dim Zn ≥ (3/2 − on(1)) dim Gn. (1.2)

A simple construction in the original Cohn–Umans paper [14, Theorem 6.1] shows this is
indeed possible (with additional such constructions developed in [9]), and this construction
forms the basis for a running example we will use throughout this paper to illustrate the
development of our new framework.

Running example in GLn(R)

▶ Theorem 1.2 ([14, Theorem 6.1]). Let G = GLn(R) and let X be the subgroup of
lower unitriangular matrices, Y = On(R) (the orthogonal matrices), and Z be the
subgroup of upper unitriangular matrices. Then the triple X, Y, Z satisfies the TPP.

The dimension of G is n2, and the dimension of each of the three subgroups is
n2/2 − n/2, so this construction meets the packing bound in the sense of (1.2) [9].
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But there still remains the issue of how to use such a construction, even in concert
with Theorem A, to get upper bounds on ω. And for this we require a deeper dive into
representation theory, which will lead us to the key quantitative goals for these constructions.

In the case of the groups GLn(R), GLn(C), and Un, rather than focusing on choosing
arbitrary collections of representations to play the role of Rsep in Theorem A, we can
exploit a relationship between the representations of these groups and the set of all degree-d
polynomials. Namely, the irreducible representations of these groups are indexed by integer
partitions into at most n parts, and the matrix entries of the representations corresponding to
partitions of d, taken all together, span precisely the set of all degree-d polynomial functions
on the group. Careful quantitative estimates then lead us to key targets for the degree of
functions that separate out the elements of XY −1Y Z−1 compared to the size of the finite
TPP construction:

▶ Theorem B (Corollary 2.8, summarized). If Xq,n, Yq,n, Zq,n ⊆ GLn(C) (or Un) satisfy
the TPP and have sizes at least qn2/2−on(n), and there are separating polynomials for
(Xq,n, Yq,n, Zq,n) of degree at most q1+oq(1), then Theorem A implies ω = 2.

Note how our new framework (Theorem A) has allowed us to take the analogy above
whereby d-dimensional subgroups correspond to finite sets of size qd, and turn it into a
theorem that actually implies a bound on ω out of any such construction, rather than
merely being an analogy. However, in this setup, as dim G = n2, we see that the bound
we need on the size of the TPP triple is not |X| |Y | |Z| ≥ q(3/2−on(1)) dim G as suggested in
the previous Lie analogy of the packing bound [14, 9], but is slightly tighter, of the form
q(3/2−on(1/n)) dim G, and the example in Theorem 1.2 above falls short of this latter bound.

Our challenge is thus to find TPP constructions in GLn or Un that meet the bounds of
Theorem B: three subsets in GLn or Un satisfying the TPP, of size at least qn2/2−on(n), and
admitting separating polynomials of degree at most q1+oq(1).

1.3 Third main contribution: optimal degree using border rank, Lie
algebras, and invariant theory

Our third main contribution is to show how to very nearly meet the conditions of Theorem B,
using border rank, Lie algebras, and invariant theory. We also believe these techniques will
have further uses. Our main theorem coming out of these constructions is:

▶ Theorem C (Summary of Theorem 3.1). For any n and q, there are three subsets
Xq, Yq, Zq ⊆ Un, all of size at least qn2/4−n/4, which satisfy the TPP and admit border-
separating polynomials of degree O(q).

Note that this falls short of the conditions needed for Theorem B in only two ways: we
get a construction of size q(1/2) dim G−Θ(n) where G = Un, whereas Theorem B would require
both that the construction be in GLn, and that it approach half the dimension just slightly
faster, with sets of size q(1/2) dim GLn−on(n), rather than our current q(1/2) dim Un−Θ(n). In
addition to the sizes being very nearly right, the degree bound does satisfy the degree bound
required by Theorem B (even slightly better than is needed: we get O(q) whereas Theorem B
only needs degree at most q1+oq(q)).

While in principle all one needs here is a sequence of finite sets Xq, Yq, Zq for infinitely
many q, an appealing way to get such a sequence is to find Lie subgroups or submanifolds
X, Y, Z ⊆ GLn(C) – as in Theorem 1.2 – and then let Xq be some nicely constructed finite
subset of X, etc. For example, when X is the subgroup of lower unitriangular matrices, we
can take Xq to be the the lower unitriangular matrices with entries in [0, q] ∩ Z. And indeed,
this is how the construction of Theorem C proceeds.

ITCS 2025
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To get our constructions, we will combine three additional ingredients on top of Theo-
rems A and B: Lie algebras, border rank, and invariant theory. Here we give a brief overview
of these ingredients and how they mix together.

Lie algebras. In Sophus Lie’s original development of Lie groups in the late 1800s, he
realized that many questions about these continuous groups can be reduced to simpler
questions of linear algebra, by focusing on the corresponding Lie algebras, which are, in
particular, vector spaces, rather than more complicated manifolds. The Lie algebra Lie(G)
associated to a Lie group G is “just” the tangent space to G (remember G is also a manifold)
at the identity element. The Lie algebra is then a vector space. While the group structure of
G induces an algebraic structure on Lie(G), in this paper we will have no need of its algebraic
structure. We will only need a few basic facts (see, e. g., [22, 4, 19]):

The Lie algebra of GLn(C) is Mn(C), the space of all n × n complex matrices.
The Lie algebra of the orthogonal group On(R) consists precisely of all skew-symmetric
real matrices.
The Lie algebra of the unitary group consists of the skew-Hermitian matrices.
If G is a matrix Lie group – a Lie group that is a subgroup and submanifold of GLn(C)
– then its Lie algebra Lie(G) is a linear subspace of matrices. And if A ∈ Lie(G), then
for all sufficiently small ε > 0, exp(εA) (using the ordinary power series for the matrix
exponential) is in G.

As with many problems on Lie groups, we would like to take advantage of the simpler,
linear-algebraic nature of Lie algebras in our constructions.

Border rank. It turns out that the key tool for using Lie algebras in our setting is the concept
of border rank. Although known to Terracini 100 years ago, border rank was rediscovered in
the context of matrix multiplication by Bini et al. [5, 6]. Bini had developed computer code
to search for algebraic algorithms for matrix multiplication, and some of the coefficients in
his numerical calculations kept going off to infinity. At first he thought this was an error in
his code, but in fact it reflects the fundamental phenomenon of border rank: for each fixed
size n0, it is possible that there is a sequence of algorithms, none of which correctly multiply
n0 × n0 matrices, but which, in the limit, in fact do so. If the algorithms in the sequence
use only r non-constant multiplications, we say that matrix multiplication has border rank
at most r. The border rank is always at most the ordinary rank, and it turns out that
the exponent of matrix multiplication is the same whether measured with ordinary rank or
border rank. Border rank has played an important role in essentially all newly developed
matrix multiplication algorithm since then.

