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Abstract
Given oracle access to a real-valued function on the n-dimensional Boolean cube, how many queries
does it take to estimate the squared Euclidean distance to its closest linear function within ϵ? Our
main result is that O(log3(1/ϵ) · 1/ϵ2) queries suffice. Not only is the query complexity independent
of n but it is optimal up to the polylogarithmic factor.

Our estimator evaluates f on pairs correlated by noise rates chosen to cancel out the low-degree
contributions to f while leaving the linear part intact. The query complexity is optimized when the
noise rates are multiples of Chebyshev nodes.

In contrast, we show that the dependence on n is unavoidable in two closely related settings.
For estimation from random samples, Θ(

√
n/ϵ + 1/ϵ2) samples are necessary and sufficient. For

agnostically learning a linear approximation with ϵ mean-square regret under the uniform distribution,
Ω(n/

√
ϵ) nonadaptively chosen queries are necessary, while O(n/ϵ) random samples are known to

be sufficient (Linial, Mansour, and Nisan).
Our upper bounds apply to functions with bounded 4-norm. Our lower bounds apply even to

±1-valued functions.
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1 Introduction

Finding linear approximations is perhaps the most important problem in statistics and data
science. Linear regression [11, Section 9.2] seeks to learn the “best” linear predictor ℓ for f

from labeled data (x, f(x)). Owing to its wide applicability and computational advantages,
approximation error is often measured as the minimum squared loss E[(f(x) − ℓ(x))2] under
some distribution on examples.

Our main question of interest is whether estimating the minimum squared loss can be
performed more efficiently than learning the predictor. A highly efficient estimator can be
potentially used to decide whether learning a linear model is sensible at all.

We aim to highlight the conceptual distinctions between estimation and learning. We
demonstrate that a complexity gap between the two problems is already exhibited by arguably
the simplest distribution on examples: The uniform distribution over the Boolean cube {±1}n.
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Under the uniform distribution, the minimum squared loss is the distance between
the function of interest viewed as a vector in 2n-dimensional Euclidean space and the n-
dimensional subspace spanned by the linear functions. In this setting estimating the squared
distance is essentially equivalent to estimating the squared length of the projection.

The power of linear regression in machine learning applications is derived to a great extent
from the distribution-free nature of the training algorithms. In contrast our results concern
linear regression for a known distribution. We believe that distribution-specific regression is
interesting for several reasons.

First, restrictive assumptions on the data distribution may improve performance. For
example, distributions in which some features linearly approximate other features can be
problematic for popular algorithms like gradient descent. The uniform distribution, as a
model of pairwise independence, avoids such obstacles.

Second, distribution-specific algorithms sometimes serve as a stepping stone to distribution-
free ones. In the context of property testing this strategy was successful in obtaining
distribution-free algorithms for combinatorial properties like monotonicity [6] as well as
algebraic ones like linearity and low-degree representability [6, 5].

Third, negative results about learning and estimation are stronger in the distribution-
specific model. Distribution-free learning must succeed for all concepts in the given class and
all distributions on examples. To understand the limitations it is natural to decouple the
complexities of the concept class and of the distribution. Do learning and estimation remain
hard even when the distribution is simple?

In this work we focus on information-theoretic measures of complexity. Our principal
measure of performance is the query complexity m. The time complexity of all our algorithms
is linear in mn, namely in the size of the labeled dataset. We study both algorithms that
choose their queries and ones that are provided with uniformly random examples.

Our results
Our results are summarized in Table 1. Our main contribution is Theorem 1: The squared
linear projection of f

W1[f ] = E[f2] − min
linear ℓ

E[(f(x) − ℓ(x))2] (1)

can be estimated within ϵ with Õ(1/ϵ2) chosen queries.1 In contrast, learning the requisite
approximation and obtaining the same estimate from random samples both entail queries
that grow at least as fast as some root of n.

Table 1 Query complexity of ϵ-estimating W1[f ] and ϵ-learning the linear part of f . All positive
results assume ∥f∥4 ≤ 1. All negative results hold even for ±1-valued f .

chosen queries random samples

estimation O(log3(1/ϵ) · 1/ϵ2) (Theorem 1)
Ω(1/ϵ2) (Theorem 8)

O(
√

n/ϵ + 1/ϵ2) (Theorem 18)
Ω(

√
n/ϵ + 1/ϵ2) (Theorem 19 + 8)

learning O(n/ϵ) [8]
Ω(n/

√
ϵ) non-adaptive (Theorem 11)

O(n/ϵ) [8]
Ω(n/

√
ϵ) (Theorem 11)

1 The query complexities of the squared projection and the squared distance to linearity are the same up
to constant factor since E[f2] can be estimated from O(1/ϵ2) samples assuming ∥f∥4 is bounded. For
similar reasons so are the squared projection and distance to the space of affine functions.
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We found this result surprising from a Fourier-analytic perspective. Our quantity of
interest is the sum of squares of all n first-level Fourier coefficients of f . Up to the polylogar-
ithmic factor, estimating the sum has the same query complexity as estimating any of its
individual terms, or estimating the squared mean of f .

In the decision version of estimation also known as tolerant testing [10], the objective is
to distinguish functions that are θ-close to linear from those that are θ + ϵ-far. In particular,
the algorithm of Theorem 1 is a tolerant tester for any value of θ. In the intolerant limit
θ = 0, algorithms with O(1/ϵ) query complexity are known [1, 3]. For functions over Rn the
query complexity is also O(1/ϵ) under Gaussian measure [7], and O(log(1/ϵ) · 1/ϵ) under
arbitrary measure [5]. With the exception of [7], these testers appear not to be robust against
small perturbations as their soundness is analyzed with respect to the Hamming distance.
The tester of Khot and Moshkovitz [7] can be viewed as an estimator, albeit one with large
constant bias.

Our positive results apply to functions with bounded 4-norm. Boundedness of the 2-
norm is clearly insufficient: The point function f(x) = 2n1(x = a) for a random point a

has unit 2-norm and unit squared distance to linearity, yet is indistinguishable from the
all-zero function with o(2n) queries. We did not investigate whether p-norm boundedness for
2 < p < 4 is sufficient.

