
Differential Privacy and Sublinear Time Are
Incompatible Sometimes
Jeremiah Blocki #

Purdue University, West Lafayette, IN, USA

Hendrik Fichtenberger #

Google Research, Zürich, Switzerland

Elena Grigorescu #

University of Waterloo, ON, Canada

Tamalika Mukherjee #

Columbia University, New York, NY, USA

Abstract
Differential privacy and sublinear algorithms are both rapidly emerging algorithmic themes in times
of big data analysis. Although recent works have shown the existence of differentially private
sublinear algorithms for many problems including graph parameter estimation and clustering, little
is known regarding hardness results on these algorithms. In this paper, we initiate the study of lower
bounds for problems that aim for both differentially-private and sublinear-time algorithms. Our
main result is the incompatibility of both the desiderata in the general case. In particular, we prove
that a simple problem based on one-way marginals yields both a differentially-private algorithm, as
well as a sublinear-time algorithm, but does not admit a “strictly” sublinear-time algorithm that is
also differentially private.

2012 ACM Subject Classification Theory of computation → Theory of database privacy and security;
Theory of computation → Streaming, sublinear and near linear time algorithms; Security and privacy
→ Privacy-preserving protocols

Keywords and phrases differential privacy, sublinear algorithms, sublinear-time algorithms, one-way
marginals, lower bounds

Digital Object Identifier 10.4230/LIPIcs.ITCS.2025.19

Related Version Full Version: https://arxiv.org/abs/2407.07262

Funding Jeremiah Blocki: Supported in part by NSF CAREER Award CNS-2047272, and NSF
Award CCF-1910659.
Elena Grigorescu: Funded in part by NSF CCF-1910659, NSF CCF-2205811, and NSF CCF-2228814.
Tamalika Mukherjee: Funded in part by NSF CCF-1910659, NSF CCF-2205811, and NSF CCF-
2228814. Supported in part by Amazon through the Columbia Center of Artificial Intelligence
Technology, a Google Cyber NYC Award, and DARPA under contract number W911NF2110371.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the United States Government or DARPA.

1 Introduction

While individuals have long demanded privacy-preserving analysis and processing of their
data, their adoption and enforcement by governmental and private standards, policies, and
jurisdictions are now accelerating. This urgency stems, in part, from the dramatic growth in
the amount of data collected, aggregated, and analyzed per individual in recent years. The
sheer volume of data also poses a computational challenge as resource demands scale with data
size. Thus, it is expedient to develop privacy preserving algorithms for data-analysis whose
resource requirements scale sub-linearly in the size of the input dataset. Two algorithmic

© Jeremiah Blocki, Hendrik Fichtenberger, Elena Grigorescu, and Tamalika Mukherjee;
licensed under Creative Commons License CC-BY 4.0

16th Innovations in Theoretical Computer Science Conference (ITCS 2025).
Editor: Raghu Meka; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jblocki@purdue.edu
https://orcid.org/0000-0002-5542-4674
mailto:fichtenberger@google.com
https://orcid.org/0000-0003-3246-5323
mailto:elena-g@uwaterloo.ca
https://orcid.org/0000-0001-9673-4313
mailto:tm3391@columbia.edu
https://orcid.org/0000-0003-0052-4181
https://doi.org/10.4230/LIPIcs.ITCS.2025.19
https://arxiv.org/abs/2407.07262
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Differential Privacy and Sublinear Time Are Incompatible Sometimes

concepts that formalize these two objectives are differential privacy (DP) and sublinear
algorithms. A randomized algorithm is differentially private if its output distribution does not
change significantly when we slightly modify the input dataset to add/remove an individuals
data i.e., a row in the dataset. Sublinear algorithms comprise classes of algorithms that
have time or space complexity that is sublinear in their input size. Previous work in the
intersection of both fields has promoted several classical sublinear algorithms to differentially
private sublinear time algorithms for the same problems, e.g., sublinear-time clustering [3],
graph parameter estimation [4] or sublinear-space heavy hitters in streaming [27, 6].

Intuitively, one might expect that privacy and sublinear time necessarily have a symbiotic
relationship, i.e., if only a fraction of the data is processed, a significant amount of sensitive
information may remain unread. Recent work [5] demonstrated that if a function f : D → R
has low global sensitivity (i.e., f is amenable to DP) and there exists a sufficiently accurate
sublinear-time approximation algorithm for f , then there exists an accurate sublinear time
DP approximation for f . This lead [5] to ask whether or not a similar transformation
might apply for functions f : D → Rd with multi-dimensional output. In this paper, we
provide an example of a function f : D → Rd with the following properties (1) there is an
efficient sublinear time approximation algorithm for f , (2) there is a differentially private
approximation algorithm for f running in time O(|D|), and (3) any accurate differentially
private approximation algorithm must run in time Ω̃(|D|). Thus, the intuition that privacy
and sublinear time algorithms necessarily have a symbiotic relationship is incorrect.

Existing Model for DP Lower Bounds. Consider a database D ∈ {0, 1}n×d with n rows
where each row corresponds to an individual’s record with d binary attributes. The model
in this case is that the database D consists of a sample (according to a uniform or possibly
adversarial distribution) from a larger population (or universe), and we are interested in
answering queries on the sample (e.g., what fraction of individual records in D satisfy some
property q?). One of the interesting questions in DP lower bounds is the following: Suppose
we fix a family of queries Q and the dimensionality of database records d, then what is the
sample complexity required to achieve DP and statistical accuracy for Q? Here the sample
complexity is defined as the minimum number of records n such that there exists a (possibly
computationally unbounded) algorithm that achieves both DP and accuracy.

A key problem that has been at the center of addressing this question is the one-way
marginal problem. The one-way marginal problem takes a database D ∈ {0, 1}n×d and
releases the average values of all d columns. The best known private algorithm which has
running time polynomial in the universe size is based on the multiplicative weights mechanism,
and it achieves (O(1), o(1/n))-DP for n ∈ O(

√
d log |Q|) [17]. Any pure DP algorithm for

this problem requires n ≥ Ω(d) samples [18], while [8] showed that n ≥ Ω̃(
√

d) samples are
necessary to solve this problem with approximate DP and within an additive error of 1/3.

Existing Models for Sublinear-Time Algorithms. The works on sublinear-time algorithms
utilize different input models, many of them tailored to the representation of the input,
e.g., whether it is a function or a graph. These models typically define query oracles, i.e.,
mechanisms to access the input in a structured way. For example, the dense graph model [16]
defines an adjacency query oracle that, given a pair of indices (i, j), returns the entry A(i, j)
of the adjacency matrix A of the input graph. Query oracles enable an analysis of what
parts, and more generally how much of the input was accessed by an algorithm. Since the
fraction of input read is a lower bound for the time complexity of an algorithm, query access
models are crucial to prove both sublinear-time upper and lower bounds.

J. Blocki, H. Fichtenberger, E. Grigorescu, and T. Mukherjee 19:3

Our Model. A challenge of proving lower bounds for sublinear time, differentially private
algorithms lies in devising and applying a technique for analysis that combines the properties
of both models. Lower bounds for differential privacy state a lower bound on the sample
complexity that is required to guarantee privacy and non-trivial accuracy. These bounds
do not state how much of the input an algorithm needs to read to guarantee privacy and
accuracy, but only what input size is required to (potentially) enable such an algorithm.
On the other hand, lower bounds for sublinear time algorithms state a bound on the time
complexity as a function of the input size m. Note that time complexity is at least query
complexity, and a lower bound on the latter immediately implies a lower bound on time
complexity as well.

In our setting, we fix the number of records n, as well as the dimensionality d of the
database, i.e., our problem size is m = n · d. We define queries in our model to be attribute
queries, i.e., querying the j-th attribute of a row i in the database D is denoted as D(i, j). We
emphasize that our use of the term query in our model is as in the sublinear-time algorithms
model, and it is different from its use in conventional DP literature. Specifically, queries in
DP literature refer to types of questions that the data analyst can make to the database to
infer something about the population, whereas queries in the sublinear algorithms model
refer to how the algorithm can access the input dataset D. In our work, we fix a problem of
interest P on database D (e.g., the one-way marginal problem), and we consider an algorithm
that solves the problem P on input D. Then we are interested in understanding the minimum
number of (attribute) queries that an algorithm can make to solve the problem P and satisfy
both DP and accuracy, which we call the query complexity.

