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Abstract
We explore the applicability of coresets – a small subset of the input dataset that approximates a
predefined set of queries – to the 1-center problem in ℓ1 spaces. This approach could potentially
extend to solving the 1-center problem in related metric spaces, and has implications for streaming
and dynamic algorithms.

We show that in ℓ1, unlike in Euclidean space, even weak coresets exhibit exponential dependency
on the underlying dimension. Moreover, while inputs with a unique optimal center admit better
bounds, they are not dimension independent. We then relax the guarantee of the coreset further,
to merely approximate the value (optimal cost of 1-center), and obtain a dimension-independent
coreset for every desired accuracy ϵ ą 0. Finally, we discuss the broader implications of our findings
to related metric spaces, and show explicit implications to Jaccard and Kendall’s tau distances.
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1 Introduction

Clustering is a fundamental task in unsupervised learning and data analysis in general, with
wide-ranging applications. Typically, the input is a dataset of n points in Rd or some other
feature space of dimension d, and the objective is to partition the dataset into clusters,
each characterized by a high degree of similarity. In the current era of big data, both
the number of points and their dimension are often excessive, making the computational
demands significant. In center-based clustering, the goal is to further assign to each cluster a
representative “center” point. The number of centers (and ergo clusters) is often specified in
advance, and denoted by k, giving rise to the fundamental k-center, k-median and k-mean
problems, which are famous for their simplicity and broad applicability. The case k “ 1 is
particularly important as the most basic setting, and focuses not on partitioning the points
but rather on aggregating them, by identifying a representative that best captures the entire
dataset.
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28:2 Coresets for 1-Center in ℓ1 Metrics

We study the 1-center problem in ℓ1 metrics (i.e., Manhattan distance). The motivation
for ℓ1 metrics is twofold. First, ℓ1 metrics arise in many practical settings, especially when the
dimension is large. Second, common discrete metric spaces, such as the Hamming, Kendall’s
tau, and Jaccard metrics, are closely related to ℓ1, as they can be embedded into Rd endowed
with the ℓ1 metric with all distances preserved isometrically (i.e., with no distortion).

The 1-center problem has been investigated extensively in many metric spaces. In the
context of strings, 1-center under the Hamming distance and Edit Distance is a classical
problem known as the Closest String Problem [26, 27, 29]. In the context of permutations
(a common model for rankings), 1-center under Kendall’s tau distance is known as the
maximum rank aggregation problem [5, 32]. The 1-center problem has also been studied in
other discrete metrics, such as the Ulam distance between permutations and the Jaccard
distance between sets [9, 13]. Additionally, recent work studied the 1-center problem under
various metrics, including ℓp, edit distance, and Ulam, specifically to examine how the time
complexity depends on the dimension d [1]. In fact, the 1-center problem is known to be
NP-hard in many metric spaces, and it seems that each one requires distinct algorithmic
techniques. For some metrics, a PTAS is known, while for others, the existence of a PTAS or
even a non-trivial approximation algorithm remains an open question and an active area of
research.

A coreset is a data-summarization concept, where the input dataset is replaced by a
small subset that approximates its clustering properties. It can lead to significant reductions
in computational resources, particularly storage and communication, and plays a pivotal
role in modern algorithmic settings, such as streaming, distributed, and dynamic. It is
thus crucial to understand the tradeoff between the size of a coreset and its accuracy
(approximation factor). Coresets have been studied intensely since their introduction by [2],
see the surveys [3, 21, 28, 31], and they have been successfully applied in a broad range of
settings, for example different clustering objectives and metric spaces. Surprisingly, little is
known about coresets in ℓ1, particularly in high dimension, leaving significant gaps in our
understanding. Small coresets in ℓ1, if they exist and can be computed efficiently, could
potentially pave the way for a unified approach for 1-center also in related metrics, like
Kendall’s tau and Ulam. Moreover, studying coresets for these metrics may provide insights
into the geometric structure of these metric spaces.

1.1 Problem setup

In the 1-center problem, also known as Minimum Enclosing Ball (MEB), the input is a
set P of points in a metric space pX,distq, and the goal is to find a center point c P X

that minimizes the objective function costpc, P q :“ maxpPP distpp, cq. Denote the optimal
value by optpP q :“ mincPX costpc, P q, and observe that it is monotone, i.e., Q Ď P implies
optpQq ď optpP q. While we mostly consider the space pRd, ℓ1q, these definitions capture also
other metrics, like Kendall’s tau distance where X is the set of permutations over rds.

There are different (and sometimes inconsistent) definitions for coresets, which were
usually developed when the desirable guarantees were deemed impossible or difficult to prove,
leading to more relaxed guarantees. We face this same issue (especially for high dimension),
and thus consider a sequence of definitions. For brevity, we present only the definitions
most relevant to our work, and do not discuss possible generalizations (e.g., to k-center) or
variants that appear in the literature. A common and very useful type of coreset is a strong
coreset, which approximates the cost of every center, as follows.
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▶ Definition 1.1 (Strong Coreset). A subset Q Ď P is a strong ϵ-coreset for a 1-center
instance P Ď X if

@c P X, costpc, P q ď p1 ` ϵq costpc,Qq. (1)

The guarantee in (1) is extremely effective in reducing (the task of solving) P to Q, with
a small loss in the objective value. In Euclidean spaces, strong coresets for 1-center are
known, however their size is exponential in the dimension, namely, |Q| ď p1{ϵqOpdq [3], and
unfortunately this upper bound is existentially tight.1 The upper bound actually extends
to every metric space with doubling dimension d [4, 10, 20], and therefore applies to Rd

endowed with the ℓ1 norm (or every other norm).
It is thus natural to ask: Can the coreset size be improved specifically for ℓ1 norm? If

not, can weaker notions lead to polynomial (in d) or even dimension-independent size?

1.2 Our results
Weak coresets. We point our attention to a more relaxed notion, called weak coreset, which
only approximates the cost of certain centers, namely, centers that may be found by solving
the coreset instance. Trivially, every strong ϵ-coreset is also a weak ϵ-coreset.