In contrast, in Theorem 11 we show that proper learning of a linear hypothesis for f

that is within ϵ squared distance of optimal has non-adaptive query complexity linear in
n, specifically Ω(n/

√
ϵ). Our technique also yields a Ω(log n/

√
ϵ) general (adaptive) lower

bound. On the positive side, it is known that O(n/ϵ) random samples are sufficient for
learning via empirical risk mininization [8]. The

√
ϵ gap between the lower and upper bounds

is reminiscent of analogous gaps in distribution-free agnostic learning of deterministic concept
classes [2].

In Theorems 18 and 19 we show that the sample complexity of estimating W1[f ] is√
n/ϵ + 1/ϵ2 up to constant factor. As a consequence of Theorems 18 and 11, estimation

requires fewer random samples than learning in the regime ϵ = ω(n−2/3).

Techniques
Estimation from chosen queries

Algorithm 1 estimates the linear projection of f by a suitably scaled product f(x)f(y)
evaluated on a pair (x, y) of correlated inputs. The query complexity can be decoupled from
the input length n already when the pairs (xi, yi) are independent, marginally uniform, and
of sufficiently low correlation ρ = E xiyi. For simplicity assume f is unbiased and ±1-valued.
By orthogonal decomposition (see (2)),

E f(x)f(y) = ρ∥f=1∥2 + ρ2∥f=2∥2 + · · · + ρn∥f=n∥2,

where f=d is the degree-d part of f (see precise definition in Section 2). By Parseval’s
identity, ρ−1f(x)f(y) estimates W1[f ] = ∥f=1∥2 with bias at most

∑
k>1|ρ|k−1∥f=k∥2 ≤ |ρ|.

By choosing the bias-variance tradeoff ρ ≈ ϵ/2, empirically averaging this estimator yields
an ϵ-approximation of W1[f ] with O(1/ϵ4) queries.

To improve the query complexity we work with a more general class of distributions on
pairs (x, y). Barring additional information on f , it is sensible that the distribution should
place equal probability on all pairs (x, y) whose difference has fixed Hamming weight. A
special class of such distibutions is mixtures of ρ-correlated pairs over some distribution d(ρ)
on noise rates.

ITCS 2025
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The uniform mixture of ρ and −ρ-correlated pairs already improves the query complexity
to O(1/ϵ3). The reason is that the related Fourier decomposition

E (sign of correlation)f(x)f(y) = ρ∥f=1∥2 + ρ3∥f=3∥2 + ρ5∥f=5∥2 + · · ·

cancels out all even levels, thus reducing the bias of the estimator from ρ to ρ2.
To achieve our query complexity of O(log3(1/ϵ)1/ϵ2) we construct a mixture of noise

rates α1ρ, . . . , αℓρ that annihilates levels 2 up to ℓ − 1 while minimizing the contribution of
levels ℓ and higher. A close to optimal error is achieved using Chebyshev interpolation. We
give evidence that a Ω(log2(1/ϵ)1/ϵ2) lower bound is inherent in this approach (Claim 6),
but we do not know if it can be bypassed in general.

In Remark 7 we explain why the low complexity of Algorithm 1 owes not only to the
choice of interpolation scheme, but to some serendipity in the constraints (6) on the noise
rates.

The proof of Theorem 8 is based on a reduction from the problem of estimating the bias
of a coin.

Learning lower bound

Theorem 11 is proved in two steps. Proposition 12 addresses the regime of constant error ϵ.
It is proved by exhibiting a family of 2Ω(n) functions whose linear projections are Ω(1)-far
apart. The existence of this family is established using the probabilistic method in Lemma 13.
An algorithm of sublinear query complexity is unlikely to disambiguate among members of
the family and cannot be accurate.

In Proposition 15 we give a self-reduction for learning linear approximations from query
complexity q and constant error to query complexity O(q/

√
ϵ) and error ϵ. The reduction

applies to any query model.

Estimation from samples

The random variable f(x)f(y)⟨x, y⟩ with random x, y is an unbiased estimator of W1[f ].
To improve its variance at optimal query cost we average it over all

(
m
2
)

pairs of examples
(Algorithm 2 and Theorem 18). For constant ϵ, the lower bound in Theorem 19 is exhibited
by a sign-rounded linear function ℓ with independent Gaussian coefficients. Such a function
is weakly pseudorandom against o(

√
n) examples yet has constant correlation with ℓ. We

achieve optimal dependence on ϵ by adding Gaussian noise to ℓ.

Extensions and future work
We believe that a result analogous to Theorem 1 can be obtained for functions over Rn under
standard Gaussian measure using related techniques. It would be interesting to investigate
the general setting of product distributions under Efron-Stein decomposition. The biased
Boolean cube could be a good test case.

Theorem 1 can be extended to approximate the degree-d part of f with logO(d)(1/ϵ) · 1/ϵ2

queries. Both extensions might be sensible in the context of regression, where a mix of
categorical (Boolean) and numerical (Gaussian) data and higher-degree models (capturing
e.g. decision trees) are more realistic.

An interesting open question is whether the polylogarithmic factor can be eliminated.
We speculate that this may be possible under the stronger assumption that f is bounded in
infinity-norm.
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Organization
Section 2 has a brief background on Fourier analysis of Boolean functions. In Sections 3, 4,
and 5 we present our results on estimation from chosen queries, learning, and estimation
from samples, respectively.

2 Fourier analysis over the Boolean cube

We use standard notation from Boolean function analysis [9]. All functions are real-valued
over the Boolean cube {±1}n under uniform measure. Such functions live in Hilbert space
under inner product E fg. The p-norm of a function is ∥f∥p = E[|f |p]1/p, with p = 2 usually
omitted. The monomials {

∏
i∈S xi : S ⊆ [n]} form an orthonormal basis. f admits orthogonal

decompositions

f = f=0 + f=1 + · · · + f=n = E f + f=1 + f≥2

with f=j (resp., f≥j) being the projection onto the subspace spanned by monomials of degree
exactly (resp., at least) j. Our main object of interest is the linear part f=1, especially its
weight

W1[f ] = ∥f=1∥2 = E ff=1.