Result of [8] does not apply in our model. For the problem of one-way marginals, we know
that n ∈ Ω̃(

√
d) [8] records are required for any algorithm to achieve both DP and accuracy.

For m = Ω̃(d3/2), there exists a DP algorithm that can solve this problem with Õ(m) queries,
i.e., the algorithm can query the entire dataset and add Gaussian noise. Using Hoeffding
bounds one can analyze a simple non-private algorithm with accuracy 1/3 that has query
complexity O(d log d), which is sublinear in the problem size m. However, it is not clear
whether O(m) queries are necessary to achieve both DP and accuracy in our model. One
might be tempted to directly apply the result of [8] to say that Ω̃(m) queries are necessary,
but this does not work as the results of [8] focus on sample complexity. In particular, in
our model it would be possible to distribute attribute queries across all rows (making o(d)
attribute queries in each row) so that every row is (partially) examined but the total number
of queries is still o(m). In particular, a sublinear time algorithm can substantially reduce ℓ1
and ℓ2 sensitivity by ensuring that the maximum number of queries in each row is o(d). 1

The sample complexity lower bound of [8] uses fingerprinting codes to show that the
output of an algorithm that is both DP and reasonably accurate for the one-way marginal
problem can be used to reidentify an individual record, which contradicts the DP property.
Intuitively, fingerprinting codes provide the guarantee that if an algorithm obtains an accurate
answer after examining at most c rows in the database then it is possible to reidentify at

1 Suppose for example, that m = d2 so that there are d attribute columns and d rows and consider two
sublinear time algorithms: Algorithm 1 examines the first

√
d rows and outputs the marginals for these

samples. By contrast, Algorithm 2 uses rows i
√

d + 1 to (i + 1)
√

d to compute the marginals columns
i
√

d+ 1 to (i+ 1)
√

d for each i <
√

d. Both algorithms examine the same number of cells in the database
d
√

d, but the ℓ1 (resp. ℓ2) sensitivity of the algorithms are quite different. Algorithm 1 has ℓ1 (resp. ℓ2)
sensitivity

√
d (resp. 1) while Algorithm 2 has ℓ1 (resp. ℓ2) sensitivity 1 (resp. d−0.25).

ITCS 2025

19:4 Differential Privacy and Sublinear Time Are Incompatible Sometimes

least one of the corresponding users. However, if the attacker examines more than c rows,
then we cannot prove that privacy is violated as fingerprinting codes no longer provide the
guarantee that we can reidentify one of the corresponding users. In our model, an algorithm
is allowed to make arbitrary attribute queries and is not restricted to querying all attributes
corresponding to a fixed row, thus it is more difficult to prove a lower bound of this nature in
our model. In particular, instead of sampling c rows an attacker could distribute the attribute
queries across all rows (making c = o(d) attribute queries in each row). The total number
of cells examined is still cd, but the overall coalition has size d ≥ c. Fingerprinting codes
provide no guarantee of being able to trace a colluder since the overall coalition (number of
rows in which some query was made) is larger than c. Thus, we cannot prove that privacy is
violated.

Crucially, their construction relies on the algorithm being able to query the entire row
(aka record) of the database and the fact that for a fixed coalition size c a fingerprinting
code can trace an individual in any coalition of size ≤ c with high probability, as long as the
individual actively colluded.

Our Contribution. We give the first separation between the query complexity of a non-
private, sublinear-time algorithm and a DP sublinear-time algorithm (up to a log factor). We
remind the reader that a lower bound on query complexity naturally implies a lower bound
on time complexity as the time taken by an algorithm must be at least the number of queries
made. Thus our theorem on query complexity also gives a lower bound for sublinear-time
DP algorithms.

▶ Theorem 1 (Informal Theorem). There exists a problem P of size m such that
1. P can be solved privately with O(m) query and time complexity.
2. P can be solved non-privately with O(m2/3 log(m)) ∈ o(m) query and time complexity.
3. Any algorithm that solves P with (1/3, 1/3)-accuracy and (O(1), o(1/m))-DP must have

Ω(m/ log(m)) = Ω̃(m) query and time complexity.
We note that [8] implies that any accurate, DP algorithm for P requires n ∈ Ω(

√
d), and

we can in fact invoke the theorem for the hardest case and choose m so that n = Θ(
√

d).2
For full details on the definition of the problem and the formal version of the theorem, see
Definition 21 and Theorem 26. Summarized in words, P is solvable under differential privacy,
and there exists a non-private sublinear-time algorithm to solve P, but any DP algorithm
must read (almost) the entire dataset, and thus have at least (nearly) linear running time.
Our techniques build upon a rich literature of using fingerprinting codes in DP lower bounds.
We note that the log(m) factor in our main result (Item 3) of Theorem 1 arises from the
nearly-optimal Tardos fingerprinting code used in our lower bound construction. Thus it
seems unlikely that this result can be improved unless one bypasses using fingerprinting
codes entirely in the DP lower bound construction.

1.1 Technical Overview
Fingerprinting code (FPC) and DP. We start the construction of our lower bound with the
privacy lower bounds based on fingerprinting codes [8]. For a set of n users and a parameter
c ≤ n, an (n, d, c)-FPC consists of two algorithms (Gen, Trace). The algorithm Gen on input
n outputs a codebook C ∈ {0, 1}n×d where each row is a codeword of user i ∈ [n] with code

2 We call n = Θ(
√

d) the hardest case because, when n becomes larger as a function of d, [1] show that
subsampling can improve the privacy/accuracy trade-off of existing DP algorithms.

J. Blocki, H. Fichtenberger, E. Grigorescu, and T. Mukherjee 19:5

length d = d(n, c). It guarantees that if at most c users collude to combine their codewords
into a new codeword c′ and the new code satisfies some (mild) marking condition – namely
that if every colluder has the same bit b in the j-th bit of their codeword, then the j-th bit
of c′ must also be b – then the Trace algorithm of the fingerprinting code can identify at
least one colluder with high probability.3 Bun et al. [8] used fingerprinting codes to show
that the output of any accurate algorithm for the one-way marginal problem must satisfy
the marking condition for sufficiently large d, and therefore, at least one row (i.e., individual)
from the database is identifiable – making this algorithm not private. In more detail, given a
fingerprinting code (Gen, Trace), suppose a coalition of n users builds dataset D ∈ {0, 1}n×d

where each row corresponds to a codeword of length d from the codebook Gen. For j ∈ [d],
if every user has bit b in the j-th bit of their codeword then the one-way marginal answer
for that column will be b. It is shown that any algorithm that has non-trivial accuracy
for answering the one-way marginals on D can be used to obtain a codeword that satisfies
the marking condition. Therefore, using Trace on such a codeword leads to identifying an
individual in dataset D. Since an adversary is able to identify a user in D based on the
answer given by the algorithm, this clearly violates DP.

Techniques of [8] do not directly apply. In our model, an algorithm only sees a subset of
the entries in the entire database via attribute queries. Suppose a coalition of c ≤ n users
belongs to a dataset D ∈ {0, 1}n×d where each row corresponds to a codeword of length d. As
a warm-up, let us first assume that an algorithm that solves the one-way marginal problem
on input D ∈ {0, 1}n×d always queries for entire rows and that an adversary can simulate
a query oracle to the algorithm’s queries, i.e., respond with rows that exactly correspond
to the set of c colluders (for more details see Section 5.1). To apply a fingerprinting code
argument to such an algorithm, an adversary must identify a row from this subset of c rows
by examining the output of the algorithm. However, since the accuracy guarantee of the
algorithm applies (only) to the whole dataset, we cannot make the same argument as above
to conclude that the marking condition holds for the subsample of rows. In other words, we
need to ensure that the output of an accurate algorithm that only sees a subsample of rows
can also satisfy the marking condition. The techniques of [8] do not ensure such a property.