▶ Definition 1.2 (Weak Coreset). A subset Q Ď P is a weak ϵ-coreset for a 1-center instance
P Ď X if

@cQ P argmin
cPX

costpc,Qq, costpcQ, P q ď p1 ` ϵq costpcQ, Qq. (2)

Weak coresets were introduced in [8] specifically for 1-center in Euclidean space. It
is well-known that in Euclidean space, there is a unique optimal solution,2 which is why
previous work often refers to cQ as the optimal center. The challenge then becomes how to
extend this definition to other metric spaces, like ℓ1 norm, that might have multiple optimal
solutions. The typical use of a coreset Q is to apply an algorithm on Q and take the resulting
center cQ as an approximated solution for the original instance P . Since a generic algorithm
might pick any of the multiple optimal centers for Q, it is essential to have a guarantee that
applies to every possible optimal solution cQ for Q, hence the universal quantifier (“for all”)
in (2).

Remarkably, in Euclidean space, every instance P admits a weak ϵ-coreset of size r1{ϵs,
which is independent of the input size n “ |P | and of the Euclidean dimension d, and is
in fact tight [7]. This result improved an earlier Op1{ϵ2q bound from [8], which was also
dimension independent. Can similar bounds be proved for ℓ1 metrics?

We demonstrate that, in sharp contrast to the ℓ2 setting, weak coresets in ℓ1 are dimension
dependent and moreover grow exponentially with d, even for a fixed ϵ ą 0. At the same
time, we show how to construct a strong 0-coreset of size 2d, which again contrasts with
the ℓ2 setting (and doubling metric spaces), where coresets grow with 1{ϵ and are thus not
applicable for ϵ “ 0. It is well-known that a strong coreset is composable, i.e., the union
of coresets is itself a coreset for the union of the original datasets, which is very useful for
designing algorithms in the streaming and dynamic settings. Thus, our coreset construction
can be used in these settings, particularly in low dimension.

1 There is a folklore lower bound, which follows by considering an instance P formed by an ϵ-net of the
unit sphere Sd´1; every strong coreset must contain all of P and thus have size p1{ϵq

Ωpdq.
2 The uniqueness follows from the fact that ℓ2 is strictly convex, whereas ℓ1 is convex but not strictly

convex.
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28:4 Coresets for 1-Center in ℓ1 Metrics

▶ Theorem 1.3. Consider the 1-center problem in Rd under ℓ1 norm.
(a) Every instance P Ă Rd admits a strong 0-coreset of size 2d.
(b) There exists P Ă Rd, such that every weak ϵ-coreset for ϵ ă 1

3 must have size 2Ωpdq.

We prove this theorem in Section 2. The upper bound leverages the unique geometry of
ℓ1, where only 2d directions are in effect important. The lower bound builds a hard instance
and employs classical techniques from coding theory, particularly the Hamming bound. We
remark that an unpublished result from [30, Theorem 5], for a related problem about a
convex shape in ℓ2 metric, seems to imply a weak ϵ-coreset of size polypd{ϵq for our problem
of 1-center in ℓ1 metrics. This would contradict our lower bound in Theorem 1.3, indicating
that its statement is inaccurate or its proof is flawed; see also a similar discussion in [6].

Due to the exponential dependency on d in the general case, it is important to identify
cases with a smaller coreset size, say polypdq or even dimension independent. Additionally,
one may suspect that the huge disparity between ℓ1 and Euclidean space, which does admit a
dimension-independent weak coreset [7, 8], is the fact that in ℓ1 the optimal center need not
be unique. We thus study the special case of ℓ1 where the optimal center is unique, which
may occur naturally in certain contexts, or be “enforced” by adding at most two points to
the input dataset. We provide bounds that are exponentially smaller than in the general
case, but still depend on d, which establishes that ℓ1 is inherently more complex than ℓ2.

▶ Theorem 1.4. Consider the 1-center problem in Rd under ℓ1 norm, on instances that have
a unique optimal center.

(a) Every instance P Ă Rd with unique optimum admits a weak 0-coreset of size 2d.
(b) There exists P Ă Rd with unique optimum, such that every weak ϵ-coreset for fixed ϵ ă 1

must have size Ωplog dq.

We prove this theorem in Section 3. We further conjecture that the lower bound can
be improved to Ωpdq, and prove it in the special case ϵ “ 0 using Hadamard code. The
upper bound in our theorem employs tools from convex geometry, specifically the Steinitz
Theorem, which is relatively obscure, to prove the existence non-constructively (i.e., without
an efficient algorithm). For the lower bound, we consider the instance P “ t˘1ud, which
has a unique optimal center at the origin, and show that a coreset Q that is too small, must
have an optimal center cQ in which most coordinates are ˘1, and this center is clearly a
poor solution for P .

Value-preserving coreset. To further reduce the coreset size, we consider an even less
restrictive variant that preserves solely the objective function optpP q, without imposing any
conditions on the optimal centers of the coreset. This concept, which we shall refer to as a
value-preserving coreset, has been studied previously under the general term “coreset” [6,
14, 33], and it is most useful in applications that focus on measuring the similarity among
points in the cluster, rather than identifying a center. It is easy to verify that every weak
coreset is also a value-preserving coreset.

▶ Definition 1.5 (Value-Preserving Coreset). A subset Q Ď P is a value-preserving ϵ-coreset
for a 1-center instance P Ď X if

optpP q ď p1 ` ϵq optpQq. (3)

We show that there exist value-preserving ϵ-coresets of size Õp1{ϵ2q, which is dimension
independent, in contrast with Theorems 1.3 and 1.4. We thus establish a sharp separation
between preserving an optimal solution (center point) or only preserving its value. This result
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is stated in the next theorem and proved in Section 4. It also answers a question posed in [6],
which studies a generalization of 1-center, called the Minimum Enclosing Polytope problem,
and asks for polytopes that admit a dimension-independent value-preserving coreset.3

▶ Theorem 1.6. Consider the 1-center problem in Rd under ℓ1 norm. Every instance P Ă Rd

admits a value-preserving ϵ-coreset of size Op 1
ϵ2 log 1

ϵ q.

We prove this theorem in Section 4. Our algorithm is based on random sampling, a
technique that was rarely used (if at all) for 1-center coresets, but widely used for k-median
and k-means coresets [15, 18, 22]. This is very natural because sampling is an excellent fit
for objectives like k-median that that are formed by summation, but not for objectives like
k-center that are formed by maximization, which are sensitive to missing even one term. It
is thus not surprising that our sampling is conducted not on the 1-center problem but rather
on its dual. More precisely, we formulate 1-center as a linear programming (LP) problem and
write its dual problem, then solve this dual problem to obtain sampling probabilities for the
input points. Crucially, the dual objective is formed by summation, and is thus conducive
to sampling. Compared with the primal-dual framework, our algorithm is dual-only and it
solves the dual LP explicitly, which is then related in the analysis to the primal via strong
duality. Our sampling is similar to the randomized rounding commonly used in approximation
algorithms, however its purpose here is to generate a coreset instead of a solution, and also
the analysis is somewhat different.