The orthogonal decomposition can be further refined into the complete Fourier decom-
position

f(x) =
∑

S⊆[n]
f̂(S)

∏
i∈S

xi, where f̂(S) = E f(x)
∏

i∈S
xi.

By orthogonality, E fg =
∑

E f=ig=i =
∑

f̂(S)ĝ(S) (Plancherel’s formula). In particular,
when f = g

∥f∥2 =
∑

∥f=j∥2 =
∑

f̂(S)2. (Parseval’s identity)

By orthogonality, the distance to linearity E[(f(x) − ℓ(x))2] is minimized when ℓ = f=1. The
minimizer equals

min
linear ℓ

E[(f(x) − ℓ(x))2] = ∥f∥2 − ∥f=1∥2 = E[f2] − W1[f ]

as in (1).
A ρ-biased string in {±1}n is one in which the coordinates are independent and ρ-biased.

We use x · y for the pointwise product of strings x and y in {±1}n. Multiplying by a ρ-biased
string and averaging the outcome has the effect of dampening the higher-degree terms:

Eρ-biased e[f(x · e)] = f=0(x) + ρf=1(x) + ρ2f=2(x) + · · · (2)

3 Estimation from chosen queries

▶ Theorem 1. There is an algorithm that makes O(log(∥f∥2
4/ϵ)3 · ∥f∥4

4/ϵ2) queries to f and
outputs a value within ϵ of W1[f ] with probability at least 2/3.

The algorithm takes the empirical average of m instantiations of Algorithm 1 with
parameters m = 96ℓ3/ϵ′2, ℓ = log 1/ϵ′ + 1, ρ = ϵ′(ℓ−1)−1

/6, and ϵ′ = ϵ/∥f∥2
4. (We may assume

ϵ′ is an inverse power of two as this doesn’t change the asymptotics.)

ITCS 2025



20:6 Estimating Euclidean Distance to Linearity

Algorithm 1 Estimator W̃ 1[f ] from chosen queries.

Parameters : 0 < ρ < 1 and ℓ ∈ N
Setup: Set α1, . . . , αℓ ∈ [−1, 1] as in (5). Calculate d1, . . . , dℓ as in (6).
Sample i from {1, . . . , ℓ} with probability |di|/∥d∥1.
Sample random x and αiρ-biased ei.
Output W̃ 1[f ] = ρ−1∥d∥1 · sign di · f(x)f(x · ei)

The conditional bias of this estimator given x is f(x)g(x), where

g = ρ−1
∑

diNαiρf(x).

Here Nρ is the noise operator Nρf(x) = E[f(x · e)] for a ρ-biased e. The constants di, αi

are chosen so that the first Fourier level of f survives but all other levels among the first
ℓ − 1 are annihilated:

g=j =
{

0, if j = 0 or 2 ≤ j < ℓ

f=j , if j = 1
(3)

The theorem is proved by balancing the bias and the variance of the estimator W̃ 1. The
next two claims bound the bias and the variance respectively. Their proofs are in Section 3.1.

▷ Claim 2. |E W̃ 1[f ] − W1[f ]| ≤ ∥d∥1 · ρℓ−1∥f≥ℓ∥2.

▷ Claim 3. W̃ 1[f ] has variance at most ρ−2 · ∥d∥2
1 · ∥f∥4

4.

The quantity ∥d∥1 governs both. We analyze it next. Expanding g in the Fourier basis
and applying (2), the constraints (3) translate to

ρ−1
ℓ∑

i=1
di(αiρ)j =

{
0, if j = 0 or 2 ≤ j < ℓ

1, if j = 1.

We seek a short solution to the linear system

∑
i

diα
j
i =

{
0, if j = 0 or 2 ≤ j < ℓ

1, if j = 1.
(4)

in unknowns d1, . . . , dℓ. The existence of a short solution strongly depends on the choice of
evaluation points α1, · · · , αℓ. The Chebyshev nodes

αi = cos
(

π
2i − 1

2ℓ

)
(5)

are close to best possible for this purpose, as will be argued in Corollary 5 and Claim 6.

▷ Claim 4. di = d(αi), where

d(t) = 2
ℓ

ℓ−1∑
odd j = 1

(−1)(j−1)/2 · jTj(t), (6)

and Tj is the j-th Chebyshev polynomial of the first kind.
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Proof. The first ℓ Chebyshev polynomials T0, . . . , Tℓ−1 are orthogonal with respect to inner
product over the Chebyshev nodes:

∑
i

Tj(αi)Tj′(αi) =


0, if j ̸= j′,

ℓ/2, if j = j′ ̸= 0,

ℓ, if j = j′ = 0.

.

Using the facts T0(t) = 1, T1(t) = t, and that T ′
j(0) is zero for even j and (−1)(j−1)/2j for

odd j we derive the unique Chebyshev expansion

d(t) =
∑

d̂(j)Tj(t). (7)

By orthogonality, d̂(j) equals (2/ℓ)
∑

d(αi)Tj(αi), when j ̸= 0 and half that when j = 0. In
the latter case, the first equation in (4) says that

d̂(0) = 1
ℓ

∑
i

d(αi)T0(αi) = 1
ℓ

∑
di = 0.

Otherwise, the polynomial Tj(t) − T ′
j(0)t has no linear term, so∑

i

d(αi)(Tj(αi) − T ′
j(0)αi)

expands as a linear combination of
∑

i diα
k
i for k ≤ j, k ̸= 1. By (4) such linear combinations

vanish. Therefore if j ̸= 1,

d̂(j) = 2
ℓ

∑
i

diT
′
j(0)αi = 2

ℓ
T ′

j(0) =
{

(2/ℓ)(−1)(j−1)/2 · j, if j is odd
0, if j is even.