A bit more formally, a “border algorithm” for matrix multiplication can be viewed as a
single bilinear algorithm that has coefficients that are Laurent series in ε – that is, power
series that allow finitely many negative powers of ε as well – and such that it computes
matrix multiplication in the limit as ε → 0, that is, it computes a function of the form
(A, B) 7→ AB + O(ε). (Note that, despite the algorithm itself being allowed to contain 1/ε in
its intermediate operations, corresponding to Bini’s coefficients that were going off to infinity,
the function computed at the end should have such negative powers of ε cancel.)

Combining Lie algebras and border rank. It turns out that combining border rank with Lie
algebras is very natural; here we exhibit just two advantages to doing so. If X, Y, Z ⊆ GLn(C)
are Lie subgroups that satisfy the TPP (as in Theorem 1.2), then we can take advantage
of the simple linear-algebraic nature of their Lie algebras to help construct finite subsets of
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X, Y, Z. An example we will return to is that if Y = On(R) is the orthogonal group, it is
a bit tricky to choose qdim On many elements of Y in a principled way directly. But since
Lie(Y ) consists of all the skew-symmetric matrices, we can get a finite subset of Y by simply
considering

Y ′
ε = {exp(εA) : A skew-symmetric with all Aij ∈ [0, q] ∩ Z}

for ε > 0 sufficiently small.
A second advantage can be gotten by not choosing ε as above to be a fixed but small

value, but rather allowing to the ε used in the expression exp(εA) to be the same as the
parameter ε used in the definition of border rank. In this setting, instead of finding a set
of functions that exactly separates XY −1Y Z−1 according to Definition 2.1, we can find
functions that do so only up to O(ε) (Definition 2.5). This both gives us more freedom in
the construction, and combines very naturally with the Lie algebraic construction suggested
above. Namely, when all the elements of X ′, Y ′, Z ′ are of the form exp(εA) for various A in
their Lie algebras, we see that an expression of the form xy−1y′z−1 becomes

exp(εA) exp(−εB) exp(εB′) exp(−εC) = I + ε(A − B + B′ − C) + O(ε2).

Our border-separating polynomials can then directly access A − B + B′ − C by subtracting
off I and dividing by ε; this leaves additional O(ε) terms, but in the border setting that is
still allowed. Thus combining Lie algebras and border rank lets us shift the problem from
finding separating polynomials in the entries of a product of matrices and their inverses
to finding (border-)separating polynomials in the entries of the simpler linear combination
A − B + B′ − C.

However, the linear combination A − B + B′ − C still “mixes” entries from the three
subalgebras, and this causes some difficulty in the the task of designing (border-)separating
polynomials. Our final ingredient is to use invariant theory to simplify this task even further.

1.4 Fourth main contribution: leveraging invariant polynomials
If we restrict our attention to polynomials p(M) that are invariant under left multiplication
by X and right multiplication by Z−1, that is, p(xMz−1) = p(M) for all x ∈ X, z ∈ Z, we
can get direct access to the B′ − B term above. Namely, if p is such an invariant polynomial,
then

p(exp(εA) exp(−εB) exp(εB′) exp(−εC)) = p(exp(−εB) exp(εB′))
= p(I + ε(−B + B′) + O(ε2)),

where the first equality occurs because exp(εA) is in X and exp(εC) is in Z, and p is invariant
under the action of X and Z. We codify this idea into the following key lemma, which is used
in the proof of Theorem C. We state it in a simplified form, which is not correct as stated
but captures the spirit of a special case. See Lemma 2.11 for the full and correct statement.

▶ Lemma D (Oversimplified version of Lemma 2.11). Suppose X, Y, Z are three Lie subgroups
of GLn(C) that satisfy the TPP. If Y ′

ε is a finite set of ε-parametrized families in Y , and there
is a polynomial pε(g) that is invariant under left multiplication by X and right multiplication
by Z, such that

pε(g) =
{

1 + O(ε) if g = I

0 + O(ε) if g ∈ (Y ′
ε )−1Y ′

ε \ {I}

then there are finite subsets X ′
ε, Y ′

ε of ε-parametrized elements of X and Z, of sizes qdim X

(resp., qdim Z) and border-separating polynomials for (X ′
ε, Y ′

ε , Z ′
ε) of degree deg p + O(q).

ITCS 2025
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Thus, once we have a TPP construction of the “right” dimension (e. g., according to
Theorem B), Lemma D implies that instead of finding appropriate finite subsets of X, Y, Z

and a set of separating polynomials, to get ω = 2 all we have to do is find an appropriate
finite subset of Y and a single polynomial p as in the lemma, whose degree is O(q).

When X and Z are well-studied subgroups, the ring of their invariant polynomials is often
well understood, and this represents a significant simplification of the construction problem.
The full detail of Lemma 2.11 is more complicated, but the additional complications in the
statement of the lemma give us even further simplifications of the construction problem,
which we take advantage of in our constructions in the running example and in Section 3.
We also expect the techniques of this lemma to have further uses for additional constructions
in the future.

1.5 Paper outline
In Section 2.1 we give the necessary definitions and proof of Theorem A, and in Section 2.2
we give its border rank version. In Section 2.3 we discuss the needed background on the
representation theory of GLn(C) – much of which we can use in a black-box fashion – and
prove Theorem B. In Section 2.4 we show how to combine invariant theory, border rank, and
Lie algebras to simplify the construction task; the key here is Lemma 2.11. In Section 3 we
use the preceding ideas to give the construction that proves Theorem C. Finally, in Section 4
we conclude with our outlook and several open problems suggested by our framework.

Throughout the development of the framework in Section 2, we continue the example
from Theorem 1.2 as a running example, and we show how each piece of the framework can
be realized in that case.

The full version of the paper contains complete proofs of all claims [10].

2 A group-theoretic framework for infinite groups

In this section we describe the group-theoretic framework for obtaining matrix multiplication
algorithms in infinite groups. The basic framework is in the next subsection, followed by
a border-rank version for the important case of Lie groups. Subsection 2.3 proves some
key bounds on the dimensions of irreducible representations of GLn and Un, which are
the containing groups for our constructions in this paper. Finally subsection 2.4 describes
machinery that reduces the main design task to finding a single separating polynomial in an
invariant ring. These components come together in Section 3, where we give a construction
achieving optimal degree separating polynomials.

2.1 Algorithms from the TPP in infinite groups
Let G be a group – not necessarily finite – with finite subsets X, Y, Z satisfying the TPP.
Then we can embed matrix multiplication into the group algebra C[G] as in the case of finite
groups. Note that C[G], where G may be infinite, consists of formal sums

∑
g∈G αgg, but

now where each such sum has at most finitely many nonzero terms. Multiplication is as in
the finite case.