Related metrics and applications. We demonstrate that our results for weak coresets in ℓ1
(in Sections 2 and 3) apply also to other discrete metric spaces. Specifically, we provide in
Section 5 examples that use Kendall’s tau and Jaccard metrics, drawing inspiration from the
results obtained in the ℓ1 setting.

1.3 Related work
Another closely related aggregation problem is 1-median. This problem, unlike 1-center,
can be solved in ℓ1 metrics easily, by simply taking in each coordinate the median value
of the input points. Utilizing this structure, 1-median in ℓ1 metrics has a weak ϵ-coreset
of size Opϵ´2 logp1{ϵqq, which is independent of the dimension [19], in sharp contrast to
1-center. The 1-median problem also admits a PTAS (approximation arbitrarily close to 1
in polynomial time) in many other metrics, including Kendall’s tau distance [25], Jaccard
distance [16], and a near-linear time PTAS in ℓ2 [17]. However, it is unclear if a PTAS exists
for edit distance, or even for a special case called Ulam distance, and the best upper bound
is p2 ´ ρq-approximation for some fixed ρ ą 0 [11, 12].

2 Weak ϵ-coresets in ℓ1

2.1 Construction of strong 0-coreset of size 2d

In this section we will prove the following theorem:

▶ Theorem 2.1. Every instance P Ă Rd admits a strong 0-coreset of size 2d.

3 Prior to our result showing that the ℓ1 ball (also known as the cross-polytope) admits dimension-
independent value-preserving coreset, the only known example was the parallelotope, which trivially
has a value-preserving 0-coreset with only 2 points.

ITCS 2025



28:6 Coresets for 1-Center in ℓ1 Metrics

Proof. Let Σ “ t´1, 1ud denote the set of all sign vectors in Rd. For each sign vector
σ P Σ, let pσ be a point in P such that the inner product pσ ¨ σ is maximized. Define
QΣ “ tpσ : σ P Σu, clearly |QΣ| ď |Σ| “ 2d.

Let c P Rd. Since QΣ is a subset of P , we have that costpc,QΣq ď costpc, P q. Let p be
some point in P , then there exists a sign vector σ P Σ for which we can write the distance
between p and c as:

∥p´ c∥1 “ σ ¨ pp´ cq “ σ ¨ p´ σ ¨ c

By definition of QΣ, there exists a point pσ P QΣ satisfying σ ¨ p ď σ ¨ pσ. Thus,

∥p´ c∥1 “ σ ¨p´σ ¨c ď σ ¨pσ ´σ ¨c ď σ ¨ppσ ´cq ď |σ ¨ ppσ ´ cq| ď ∥pσ ´ c∥1 ď costpc,QΣq.

That is,

costpc, P q “ max
pPP

∥p´ c∥1 ď costpc,QΣq ◀

2.2 Lower bound of 2Ωpdq for weak ϵ-coresets

In this section, we present a set P Ď Rd of size 2dp1´op1qq that has only a trivial 0-coreset,
namely, only itself. Furthermore, weak ϵ-coresets of P , for ϵ P p0, 1

3 q, must have size 2Ωpdq.

▶ Theorem 2.2. There exists a set P Ď Rd of size 2dp1´op1qq, such that
if Q Ď P is a weak 0-coreset of P , then Q “ P ; and
for all ϵ P r0, 1

3 q, if Q Ď P is a weak ϵ-coreset of P , then |Q| ě 2Ωpdq.

Proof. We may assume without loss of generality that d is even, as otherwise we can take
the construction for d´ 1 and append 0 to all the points (vectors).

Denote by 1⃗ the vector p1, 1, . . . , 1q, and let B Ď t˘1ud be the set of points that
are balanced, in the sense that they have an equal number of 1 and ´1 coordinates, i.e.,
B “ tb P t˘1ud :

řd
i“1 bi “ 0u. Fix 0 ă δ ď 1

3 , and let P “ t ⃗́1, 1⃗u
Ť

p1´δqB, where p1´δqB

denotes the set of points in B scaled by factor 1 ´ δ. Thus, |P | “ 2 `
`

d
d{2

˘

“ Θp2d{
?
dq. One

can verify that the origin 0⃗ P Rd is an optimal center, with value d. However it is not unique;
to see this, observe that the antipodal pair t ⃗́1, 1⃗u establishes the optimal value optpP q “ d,
thus an optimal center must have the same distance d to each of them, which holds for points
x P r´1, 1sd that lie on the hyperplane

řd
i“1 xi “ 0. The set p1 ´ δqB restricts the optimal

solutions (inside that hyperplane) in a delicate manner, as we shall see.
We first show that P is the only weak 0-coreset of P . Let Q Ď P be a weak 0-coreset,

and notice that optpQq “ optpP q “ d, implying that Q must contain the antipodal pair ⃗́1
and 1⃗. Assume towards contradiction that Q is a proper subset of P . Then there exists
p1 ´ δqb̃ P P zQ for some b̃ P B. Let η “ 1

d and consider c˚ “ ´p1 ` ηqδb̃; it cannot be an
optimal center of P , because∥∥´p1 ` ηqδb̃´ p1 ´ δqb̃

∥∥
1 “

∥∥p´1 ´ ηδqb̃
∥∥

1 “ p1 ` ηδq
∥∥b̃∥∥1 ą d.

We next show that this point c˚ “ ´p1 ` ηqδb̃ is an optimal center of Q. Indeed, observe that
δ ď 1

3 implies p1 ` ηqδ ď 1 ´ δ, and thus the sign of 1 ´ δ will not change if we add/subtract
to it p1 ` ηqδ. Let sgnpxq P t´1, 0, 1u denote the sign function. Now consider a P Q; its
distance to ´p1 ` ηqδb̃ is:
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∥∥a` p1 ` ηqδb̃
∥∥

1 “

d
ÿ

i“1

∣∣ai ` p1 ` ηqδb̃i

∣∣ “

d
ÿ

i“1
sgnpaiq

`

ai ` p1 ` ηqδb̃i

˘

“ ∥a∥1 ` p1 ` ηqδ
d

ÿ

i“1
sgnpaiqb̃i. (4)

In the case a P t ⃗́1, 1⃗u, the above equals d. In the remaining case a P Qzt ⃗́1, 1⃗u, the choice
of b̃ implies that

řd
i“1 sgnpaiqb̃i ď d´ 2, and thus∥∥a` p1 ` ηqδb̃

∥∥
1 ď ∥a∥1 ` p1 ` ηqδpd´ 2q ď p1 ´ δqd` p1 ` ηqδpd´ 2q ă d.