Plugging into (7) produces the desired formula (6). ◁

▶ Corollary 5. ∥d∥ ≤ ℓ.
Proof. By orthogonality we have the explicit formula

∥d∥2 = ℓd̂(0)2 + ℓ

2 d̂(1)2 + · · · + ℓ

2 d̂(ℓ − 1)2 = 2
ℓ

ℓ−1∑
odd j = 1

j2,

which is at most twice the sum of odd integers between 1 and ℓ. Those can be matched into
ℓ/2 pairs that add up to ℓ giving the ℓ2 upper bound. ◀

Therefore ∥d∥1 ≤ ℓ3/2. This bound is within a
√

ℓ factor of optimal for any choice of
roots:
▷ Claim 6. For any choice of −1 ≤ α1, . . . , αℓ ≤ 1, any d that solves (4) has length
∥d∥1 ≥ ℓ − 1.

Matching this bound (up to constant factor) would result in a log∥f∥2
4/ϵ factor improve-

ment in query complexity. We do not know if d as in (6) achieves it already.

Proof. Set j equal to ℓ or ℓ − 1, whichever is odd. Take a linear combination of equations (4)
weighted by the coefficients t of Tj . As Tj is bounded on [−1, 1],

∥d∥1 ≥
∣∣∣∑

i
diTj(αi)

∣∣∣ =
∣∣∣∑

i,k
diα

k
i tk

∣∣∣ = |t1| = j. ◀

▶ Remark 7. By the same argument, had the right-hand side of (6) been replaced by 1(j = ℓ),
there would have been no solution d of 1-norm less than 2ℓ−1. Thus the low complexity of
Algorithm 1 owes not only to the choice of noise parameters αi but to the fortunate form of
the right-hand side in the linear system (6).

ITCS 2025



20:8 Estimating Euclidean Distance to Linearity

3.1 Proof of Theorem 1

Proof of Theorem 1. By Chebyshev’s inequality, the empirical average of m samples of
an estimator with variance v is within 2

√
v/m of its mean except with probability 1/4.

By Claim 2 and Claim 3, with probability at least 3/4,

|W̃ 1[f ] − W1[f ]| ≤ ∥d∥1ρℓ−1∥f≥ℓ∥2 +
√

2ρ−2∥d∥2
1

m
· ∥f∥2

4.

As ∥f≥ℓ∥ ≤ ∥f∥4, it is sufficient that the choices of ρ, ℓ, m satisfy

∥d∥1ρℓ−1 ≤ ϵ′

2 and 2ρ−2∥d∥2
1

m
≤ ϵ′2

4 ,

for ϵ′ = ϵ/∥f∥2
4. By Claim 5, ∥d∥1 ≤

√
ℓ · ∥d∥2 ≤ ℓ3/2. The choice ρ = ϵ′(ℓ−1)−1

/6 ensures
that for ℓ ≥ 2,

∥d∥1ρℓ−1 ≤ ℓ3/2

6ℓ−1 · ϵ′ ≤ 1
2ϵ′.

As ℓ = log 1/ϵ′ + 1,

2ρ−2∥d∥2
1

m
≤ 24ℓ3

m
,

which is at most ϵ′2/4 by our choice m = 96ℓ3/ϵ′2. ◀

Proof of Claim 2. The bias of the estimator is E[fg] − W1[f ] = E[fg] − ∥f=1∥2. The first ℓ

levels of g are given by (3), so E[f<ℓg<ℓ] = ∥f=1∥2. As for j ≥ ℓ, by (2),

g=j = ρ−1
∑

di(Nαiρf)=j =
∑

di(αiρ)jf=j

from where

|E W̃ 1[f ] − W1[f ]| = |E[f≥ℓg≥ℓ]|

≤
∑
j≥ℓ

ρj−1
∑

i

|diα
j
i | · ∥f=j∥2 (by triangle inequality)

≤ ρℓ−1∥d∥1
∑
j≥ℓ

∥f=j∥2 (|αi| ≤ 1)

= ρℓ−1∥d∥1∥f≥ℓ∥2. ◀

Proof of Claim 3. Operator Nρ is contractive: ∥Nρg∥ ≤ ∥g∥ for all ρ and g.

Var W̃ 1[f ] ≤ E[W̃ 1[f ]2]
= ρ−2∥d∥2

1 E E[f2 · Nαiρ(f2)|i]

≤ ρ−2∥d∥2
1 E

√
E[f4|i] · E[Nαiρ(f2)2|i] by Cauchy-Schwarz

≤ ρ−2∥d∥2
1 · ∥f2∥ · ∥f2∥ by contractivity

= ρ−2∥d∥2
1∥f∥4

4. ◀
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3.2 Lower bound
▶ Theorem 8. For every o(1/ϵ2)-query algorithm A there exists a Boolean-valued f such
that |A(f) − W1[f ]| > ϵ with probability at least 1/4, as long as ϵ = Ω(n3/22−n/2).

The advantage of a distinguisher D with respect to random variable f and g is the
absolute difference in the probabilities that D accepts f and g. The maximum possible
distinguishing advantage is known to equal the minimum possible probability of the event
f ̸= g under all couplings of f and g, i.e., joint distributions over (f, g) that are consistent
with their marginals.

▶ Fact 9. Assuming 0 ≤ β < α < 0.9, distinguishing between independent α and β-biased
coin flips with advantage at least 1/4 requires Ω(1/(α − β)2) samples.

Proof. There are several proofs for the case β = 0, see for example [13]. The general case
reduces to this special case. Consider the reduction that takes the outcome of a coin flip,
outputs it with probability 1 − β, and outputs 1 otherwise. This reduction maps unbiased
coins into β-biased ones and (α − β)/(1 − β)-biased coins into α-biased ones. Distinguishing
the latter with advantage 1/4 therefore requires Ω((1 − β)2/(α − β)2) samples. ◀

Proof of Theorem 8. Choose any 0.5 < β < α < 0.9 with α − β = 5ϵ. Let f (resp., g) be a
probabilistic Boolean function in which the values f(x) are independent αx1-biased, (resp.,
βx1-biased). By Claim 10 W1[f ] is at least α2 − ϵ, and W1[g] is at most β2 + ϵ except with
probability at most 1/4. Therefore

W1[f ] − W1[g] ≥ α2 − β2 − 2ϵ = (α − β)(α + β) − 2ϵ ≥ 3ϵ

by our choice of α and β. Had A been ϵ-accurate with probability 3/4, by a union bound,

Pr[|A(f) − A(g)| ≤ ϵ] ≤ Pr[|A(f) − W1[f ]| ≥ ϵ] + Pr[|A(g) − W1[g]| ≥ ϵ]
+ Pr[|W1[f ] − W1[g]| ≤ 3ϵ]

≤3/4

so Pr[f ̸= g] ≥ Pr[|A(f) − A(g)| > ϵ] > 1/4. As this holds for an arbitrary coupling of f and
g, the two can be 1/4-distinguished.