Permute Rows and Pad and Permute Columns Fingerprinting codes (PR-PPC FPC).
In order to achieve the property described above, we need to ensure that any attempt of
the algorithm to spoil the marking condition would contradict its accuracy guarantees. We
achieve this property by padding O(d) additional columns to the codebook C to obtain
C ′ ∈ {0, 1}n×d′ , where d′ = O(d), so that (codebook) columns whose output could be
modified to violate the marking condition and (padded) columns whose modification would
violate the accuracy guarantee are indistinguishable in the subsample with good probability.
Padded columns have been used to define a variant of a fingerprinting code in previous work
to achieve smooth DP lower bounds [22]. In our work, we not only need a variant of FPC
with padded columns, but we also need to permute the rows of the codebook (see Section 4
for the construction). This is because we need to define a sampling procedure with certain
properties for the adversary to obtain a dataset on c rows from a distribution over databases
of n rows, and one way to do so is permuting the rows of the codebook and outputting the
first c rows (e.g., see Theorem 15 and Theorem 27).

3 The idea of fingerprinting codes becomes colorful when imagining a publisher who distributes advance
copies to press and wants to add watermarks that are robust, e.g., against pirated copies that result
from averaging the copies of multiple colluders. To see that the marking assumption is a mild condition,
consider that the codeword is hidden in the much larger content.

ITCS 2025

19:6 Differential Privacy and Sublinear Time Are Incompatible Sometimes

▶ Remark 2. We note that [8] used a similar padding technique to argue about obtaining
error-robust codes from “weakly-robust” codes (see Lemma 6.4 in [8]). In particular, we
could argue that the property that we need for our purpose is achieved by an error robust
code. However, we choose to start with a weaker construction, as we do not inherently need
the error robustness property.

Secret Sharing Encoding. Finally, we overcome the assumption that the algorithm queries
for entire rows by applying a secret sharing scheme to the padded codebook (see Section 5.2).
In particular, an adversary can encode each row xi ∈ {0, 1}d′ with respect to a random
polynomial of degree 2d′ − 1 as a share of size 2d. The shares are defined by the d codebook
values and d random values from the field. For each query of the algorithm, the adversary
answers with a share from the second half. Information theory implies that the algorithm
can only recover the d codebook values after querying for all d random value shares. Thus,
we obtain a derivate of the one-way marginal problem that requires the algorithm to query
an entire row to reveal the padded code book row. While there exist a DP algorithm
(Theorem 24) and a sublinear-time algorithm (Theorem 25) for this derived problem as well,
we show that there exists no sublinear-time DP algorithm (up to a log factor) that can query
for arbitrary entries in the database.

2 Related Work

Fingerprinting codes were first introduced in the context of DP lower bounds by [8]. Prior to
their work, traitor-tracing schemes (which can be thought of as a cryptographic analogue of
information-theoretic fingerprinting codes) were used by [12, 26] to obtain computational
hardness results for DP. Subsequent works have refined and generalized the connection between
DP and fingerprinting codes in many ways [23, 24, 14, 7, 21, 20, 9]. The fingerprinting
code techniques of proving DP lower bounds have been used in many settings including
principal component analysis [15], empirical risk minimization [2], mean estimation [8, 20],
regression [9], gaussian covariance estimation [21]. Recently [22] use fingerprinting codes to
give smooth lower bounds for many problems including the 1-cluster problem and k-means
clustering.

In the streaming model, [10] give a separation between the space complexity of differentially
private algorithms and non-private algorithms – under cryptographic assumptions they show
that there exists a problem that requires exponentially more space to be solved efficiently
by a DP algorithm vs a non-private algorithm. By contrast, our focus is on lower bounding
the running time (query complexity) of a differentially private algorithm. Our bounds do
not require any cryptographic assumptions. [19] give a lower bound in the continual release
model, in particular they show that there exists a problem for which any DP continual
release algorithm has error Ω̃(T 1/3) times larger than the error of a DP algorithm in the
static setting where T is the length of the stream.

3 Preliminaries

We define a database D ∈ Xn to be an ordered tuple of n rows (x1, . . . , xn) ∈ X , where X is
the data universe. For our purposes, we typically take X = {0, 1}d. Databases D and D′ are
neighboring if they differ by a single row and we denote this by D ∼ D′. In more detail, we
can replace the i-th row of a database D with some fixed element of X to obtain dataset
D−i ∼ D. Importantly both D and D−i are databases of the same size.

J. Blocki, H. Fichtenberger, E. Grigorescu, and T. Mukherjee 19:7

▶ Definition 3 (Differential Privacy [11]). Randomized algorithm A : Xn → R is (ε, δ)-
differentially private if for every two neighboring databases D ∼ D′ and every subset S ⊆ R,

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ

▶ Definition 4 (Accuracy). Randomized algorithm A : Xn → Rd is (α, p)-accurate for problem
P if for every D ∈ Xn, with probability at least 1− p, the output of A is a vector a ∈ {0, 1}d

that satisfies |aP(D)− a| ≤ α where aP(D) denotes the exact solution of the problem P on
input D.

The following definition of fingerprinting codes is “fully-collusion-resilient”. For any
coalition of users S who collectively produce a string y ∈ {0, 1}d as output, as long as y

satisfies the marking condition – for all positions 1 ≤ j ≤ d, if the values xij for all users i in
coalition S agree with some letter s ∈ {0, 1}, then yj = s – then the combined codeword y

can be traced back to a user in the coalition. Formally, for a codebook C ∈ {0, 1}n×d, and a
coalition S ⊆ [n], we define the set of feasible codewords for CS to be

F (CS) = {c′ ∈ {0, 1}d | ∀j ∈ [d],∃i ∈ S, c′j = cij}

▶ Definition 5 (Fingerprinting Codes [8]). For any n, d ∈ N, ξ ∈ (0, 1], a pair of algorithms
(Gen, Trace) is an (n, d, c)-fingerprinting code with security ξ against a coalition of size c if
Gen outputs a codebook C ∈ {0, 1}n×d and secret state st and for every (possibly randomized)
adversary AF P , and every coalition S ⊆ [n] such that |S| ≤ c, if we set c′ ←R AF P (CS) then
1. Pr[c′ ∈ F (CS) ∧ Trace(c′) =⊥] ≤ ξ

2. Pr[Trace(c′) ∈ [n] \ S] ≤ ξ

where CS contains the rows of C given by S, and the probability is taken over the coins of C,
Trace, and AF P . The algorithms Gen and Trace may share a common state denoted as st.

▶ Remark 6. Although the adversary AF P is defined as taking the coalition of users’ rows
as input, we may abuse this notation and consider the entire codebook or a different input
(related to the codebook) altogether. This does not change the security guarantees of the
FPC against adversary AF P because the security guarantee holds as long as the output of
AF P is a result of the users in the coalition S actively colluding.

▶ Theorem 7 (Tardos Fingerprinting Code [25]). For every n ∈ N and 4 ≤ c ≤ n, there exists
an (n, d, c)-fingerprinting code of length d = O(c2 log(n/ξ)) with security ξ ∈ [0, 1] against
coalitions of size c.

▶ Theorem 8 (Gaussian Mechanism, [13]). Let ε, δ ∈ (0, 1) and f : Nd → Rd. For c >√
2 ln(1.25/δ)/ε, the Gaussian Mechanism with standard deviation parameter σ ≥ c∆2f is

(ε, δ)-DP, where ∆2 is the ℓ2-norm sensitivity of f .

▶ Lemma 9. For n ≥
√

200d ln(20d) ln(1.25/δ)/ε ∈ Ω̃(
√

d), given a dataset D ∈ {0, 1}n×d,
there exists a (1/10, 1/10)-accurate (ε, δ)-DP algorithm that solves the one-way marginals
problem with O(m) attribute queries, where m = n · d.