To multiply a complex matrix A of size |X| × |Y | by a complex matrix B of size |Y | × |Z|,
we follow the approach described in the introduction. Indexing A by X × Y and B by Y × Z,
we define elements

A =
∑

x∈X,y∈Y

A[x, y](xy−1) and B =
∑

y∈Y,z∈Z

B[y, z](yz−1)
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of C[G] and observe that, as in the finite group case, the TPP implies that

A · B =
∑

x∈X,z∈Z

(AB)[x, z](xz−1) + E, (2.1)

where E ∈ C[G] is supported on XY −1Y Z−1 \ XZ−1.
However, as the group algebra is no longer finite-dimensional when G is infinite, it is

not immediately clear that the multiplication in the group algebra expressed in (2.1) can
be carried out by a finite algorithm, even despite the fact that all the sums involved are
themselves finite. One of our key new innovations is to introduce a new viewpoint on
such a construction that will enable us to get a finite bilinear algorithm out of the above
construction.

▶ Definition 2.1. Given subsets X, Y, Z ⊆ G of a group G, a set of separating functions for
(X, Y, Z) is a collection of functions {fx,z : G → C | x ∈ X, z ∈ Z} such that

fx,z(g) =
{

1 if g = xz−1, and
0 if g ∈ XY −1Y Z−1 \ {xz−1}.

Such functions always exist, but for them to be useful in matrix multiplication algorithms
we need them to be in some sense “simple.” To formulate the relevant notion – in which
“simple” will ultimately imply “computable by smaller matrix multiplications” – we recall a
standard definition from representation theory. Given a finite-dimensional representation
ρ : G → GLn(C), a representative function of G associated to ρ (see, e. g., Procesi’s book [23,
§8.2]1) is any function G → C that is in the linear span of the functions {(g 7→ ρ(g)i,j) | i, j ∈
[n]}. Note that if ρ, ρ′ are equivalent representations, they have the same set of representative
functions. If I is a set of representations, we write RepFun(I) for the C-linear span of all
the representative functions of the representations in I.

▶ Theorem 2.2. Let G be a group (not necessarily finite), with finite subsets X, Y, Z satisfying
the TPP. If Rsep is a finite set of finite-dimensional complex representations of G such that
RepFun(Rsep) contains a set of separating functions for (X, Y, Z), then

(|X| |Y | |Z|)ω/3 ≤
∑

ρ∈Rsep

(dim ρ)ω.

In particular, for D =
∑

ρ∈Rsep
(dim ρ)2 and dmax = max{dim ρ : ρ ∈ Rsep},

(|X| |Y | |Z|)ω/3 ≤ D · dω−2
max.

If G is a finite group, we may take Rsep = Irr(G), the set of all irreducible representations
of G, as RepFun(Irr(G)) is the collection of all functions G → C when G is finite. In that
case, we also have D = |G|, recovering the original theorem for finite groups [14, Theorem 4.1]
as a special case of Theorem 2.2.

1 The notion of representative function we use here is fairly standard; if one consults Procesi’s book, one
will see that his book works in the setting where G is a topological group, and requires the representations
involved to be continuous, but the definition we use here works just as well. When G is a Lie group,
as in our constructions later in the paper, the representations we use will in fact be continuous in the
natural manifold topology on G rather than the discrete topology.
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▶ Remark 2.3. In families of groups {Gi} with “rapidly growing” irreducible representation
dimensions, this theorem exhibits an “all-or-nothing” phenomenon, which we explain here.
For the constructions in this paper and other natural constructions in classical Lie groups,
dmax ≥ D1/2−g(i) for some g ∈ o(1) (and this is what we mean by “rapidly growing irreducible
representation dimensions”). If we let V = (|X||Y ||Z|)1/3, it is clear that we must have
V > dmax for the inequality to imply any upper bound on ω. Together with the observation
that dmax approaches D1/2, this means that to prove any upper bound on ω we must have
V ≥ D1/2−f(i) for some f ∈ o(1). The inequality from the theorem then becomes

D(1/2−f(i))ω ≤ V ω ≤ D · dω−2
max ≤ D · D(1/2−g(i))(ω−2).

Taking the base-D logarithm of both sides, we get

ω/2 − f(i)ω ≤ ω/2 − g(i)ω + 2g(i),

which implies ω ≤ 2
(

g(i)
g(i)−f(i)

)
. In constructions the natural thing to do is to ensure f(i)

goes to zero more rapidly than g(i), in which case ω = 2. While it is possible that f(i) could
approach cg(i) for some c > 0 and yield an upper bound on ω strictly between 2 and 3, this
would require detailed knowledge of the lower order terms of dmax and/or very fine control
of the lower order terms of V , which we do not typically have.

Proof. Let X, Y, Z, Rsep be as in the statement, and let {fx,z | x ∈ X, z ∈ Z} be the claimed
set of separating functions contained in RepFun(Rsep). For f : G → C, let f : C[G] → C
denote its unique linear extension to the group ring f(

∑
αgg) :=

∑
αgf(g); as these sums

have only finitely many nonzero terms by definition of the group ring (even when G is
infinite), there is no issue of convergence. Applying fx,z to (2.1) gives

fx,z(A · B) =
∑

x′∈X,z′∈Z

(AB)[x′, z′]fx,z(x′(z′)−1) + fx,z(E) = (AB)[x, z] + 0, (2.2)

for fx,z is zero on all group elements of X(Y )−1Y (Z)−1 other than xz−1, and (2.1) is entirely
supported on X(Y )−1Y (Z)−1. To turn this into a finite algorithm, we will show that we can
essentially do exactly the application of fx,z in (2.2), but working only in the representations
in Rsep rather than working in the full group ring.

For a representation ρ ∈ Rsep, let ρ denote the unique linear extension of ρ to C[G]:
ρ(

∑
αgg) =

∑
αgρ(g), and let ρi,j(g) be the (i, j) entry of the matrix ρ(g), which we

think of as a function ρi,j : G → C. Since fx,z is in RepFun(Rsep) by assumption, we can
write fx,z as a C-linear combination of the functions {ρi,j | ρ ∈ Rsep, i, j ∈ [dim ρ]}, say
fx,z =

∑
ρ∈Rsep

∑
i,j∈[dim ρ] Mx,z,i,jρi,j . Then we define f̂x,z(ρ) to be the matrix Mx,z,∗,∗,

i.e.,

fx,z(g) =
∑

ρ∈Rsep

∑
i,j∈[dim ρ]

f̂x,z(ρ)i,jρi,j(g)

for all x ∈ X, z ∈ Z, g ∈ G. Finally, extending linearly and applying fx,z to A · B as in (2.2),
we get

(AB)[x, z] = fx,z(A · B)

=
∑

ρ∈Rsep

∑
i,j∈[dim ρ]

f̂x,z(ρ)i,jρi,j(A · B)

=
∑

ρ∈Rsep

⟨f̂x,z(ρ), ρ(A · B)⟩

=
∑

ρ∈Rsep

⟨f̂x,z(ρ), ρ(A) · ρ(B)⟩
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The summation and inner product are linear functions whose coefficients are independent of
the input matrices A, B, so they are “free” in a bilinear algorithm.