We now show this is impossible, namely f and g cannot be 1/4-distinguished with
q = o(1/ϵ2) queries. For if they could be by some algorithm A, then the following algorithm
can distinguish α and β-biased coin flips with q queries, contradicting Fact 9: Whenever A

makes a new query x, flip a coin, multiply the outcome by x1 and provide this answer. The
view of A when the reduction provides α and β-biased coins is identical to interactions with
f and g, respectively. ◀

▷ Claim 10. Let h be a random Boolean function whose values are independent ±1 bits.
Then |W1[h] − W1[E h]| ≤ ϵ except with probability at most O(n32−n/ϵ2).

Proof. By independence, Var[ĥ(i)] ≤ 2−n for every i so by Chebyshev’s inequality, |ĥ(i) −
E ĥ(i)| ≤ ϵ/2n except with probability O(n22−n/ϵ2). Therefore |ĥ(i)2 − E[ĥ(i)]2| = |ĥ(i) +
E ĥ(i)| · |ĥ(i) − E ĥ(i)| ≤ ϵ/n. The claim follows from a union bound and the triangle
inequality. ◁

For this argument to result in a Ω(1/ϵ2) lower bound it is essential that α and β be
bounded away both from 0 and from 1: Had they been too close to 1 the coins would have
been distinguishable from O(1/ϵ) samples. Had they been too close to 0, the typical distance
between W 1[f ] and W 1[g] would have been O(ϵ2).
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4 Learning

In the setting of distribution-free (agnostic) learning of a linear approximation from inde-
pendent random samples, Ω(n/ϵ) samples are necessary for properly learning a bounded
n-dimensional function with respect to expected square loss error [12]. This bound can be
matched by an improper learning algorithm but not by empirical risk minimization [14].

Shamir [12] points out that in general, loss minimization (output a linear hypothesis ℓ

such that E[(f(x) − ℓ(x))2] is ϵ-close to best possible) and model approximation (find ℓ such
that E[(ℓ(x) − ℓ⋆(x))2] ≤ ϵ for the ℓ⋆ that minimizes E[(f(x) − ℓ⋆(x))2]) are not equivalent
problems.

In the context of learning under the uniform distribution, however, the two problems are
equivalent to approximating the projection f≤1 onto the space of linear functions. Linial,
Mansour, and Nisan [8] showed that the approximation can be calculated from O(n/ϵ)
samples via empirical risk minimization.

We show a query complexity lower bound of Ω(n/
√

ϵ) for proper agnostic learning, even
when the learner is given non-adaptive query access to f .

▶ Theorem 11. For every non-adaptive algorithm A that makes o(n/
√

ϵ) queries and outputs
an affine hypothesis, there is an f : {±1}n → {±1} such that ∥f − A(f)∥2 ≤ ∥f − f≤1∥2 + ϵ

only with probability 2−Ω(n) assuming ϵ ≥ 2−(1−o(1))n/2.

Our proof technique also gives a Ω(log n/
√

ϵ) query complexity lower bound for adaptive A.
Theorem 11 is proved in two steps. In Proposition 12 we establish it for sufficiently

small but constant ϵ. In Proposition 15 we give a reduction from agnostically learning linear
approximations with constant mean-square error and q queries to the same problem with
mean-square error ϵ and O(q/

√
ϵ) queries. The reduction is flexible with respect to the

learning model, and even to the task. It can also be applied to estimation but gives a worse
dependence on ϵ than what we have in Theorems 8 and 19.

4.1 Lower bound for constant error

▶ Proposition 12. For every κ < 1 there exist ϵ, η such that for n sufficiently large and
for every non-adaptive algorithm A that makes at most κn queries and outputs an affine
hypothesis, there exists f : {±1}n → {±1} such that ∥f − A(f)∥2 ≤ ∥f − f≤1∥2 + ϵ with
probability at most 2−ηn.

A log n−O(1) adaptive query complexity lower bound follows from the same assumptions
as adaptive algorithms that make q Boolean-valued queries can be simulated with 2q non-
adaptive queries.

The proof relies on the following lemma, which states that there is a large set of Boolean
functions whose close-to-best linear approximations are mutually far apart. Any candidate
learning algorithm with too few queries does not have enough information to disambiguate
between these functions and is unlikely to output an approximately correct hypothesis.

▶ Lemma 13. For every ρ < 1 there exists ϵ > 0 such that for sufficiently large n, there is a
set P of 2ρn pairs of functions (f, ℓ) over domain {−1, 1}n, where f is boolean-valued, ℓ is
linear and real-valued, and
1. For every (f, ℓ) ∈ P, ∥ℓ − f≤1∥ ≤

√
ϵ.

2. For all distinct (f, ℓ), (f ′, ℓ′) ∈ P, ∥ℓ − ℓ′∥ ≥ 4
√

ϵ.
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By the triangle inequality:

▶ Corollary 14. For every ρ < 1 there exists ϵ > 0 and a set F of 2ρn Boolean functions
such that for every f ̸= g ∈ F , f≤1 and g≤1 are at least 2

√
ϵ far apart.

By Yao’s Minimax principle, to prove Proposition 12 it suffices (and is necessary) to
give a probability distribution over the possible inputs f and show that any non-adaptive
algorithm that makes too few queries is likely to fail on this distribution. Our distribution is
uniform over the collection from Corollary 14: As log|F| is larger than the query complexity,
the algorithm does not have enough information to disambiguate between candidate inputs
in F and is therefore unlikely to be correct.