Proof. We note that the ℓ2-sensitivity of the one-way marginals problem on a database
{0, 1}n×d is

√
d/n. For n ≥

√
200d ln(20d) ln(1.25/δ)/ε ∈ Ω̃(

√
d), the Gaussian Mechanism

is (1/10, 1/10)-accurate with

σ =
√

2 ln(1.25/δ)
ε

· ε
√

200d√
2 ln(1.25/δ) · d ln(10d)

= 1√
200 ln(10d)

,

as Pr
X∼N (0,σ2)

[
X ≥ 1

10

]
≤ 2e−

1
200σ2 ≤ 1

20d

by the Cramer-Chernoff inequality and a union bound over all d columns of the dataset. ◀

ITCS 2025

19:8 Differential Privacy and Sublinear Time Are Incompatible Sometimes

4 Permute Rows and Pad and Permute Columns Fingerprinting Codes
(PR-PPC FPC)

In this section, we first introduce our pad and permute variant of the original fingerprinting
codes where we Permute Rows and Pad and Permute Columns (PR-PPC (n, d, c, ℓ)-FPC).
Given (Gen, Trace) of an (n, d, c)-FPC, we construct Gen′ and Trace′ in Algorithm 1 and
Algorithm 2 to produce a PR-PPC (n, d, c, ℓ)-FPC. In more detail, Gen′ samples codebook C

and secret state st from Gen where C ∈ {0, 1}n×d. It then permutes the rows via a random
permutation πR, after which it pads 2ℓ columns and performs another random permutation π

on the columns. Then, it releases the resulting codebook C ′ ∈ {0, 1}n×d′ , where d′ = d + 2ℓ

and ℓ is the parameter which controls the number of columns padded to C. Note that the
row permutation πR is public while the column permutation π is part of the new secret state
st′. The algorithm Trace′ receives an answer vector of dimension d′ and uses its secret state
st′ = (st, π) to feed the vector entries that correspond to the original first d columns via π−1

to Trace and releases the output of Trace. We obtain the following result directly from the
definition of Gen′ and Trace′.

▶ Corollary 10. Given an (n, d, c)-FPC, ℓ ≥ 0, and the corresponding PR-PPC (n, d, c, ℓ)-
FPC, the properties of Trace as stated by Definition 5 translate directly to Trace′.

Algorithm 1 Gen′.

Require: Number of users n ∈ N, number of padded 0/1 columns ℓ

1: Sample codebook (C, st)← Gen(n) such that C ∈ {0, 1}n×d.
2: Sample random permutation π : [d′]→ [d′] where d′ := d + 2ℓ. For an n× d′ matrix A,

define n× d′ matrix π(A) such that π(j)-th column of π(A) equals to the j-th column of
A for every j ∈ [d′].

3: Sample random permutation πR : [n]→ [n]. For an n-row matrix A, define πR(A) such
that πR(i)-th row of πR(A) equals to the i-th row of A for every i ∈ [n].

4: CπR ← Permute rows of C via random permutation πR.
5: Cpad ← Pad ℓ columns of all 1’s and ℓ columns of all 0’s to matrix CπR .
6: C ′ ←Permute the columns of Cpad according to random permutation π.
7: Output C ′ along with the new secret state st′ := (st, π) and permutation πR.

Algorithm 2 T race′.

Require: Answer vector a = (a1, . . . , ad′) ∈ {0, 1}d′ , secret state st′ = (π, st)
1: Output Trace(aog, st) where aog = (aπ(1), . . . , aπ(d)) ∈ {0, 1}d.

We define the feasible sample property of an FPC below. Informally, it states that if we
have an algorithm that takes a sample of rows from a codebook as input, and the algorithm’s
output is a feasible codeword for the entire codebook, then the same output should be a
feasible codeword for the sample.

▶ Definition 11 (Feasible Sample Property). Let C ∈ {0, 1}n×d be a codebook of an (n, d, c)-
FPC, S ⊆ [n] be a coalition and CS ⊆ C be the matrix consisting of the corresponding rows
indexed by S. Given an algorithm A that takes as input CS and outputs a vector o ∈ {0, 1}d,
the feasible sample property states that if o ∈ F (C), then o ∈ F (CS).

▶ Lemma 12. PR-PPC (n, d, c, ℓ)-FPC satisfies the feasible sample property with probability
at least 1− d

ℓ .

J. Blocki, H. Fichtenberger, E. Grigorescu, and T. Mukherjee 19:9

Proof. Given (Gen′, T race′) of PR-PPC (n, d, c, ℓ)-FPC which produces codebook C ′ ∈
{0, 1}n×d′ and sampling algorithm A which takes as input C ′S ⊆ C ′ and outputs a vector
o ∈ {0, 1}d′ where d′ = d + 2ℓ, we define the event BADS as o ∈ F (C ′) but o ̸∈ F (C ′S).

We denote the indices of columns of C ′ in which all the bits are 1 as C ′|1 and the indices
of columns in which all the bits are 0 as C ′|0. Similarly, we define C ′S|1 and C ′S|0 for the
columns that are all 1 and all 0 in C ′S , respectively. Note that C ′|1 ⊆ C ′S|1 and C ′|0 ⊆ C ′S|0.
Since by definition, algorithm A only has access to the set of rows in C ′S , in order for the
output o to satisfy o ∈ F (C ′) but o ̸∈ F (C ′S), an adversary that aims for BADS must flip
a bit of the resulting codeword that originates from {C ′S|1 ∪ C ′S|0} \ {C

′
|1 ∪ C ′|0}. In other

words, the event BADS occurs only if the adversary identifies a column from C ′ that contains
at least one 0 and one 1, but reduces to an all-1 or all-0 column in C ′S .

More formally, the adversary can pick the bit b ∈ {0, 1} resulting in a column from C ′S|b
to flip. The probability that the adversary correctly identifies a column from C ′S|b \ C ′|b is

at most |C
′
S|b\C

′
|b|

|C′
S|b
| . Observe that |C ′S|b| ≥ |C ′|b| ≥ ℓ due to the ℓ padded all-b columns, and

therefore |C ′S|b \ C ′|b| ≤ |C
′
S|b| − |C

′
|b| ≤ (d + ℓ) − ℓ = d. Thus, the probability that event

BADS occurs is at most maxb∈{0,1}
|C′

S|b\C
′
|b|

|C′
S|b
| ≤

d
ℓ . ◀

5 Lower Bound

We present our lower bound for sublinear-time DP algorithms in this section. In Section 5.1
we discuss a warm-up problem, where the algorithm can only make row queries to release
the one-way marginals of the dataset. We present our main result and the lower bound
construction for algorithms that can make arbitrary attribute queries in Section 5.2. In the
sequel, our problem space has size m = n · d = Ω(d

√
d) and our results will be in terms of

dimension d.

5.1 Warm Up: Using a Random Oracle

In this section, we first present a warm-up problem which we call the Random Oracle Problem
(PRO). This is an extension of the one-way marginals problem in the following manner – for
an input dataset D = (x1, . . . , xn), and access to a random oracle H, the PRO problem takes
as input an encoded dataset DH = (z1, . . . , zn) in which zi = H(i) ⊕ xi, and outputs the
one-way marginals of the underlying dataset D (see Definition 13 for a formal definition).
The main intuition for introducing such a problem is that we want to force an algorithm that
solves this problem to query an entire row. Recall that in our (final) model an algorithm is
allowed to make arbitrary attribute queries – however, given DH , in order to approximate or
exactly compute the one-way marginals of D, an algorithm needs to query H(i) for i ∈ [n],
as otherwise, by the properties of the random oracle and one-time pad (OTP), the value of
xi is information-theoretically hidden.

▶ Definition 13 (Random Oracle Problem PRO). Given a random oracle H : [n]→ {0, 1}d,
and a dataset D = (x1, . . . , xn) where xi ∈ {0, 1}d, define dataset DH := (z1, . . . , zn) where
zi = H(i)⊕ xi. For simplicity of notation, we refer to the operation for obtaining DH from
D as H(D). The problem PRO on input DH releases the one-way marginals of D.

We use PRO(D) to denote that PRO releases the one-way marginals of the underlying
dataset D.

ITCS 2025

19:10 Differential Privacy and Sublinear Time Are Incompatible Sometimes

Query Model. On input DH ∈ ({0, 1}d)n, an algorithm can query the random oracle H

through row queries, i.e., given a row index i ∈ [n] of DH , the answer given is H(i) ∈ {0, 1}d.
We note that our final result in this subsection will still be presented in the form of attribute
queries as 1 row query translates to d attribute queries.

Observe that there exists an (ε, δ)-DP algorithm for PRO(D) that on input DH , queries
the entire dataset via row queries to the random oracle H, i.e., it makes dn = O(d

√
d) queries.