We have thus confirmed that ´p1 ` ηqδb̃ is an optimal center of Q, but not for P . This
contradicts our assumption that Q is a weak 0-coreset, and completes the proof of the first
item.

To prove the second item, let P Ă Rd be as before but now for δ “ 1
3 , and consider a

weak ϵ-coreset Q of P , for some 0 ă ϵ ă δ “ 1
3 . Notice that Q must contain both ⃗́1 and 1⃗,

as otherwise, if ⃗́1, 1⃗ R Q, consider the origin 0⃗ P Rd as a center. If Q contains just one of
t ⃗́1, 1⃗u say 1⃗, consider δ1⃗ as a center. In both cases, we obtain that optpQq ď p1 ´ δqd ă

p1 ´ ϵqd ă 1
1`ϵ optpP q, in contradiction to the weak ϵ-coreset.

Denote by ψpQq the minimum Hamming distance between any point in B and its furthest
point in Q, that is, ψpQq “ minbPB maxaPQ Hammpa, bq. The next proposition follows by a
standard counting-bound.

▶ Proposition 2.3. If |Q| ď 1?
2d

20.18d, then ψpQq ă 3
4d.

Proof. Denote by C 3d
4

paq the set of all points in t˘1ud whose Hamming distance from
a P t˘1ud is at least 3d

4 . Then∣∣∣C 3d
4

paq

∣∣∣ ď
ÿ

0ďjď d
4

ˆ

d

j

˙

ď 2dHp 1
4 q,

where the last inequality is the known entropy bound for binomial coefficients and Hppq “

´p log p´ p1 ´ pq logp1 ´ pq, hence Hp 1
4 q « 0.811. Taking a union over all a P Q,∣∣∣∣∣ ď

aPQ

C 3d
4

paq

∣∣∣∣∣ ď
ÿ

aPQ

∣∣∣C 3d
4

paq

∣∣∣ ď 2dHp 1
4 q |Q| ă

ˆ

d

d{2

˙

“ |B| ,

where in the last inequality we used the known bound 1?
2d

2d ď
`

d
d{2

˘

. Hence, there exists some
point in B for which the maximum Hamming distance to points in Q is smaller than 3d

4 . ◀

Assume towards contradiction that |Q| ď 1?
2d

20.18d. Then by Proposition 2.3, there is a
point b̃ P B for which the maximum Hamming distance to points in Q is smaller than 3d

4 .
We next show that the point 2δb̃ is an optimal center for Q. Similarly to Equation (4), since
2δ ď 1 ´ δ, for every a P Q we can write:

∥∥a´ 2δb̃
∥∥

1 “

d
ÿ

i“1

∣∣ai ´ 2δb̃i

∣∣ “ ∥a∥1 ´ 2δ
d

ÿ

i“1
sgnpaiqb̃i,

ITCS 2025



28:8 Coresets for 1-Center in ℓ1 Metrics

where:
d

ÿ

i“1
sgnpaiqb̃i “

ÿ

i:sgnpaiq“sgnpb̃iq

1 ´
ÿ

i:sgnpaiq‰sgnpb̃iq

1 “ d´ 2 Hammpa, b̃q,

and thus:∥∥a´ 2δb̃
∥∥

1 “ ∥a∥1 ´ 2δd` 4δHammpa, b̃q.

In the case a P t ⃗́1, 1⃗u, since b̃ P B then we have
∥∥a´ 2δb̃

∥∥
1 “ ∥a∥1 “ d. Otherwise

a P p1 ´ δqB, and
∥∥a´ 2δb̃

∥∥
1 ă ∥a∥1 ´ 2δd` 4δ ¨ 3

4d ď p1 ´ δqd` δd “ d. In both cases, the
distance from a P Q to 2δb̃ is at most d “ optpQq, with equality for some a P Q. Thus, 2δb̃ is an
optimal center for Q. However, costp2δb̃, P q ě

∥∥2δb̃` p1 ´ δqb̃
∥∥

1 “ p1 ` δqd ą p1 ` ϵq optpP q.
This contradicts that Q is a weak ϵ-coreset of P , and completes the proof of Theorem 2.2. ◀

3 Weak ϵ-coresets in ℓ1 for inputs with a unique solution

In this section we consider the special case, where the input P has a unique optimal center.
We show that even in this special case, the size of the coreset depends on the dimension and
provide a lower bound of Ωplog dq on the size of every ϵ-coreset for any fixed ϵ ă 1. This
restriction over ϵ is necessary, as for larger values of ϵ, a naive coreset construction (based
on Gonzalez algorithm for k-center [23]) with only 2 points achieves a 3-approximation.4
We also prove that there always exists a weak 0-coreset of size at most 2d. This is in stark
contrast to Section 2, where we show that in the general case of multiple solutions, 0-coresets
might require size exponential in d. Lastly, we present a set such that every weak 0-coreset
of this set is of size 2d, hence the upper bound of 2d is tight for the case ϵ “ 0.

3.1 Lower bound of Ωplog dq for weak ϵ-coresets
▶ Theorem 3.1. Fix ϵ ă 1 and consider the set of points P “ t˘1ud Ă Rd. Then P has a
unique optimal center and every weak ϵ-coreset of P must have Ωplog dq points.