Proof of Proposition 12. Choose f at random from the set of functions F in Corollary 14
instantiated with ρ satisfying 1 − ρ = (1 − κ)/2. Let fQ denote the restriction of f on the
query set Q. Conditioned on the choice of Q, by the law of total expectation

E 1
|{g ∈ F : gQ = fQ}|

=
∑

a∈SuppfQ

1
|{g ∈ F : gQ = a}|

· Pr
f∼F

[fQ = a]

=
∑

a∈SuppfQ

1
|F| Prg∼F [gQ = a] · Pr

f∼F
[fQ = a]

= |SuppfQ|
|F|

≤ 2q

|F|
,

where q is the query complexity. By our choice of parameters this is at most 2−(1−κ)n/2.
The left-hand side upper bounds the probability that the algorithm succeeds. For

conditioned on the view of A and the choice of f , its input is equally likely to have been
any function in the set Sf = {g ∈ F : gQ = fQ}. However, the output h of A(f) could be
accurate for at most one function in this set: If

∥g − h∥2 ≤ ∥g≤1 − g∥2 + ϵ and
∥g′ − h∥2 ≤ ∥g′≤1 − g′∥2 + ϵ

by Pythagoras’ theorem ∥g≤1 − h∥2, ∥g′≤1 − h∥2 ≤ ϵ. By the triangle inequality g≤1 and
g′≤1 are 2

√
ϵ-close, so it must be that g = g′. Therefore A(f) succeeds with probability at

most 1/|Sf |. ◀

4.2 Trading accuracy for queries
We describe a reduction R that, given access to a high-accuracy learner A that requires
access to many queries, learns with low accuracy but fewer queries.

When A makes a query, the reduction flips a coin with success probability δ = 2
√

ϵ/ϵ0.
If the coin flip succeeds, the reduction forwards the query and returns the answer to A. If it
fails, the reduction answers the query randomly. When A outputs its answer h, the reduction
returns h/δ.

The reduction can be implemented in any query model (random samples, non-adaptive,
adaptive). We show that it is effective in the context of approximately learning linear
approximations.

We show correctness for Boolean-valued functions as it matches our application, but the
proposition should hold more generally under any p-norm bound.
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▶ Proposition 15. If A makes q queries and outputs h such that ∥h − f≤1∥2 ≤ ϵ given
Boolean-valued f as input, then RA(f) makes at most q′ = 4

√
ϵ/ϵ0q queries except with

probability 2−Ω(q′), and outputs h′ such that ∥h′−f≤1∥2 ≤ ϵ0 except with probability O(n/ϵ2n).

Proof.

Query complexity. The number of queries is a Binomial(q, δ) random variable. By a
Chernoff bound it exceeds 2δq with probability at most 2−Ω(δq).

Correctness. The input to A provided by R is indistinguishable from a function f ′ obtained
by corrupting f by noise of rate δ, namely f ′(x) = N(x)f(x), where N(x) are independent
δ-biased bits. By the triangle inequality,

∥h/δ − f≤1∥ ≤ 1
δ

∥h − f ′≤1∥ + 1
δ

∥f ′≤1 − δf≤1∥.

By our choice of δ, the first term on the right is at most √
ϵ0/2, so it suffices to upper bound

the second one by that much. In expectation, using Parseval’s identity,

E∥f ′≤1 − δf≤1∥2 = (1 − δ2)(n + 1)
2n

, (8)

By Markov’s inequality, δ−1∥f ′≤1 − δf≤1∥ ≤ √
ϵ0/2 except with probability O(n/ϵ2n). ◀

As an aside, R can be implemented in a “complexity-preserving” manner in the sense
that if A is only guaranteed to work on “low-complexity” inputs f (e.g. those of small circuit
complexity) then RA works on all inputs of slightly lower complexity. The reason is that
Proposition 15 (specifically (8)) only relies on the pairwise independence of the noise.

Proof of Theorem 11. Fix κ = 1/2 and let ϵ0 be the corresponding ϵ from Proposition 12.
Suppose A succeeds with higher probability. By Proposition 15 RA makes o(n) < n/2 queries,
succeeds with probability 2−o(n), and outputs an ϵ0-approximation, violating Proposition 12.

◀

A Ω(log n/
√

ϵ) adaptive query lower bound follows from the same argument.

4.3 Proof of Lemma 13
▷ Claim 16. For every ϵ there exists a Boolean function f : {−1, 1}n → {−1, 1} such that
∥f≤1 − ℓ∥2 ≤ ϵ for sufficiently large n, where ℓ(x) = (γ/

√
n)(x1 + · · · + xn), assuming

4
√

6γ2 exp(−1/4γ2) ≤ ϵ.

The proof uses the following special case of Khintchine’s inequality:

▶ Fact 17 (Khintchine’s inequality). For every linear function ℓ : {−1, 1}n → R, ∥ℓ∥4
4 ≤ 3∥ℓ∥4

2.

Proof of Claim 16. We show that a random f from a suitable distribution satisfies the
desired property with nonzero probability. For each x, f(x) is a random {−1, 1} outcome
with bias

ℓ(x)1(|ℓ(x)| ≤ 1) =
{

ℓ(x), if |ℓ(x)| ≤ 1
0, if not.
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+1

−1

ℓ(x)

f(x)

x

Figure 1 Illustration of f . When |ℓ(x)| ≤ 1, f(x) is ℓ(x)-biased. Otherwise, it is unbiased.