After obtaining the rows to the underlying dataset D it releases the one-way marginals
using the Gaussian Mechanism (see Lemma 9). We also note that there exists a sublinear
non-DP algorithm for PRO(D) which makes O(d log d) queries, which is a simple corollary of
Hoeffding bounds. Our goal in this section is to prove the lower bound below. Recall that
n ∈ Ω(

√
d), so the problem size is Ω(d

√
d).

▶ Theorem 14 (Lower Bound for PRO). Any algorithm that solves the problem PRO with
s attribute query complexity, (1/3, 1/3)-accuracy and (O(1), o(1/s))-DP must have s =
Ω(d

√
d/ log(d)).

We present a high level overview of the proof of Theorem 14 here. We first show that
given an (n, d, c)-FPC, there exists a distribution on c rows from which an adversary B can
sample and create an n-row input instance for an algorithm A that accurately solves PRO

(see Theorem 15). Next we argue that the rounded output of A, denoted as a, is a feasible
codeword for the sample of c rows as long as A is accurate in a non-trivial manner and a is
feasible for the entire dataset (see Lemma 17). The adversary B can then use the output
from A to (potentially) reidentify an individual from the coalition of size c. Next we relate
these claims back to DP through Lemma 18, which states that if there exists a distribution
C on c ≤ n row databases according to Theorem 15, then there is no (ε, δ)-DP algorithm
A that is (1/3, 1/3)-accurate for PRO with ε = O(1) and δ = o(1/c). Finally, invoking the
Tardos construction for fingerprinting codes in Theorem 7 gives us our lower bound.

▶ Theorem 15. For every n, d ∈ N, ξ ∈ [0, 1] and c ≤ n, if there exists an (n, d, c)-
fingerprinting code with security ξ, then there exists a distribution on c-row databases CS , a
row permutation πR : [n]→ [n], and an adversary B for every randomized algorithm A with
row query complexity c and (1/3, 1/3)-accuracy for PRO such that
1. PrC′

S
←CS [BA(C ′S) =⊥] ≤ ξ

2. For every i ∈ [c], PrC′
S
←CS [BA(C ′S−i

) = π−1
R (i)] ≤ ξ.

The probabilities are taken over the random coins of B and the choice of C ′S.

Let (Gen, Trace) be the promised (n, d, c)-fingerprinting code in the theorem statement. We
first construct a PR-PPC (n, d, c, ℓ)-FPC with ℓ := 100d (see Section 4 for details).

The distribution CS on c-row databases is implicitly defined through the sampling process
below
1. Let C ′ ← Gen′(n, 100d) (see Algorithm 1) where C ′ ∈ {0, 1}n×d′ and d′ = d+100d = 101d.

Note that Gen′ also outputs πR which is a public permutation on rows.
2. Let C ′S = (x1, . . . , xc) ∈ {0, 1}c×d′ be the first c rows of C ′ ∈ {0, 1}n×d′

3. Output C ′S
Next we define the privacy adversary B.

Adversary B Algorithm. Adversary B receives C ′S as input and does the following:
1. Create a database D = (r1, . . . , rn) ∈ {0, 1}n×d′ where each row ri ∈ {0, 1}d′ consists of

0/1 entries sampled independently and uniformly at random.

J. Blocki, H. Fichtenberger, E. Grigorescu, and T. Mukherjee 19:11

2. Given oracle access to randomized algorithm A which solves PRO on input D, B simulates
the answer to the distinct ij-th row query (where j ∈ [c]) made by A to random oracle
H as follows:
a. Return H(ij) := rij ⊕ xj .

3. Let a be the output of A(D) where a ∈ [0, 1]d′ . Round each entry of a to {0, 1}, call this
new vector ā ∈ {0, 1}d′ .

4. Output Trace′(ā)

Analysis. We focus on proving that Property 1 and Property 2 of the theorem statement
are indeed satisfied by adversary B.

Recall the notation in Definition 13 where PRO(C ′) means that PRO releases the one-way
marginals of the underlying dataset C ′. We first show that A solving PRO(H(D)) is perfectly
indistinguishable from A solving PRO(C ′) in Lemma 16. This is necessary as Trace′ can
only identify an individual in the coalition of size c with respect to the codebook C ′ produced
by Gen′.

▶ Lemma 16. A solving PRO(H(D)) is perfectly indistinguishable from A solving PRO(C ′).

Proof. We define the following experiments.

Real World.
1. Given C ′ = (x1, . . . , xn) where (C ′, st′)← Gen′(ℓ) with ℓ = 100d, let C ′S = (x1, . . . , xc).
2. Create a database D = (r1, . . . , rn) where ri ∈ {0, 1}d′ are random entries.
3. Let a be the output of A(D) where a ∈ [0, 1]d′ . Simulate H as follows:

a. Let i1, . . . , ic be distinct queries made to H. For j ∈ [c], fix H(ij) := rij
⊕ xj

Ideal World.
1. Given codebook C ′ = (x1, . . . , xn) where (C ′, st′)← Gen′(ℓ) with ℓ = 100d, let H(C ′) =

(z1, . . . , zn) (see Definition 13 for H(·) notation).
2. Let a← A(H(C ′)) where a ∈ [0, 1]d′ .

a. Let i1, . . . , ic be distinct arbitrary queries made to H. For j ∈ [c], H returns the
following answer H(ij) := zij ⊕ xj

In the Real World, A is provided D = (r1, . . . , rn) as input (where D is generated in
the same manner as by adversary B), while the Ideal World is one in which A takes H(C ′)
as input. We show that A learns the same information in the Real World and the Ideal
World, i.e., these views are perfectly indistinguishable. Observe that the only difference from
the viewpoint of A between the Real World and the Ideal World is that H is simulated
in the former via indices fixed by C ′S whereas H is queried on arbitrary indices in the latter.
Since the rows of C ′ have already been permuted (recall Algorithm 1), by nature of the
random oracle H, these two instances are perfectly indistinguishable. ◀

Recall that the security condition of the fingerprinting code (see Definition 5) only holds
if ā is a feasible codeword for the coalition of rows, i.e., C ′S in our case. The following lemma
states that if A is accurate for PRO(C ′), then the rounded output of A is indeed a feasible
codeword for both C ′ and C ′S .

▶ Lemma 17. Suppose A is (1/3, 1/3)-accurate for PRO(C ′). Then the rounded output ā
from algorithm A is a feasible codeword for both C ′ and C ′S with probability at least 1− 1

3−
1

100 .
In other words, with probability at least 1− 1

3 −
1

100 , ā ∈ F (C ′) and ā ∈ F (C ′S).

ITCS 2025

19:12 Differential Privacy and Sublinear Time Are Incompatible Sometimes

Proof. Assuming that A is (1/3, 1/3)-accurate for PRO(C ′), we first show that ā is a feasible
codeword for C ′ with probability at least 2/3. By the accuracy guarantee of A, we know
that for any column ij |aij

− aij
| ≤ 1/3 where aij

is the actual 1-way marginal for column ij

with probability at least 2/3. Thus for any column ij of all 1’s in C ′, aij ≥ 2/3 which means
āij

= 1, thus satisfying the marking condition. A similar argument holds for the case when a
column is all 0’s.

Next, using the fact that we use a PR-PPC (n, d, c, 100d)-FPC and that ā ∈ F (C ′) with
probability at least 2/3, we can invoke Lemma 12 which states that the feasible sample
property is satisfied by our PR-PPC FPC construction. Note that in our case, the sampling
algorithm described in Definition 11 is A together with the postprocessing step of rounding
the output of A. Also, even though A takes the entire dataset as input, it effectively only has
access to the rows of the underlying sample via queries to B and thus satisfies the properties
required in Definition 11. Lemma 12 states that with probability ≤ 1

100 , ā is not a feasible
codeword for C ′S . By a union bound we have that 1− 1

3 −
1

100 , ā must be a feasible codeword
for C ′S . ◀

Proof of Theorem 15. From the above Lemma 17, we have that A is (1/3, 1/3)-accurate for
PRO(C ′) implies that ā is a feasible codeword for C ′S . By the security of the fingerprinting
code, Corollary 10 and Lemma 16, we have that Pr[ā ∈ F (C ′S)∧Trace′(ā) =⊥] ≤ ξ. Since B
releases the output of Trace′(ā), the event BA(C ′S) =⊥ is identical to Trace′(ā) =⊥. Thus
Property 1 of the theorem statement which states that the probability that B outputs ⊥
is bounded by ξ follows. Property 2 follows directly from the soundness property of the
fingerprinting code. ◀

▶ Lemma 18. Suppose there exists a distribution on c ≤ n row databases CS according
to Theorem 15. Then there is no (ε, δ)-DP algorithm A with query complexity c that is
(1/3, 1/3)-accurate for PRO with ε = O(1) and δ = o(1/c).