Proof. It is easy to note that the origin 0⃗ P Rd is a unique optimal center with value d as the
input contains a point from every face of the ℓ1 ball centered at 0⃗. Consider a weak ϵ-coreset
Q Ă P of size |Q| ď 1

2 log d. Every point p P Q induces a partition Πp of rds into at most
two parts, by splitting the coordinates of p into the positive and negative ones. Let Π be
the common refinement of all these partitions (i.e. placing i, j P rds in the same part of Π if
and only if for every p P P they are in the same part of Πp). Since each Πp has at most two
parts, Π has at most 2|Q| ď

?
d parts. Observe that for every point p P Q, coordinates in the

same part of Π have the same sign.
Consider an optimal center c˚ for Q. The idea is to modify it iteratively, without

increasing its cost for Q, so as to have more coordinates take values in t´1, 1u. Each iteration
takes two indices i, j in the same part of Π, whose coordinates in c˚ are both not in t´1, 1u,
say, ´1 ă c˚

i ď c˚
j ă 1. The iterations stop when no such indices exist. Now add δ to c˚

i

and ´δ to c˚
j , where δ ą 0 is as large as possible while keeping both new values in the range

4 Pick arbitrary p P P , then a point p1
P P that is furthest from p, and take Q “ tp, p1

u as the coreset.
Note that optpQq “

1
2

∥∥p ´ p1
∥∥

1
, and 1

2 pp ` p1
q is a possible optimal center. For every optimal center

c˚ for Q, we can write costpc˚, P q ď
∥∥c˚

´ p
∥∥

1
` costpp, P q ď 1.5

∥∥p ´ p1
∥∥

1
“ 3 optpQq ď 3 optpP q.
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r´1, 1s, that is, δ “ mint1 ´ c˚
j , c

˚
i ´ 1u. It is easy to see that after this modification, at least

one of c˚
i and c˚

j will be in t˘1u, and at the same time the distance to every p P Q does not
change. The iteration stop at a center c̄˚, where in each part of Π at most one coordinate is
not in t˘1u, and in total at most |Π| ď 2|Q| ď

?
d coordinates are not in t˘1u.

Finally, we show that c̄˚, which is an optimal center for Q, has a too large cost for
P . Consider the point in P that is closest to ´c̄˚, i.e., where each coordinate of ´c̄˚ is
rounded to the nearest value among t˘1u. This point disagrees with ´c̄˚ (i.e., rounding was
“needed”) on at most |Π| coordinates, hence its distance from c̄˚ is at least 2d´ |Π|, hence
costpc̄˚, P q ě 2d´ |Π| ě 2d´

?
d ą p1 ` ϵq optpP q. ◀

We remark that the proof works also for the discrete space t´1, 0,`1ud (endowed with
ℓ1 norm), which has more limited choices for the center point, e.g., for c˚ above. Moreover,
note that the distance of the modified optimal center c̄˚ from 0⃗ is at least d´ 2|Q|.

3.2 Upper bound of 2d for weak 0-coresets
We will show that if P has a unique solution, then P has a weak 0-coreset of size at most 2d.

Two standard notations from the domain of convex geometry are the convex-hull and
the interior. The convex hull of P , denoted convpP q, consists of all convex combinations of
points in P , that is every point in convpP q can be expressed as a weighted sum of points
from P with non-negative weights summing to 1. The interior of P , denoted intpP q, refers to
the set of points that lie strictly inside the convex hull. In other words, it consists of points
that can be surrounded by a small ball completely contained within convpP q.

An important tool we use is Steinitz’s theorem [24].

▶ Theorem 3.2 (Steinitz’s theorem). Let 0⃗ P intpconvpSqq for some S Ď Rd. Then there
exists R Ď S of size at most 2d, such that 0⃗ P intpconvpQqq.

Next we introduce the notion of complete set, we will then provide an alternative
formulation of Steinitz’s theorem that will be useful in our application.

▶ Definition 3.3. A set S Ď Rd is complete if for every v P Rdzt⃗0u there exists s P S with
v ¨ s ą 0.

▶ Lemma 3.4. 0⃗ P intpconvpSqq if and only if S is complete.

Proof. pñq : Write 0⃗ as a convex combination, 0⃗ “
ř

i λisi where λi ě 0 and
ř

i λi “ 1.
Then,

0 “ v ¨ 0⃗ “ v ¨ p
ÿ

i

λisiq “
ÿ

i

λipv ¨ siq

If for all si, v ¨ si ď 0, then it must hold that for all si, v ¨ si “ 0, but then 0⃗ is not in the
interior of convpSq.

pðq : If 0⃗ R intpconvpSqq then there exists a hyperplane H containing 0⃗ such that S Ď H`.
Since 0⃗ is a point in the hyperplane we can write the hyperplane equation as vx “ 0 for some
v P Rdzt⃗0u. It follows that v ¨ s ď 0 for every s P S, hence S is not complete. ◀

This leads to the following alternative statement of Steinitz’s theorem.

▶ Corollary 3.5. If S Ď Rd is complete, then there exists R Ď S of size at most 2d, such
that R is complete.
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W.l.o.g., assume that 0⃗ is the unique solution of P and let optpP q “ costp⃗0, P q “ r. Since
0⃗ is unique, we can further assume that

∥∥0⃗ ´ p
∥∥

1 “ r for every p P P ; otherwise, any points
that do not satisfy this can be removed without affecting the optimal solution or its cost.
Given a pair a “ pσ, pq P t´1, 1ud ˆ P , we denote by Ha the hyperplane σ ¨ px´ pq “ r and
by H`

a the halfspace σ ¨ px´ pq ď r. In general, x P Rd is a feasible 1-center of P if for every
p P P , ∥x´ p∥1 ď r. Assuming r is known, we can write the LP formulation of the 1-center
problem with d variables x “ px1, ..., xdq and the 2d|P | constraints σ ¨ px´ pq ď r for every
σ P t´1, 1ud and p P P . That is, every constraint defines a hyperplane Hpσ,pq. We further
remove from the set of constraints t´1, 1ud ˆ P , pairs pσ, pq for which 0⃗ R Hpσ,pq and denote
the updated set of constraint by A “ S ˆ P . Note that no points from P are removed in
this process, as each has distance r from 0⃗. Since 0⃗ is the unique optimal solution of P , this
also does not change the set of feasible solutions, and 0⃗ is the unique intersection point of all
hyperplanes in A.

▶ Proposition 3.6. Let A “ SˆP be non-empty set such that 0⃗ P Ha for every a P A. Then,
Ş

aPA H`
a “ t⃗0u if and only if S is complete.

Proof. pñq : Let v P Rdzt⃗0u, then there exists a P A such that v R H`
a . That is, σ ¨pv´pq ą r

and since 0⃗ P Ha, σ ¨ p⃗0 ´ pq “ r, and it follows σ ¨ v ą 0.
pðq : A is non-empty so clearly 0⃗ P

Ş

aPA H`
a . Let v ‰ 0⃗, then there exists pσ, pq P A

such that σ ¨ v ą 0. Since 0⃗ P Ha we have σp⃗0 ´ pq “ r, it follows that σpv ´ pq ą r, that is,
v R H`

a . ◀

We are now ready to prove our main Theorem:

▶ Theorem 3.7. Every instance P Ă Rd with unique optimum admits a weak 0-coreset of
size 2d.