The product ρ(A) · ρ(B) is a product of dρ × dρ matrices, where dρ = dim ρ. Hence,
the bilinear (i.e., tensor) rank of the preceding expression gives the following bound. Using
rk to denote the tensor rank, and ⟨n, m, p⟩ to denote the tensor corresponding to matrix
multiplication of an n × m matrix times and m × p matrix, we get

rk ⟨|X|, |Y |, |Z|⟩ ≤
∑

ρ∈Rsep

rk ⟨dρ, dρ, dρ⟩.

Exactly as in the finite group case [14], by symmetrizing we effectively get a square matrix
multiplication of size (|X| |Y | |Z|)1/3 on the left side, and by the tensor power trick the
right side here can be replaced by

∑
ρ∈Rsep

(dim ρ)ω. For the last sentence of the theorem
statement, we have

∑
ρ∈Rsep

dω
ρ ≤

∑
d2

ρdω−2
max = dω−2

max · D. ◀

▶ Remark 2.4. The image ρ(C[G]) is the full dρ × dρ matrix ring if and only if ρ is an
irreducible representation. In particular, although we will not take advantage of this in the
present paper, we note that when ρ is not irreducible, we can replace rk ⟨dρ, dρ, dρ⟩ (or dω

ρ )
with the tensor rank of multiplying matrices in the image of ρ, which may only be a subspace
of all matrices. (This was true in the case of finite groups as well, but over C for finite
groups we can use irreducible representations without loss of generality. For finite groups
and representations in characteristic dividing |G| this no longer holds, and for infinite groups
even in characteristic zero it need not hold.)

2.2 Border rank version in Lie groups
For this section, let G be a (real or complex) Lie group. This includes familiar groups such
as GLn(R), GLn(C), the orthogonal group On, and the unitary group Un. Indeed, these
examples will be the primary groups we use in our constructions later in the paper, although
the framework laid out in this section is by no means limited to these particular examples.

For the purposes of this section, by a 1-parameter family of elements of G we mean
an analytic function x : (0, α) → G for some α > 0. If X = {x1, . . . , xk} is a collection
of 1-parameter families xi and ε is in their domain of definition, then we write X(ε) =
{x1(ε), . . . , xk(ε)}, which is just a finite subset of G.

▶ Definition 2.5 (Border-separating functions). Given sets X, Y, Z of 1-parameter families
of elements of G with domain of definition (0, α), a set of border-separating functions for
(X, Y, Z) is a collection of analytic functions {fx,z : G × (0, α) → C | x ∈ X, z ∈ Z} such
that, for 0 < ε < α,

fx,z(g, ε) =
{

1 + O(ε) if g = x(ε)z(ε)−1, and
0 + O(ε) if g ∈ X(ε)Y (ε)−1Y (ε)Z(ε)−1 \ {x(ε)z(ε)−1}.

Here, as is standard for analytic functions of a small variable ε, the big-Oh notation means
asymptotically as ε → 0.

Now, we take our representative functions to come from analytic representations of our
Lie group, and, as in most things related to border rank, allow ourselves 1-parameter families
of representative functions. Let C(0,α) denote the set of analytic functions (0, α) → C. Given
a set I of analytic representations of G, we write RepFunfam(I) for the C(0,α)-linear span of
all the representative functions associated to any ρ ∈ I.

ITCS 2025



18:12 Finite Matrix Multiplication Algorithms from Infinite Groups

Given three sets X, Y, Z of 1-parameter families of elements of G, we say they satisfy
the TPP if X(ε), Y (ε), Z(ε) satisfy the TPP for all ε in their domain of definition. Given
such X, Y, Z, we may encode ε-approximate matrix multiplication (à la border rank) into the
group ring C[G] in a similar manner as before, but now parameterized by ε ∈ (0, α). For an
|X| × |Y | matrix A and |Y | × |Z| matrix B, we define the following functions (0, α) → C[G]:

A(ε) =
∑

i∈[n],j∈[m]

A[i, j](xi(ε)yj(ε)−1) and B(ε) =
∑

j∈[m],k∈[ℓ]

B[j, k](yj(ε)zk(ε)−1).

Then

A(ε) · B(ε) =
∑

i∈[n],k∈[ℓ]

(AB)[i, k](x(ε)z(ε)−1) + E(ε), (2.3)

where E(ε) ∈ C[G] is supported on X(ε)Y (ε)−1Y (ε)Z(ε)−1 \ X(ε)Z(ε)−1.

▶ Theorem 2.6. Let G be a Lie2 group, with finite sets X, Y, Z of 1-parameter families
satisfying the TPP. If Rsep is a finite set of finite-dimensional analytic representations of G

such that RepFunfam(Rsep) contains a set of border-separating functions for (X, Y, Z), then

(|X| |Y | |Z|)ω/3 ≤
∑

ρ∈Rsep

(dim ρ)ω.

In particular, for D =
∑

ρ∈Rsep
(dim ρ)2, and dmax = max{dim ρ : ρ ∈ Rsep},

(|X| |Y | |Z|)ω/3 ≤ D · dω−2
max.

The proof is very similar to Theorem 2.2, but using border rank instead of rank, so we
postpone it to the full version of the paper [10].

An appealing way to use the freedom of border rank is to first find a TPP construction
of Lie subgroups X, Y, Z, and then to define finite subsets of those three using their Lie
algebras, viz.:

X ′ = {exp(εa) : a ∈ A, some finite subset of the Lie algebra of X},

where ε → 0 is the parameter we use for border rank. We will in fact show how to do this in
a fairly generic way in Lemma 2.11 below, using some additional machinery that we develop
first.

2.3 From representations to degree bounds in GLn and Un

In this paper, our constructions will all take place in GLn or (slight variants of) the unitary
group Un, although the framework of Theorems 2.2 and 2.6 is much more general. These
groups have some useful properties that will motivate some of the machinery we develop
below – even though that machinery will also end up being more general – so we take a brief
interlude to highlight the relevant properties of GLn, before returning to the general abstract
framework in the next section.