Proof. Suppose C ′S is sampled from the distribution on c-row databases CS and B is the
adversary from Theorem 15. From the lemma statement we know that A is (1/3, 1/3)-
accurate, thus using Lemma 17 and Theorem 15, we have that Pr[πR(BA(C ′S)) ∈ [c]] ≥
1 − 1

3 −
1

100 − ξ ≥ Ω(1). By an averaging argument, this means that there exists some
i∗ ∈ [c] for which Pr[πR(BA(C ′S)) = i∗] ≥ Ω(1/c). However, if ξ = o(1/c) by Property 2 in
Theorem 15 we have that Pr[πR(BA(C ′S−i∗)) = i∗] ≤ ξ = o(1/c).

In other words, the probability of BA outputting a fixed output i∗ on neighboring input
databases C ′S and C ′S−i∗ is different, which violates (ε, δ)-DP for any ε = O(1) and δ = o(1/c).
We note here that since A can make at most c row queries, the DP guarantee for A must hold
for any neighboring sample of c rows. Since B does some postprocessing of the output from
A, and we have shown that B cannot be (ε, δ)-DP, this implies that A cannot be (ε, δ)-DP
for any ε = O(1) and δ = o(1/c). ◀

5.2 Using a Secret Sharing Encoding
In this section, we remove the requirement of an algorithm querying an entire row that
we enforced in the previous section. We first define the security requirement of a general
encoding scheme that is sufficient to construct our DP lower bound in Definition 19. We then
show that the Shamir encoding as defined in Definition 20 satisfies the security requirement
(see Theorem 23). We define a problem based on this secret sharing encoding called PSS

(see Definition 21) that uses the encoding to release the one-way marginals of an underlying
dataset. Finally, we show that this problem cannot have a sublinear time DP algorithm with
reasonable accuracy (see Theorem 26).

J. Blocki, H. Fichtenberger, E. Grigorescu, and T. Mukherjee 19:13

▶ Definition 19 (Security Game). Let Exp(Encd,A, q, d, x) denote the following experiment:
(1) the challenger computes y0 ← Encd(x) and y1 ← Encd(0d), picks a random bit b and
outputs y = yb. (2) Ay(d, q, x) is given oracle access to y and may make up to q queries to
the string y. (3) The game ends when the attacker A outputs a guess b′. (4) The output of
the experiment is Exp(Encd,A, q, d, x) = 1 if b′ = b and the attacker made at most q queries
to y; otherwise the output of the experiment is Exp(A, q, d, x) = 0. We say that the scheme
Encd is (q(d), d, γ(q, d))-secure if for all x ∈ {0, 1}d and all attackers A making at most q

queries we have

Pr[Exp(Encd,A, q, d, x) = 1] ≤ 1
2 + γ(q, d)

▶ Definition 20 (Shamir Encoding). Given a row xi ∈ {0, 1}d where i ∈ [n] and a
field F s.t. |F| > 4d let SSd(xi) be the following encoding (1) pick random field ele-
ments α

(i)
1 , . . . , α

(i)
d , α

(i)
d+1, . . . , α

(i)
3d (distinct) and z

(i)
d+1, . . . , z

(i)
2d and define the polynomial

pi(·) of degree 2d − 1 s.t. pi(α(i)
j) = xj and pi(α(i)

d+j) = z
(i)
d+j for j ≤ d. (2) publish

SSd(xi) =
(

α
(i)
1 , . . . , α

(i)
d , {(α(i)

j , pi(α(i)
j))}3d

j=d+1

)
as share of xi.

▶ Definition 21 (Secret Sharing Problem PSS). Let dataset D := (x1, . . . , xn) ∈ {0, 1}n×d.
Given DS := (SSd(x1), . . . , SSd(xn)), the goal of the secret-sharing problem PSS is to release
all the one-way marginals of dataset D.

We use PSS,d(D) to denote that PSS releases the one-way marginals of the underlying
dataset D with dimension d.

Query Model. On input DS , an algorithm solving the PSS problem can make attribute
queries to obtain the underlying dataset D and release its one-way marginals. For a row
i ∈ [n], the ij-th attribute query returns the pair of field elements (α(i)

j+d, p(α(i)
j+d)) of share

SSd(xi) for 1 ≤ j ≤ 2d. We note that the prefix of SSd(xi) given by α
(i)
1 , . . . , α

(i)
d is published

separately after an attribute query for the row i has been queried. In other words, the prefix
does not count towards the query complexity of the algorithm.

▶ Remark 22. We remark that one can also define a different query model in which the prefix
is released to the adversary whenever the i-th row is queried and our results still hold.

For completeness, we first show that the Shamir encoding SSd defined in Definition 20 is
(q(d), d, 0)-secure (as defined in Definition 19) where q(d) = d.

▶ Theorem 23. The scheme SSd is (d, d, 0)-secure.

Proof. Let x ∈ {0, 1}d and field F s.t. |F| > 4d. Recall the secret sharing scheme SSd(x) =
(α1, . . . , αd, {(αj , p(αj))}3d

j=d+1) defined in Definition 20. We describe two experiments below
where the Real World experiment simulates the view of the adversary and the Ideal World
experiment just randomly outputs field elements. We will show that these two experiments
are perfectly indistinguishable, and the security claim follows.

Real World(x).
1. Query SSd(x) for the first q(d) = d pairs of coordinates and let the answers be the prefix

α1, . . . αd and {(αj+d, zj+d)}j∈[d].
2. Output α1, . . . αd and {(αj+d, zj+d)}j∈[d]

ITCS 2025

19:14 Differential Privacy and Sublinear Time Are Incompatible Sometimes

Ideal World(x).
1. Uniformly sample α′1, . . . , α′d, α′d+1, . . . , α′2d, rd+1, . . . , r2d from F.
2. Output α′1, . . . α′d and {(α′j+d, rj+d)}j∈[d]

Since by construction, the first d pairs of coordinates returned by SSd and the prefix of
size d correspond to 3d random field elements, the view of the Real World is therefore just
the uniform distribution on 3d field elements and thus is identical to that of the view of the
Ideal World. ◀

We present our main lower bound result in Theorem 26. Before we proceed, we first
demonstrate the existence of a DP linear-time algorithm and non-DP sublinear-time algorithm
for PSS below.

▶ Theorem 24. There exists a (ε, δ)-DP algorithm that solves the problem PSS with O(d
√

d)
attribute query complexity and (1/10, 1/10)-accuracy.

Proof. On input DS , the algorithm queries the entire dataset via attribute queries, i.e., it
makes dn = O(d

√
d) queries. Given SS(xi) = (α(i)

1 , . . . , α
(i)
d , {(α(i)

j , pi(α(i)
j))}3d

j=d+1) for a
row i ∈ [n], the algorithm first recovers the polynomial pi of degree 2d− 1 by doing Lagrange
Interpolation over the 2d points given by {(α(i)

j , pi(α(i)
j))}3d

j=d+1. Then the original row xi is
obtained by evaluating (pi(α(i)

1), . . . , pi(α(i)
d)). Once the original rows xi, . . . , xn are recovered

in this manner, the algorithm can release the one-way marginals by adding Gaussian noise
as detailed in Lemma 9. ◀

▶ Theorem 25. There exists a sublinear-time algorithm that solves the problem PSS with s

attribute query complexity O(d log d) and (1/10, 1/10)-accuracy.

Proof. The algorithm makes O(d log d) attribute queries and performs the same decoding
procedure as outlined in the proof of Theorem 24 to obtain the underlying log(d) rows and
computes the one-way marginals on this subset of rows. The accuracy of this algorithm
is a simple corollary of Hoeffding bounds. Recall that n ∈ Ω(

√
d), so the problem size is

Ω(d
√

d). ◀

▶ Theorem 26 (Main Theorem). Any algorithm that solves the problem PSS with s attribute
query complexity, (1/3, 1/3)-accuracy and (O(1), o(1/n))-DP must have s = Ω(d

√
d/ log(d)).