Proof. By Proposition 3.6 the set S is complete and by Corollary 3.5 there exists R Ď S

such that R is complete and of size at most 2d. For each σ P R we select a single point p P P

such that the pair pσ, pq is a constraint in A. That is we obtain a set of at most 2d different
points from P we denote by Q and denote by A1 this refined set of constraints. Since R
is complete, using the second direction of Proposition 3.6 we have that

Ş

aPA1 H`
a “ t⃗0u,

meaning that Q is a weak 0-coreset of size at most 2d. ◀

We conclude this section by providing an example of a set P of size 2d, where P is the
sole weak 0-coreset of itself, demonstrating that the upper bound of 2d cannot be further
improved. The set P is composed of the row vectors of the Hadamard matrix and their
negations. The proof is provided in Appendix A.1.

4 Value-preserving coresets

In this section we provide an algorithm for constructing a dimension-independent value-
preserving ϵ-coreset for 1-center. In addition, we provide a complete characterization for the
special case ϵ “ 0, by showing a 0-coreset of size d` 1, and moreover that this bound is tight,
see in Section 4.2.

▶ Theorem 4.1. For every instance P Ă Rd and 0 ă ϵ ă 1, there exists a subset S Ď P of
Op 1

ϵ2 log 1
ϵ q points such that

optpSq ě p1 ´ εq optpP q.
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Our proof of Theorem 4.1 is based on the following LP formulation of 1-center and its
dual. Unlike many primal-dual algorithms, our algorithm needs to explicitly solve and use
this optimal dual solution to guide the coreset construction.

LP formulation of 1-center. Observe that 1-center on input P Ă Rd is equivalent to the
following mathematical program with variables r and x “ px1, . . . , xdq.

minimize r

subject to
ÿ

iPrds

|pi ´ xi| ď r @p P P.

This is formally not an LP due to the absolute values in the constraints, but each such
constraint can obviously be expanded into 2d linear constraints, which leads to the following
equivalent LP formulation.

minimize r

subject to
ÿ

iPrds

σippi ´ xiq ď r @σ P t˘1ud, p P P

r P R, x P Rd.

We derive the dual of this LP, with 2dn variables tuσ,puσ,p, as follows. One can think of each
pair pσ, pq as generating a “new” point pσ1pi, . . . , σdpdq P Rd, that is obtained from p P P by
flipping signs.

maximize
ÿ

σPt˘1ud

ÿ

pPP

ÿ

iPrds

σipiuσ,p (DLP)

subject to
ÿ

σPt˘1ud

ÿ

pPP

σiuσ,p “ 0 @i P rds

ÿ

σPt˘1ud

ÿ

pPP

uσ,p “ 1

uσ,p ě 0 @σ P t˘1ud, p P P.

Coreset Algorithm. Our coreset construction, presented in Algorithm 1, builds the coreset
by sampling, where the probabilities come from an optimal solution to (DLP). Technically,
our sampling step is similar to randomized rounding that is often used in approximation
algorithms, however we use it here to find a coreset rather than an approximate solution.
The analysis of this algorithm appears in Section 4.1. We slightly abuse terminology
and refer to xW as a multiset, but formally it is always a sequence of m pairs, namely,
xW :“ pppσ1, p1q, . . . , ppσm, pmqq, hence, summing over all ppσ, pq P xW actually means summation
over j P rms.

Algorithm 1 Value-preserving ϵ-coreset.

1 shift P such that
ř

pPP p “ 0⃗ and solve (DLP) on P to obtain an optimal solution u˚

2 let xW be a multiset of m :“ Op 1
ϵ2 log 1

ϵ q i.i.d. samples from the distribution u˚

// m is an even number, u˚ viewed as distribution over t˘1ud ˆ P

3 return S :“ tp : pσ, pq P xW u
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▶ Remark 4.2. Algorithm 1 can be implemented in polypndq-time. The most expensive step
is clearly to solve the dual LP. Since it has only d ` 1 constraints, one can solve it while
using only polypdq non-zero variables. Alternatively, one can first solve the primal LP using
an ellipsoid algorithm, to find a subset of polypnq constraints that has the same optimal
value, and then solve the dual of this smaller primal LP. Moreover, inspecting the analysis,
particularly (6), one can verify that it suffices to p1 ` εq-approximate the dual LP.

4.1 Proof of Theorem 4.1: Analysis of Algorithm 1
We shall prove that the algorithm’s output S satisfies PrroptpSq ě p1 ´ ϵq optpP qs ě 0.8.
The plan is to build a dual solution for S Ă Rd, and show that with high probability, this
dual solution is feasible for (DLP) and its objective is at least p1 ´ ϵq times the optimal value
(of the same dual LP) for P . This would imply that DLPpSq ě p1 ´ ϵq ¨ DLPpP q, where
DLPpP q denotes the optimal value of (DLP) on input P , and by strong LP duality this is
equivalent to optpSq ě p1 ´ ϵq ¨ optpP q, proving the theorem.

A lower bound on optpP q. Recall that Algorithm 1 shifts P so that
ř

pPP p “ 0⃗. This
does not change the optimal value, hence our analysis simply assumes that the input P
already satisfies

ř

pPP p “ 0⃗, avoiding cumbersome notations for before and after the shift.
This property of P yields the following immediate lower bound on optpP q.

▶ Lemma 4.3. If P Ă Rd satisfies
ř

pPP p “ 0⃗, then optpP q ě maxt}p}1{2 : p P P u.

Proof. For every point p P P ,

}p}1 “

›

›

›

1
|P |

ÿ

qPP

pp´ qq

›

›

›

1
ď 1

|P |

ÿ

qPP

›

›p´ q
›

›

1 ď 2 optpP q. ◀

Dual solution induced by xW . We now wish to use xW from Algorithm 1 to construct a
solution for the dual LP. Informally, the idea is to construct a solution u

xW (can also think
of it as a vector with 2dn coordinates), that is the average of m sparse solutions, namely,
each has a single non-zero variable, whose value is 1 and it is drawn at random from the
probability distribution defined by u˚ (think of u˚ as a vector with 2dn coordinates that
sum to 1), using precisely the random draws made in Algorithm 1. Next, we formalize this
construction in a slightly more general form.