For both GLn and Un, there is a natural correspondence between representations and
polynomials of a given degree. By focusing on separating polynomials (instead of more
general separating functions), this correspondence will allow our constructions to focus only

2 We have put in bold the parts of the statement of Theorem 2.6 that differ from Theorem 2.2.
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on the degree of the separating polynomials. The upshot is that instead of thinking directly
about what representations will comprise Rsep, we can focus solely on the degree of our
separating polynomials when working in these groups.

In the rest of this section we review the relevant aspects of the representation theory of
GLn and Un, and extract from those the relevant target bounds on degree to get bounds on
ω. A standard reference for the representation theory of these groups is [19]. It is a standard
fact in representation theory that the finite-dimensional representation theory of these two
groups are essentially the same, and everything we say in this section will apply to both
groups.

The irreducible polynomial representations ρ of GLn(C) and Un – where the entries of
the matrix ρ(g) are polynomials in the entries of the matrix g – are indexed by integer
partitions λ = (λ1, . . . , λn) with at most n parts, where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The
matrix coefficients of the irreducible representations indexed by partitions of s span the
functions from G to C that are expressible as degree s polynomials in the entries of GLn.
We write Irrs(G) to denote the set of (pairwise non-isomorphic) irreducible representations
of G indexed by partitions of the integer s.

The following bound will determine the target degree of the separating polynomials in
our constructions, as in Corollary 2.8 below.

▶ Lemma 2.7. Let n ≥ 3 and s ≥ 2. For ρ ∈ Irrs(GLn) (resp., Irrs(Un)), dim(ρ) ≤ s(n
2).

Although the result follows from some simple asymptotic analysis of standard results
about the representation theory of GLn, we could not find it in the literature, so we provide
a full proof in [10].

Here and below it is helpful to think of n as large but fixed, and s growing independently
of n.

▶ Corollary 2.8. Suppose X, Y, Z ⊆ GLn(C) (or Un) satisfy the TPP, and there is a set of
separating polynomials for (X, Y, Z) of degree at most s. Then ω satisfies

(|X| |Y | |Z|)ω/3 ≤ s(n
2)(ω−2) ·

(
s + n2

n2

)
.

In particular, if |X|, |Y |, |Z| ≥ s(1−os(1))(n2/2−on(n)), then ω = 2.

The same holds if X, Y, Z are 1-parameter families that satisfy the TPP and we replace
separating polynomials with border-separating polynomials.

Equivalently, if |X|, |Y |, |Z| ≥ qn2/2−on(n) and there are (border-)separating polynomials
of degree at most q1+oq(1), then ω = 2. See the full version of the paper for a proof [10].

Next we show that the Lie TPP construction of [14] (Theorem 1.2 above) in fact admits
separating polynomials of degree O(q2). In Section 2.4, we will show how to use a border-rank
version of our framework to construct finite sets X, Y, Z, whose size we can then compare to
the degree of the separating polynomials as in Corollary 2.8.
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Separating polynomials for the running example in GLn(R)

We begin by describing a finite subset Yq of the orthogonal group On, with the property
that the diagonal entries of matrices in the quotient set Q(Yq) have a limited number
of possible values, in the sense formalized in the following lemma. Here we treat n as
fixed, so the implicit constant in O(q2) can depend on n.

▶ Lemma 2.9. For each positive integer q, there exists a subset Yq ⊆ On of cardinality
at least qn2/2−(5/2)n, with the following property: for all y, y′ ∈ Yq, if y and y′ agree
in their first i columns, then

(yT y′)[i + 1, i + 1] ∈ Wq,

where Wq ⊆ R is a fixed finite set of cardinality O(q2).
For a proof, see the full version of the paper [10].
We remark that one might hope to improve the cardinality of Wq to O(q2−ε)

by replacing Vi with a more cleverly chosen set of unit vectors with fewer distinct
pairwise inner products. This would lead to an improved bound on the degree of
the separating polynomials described in the following theorem, and if one could take
ε = 1 this would yield separating polynomials of optimal degree. Unfortunately, this
is impossible by the solution to the high-dimensional version of the Erdős distinct
distances problem [25].

▶ Theorem 2.10. Let G, X, Y, Z be as in Theorem 1.2, let Xq ⊆ X be those lower
unitriangular matrices whose below-diagonal entries are integers in {1, 2, . . . , q}, let
Zq ⊆ Z be those upper unitriangular matrices whose above-diagonal entries are integers
in {1, 2, . . . , q}, and let Yq ⊆ Y be the set of orthogonal matrices guaranteed by Lemma
2.9. Then there are separating polynomials for Xq, Yq, Zq of degree O(q2).

For a proof, see the full version of the paper [10].
Note that here we have dim X = dim Y = dim Z = (n2 −n)/2, but for Corollary 2.8

we would need them to have dimension n2/2 − on(n), and the separating polynomial
we get has degree Oq(q2), but Corollary 2.8 needs degree at most q1+oq(1). In Section 3
we give a construction of the same relative dimension (namely, dim G

2 − Θ(n)) but with
separating polynomials of degree O(q), meeting the degree bound of Corollary 2.8.

2.4 Separating polynomials from a single invariant polynomial
In this section, we return to the case of a general matrix Lie group G ⊆ GLn(C) or GLn(R),
and we show how to leverage invariant theory to construct separating polynomials whose
degree is not too large, and that thus have a hope of meeting the degree bound of Corollary 2.8
in the case of G = GLn(C) or G = Un.

The key result in this section, Lemma 2.11, combines border rank and Lie algebras,
as suggested at the end of Section 2.2, with a new ingredient from invariant theory. The
lemma lets us “split” the construction of sets satisfying the TPP and (border-)separating
polynomials into two parts: the first part only involves the first and third sets X and Z

(essentially, a separating polynomial version of the “double product property” (DPP), which
is that x−1x′z−1z′ = 1 iff x = x′ and z = z′)), and the second part involves only the middle
set Y and the ring of XZ-invariant polynomials. From one view, this lets us start with a Y ,
and “work backwards,” shifting the design task onto X, Z, and their invariant polynomials.
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More specifically, Lemma 2.11 instantiates the following idea. Roughly, we would like
to construct the separating polynomial fx,z as a product of three factors: one that is the
indicator function of x among the set X (1 on x, zero on all other elements of X), one that
is the indicator function of z−1 among Z−1, and one on that is the indicator function p0
of I among Y −1Y . However, the issue here is that fx,z, and hence these factors, does not
really have separate access to these three parts: it only gets as input the product xy−1y′z−1.
Our initial motivation to use invariant polynomials was that if p0 has the property that
p0(xy−1y′z−1) = p0(y−1y′) for all x ∈ X, z ∈ Z, then it in fact does get direct access to
only the Y -part of the input. Lemma 2.11 then gives generic machinery that, from such an
XZ-invariant p0, constructs a full set of (border-)separating polynomials, which have the
correct degree if p0 has the correct degree.