The values of f are chosen independently conditioned on f(−x) = −f(x) for every x.
(This folding simplifies the proof a little bit.) The construction is illustrated in Figure 1. By
construction, f is balanced. By Parseval’s identity,

∥f≤1 − ℓ∥2 =
n∑

i=1
(f̂(i) − γ/

√
n)2. (9)

We analyze the concentration of f̂(i). In expectation, and by linearity of expectation,

E f̂(i) = E[xif(x)]
= E E[xif(x)|x]
= E[xiℓ(x)1(|ℓ(x)| ≤ 1)]
= E[xiℓ(x)] − E[xiℓ(x)1(|ℓ(x)| > 1)]

= γ√
n

− ĝ(i),

where g is the function g(x) = ℓ(x)1(|ℓ(x)| > 1). As g is a symmetric function, its first-level
Fourier coefficients are equal and must therefore have absolute value

|ĝ(i)| =
√

ĝ(1)2 + · · · + ĝ(n)2

n

≤
√

E[g(x)2]
n

by Parseval’s identity

= 1√
n

√
E[ℓ(x)21(|ℓ(x)| > 1)]

≤ 1√
n

4
√

E[ℓ(x)4] Pr[|ℓ(x)| > 1] by Cauchy-Schwarz

≤ 1√
n

4
√

3∥ℓ∥4 Pr[|ℓ(x)| > 1] by Fact 17

≤
4
√

6γ√
n

exp
(

− 1
8γ2

)
by Hoeffding’s bound

≤
√

ϵ/4n by the assumption on γ.

As f̂(i) is the average of 2n/2 independent outcomes, by Hoeffding’s bound

Pr
[
|f̂(i) − E f̂(i)| >

√
ϵ/4n

]
≤ 2 exp(−2nϵ/8n).

Assuming n is sufficiently large so that 2 exp(−2nϵ/8n) is less than 1/n, by the triangle
inequality and a union bound, |f̂(i) − γ/

√
n| ≤

√
ϵ/n for all i with positive probability.

By (9) there must exist a choice of f for which ∥f≤1 − ℓ∥2 ≤ ϵ. ◀
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Proof of Lemma 13. Let γ satisfy 4
√

6γ2 exp(−1/4γ2) = ϵ, C be a code over {−1, 1}n of rate
ρ and mininum relative Hamming distance 4ϵ/γ2. Such codes exist for sufficiently large n by
the Gilbert-Varshamov bound. Let (f, ℓ) be the pair of functions from Claim 16. The collection
P consists of the pairs (fσ, ℓσ) : σ ∈ C, where gσ(x) is the function g(σ1x1, . . . , σnxn).

As gσ is a permutation of g, ∥f≤1
σ − ℓ≤1

σ ∥2 = ∥f − ℓ∥2 ≤ ϵ proving property 1. As for
property 2, by Parseval’s identity, for σ ̸= σ′ ∈ C,

∥ℓσ − ℓσ′∥2 =
∑ γ2

n
(σi − σ′

i)2 = 4γ2

n

∑
1(σi ̸= σ′

i) ≥ 16ϵ

by our choice of parameters. ◀

5 Estimation from uniform samples

The queries in Algorithm 1 come in pairwise correlated pairs (x, x · ei). They can be
emulated from independent pairs (x, y) after reweighting by the likelihood ratio thereby
preserving the bias of the estimator. However, the variance of the likelihood ratio grows
exponentially in Θ(nρ2), leading to a comparable blowup in the estimator variance (which
becomes ≈ 2Ω(nρ2)/ρ2). Such an algorithm is not query efficient as the seemingly optimal
choice of ρ ≈ 1/

√
n still fails to attain sublinear complexity.

5.1 The algorithm
Instead of adapting Algorithm 1, our pair-based sample mean estimator directly calculates
the empirical mean of the unbiased estimator A(x, y) = f(x)f(y)⟨x, y⟩ averaged over all pairs
of samples. The reuse of samples creates correlations, but their covariances are dominated
by their individual variances.

Algorithm 2 pair-based sample mean estimator.

given samples x1, ... xm i.i.d∼ {−1, 1}n

return W̃ 1[f ] =
(

m
2
)−1 ∑m

i<j A(xi, xj), where A(x, y) = f(x)f(y)⟨x, y⟩

The algorithm can be implemented in complexity linear in mn (the bit complexity of the
samples) by evaluating the equivalent formula

W̃ 1[f ] =
(

m

2

)−1
·
(∑

i

(∑
j

f(xj)xj
i

)2
− n

∑
j

f(xj)2
)

.

▶ Theorem 18. For m = O(
√

n∥f∥2
4/ϵ+∥f∥4

4/ϵ2) independent and uniform samples, |W̃ 1[f ]−
W1[f ]| ≤ ϵ with probability at least 2/3.

Proof. When x and y are random, A and therefore W̃ 1[f ] is an unbiased estimator of W1[f ]:

E [A(x, y)] = E
[
f(x)f(y)⟨x, y⟩

]
=

n∑
i=1

E
[
f(x)xif(y)yi

]
=

n∑
i=1

E
[
f(x)xi

]2

=
n∑

i=1
f̂(i)2 = W1[f ]
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The variance of W̃ 1[f ] is the sum of the (co)variances of pairs A(xi, xj) and A(xi′
, xj′)

indexed by i < j and i′ < j′ scaled by
(

m
2
)−2. Only intersecting pairs have nonzero

contribution. There are
(

m
2
)

and 2(m − 2)
(

m
2
)

pairs of intersection size 2 and 1, respectively,
resulting in

Var W̃ 1[f ] = 2
m(m − 1)v + 4(m − 2)

m(m − 1)c

where for independent x, y, z,

v = Var A(x, y)
≤ E A(x, y)2

= E f(x)2f(y)2⟨x, y⟩2

≤
√

E f(x)4f(y)4
√

E⟨x, y⟩4 by Cauchy-Schwarz

= ∥f∥4
4 ·

√
3n by Fact 17

and

c = Cov[A(x, y), A(x, z)]
≤ E A(x, y)A(x, z)
= E E[A(x, y) | x]2

= E
[
f(x)2 E

[
f(y)⟨x, y⟩⟩ | x

]2
]

≤
√

∥f∥4
4 E E

[
f(y)⟨x, y⟩ | x

]4 by Cauchy-Schwarz

= ∥f∥2
4 · ∥f=1∥2

4 by Plancherel’s formula

= ∥f∥2
4 ·

√
3∥f=1∥2

2 by Fact 17

≤
√

3∥f∥4
4.