Given a multiset Z Ď t˘1ud ˆP of size m, such as xW , we define the dual solution induced
by Z, denoted uZ , as follows. Take each pair pσ, pq P Z and build a dual solution u, where
the variable corresponding to this pair is set as uσ,p “ 1, and the other 2dn´ 1 variables are
set to zero, and then we average all these m solutions. Formally, uZ is given by

uZ
σ1,p1 :“ 1

m

ÿ

pσ,pqPZ

1tσ1“σ,p1“pu.

The following fact rewrites certain linear forms over uZ , that appear in (DLP), in terms
of pairs pσ, pq P Z.

▶ Fact 4.4. Let uZ be induced by some Z Ď t˘1ud ˆ P as above. Then for every i P rds,
ÿ

σPt˘1ud

ÿ

pPP

σiu
Z
σ,p “ 1

m

ÿ

pσ,pqPZ

σi,

ÿ

σPt˘1ud

ÿ

pPP

σipiu
Z
σ,p “ 1

m

ÿ

pσ,pqPZ

σipi.
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Initial dual solution. Before building a feasible dual solution for (DLP) on S, we first
consider an initial dual solution pu :“ u

xW , which is just the solution induced by xW from
Algorithm 1. We shall see below that pu is feasible in an expected sense, and that turning the
expectation into a high-probability guarantee introduces an additive error in the constraints
(and in the objective). Nonetheless, this is still useful as we will later “fix” this solution into
one that does satisfy the constraints (without additive error).

Let us examine this initial random solution pu. It always satisfies the second constraint of
(DLP) by construction (recall that pu is the average of m sparse solutions), i.e.,

ÿ

σPt˘1ud

ÿ

pPS

puσ,p “ m ¨ 1
m “ 1.

By linearity of expectation, pu satisfies the first constraint in expectation (the middle term
uses Theorem 4.4 to provide an alternate formulation),

@i P rds, E
”

ÿ

σPt˘1ud

ÿ

pPP

σipuσ,p

ı

“ E
”

1
m

ÿ

pσ,pqPxW

σi

ı

“ 1
m ¨m ¨

ÿ

σPt˘1ud

ÿ

pPP

σiu
˚
σ,p “ 0. (5)

And again by linearity of expectation, the expected objective of pu is the same as the optimal
solution u˚, because:

E
”

ÿ

σPt˘1ud

ÿ

pPP

ÿ

iPrds

σipipuσ,p

ı

“ E
” 1
m

ÿ

iPrds

ÿ

pσ,pqPxW

σipi

ı

“ optpP q. (6)

Almost feasibility. We bound the deviation of pu from satisfying the first constraint, as
follows. Consider i P rds and let Fi be the event that |

ř

σPt˘1ud

ř

pPS σipuσ,p| ą ϵ, which by
Theorem 4.4 can be also written as | 1

m

ř

pσ,pqPxW
σi| ą ϵ. Informally, we want to bound the

probability of this event, because when it does not occur, the constraint is “almost satisfied”.
By applying Hoeffding’s inequality, where we use (5) for the expectation and the fact that
|σi| ď 1, we get (by our choice of m),

PrrFis “ Pr
”
ˇ

ˇ

ˇ

1
m

ÿ

pσ,pqPxW

σi

ˇ

ˇ

ˇ
ą ϵ

ı

ď 2e´Ωpϵ2mq ď ϵ. (7)

A feasible solution u. We next use xW to construct a new multiset W whose induced
dual uW is feasible, and in particular satisfies the first constraint. We will then take our
final dual solution to be u :“ uW , and it will remain to bound its objective value. At a
high level, W is obtained by “flipping” some of the signs appearing in xW . More precisely,
given xW “ pppσ1, p1q, . . . , ppσm, pmqq, we shall define new sign vectors σ1, . . . , σm but keep the
exact same points p1, . . . , pm P P , and construct W “ ppσ1, p1q, . . . , pσm, pmqq. It will be
convenient to arrange the sign vectors pσ1, . . . , pσm as the rows of a matrix xM P t˘1umˆd, and
use this xM to define a new matrix M , whose rows define the new sign vectors σ1, . . . , σm.

We construct M (from xM) using the following procedure, which operates separately on
each column i P rds. First copy column i of xM to be also column i of M , and let n`

i and
n´

i be the number of positive and negative entries in this column, respectively. If n`
i “ n´

i ,
leave this column of M as is, noticing that it sums to zero. Otherwise, flip |n`

i
´n´

i
|

2 signs
chosen carefully from among the majority sign in column i, and this will ensure that column
i of M sums to zero. (This is possible because m is even.) The careful choice (which signs
to flip) will favor row indices j P rms with small value |pj

i |. Formally, let Ri Ď rms be the
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set of rows j with the majority sign in column i of xM , then sort the indices j P Ri by their
value |pj

i |, pick the |n`
i ´ n´

i |{2 indices with smallest value (breaking ties arbitrarily), and
flip their entries. As explained above, the rows of the resulting matrix M define sign vectors
σ1, . . . , σm, which in turn define W “ ppσ1, p1q, . . . , pσm, pmqq, and our final dual solution is
u “ uW .

▶ Lemma 4.5. The solution u “ uW is feasible for (DLP) on S.

Proof. The first constraint is satisfied because the signs in every column of M sum to zero.
The second constraint is satisfied because flipping a sign σj

i “moves” some amount (say 1{m)
from variable uσ,p to uσ1,p, where σ, σ1 differ in coordinate j, but the total remains the same.
Finally, it uses only variables uσ,p for p P S, i.e., all other variables are 0, and thus it is
feasible not only for (DLP) on P but also on S. ◀

The next lemma bounds the decrease in objective when constructing w from xW , i.e.,
comparing that of u with that of pu. Its proof is based on an averaging argument.

▶ Lemma 4.6. For all i P rds,
ˇ

ˇ

ˇ

ÿ

pσ,pqPxW

σipi ´
ÿ

pσ,pqPW

σipi

ˇ

ˇ

ˇ
ď

2|n`
i ´ n´

i |

m

ÿ

pσ,pqPxW

|pi|.