One advantage of this approach, in addition to separating out the design task associated
with Y more from the specification of X and Z, is that it only necessitates the construction
of at most three polynomials p0, pX , pZ , rather than a whole set {fx,z} of |X| |Z|-many
polynomials, and the pX , pZ polynomials are usually easy to construct if X and Z satisfy
the DPP.

We now proceed with the technical details. By a polynomial on a matrix Lie group
G ⊆ GLn(C) or G ⊆ GLn(R), we mean a function G → C that can be expressed as a
polynomial in the n2 matrix entries xij of elements of G, with complex coefficients,3 and
similarly for a polynomial on the Lie algebra Lie(G) ⊆ Mn(C). By a 1-parameter family
of polynomials we mean a polynomial in the n2 matrix entries xij of elements of G, with
coefficients in C(0,α) for some α > 0.

Because we will use it frequently, we introduce the notation

InvX,Z = {p ∈ C[Mij : i, j ∈ [n]] | p(xMz) = p(M) for all x ∈ X, z ∈ Z}.

It is readily observed that InvX,Z is closed under multiplication and addition, and hence is
a subring of the polynomial ring. In favorable (and many well-studied) cases, this subring
is finitely generated over C (see, e. g., [20, 17]), and when a finite generating set of InvX,Z

is known, we can focus on designing a polynomial that is composed with those generating
invariants – which is then automatically invariant itself – in order to obtain p0. We will see
an example of this below.

In a Lie group G, for convenience let us say a subset X ⊆ G is a Lie submanifold if X is
a submanifold containing the identity of G, and such that for every v in the tangent space
of X at the identity, for all sufficiently small ε > 0, the exponential exp(εt) is in X. If X

is a Lie submanifold, we use Lie(X) to denote the tangent space to X at the identity, even
though this need not be a Lie algebra.

▶ Lemma 2.11 (Splitting separating functions into invariant functions and double-product
property). Let G be a matrix Lie subgroup of GLn(F) for F ∈ {R,C}, with Lie submanifolds
X, Z and a finite set Y of 1-parameter families. Let q be a positive integer.

3 Warning: for readers familiar with algebraic geometry, if G is an algebraic group our definition here
is not quite the same thing as an element of the coordinate ring of G. For example, when G = Un,
we view G as a subset of GLn(C) and want to consider polynomials only in the n2 matrix entries of
these complex matrices, but as an algebraic group G is a real algebraic group, with twice as many
(real) coordinates, and this difference of a factor of 2 can actually be important. We believe there is a
modification of our framework that works in the setting of algebraic groups, but leave that for future
work.
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If there exist
continuous functions fX : FdX → Lie(X) and fZ : FdZ → Lie(Z), and polynomials
pX : Lie(G) → FdX and pZ : Lie(G) → FdZ such that

pX(fX(v) − fZ(v′)) = v and pZ(fX(v) − fZ(v′)) = v′,

for all v ∈ FdX , v′ ∈ FdZ ,4
and
a 1-parameter family of polynomials p0(g, ε) ∈ InvX,Z such that

p0(g, ε) =
{

1 + O(ε) if g = I

0 + O(ε) if g ∈ Y (ε)−1Y (ε) \ {I},

then there exist
a reparametrization Y ′ of Y and finite sets X ′, Z ′ of 1-parameter families in X, Z (resp.)
such that X ′(ε), Y ′(ε), Z ′(ε) satisfy the TPP for all ε in some non-empty range (0, α′),
|X ′| ≥ qdX , and |Z ′| ≥ qdZ , and
a set of border-separating polynomials for (X ′, Y ′, Z ′) of degree5 at most deg p0 + O((dX +
dZ)q).

As the first condition of Lemma 2.11 may be a little intimidating, before the proof we
give an example to help allay such fears:

▶ Lemma 2.12. If X, Z ≤ G ≤ GLn(R) are Lie subgroups that intersect trivially, then
there exist fX , fZ , pX , pZ satisfying the first condition of Lemma 2.11, with dX = dim X and
dZ = dim Z.

Note that if we drop the requirement that p0 be in InvX,Z , then the hypotheses of
Lemma 2.11 would be almost trivially satisfied whenever X and Z have trivial intersection.
In applying Lemma 2.11, it is only the use of invariants that adds any real difficulty; however,
the use of invariants is also a lynchpin to reach the conclusion.

For the proofs of Lemmas 2.11 and 2.12. see the full version of the paper [10].
Continuing our running example, we now show how to satisfy the hypothesis of

Lemma 2.11, and thus get a TPP construction using border rank, invariant polynomials, and
Lie algebras.

Example of a separating polynomial in the invariant ring

We return to the example in GLn(R) described in Theorem 1.2. The following lemma
is straightforward to check. Let lpmi denote the polynomial that is the i-th leading
principal minor of an n × n matrix; that is, lpmi is the determinant of the upper-left
i × i submatrix of an n × n matrix.

▶ Lemma 2.13. Let X, Z ⊆ GLn(R) be the sets of lower unitriangular matrices
and the upper unitriangular matrices, respectively. Then InvX,Z contains the leading
principal minors.

4 Notice that, since pX , pZ essentially invert fX , fZ on the sum of their images, this condition implies
that SpanF(Image(fX)) ∩ SpanF(Image(fZ)) = 0, a DPP-like condition.

5 Degree as measured only as a function of the matrix entries – ε is still considered a separate parameter.
Equivalently, degree as polynomials with coefficients in C(0,α).
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In fact, in this case InvX,Z is generated by the leading principal minors, but we
will not need this stronger fact for our constructions.

▶ Theorem 2.14. Let G, X, Y, Z be as in Theorem 1.2. For any q > 0, there is a
set Ỹ of 1-parameter families taking values in Y , of size qdim Y , as well as functions
fX , fZ , polynomials pX , pZ , and a 1-parameter family of polynomials p0 of degree
O(q2) satisfying the hypotheses of Lemma 2.11 with dX = dim X, dZ = dim Z, and Ỹ

replacing Y .
Consequently, there is a TPP construction with sizes qdim X , qdim Y , qdim Z , resp.,

admitting border-separating polynomials of degree O(q2).
For a proof, see the full version of the paper [10].