In order to prove Theorem 26, we follow a similar strategy as presented in the warm-up
Section 5.1. Given an (n, d, c)-FPC, we first show how to construct a c-row distribution and
an adversary B that can identify a user in the coalition of size c in Theorem 27.

▶ Theorem 27. For every n, d ∈ N, ξ ∈ [0, 1] and c ≤ n, if there exists an (n, d, c)-
fingerprinting code with security ξ, then there exists a distribution on c-row databases CS , a
row permutation πR : [n]→ [n] and an adversary B for every randomized algorithm A with
attribute query complexity cd′ and (1/3, 1/3)-accuracy for PSS such that
1. PrC′

S
←CS [BA(C ′S) =⊥] ≤ ξ

2. For every i ∈ [c], PrC′
S
←CS [BA(C ′S−i

) = π−1
R (i)] ≤ ξ.

where d′ = 101d and the probability is over the random coins of B and the choice of C ′S.

Let (Gen, Trace) be the promised (n, d, c)-fingerprinting code in the theorem statement.
We first construct a PR-PPC (n, d, c, ℓ)-FPC with ℓ := 100d (see Section 4 for details).

The distribution CS on c-row databases is implicitly defined through the sampling process
below:

J. Blocki, H. Fichtenberger, E. Grigorescu, and T. Mukherjee 19:15

1. Let C ′ ← Gen′(n, d′) (see Algorithm 1) where C ′ ∈ {0, 1}n×d′ and d′ = 101d.
2. Let C ′S = (x1, . . . , xc) ∈ {0, 1}c×d′ be the first c rows of C ′ ∈ {0, 1}n×d′

3. Output C ′S
Next we define the privacy adversary B.

Adversary B Algorithm. Let F be a finite field of order q′ where q′ > 4d′. Adversary
B receives C ′S = (x1, . . . , xc) as input and feeds the algorithm A an input instance C ′B of
PSS,d′(C ′) by simulating answers to attribute queries made by A as described in Step 2a
below. B then uses the rounded answer returned by A (Step 2b) to obtain an individual in
the coalition by invoking Trace′ in Step 2c.

1. Initialize qi = 0 for each row i ∈ [n] and initialize a counter t = 0.
2. Simulate the oracle algorithm A with query access to an (n× 2d′) database C ′B:

a. When A makes a fresh query (i, j), update qi = qi + 1 and
If qi ≤ d′, then set b = qi + d′. Respond with a random pair of field elements
(α(i)

b , zi
b). Record this tuple.

If qi = d′ + 1, then
i. Increment t by one.
ii. Define the entire polynomial pi randomly, subject to the constraints that it is

consistent with row xt and the previous responses sent for row i: pi(α(i)
j) = xt,j

for j ≤ d′ and pi(α(i)
b) = zi

b for j > d′.
iii. Send A the response (α(i)

j+d′ , pi(α(i)
j+d′)).

If qi > d′ + 1, then the polynomial pi is already defined. Send the response
(α(i)

j+d′ , pi(α(i)
j+d′)).

b. When A outputs a vector a ∈ [0, 1]d′ , round its entries to 0, 1 and call it ā ∈ {0, 1}d′ .
c. Return Trace′(ā).

We emphasize that although algorithm A can make attribute queries to more than c rows,
the adversary B never defines a secret sharing polynomial for more than t ≤ c rows of the
input C ′S .

▶ Lemma 28. Suppose A is (1/3, 1/3)-accurate for PSS,d′(C ′). Then the rounded output ā
from algorithm A is a feasible codeword for both C ′ and C ′S with probability at least 1− 1

3−
1

100 .
In other words, with probability at least 1− 1

3 −
1

100 , ā ∈ F (C ′) and ā ∈ F (C ′S).

Proof. Assuming that A is (1/3, 1/3)-accurate for PSS,d′(C ′), we first show that ā is a
feasible codeword for C ′ with probability at least 2/3. By the accuracy guarantee of A, we
know that for any column ij with probability at least 2/3, |aij

− aij
| ≤ 1/3 where aij

is the
actual one-way marginal for column ij . Thus for any column ij of all 1’s in C ′, aij

≥ 2/3
which means āij

= 1, thus satisfying the marking condition. A similar argument holds for
the case when a column is all 0’s.

Next, using the fact that we use a PR-PPC (n, d, c, 100d)-FPC and that ā ∈ F (C ′) with
probability at least 2/3, we can invoke Lemma 12 which states that the feasible sample
property is satisfied by our PR-PPC FPC construction. Note that in our case, the sampling
algorithm described in Definition 11 is A together with the postprocessing step of rounding
the output of A. Also, even though A takes the entire dataset as input, it effectively only has
access to the rows of the underlying sample via queries to B and thus satisfies the properties
required in Definition 11. In particular, recall that the adversary maintains the invariant
t ≤ c. Lemma 12 states that with probability ≤ 1

100 , ā is not a feasible codeword for C ′S . By
a union bound we have that 1− 1

3 −
1

100 , ā must be a feasible codeword for C ′S . ◀

ITCS 2025

19:16 Differential Privacy and Sublinear Time Are Incompatible Sometimes

Proof of Theorem 27. From the above Lemma 28, we have that A is (1/3, 1/3)-accurate
for PSS,d′(C ′) implies that ā is a feasible codeword for C ′S . By the security of the underly-
ing (n, d, c)-fingerprinting code and the corresponding security guarantee of the PR-PPC
(n, d, c, 100d)-FPC given by Corollary 10, we have that Pr[ā ∈ F (C ′S) ∧ Trace′(ā) =⊥] ≤ ξ.
Since B releases the output of Trace′(ā), the event BA(C ′S) =⊥ is identical to Trace′(ā) =⊥.
Thus Property 1 of the theorem statement which states that the probability that B outputs
⊥ is bounded by ξ follows. Property 2 follows directly from the soundness property of the
fingerprinting code. ◀

▶ Corollary 29. A must make at least c · d′ attribute queries to CB to obtain c rows of C ′S
where d′ = 101d.

Proof. Recall that Theorem 23 states that SSd′ is (d′, d′, 0)-secure where d′ = 101d. Thus,
in order to obtain each row of C ′S , A must make at least d′ cell queries. The statement
follows from the fact that A queries for c rows in total. ◀

▶ Lemma 30. Suppose there exists a distribution on c ≤ n row databases according to
Theorem 27. Then there is no (ε, δ)-DP algorithm A with row query complexity c that is
(1/3, 1/3)-accurate for PSS with ε = O(1) and δ = o(1/c).

Proof. Suppose C ′S is sampled from the distribution on c-row databases CS and B is the
adversary from Theorem 27. From the lemma statement we know that A is (1/3, 1/3)-
accurate, thus using Lemma 28 and Theorem 27, we have that Pr[πR(BA(C ′S)) ∈ [c]] ≥
1 − 1

3 −
1

100 − ξ ≥ Ω(1). By an averaging argument, this means that there exists some
i∗ ∈ [c] for which Pr[πR(BA(C ′S)) = i∗] ≥ Ω(1/c). However, if ξ = o(1/c) by Property 2 in
Theorem 27 we have that Pr[πR(BA(C ′S−i∗)) = i∗] ≤ ξ = o(1/c).

In other words, the probability of BA outputting a fixed output i∗ on neighboring input
databases C ′S and C ′S−i∗ is different which violates (ε, δ)-DP for any ε = O(1) and δ = o(1/c).
We note here that since A can make at most c row queries, the DP guarantee for A must hold
for any neighboring sample of c rows. Since B does some postprocessing of the output from
A, and we have shown that B cannot be (ε, δ)-DP, this implies that A cannot be (ε, δ)-DP
for any ε = O(1) and δ = o(1/c). ◀

Proof of Theorem 26 . Recall that Lemma 30 states that if there exists a distribution CS
on c ≤ n row databases, then there is no (ε, δ)-DP algorithm A that is (1/3, 1/3)-accurate
for PSS with ε = O(1) and δ = o(1/c). From Theorem 27, such a distribution can be
constructed from an (n, d, c)-fingerprinting code. Finally, invoking the Tardos construction
for fingerprinting codes in Theorem 7, we get that the row query complexity must be
c = Ω(

√
d/ log(d)). Using Corollary 29, we know that the cell query complexity must be at

least c · d′ ≥ Ω(d
√

d/ log(d)) where d′ = 101d. ◀

References
1 Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling:

Tight analyses via couplings and divergences. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, pages 6280–6290, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/
3b5020bb891119b9f5130f1fea9bd773-Abstract.html.