Summing up, Var W̃ 1[f ] = O(n/m2 + 1/m) · ∥f∥4
4. The conclusion follows by applying

Chebyshev’s inequality to W̃ 1[f ]. ◀

5.2 Lower bound
We show that for sample-based algorithms (unlike query-based) for this problem the depend-
ence on the dimension is inherent. More precisely, the following theorem say that Algorithm 2
is optimal in the sample model.

▶ Theorem 19. For every (possibly randomized) A there exists f : {±1}n → {±1} so that
when given m independent examples (x, f(x)) with uniform x, A outputs a value within ϵ of
W1[f ] with probability at most 1/2 + O(mϵ/

√
n) + O((n/ϵ)2−n).

The proof in fact shows that the query complexity bound in Theorem 18 is tight in all
parameters, even if ∥f∥4 is weakened to ∥f∥∞ in the statement.

To prove Theorem 19, we construct a function f that is weakly pseudorandom given
o(

√
n/ϵ) examples but for which W1[f ] is likely to be Ω(ϵ). In contrast, W1[f ] for a random

function is concentrated around 2−n.
The function f is the sign of

gZ,N (x) =
√

ϵ/n · ⟨x, Z⟩ +
√

1 − ϵ · N(x),

where Z is an n-dimensional standard normal and N is a standard normal function over
{−1, 1}n (the 2n values N(x) are independent standard normals as x ranges over {−1, 1}n.)
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▷ Claim 20. The statistical distance between (x1, O(x1)), . . . , (xm, O(xm)) when O = f and
O is a random function is at most O(mϵ/

√
n).

Proof. It is sufficient to show the claim for the real-valued functions g = gZ,N and N , as f

and a random Boolean function are obtained by taking signs of g and N , respectively, and
postprocessing cannot increase statistical distance.

We will assume without loss of generality that x1, . . . , xm are all distinct as repetitions can
only decrease statistical distance. Fixing x1, . . . , xm, g(x1), . . . , g(xm) are jointly centered
Gaussian with covariance matrix

Σij =
{

(ϵ/n)⟨xi, xj⟩ if i ̸= j,

1, if i = j

The covariance matrix of N(x1), . . . , N(xm) is the identity Id. The conditional statistical
distance given x1, . . . , xm is at most [4]

O(∥Σ − Id∥F ) = O

(
ϵ

n

√∑
i̸=j

⟨xi, xj⟩2
)

.

By Cauchy-Schwarz, the average, unconditional statistical distance is at most

O

(
ϵ

n

√∑
i ̸=j

E⟨xi, xj⟩2
)

= O

(
ϵ

n

√
m2 · n

)
= O(mϵ/

√
n). ◀

▷ Claim 21. For every z such that n/64 ≤ ∥z∥2 ≤ 4n, E[⟨X, z⟩ sign gz,N (X)|N ] = Ω(
√

ϵn)
except with probability O(ϵ · 2−n).

Proof. The expression inside the expectation is (up to a
√

n factor) of the form t sign(
√

ϵt +√
1 − ϵN) for t = ⟨X, z⟩/

√
n. For fixed t and standard normal N

E[t sign(
√

ϵt +
√

1 − ϵN)] = 2|t| Pr(|N | <
√

ϵ/(1 − ϵ)|t|) ≥ 2|t| Pr(|N | <
√

ϵ|t|). (10)

As the right-hand side is always nonnegative,

E[⟨X, z⟩ sign gz,N (X)]
≥ E[⟨X, z⟩ sign gz,N (X)||⟨X, z⟩| ≥ ∥z∥/3] · Pr(|⟨X, z⟩| ≥ ∥z∥/3)
≥ 2(∥z∥/3) Pr(|N | <

√
ϵ/24) · Pr(|⟨X, z⟩| ≥ ∥z∥/3) by (10)

= Ω(
√

n · Pr(|N | <
√

ϵ/24 · 3)) by Khinchine’s inequality
= Ω(

√
ϵn).

By independence of the values sign gz,N (x) across x,

Var E[⟨X, z⟩ sign gz,N (X)|N ] = Var 1
2n

∑
x

⟨x, z⟩ sign gz,N (x)

= 1
22n

∑
x

⟨x, z⟩2 Var sign gz,N (x)

≤ 1
22n

∑
x

⟨x, z⟩2

= ∥z∥2

2n
.

The claim follows from Chebyshev’s inequality. ◁
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▷ Claim 22. W1[f ] ≥ Ω(ϵ) except with probability Ω(2−n).

Proof. By the Cauchy-Schwarz inequality, for any linear function ℓ,

⟨f, ℓ⟩2 = ⟨f≤1, ℓ⟩2 ≤ ∥f≤1∥2 · ∥ℓ∥2 = W1[f ] · ∥ℓ∥2.

The function ℓ(x) = ⟨x, Z⟩ has squared 2-norm
∑

Z2
i , which is between n/64 and 4n except

with probability 2−n. Applying Claim 21,

W1[f ] ≥ ⟨f, ℓ⟩2

∥ℓ∥2 = E[⟨X, Z⟩ sign gZ,N (X)|N, Z]2

E[⟨X, Z⟩2|Z] = Ω(ϵ). ◀

▷ Claim 23. For a random Boolean function r, W1[r] ≤ ϵ except with probability (n/ϵ)2−n.

Proof. By symmetry the expectation is n2−n. The bound follows from Markov’s inequality.
◁

Proof of Theorem 19. Applying Claims 22 with ϵ in the definition of f scaled up by a
suitable constant factor, W1[f ] > 3ϵ except with probability O(2−n). By Claim 23, W1[r] ≤ ϵ

except with probability (n/ϵ)2−n.
Let D be the distinguisher that accepts if A’s output is greater than 2ϵ and rejects if

not. If A is correct with probability at least (1 + δ)/2 on every input, then D accepts f

with probability at least 1/2 + δ/2 − O(2−n) while D accepts r with probability at most
1/2 − δ/2 + (n/ϵ)2−n. As D’s distinguishing advantage cannot exceed A’s, the statistical
distance between A’s views on inputs f and r is at least δ − O((n/ϵ)2−n). By Claim 20 it is
at most O(mϵ/

√
n), from where δ ≤ O(mϵ/

√
n) + O((n/ϵ)2−n). ◀
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