3 Separating polynomials of degree O(q)

In this section we give a construction, now in a non-compact special unitary group, in which
the Lie subgroups X, Y, Z satisfy the TPP and have dimension approaching half the ambient
dimension. We show the existence of finite sets Xq ⊆ X, Yq ⊆ Y , and Zq ⊆ Z satisfying
|Xq| = qdim X , |Yq| = qdim Y , |Zq| = qdim Z and with separating polynomials of degree O(q).
As shown in Corollary 2.8, this degree bound is the quantitative requirement on the degree
for achieving exponent 2; where the construction falls short is that it approaches half the
dimension “just barely” too slowly, at a rate of Θn(n) rather than on(n), and second, it is in
a unitary group, so it approaches half the dimension of the unitary group, rather than half
the dimension of GLn(C).

3.1 The construction
We assume n is even and define the containing group

G = SUn/2,n/2 = {M ∈ GLn(C) | M∗QM = Q and det(M) = 1},

with Q =
(

I

−I

)
.

Further, let J be the matrix with ones on the antidiagonal (in positions (n + 1 − i, i)),

U = 1√
2

·
(

I J

J −I

)
,

D0 = diag(n, n − 1, n − 2, . . . , n/2 + 1, (n/2 + 1)−1, (n/2 + 2)−1, . . . , n−1),

and

D = UD0U∗. (3.1)

The only properties we will need from these matrices are that D0 is diagonal, D∗
0D0 has

distinct, positive, real diagonal entries, and U is unitary such that UD0U∗ is in G, but we
use these particular matrices for concreteness. In Lemma 3.6 we will show that D as in (3.1)
is indeed in G.

The group SUn/2,n/2 is not compact, and it may be less familiar than the compact group
SUn, but it is equally useful for our purposes. Both SUn/2,n/2 and SUn are subgroups of
SLn(C), and their irreducible representations are exactly the restrictions of those of SLn(C).
See the appendix of the full version [10] for a brief review of this topic.
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The subgroup Un ∩ G is the block diagonal subgroup Un/2 × Un/2, and we need the
following subspace, which is close to Lie(Un ∩ G) but is just a bit smaller:

S =
{(

A0 0
0 A1

)
| A0, A1 are skew-Hermitian with zeros on the diagonal

}
.

▶ Theorem 3.1. Let G, D, and S be as above. Let Iq ⊂ C be the set of a + ib with
a, b ∈ [−⌈√

q/2⌉, ⌈√
q/2⌉]. Define the following ε-parametrized subsets of G:

X = {D−1 exp(εA)D | A ∈ S},

Z = {D exp(εA)D−1 | A ∈ S},

Yq =
{

exp(εA) | A ∈ S, entries of A lie in Iq

}
.

Then there exist fX , fZ , pX , pZ , and p0 of degree O(q) satisfying the hypothesis of Lemma
2.11. Hence by Lemma 2.11, there exist three ε-parametrized subsets Xq, Yq, Zq ⊆ G, all of
size at least qn2/4−n/2, which satisfy the TPP and admit border-separating polynomials of
degree O(q).

3.2 A precursor construction in GLn(C)
In preparation for the proof of Theorem 3.1, we first establish a precursor in the containing
group GLn(C). Recall that the unitary group Un is the set of matrices M for which M∗M = I,
and it has half the dimension of the containing group.6 We will shortly show that three
conjugates of Un in GLn(C) almost satisfy the TPP (Theorem 3.3). The proof will make use
of the following lemma:

▶ Lemma 3.2. If M ∈ Un and D = UD0U∗ as defined above, then

tr(D∗M∗D∗DMD) ≤ tr((D∗D)2)

with equality if and only if U∗MU is diagonal.

For a proof, see the full version of the paper [10].
This lemma gives a convenient way to prove that the three subgroups defined in the

following theorem satisfy the TPP up to a “failure at the diagonal”:

▶ Theorem 3.3. Let D = UD0U∗ be as defined as above. Then the three subgroups
X = D−1UnD, Y = Un, and Z = DUnD−1 of GLn(C) satisfy the following property. For
all

x = D−1M1D ∈ X, y = M2 ∈ Y, z = DM3D−1 ∈ Z,

if xyz = I, then U∗M1U , U∗M2U , and U∗M3U are diagonal matrices.

For a proof, see the full version of the paper [10].
In the variant presented in the next section, we will form our TPP sets as exponentials

of Lie algebra elements, and for this, we need a version of Lemma 3.2 that describes the
deviation of tr(D∗M∗D∗DMD) below tr((D∗D)2) explicitly as a function of the infinitesimal.
Recall that the Lie algebra of Un is the set of skew-Hermitian matrices.

6 The unitary group is a real algebraic group, so we need to count real dimensions. The containing group
has 2n2 real dimensions and the unitary group has n2 real dimensions.
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▶ Lemma 3.4. Let D = UD0U∗ be as defined above, with d1, d2, . . . , dn being the diagonal
entries of D0. Let A, B be skew-Hermitian matrices and let M = exp(εA)(exp(εB))−1. Then

tr(D∗M∗D∗DMD) = tr((D∗D)2) − ε2
∑
i<j

(|di|2 − |dj |2)2|C[i, j]|2 + O(ε3),

where C = U∗(A − B)U . In particular, this quantity is tr((D∗D)2) + O(ε3) if and only if C

is diagonal.

For a proof, see the full version of the paper [10].
In preparation for the next subsection, we now describe some invariant polynomials in

InvX,Z that we’ll use below, where X = D−1UnD and Z = DUnD−1. For an n × n matrix
M and subsets S, T ⊆ [n], we use MS,T to denote the |S| × |T | sub-matrix of M whose rows
are indexed by the elements of S and whose columns are indexed by the elements of T .

▶ Lemma 3.5. For each k, the function pk(M) defined as∑
S,T ⊆[n]

|S|=|T |=k

| det((DMD)S,T )|2

lies in InvX,Z , where X = D−1UnD and Z = DUnD−1.

We have been implicitly using this fact for p1, which happens to be the complex Frobe-
nius norm-squared function. In particular, tr(D∗M∗D∗DMD) = p1(M). For a proof of
Lemma 3.5, see the full version of the paper [10].

Note that because of the complex norm, these functions are not polynomials in the
complex matrix entries (but they are polynomials in the entries of the natural real embedding
into twice the dimension). In the next section we restrict the containing group to a special
unitary group, which has the crucial side effect of making these functions polynomials in
the complex matrix entries, because the complex conjugate of a given entry can be found as
low-degree polynomial of the entries of the inverse matrix.

3.3 Proof of Theorem 3.1
Recall that the containing group of our construction in Theorem 3.1 is the following unitary
group:

G = SUn/2,n/2 = {M ∈ GLn(C) | M∗QM = Q and det(M) = 1},

with Q =
(

I

−I

)
.