2 Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, pages 464–473. IEEE Computer Society, 2014. doi:
10.1109/FOCS.2014.56.

https://proceedings.neurips.cc/paper/2018/hash/3b5020bb891119b9f5130f1fea9bd773-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3b5020bb891119b9f5130f1fea9bd773-Abstract.html
https://doi.org/10.1109/FOCS.2014.56
https://doi.org/10.1109/FOCS.2014.56

J. Blocki, H. Fichtenberger, E. Grigorescu, and T. Mukherjee 19:17

3 Jeremiah Blocki, Elena Grigorescu, and Tamalika Mukherjee. Differentially-private sublinear-
time clustering. In 2021 IEEE International Symposium on Information Theory (ISIT), pages
332–337. IEEE, 2021. doi:10.1109/ISIT45174.2021.9518014.

4 Jeremiah Blocki, Elena Grigorescu, and Tamalika Mukherjee. Privately estimating graph
parameters in sublinear time. In 49th International Colloquium on Automata, Languages,
and Programming (ICALP 2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ICALP.2022.26.

5 Jeremiah Blocki, Elena Grigorescu, Tamalika Mukherjee, and Samson Zhou. How to make your
approximation algorithm private: A black-box differentially-private transformation for tunable
approximation algorithms of functions with low sensitivity. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2023,
volume 275 of LIPIcs, pages 59:1–59:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.APPROX/RANDOM.2023.59.

6 Jeremiah Blocki, Seunghoon Lee, Tamalika Mukherjee, and Samson Zhou. Differentially private
L2-heavy hitters in the sliding window model. In The Eleventh International Conference on
Learning Representations, ICLR 2023. OpenReview.net, 2023.

7 Mark Bun, Thomas Steinke, and Jonathan R. Ullman. Make up your mind: The price of online
queries in differential privacy. J. Priv. Confidentiality, 9(1), 2019. doi:10.29012/JPC.655.

8 Mark Bun, Jonathan R. Ullman, and Salil P. Vadhan. Fingerprinting codes and the price of
approximate differential privacy. SIAM J. Comput., 47(5):1888–1938, 2018. doi:10.1137/
15M1033587.

9 T Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates of convergence
for parameter estimation with differential privacy. The Annals of Statistics, 49(5):2825–2850,
2021.

10 Itai Dinur, Uri Stemmer, David P. Woodruff, and Samson Zhou. On differential privacy and
adaptive data analysis with bounded space. In Advances in Cryptology – EUROCRYPT 2023
– 42nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, volume 14006 of Lecture Notes in Computer Science, pages 35–65. Springer, 2023.
doi:10.1007/978-3-031-30620-4_2.

11 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography, Third Theory of Cryptography
Conference, TCC, Proceedings, pages 265–284, 2006. doi:10.1007/11681878_14.

12 Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On the
complexity of differentially private data release: efficient algorithms and hardness results. In
Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, pages 381–390. ACM, 2009. doi:10.1145/1536414.1536467.

13 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014. doi:
10.1561/0400000042.

14 Cynthia Dwork, Adam D. Smith, Thomas Steinke, Jonathan R. Ullman, and Salil P. Vadhan.
Robust traceability from trace amounts. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, pages 650–669. IEEE Computer
Society, 2015. doi:10.1109/FOCS.2015.46.

15 Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss: optimal
bounds for privacy-preserving principal component analysis. In David B. Shmoys, editor,
Symposium on Theory of Computing, STOC 2014, pages 11–20. ACM, 2014. doi:10.1145/
2591796.2591883.

16 Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998. doi:
10.1145/285055.285060.

ITCS 2025

https://doi.org/10.1109/ISIT45174.2021.9518014
https://doi.org/10.4230/LIPIcs.ICALP.2022.26
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.59
https://doi.org/10.29012/JPC.655
https://doi.org/10.1137/15M1033587
https://doi.org/10.1137/15M1033587
https://doi.org/10.1007/978-3-031-30620-4_2
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1536414.1536467
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1109/FOCS.2015.46
https://doi.org/10.1145/2591796.2591883
https://doi.org/10.1145/2591796.2591883
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/285055.285060

19:18 Differential Privacy and Sublinear Time Are Incompatible Sometimes

17 Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving
data analysis. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, pages 61–70. IEEE Computer Society, 2010. doi:10.1109/FOCS.2010.85.

18 Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC 2010, pages 705–714. ACM, 2010.
doi:10.1145/1806689.1806786.

19 Palak Jain, Sofya Raskhodnikova, Satchit Sivakumar, and Adam Smith. The price of differential
privacy under continual observation. In International Conference on Machine Learning, pages
14654–14678. PMLR, 2023. URL: https://proceedings.mlr.press/v202/jain23b.html.

20 Gautam Kamath, Jerry Li, Vikrant Singhal, and Jonathan R. Ullman. Privately learning
high-dimensional distributions. In Conference on Learning Theory, COLT 2019, volume 99
of Proceedings of Machine Learning Research, pages 1853–1902. PMLR, 2019. URL: http:
//proceedings.mlr.press/v99/kamath19a.html.

21 Gautam Kamath, Argyris Mouzakis, and Vikrant Singhal. New lower bounds for private
estimation and a generalized fingerprinting lemma. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, 2022.

22 Naty Peter, Eliad Tsfadia, and Jonathan R. Ullman. Smooth lower bounds for differentially
private algorithms via padding-and-permuting fingerprinting codes. In The Thirty Seventh
Annual Conference on Learning Theory,, volume 247 of Proceedings of Machine Learning
Research, pages 4207–4239. PMLR, 2024. URL: https://proceedings.mlr.press/v247/
peter24a.html.

23 Thomas Steinke and Jonathan R. Ullman. Between pure and approximate differential privacy.
J. Priv. Confidentiality, 7(2), 2016. doi:10.29012/JPC.V7I2.648.

24 Thomas Steinke and Jonathan R. Ullman. Tight lower bounds for differentially private selection.
In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, pages 552–563. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.57.

25 Gábor Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2):10:1–10:24, 2008.
doi:10.1145/1346330.1346335.

26 Jonathan R. Ullman. Answering n2+o(1) counting queries with differential privacy is hard.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory
of Computing Conference, STOC’13, pages 361–370. ACM, 2013. doi:10.1145/2488608.
2488653.

27 Jalaj Upadhyay. Sublinear space private algorithms under the sliding window model. In
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 6363–6372. PMLR, 09–15 June 2019. URL: http:
//proceedings.mlr.press/v97/upadhyay19a.html.

https://doi.org/10.1109/FOCS.2010.85
https://doi.org/10.1145/1806689.1806786
https://proceedings.mlr.press/v202/jain23b.html
http://proceedings.mlr.press/v99/kamath19a.html
http://proceedings.mlr.press/v99/kamath19a.html
https://proceedings.mlr.press/v247/peter24a.html
https://proceedings.mlr.press/v247/peter24a.html
https://doi.org/10.29012/JPC.V7I2.648
https://doi.org/10.1109/FOCS.2017.57
https://doi.org/10.1145/1346330.1346335
https://doi.org/10.1145/2488608.2488653
https://doi.org/10.1145/2488608.2488653
http://proceedings.mlr.press/v97/upadhyay19a.html
http://proceedings.mlr.press/v97/upadhyay19a.html

	1 Introduction
	1.1 Technical Overview

	2 Related Work
	3 Preliminaries
	4 Permute Rows and Pad and Permute Columns Fingerprinting Codes (PR-PPC FPC)
	5 Lower Bound
	5.1 Warm Up: Using a Random Oracle
	5.2 Using a Secret Sharing Encoding