Our TPP triple in G stated in Theorem 3.1 is obtained by taking the “almost TPP” triple of
Theorem 3.3 (recall that the construction almost satisfies the TPP except for a “failure at the
diagonal”) and intersecting it with G. In this section, we will fix the failure at the diagonal
using Lemma 2.11, to get a genuine TPP construction and border-separating polynomials of
the optimal degree.

Recall that our construction in G is given by

X = {D−1 exp(εA)D | A ∈ S},

Z = {D exp(εA)D−1 | A ∈ S},

Yq =
{

exp(εA) | A ∈ S, entries of A lie in Iq

}
,
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where Iq ⊂ C is the set of a + ib with a, b ∈ [−⌈√
q/2⌉, ⌈√

q/2⌉] and

S =
{(

A0 0
0 A1

)
| A0, A1 are skew-Hermitian with zeros on the diagonal

}
.

We will prove Theorem 3.1 in three steps.
Step 1 summary: We show that the sets X and Z in the theorem statement are subsets of

D−1UnD ∩ G and DUnD−1 ∩ G and hence the ring of invariant polynomials contains the
polynomials specified in Lemma 3.5. To do this we’ll describe the Lie algebra of Un ∩ G,
and show that D is in G.

Step 2 summary: Next, we describe the separating polynomial for Yq in this invariant ring,
and show that it has degree O(q) as promised.

Step 3 summary: Finally we describe the functions fX , fZ , pX , and pZ and apply
Lemma 2.11. For this we prove a version of the double product property for X and Z.

Step 1: Our TPP triple is defined relative to D, and we now show that the D defined in
Section 3.1 is indeed in G as claimed. Recall that we use J for the matrix with ones on
the antidiagonal (n + 1 − i, i) and zeroes elsewhere (not the all-ones matrix).

▶ Lemma 3.6. The matrix D = UD0U∗ is an element of G, where

U = 1√
2

·
(

I J

J −I

)
,

and D0 = diag(n, n − 1, n − 2, . . . , n/2 + 1, (n/2 + 1)−1, (n/2 + 2)−1, . . . , n−1).

See the full version for the proof [10].
Given that we will define our TPP triple by intersecting the three subgroups from the

previous subsection with G, we start by describing the intersection of Y = Un with G:

▶ Lemma 3.7.

Un ∩ G =
{(

M1,1 0
0 M2,2

)
: M1,1, M2,2 ∈ Un/2 and det(M1,1M2,2) = 1

}
.

See the full version for the proof [10].
A simple corollary, using the fact that the Lie algebra of the unitary group is the algebra

of skew-Hermitian matrices, is the following.

▶ Corollary 3.8. The Lie algebra of Un ∩ G is

Lie(Un ∩ G) =
{(

A0 0
0 A1

)
| A∗

0 = −A0, A∗
1 = −A1, tr(A0) + tr(A1) = 0

}
.

In particular, for any such matrix A and for all sufficiently small ε > 0, the exponential
exp(εA) is in Un ∩ G.

Now our subsets X and Z are contained in subgroups D−1UnD and DUnD−1, respectively,
so the invariant polynomials of Lemma 3.5 are invariant under left multiplication by X and
right multiplication by Z as before.

Step 2: A key property of G as the containing group, given that the invariant functions of
Lemma 3.5 depend on the complex conjugate of matrix entries in addition to the matrix
entries themselves, is described in the following straightforward lemma:
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▶ Lemma 3.9. For any M ∈ G,

M [i, j] = (−1)i+j det((QMQ)−i,−j)

where (QMQ)−i,−j denotes the submatrix obtained by deleting the i-th row and j-th column.

▶ Theorem 3.10. Let D be as in Lemma 3.6 and Yq as above. For A, B ∈ Yq, if we set
M = exp(εA) exp(εB)−1, then

tr((D∗D)2) − tr(D∗M∗D∗DMD)
ε2 = c + O(ε),

where 2(n!)2c is a nonnegative integer satisfying c = O(q) and for which c = 0 iff A = B.

For a proof, see the full version of the paper [10].
We note that |Yq| ≥ qn2/4−n/2 and so if we define the polynomial r(z) to be 1 on 0 and 0

on any other positive integer multiple of 1/(2(n!)2) up to O(q), then the function

p0(M) = r((tr((D∗D)2) − tr(D∗M∗D∗DMD))/ε2)

is a separating function in the ring of invariant functions, of the desired degree O(q). The
fact that this is a polynomial follows from Lemma 3.9. Because tr(D∗M∗D∗DMD) is the
polynomial p1(M) of Lemma 3.5, it is invariant under the left/right action of D−1UnD

and DUnD−1. From step 1 we know that X ⊆ D−1UnD and Z ⊆ DUnD−1, and hence
p0 ∈ InvX,Z .

Step 3: We now turn to describing the functions fX , fZ , pX , and pZ , beginning with showing
that X and Z satisfy a version of the double product property.

▶ Lemma 3.11. For x ∈ D−1SD and y ∈ DSD−1, x + y = 0 iff x = y = 0.

For a proof, see the full version of the paper [10].

▶ Lemma 3.12. For X, Z as above, there exist functions fX , fZ and polynomials pX , pZ

over C satisfying the first condition of Lemma 2.11 with dX = dZ = n2/4 − n/2.

For a proof, see the full version of the paper [10].
This completes the proof of Theorem 3.1.

4 Conclusions and open problems

In this paper we gave an extension of the group–theoretic framework of [14] to infinite groups
(Theorem 2.2). Within this framework we explored constructions in Lie groups, raising
the key question: do there exist three subsets in GLn satisfying the TPP, of size at least
qn2/2−on(n), and admitting separating polynomials of degree at most q1+oq(1)? If the answer
is yes, then ω = 2 (Corollary 2.8).

Towards obtaining such a construction, we developed tools using invariant theory and
Lie algebras to simplify the task of designing separating polynomials (Subsection 2.4). We
then put these tools to use in Section 3 to obtain a construction in Un satisfying the target
degree bound, with sets of size qm with m approaching half the ambient dimension.

This raises several directions for future research:
Can one obtain a construction with sets of size qm for m approaching half the ambient
dimension and separating polynomials of degree at most q1+oq(q), but in GLn rather
than Un?
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Can one obtain a construction with separating polynomials of degree at most q1+oq(q) in
Gn = GLn or Gn = Un with sets of size qdim Gn/2−o(n), rather than qdim Gn/2−Θ(n)?
Our general framework opens up the possibility of using other infinite groups (not
necessarily Lie groups), which remains to be explored.
Another type of construction that is now possible is one in a single, fixed infinite group (say,
GL3), with growing families of sets (Xq, Yq, Zq). In contrast, our current constructions
require us to take n growing as well, or more generally, a growing family of containing
groups.
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