Proof. We consider only the case n`
i ě n´

i , as the other case is symmetric. Since n`
i `n´

i “ m,
we have n`

i ě m{2. Recall that the construction of M flips in column i exactly n`

i
´n´

i

2 signs,
picking the indices j P Ri with smallest value |pj

i |. Every such flip changes the objective by
2|pj

i |, and the number of choices |Ri| “ n`
i ě m{2, hence by an averaging argument,

ˇ

ˇ

ˇ

ÿ

pσ,pqPxW

σipi ´
ÿ

pσ,pqPW

σipi

ˇ

ˇ

ˇ
ď

pn`
i ´ n´

i q{2
|Ri|

ÿ

jPRi

2|pj
i | ď

n`
i ´ n´

i

m{2
ÿ

jPrms

|pj
i |. ◀

The objective value of u. Using Theorem 4.4, we can write the objective value of u as

L :“
ÿ

iPrds

ÿ

σPt˘1ud

ÿ

pPS

σipiuσ,p “ 1
m

ÿ

iPrds

ÿ

pσ,pqPW

σipi. (8)

and that of pu as
pL :“

ÿ

iPrds

ÿ

σPt˘1ud

ÿ

pPS

σipipuσ,p “ 1
m

ÿ

iPrds

ÿ

pσ,pqPxW

σipi, (9)

Our plan is to bound L (with high probability) by relating it to pL, and then bound the latter
using Chebyshev’s inequality. These steps rely on the next two lemmas, and before proving
them, we show how they imply Theorem 4.1.

▶ Lemma 4.7. Er|L´ pL|s ď Opϵq optpP q.

▶ Lemma 4.8. VarppLq ď 4
m poptpP qq2.

Proof of Theorem 4.1. We already established in Theorem 4.5 that u is a feasible solution
for (DLP) on S, hence optpSq ě L. It thus suffices to show that PrrL ě p1 ´Opϵqq optpP qs ě

0.8. By Theorem 4.7 and Markov’s inequality, Prr|L ´ pL| ď Opϵq optpP qs ě 0.9. Next, we
apply Chebyshev’s inequality to pL, using the variance bound Theorem 4.8 and our choice of
m, to obtain Prr|pL´ErpLs| ě ϵ optpP qs ď

4{m
ϵ2 ď 0.1. Recall also from (6) that ErpLs “ optpP q.

It follows by a union bound that with probability at least 0.8,

L ě pL´Opϵq optpP q ě p1 ´Opϵqq optpP q. ◀
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Proof of Theorem 4.7. Observe that Fi is the event that |n`
i ´ n´

i | ą ϵm, in which case
we can still bound |n`

i ´ n´
i | ď m (which holds always). Thus, |n`

i ´ n´
i | ď ϵm ` 1Fi

¨ m.
Now applying Theorem 4.6 for every i P rds and taking a sum, we get (after dividing by m)

1
m

ˇ

ˇ

ˇ

ÿ

iPrds

ÿ

pσ,pqPxW

σipi ´
ÿ

iPrds

ÿ

pσ,pqPW

σipi

ˇ

ˇ

ˇ
ď 1

m

ÿ

iPrds

2|n`
i ´ n´

i |

m

ÿ

pσ,pqPxW

|pi|

ď 2
m

ÿ

iPrds

”

pϵ` 1Fi q
ÿ

pσ,pqPxW

|pi|

ı

. (10)

To bound (10) further, we expand its final expression into two parts. We then bound one
part in (11) using Theorem 4.3, and the other part in Theorem 4.9.

E
”

1
m

ÿ

iPrds

ϵ
ÿ

pσ,pqPxW

|pi|

ı

“ ϵ ¨ E
”

1
m

ÿ

pσ,pqPxW

}pi}1

ı

ď 2ϵ ¨ optpP q. (11)

▷ Claim 4.9. E
”

1
m

ÿ

iPrds

1Fi

ÿ

pσ,pqPxW

|pi|

ı

ď 2ϵ ¨ optpP q.

Proof. The main obstacle here is that we have a product of two random variables, 1Fi
and

|pi|, that are not independent. Intuitively, their dependence should be relatively small, and
our actual proof bounds their product with another product, of two independent random
variables. Recall that xW “ tppσ1, p1q, . . . , ppσm, pmqu consists of m i.i.d. samples, hence we
can focus on analyzing (say) the last one, formally

E
”

1
m

ÿ

iPrds

1Fi
¨

ÿ

pσ,pqPxW

|pi|

ı

“ E
”

ÿ

iPrds

1Fi
¨ |pm

i |

ı

.

Consider i P rds, and define F 1
i to be the event that | 1

m

řm´1
j“1 pσj

i | ą ϵ ´ 1
m . Observe that

1Fi ď 1F 1
i

because if Fi occurs then also F 1
i must occur. The crux is that F 1

i is independent of
ppσm, pmq, and thus Er1F 1

i
¨ |pm

i |s “ Er1F 1
i
s ¨Er|pm

i |s. We can still bound Er1F 1
i
s “ PrrF 1

is ď ϵ

by the argument we had for Fi in (7), except that we use m´ 1 instead of m. Altogether,

E
”

ÿ

iPrds

1Fi
¨ |pm

i |

ı

ď E
”

ÿ

iPrds

1F 1
i

¨ |pm
i |

ı

“
ÿ

iPrds

Er1F 1
i
s ¨ Er|pm

i |s ď ϵ ¨ Er}pm}1s,

and the claim follows by using Theorem 4.3 to bound }pm}1 ď 2 optpP q. ◁

We now proceed with the proof of Theorem 4.7. Plugging the bounds from (11) and
Theorem 4.9 into (10), we obtain

E
”

1
m

ˇ

ˇ

ˇ

ÿ

iPrds

ÿ

pσ,pqPW

σipi ´
ÿ

iPrds

ÿ

pσ,pqPxW

σipi

ˇ

ˇ

ˇ

ı

ď Opϵq optpP q.

which completes the proof of Theorem 4.7. ◀

Proof of Theorem 4.8. For σ P t˘1ud and p P P , define Xσ,p :“
ř

iPrds σipi. Then we can
write

pL “ 1
m

ÿ

iPrds

ÿ

pσ,pqPxW

σipi “ 1
m

ÿ

pσ,pqPxW

Xσ,p.

ITCS 2025



28:16 Coresets for 1-Center in ℓ1 Metrics

Observe that for every pσ, pq we have |Xσ,p| ď
ř

iPrds |pi| ď 2 optpP q by Theorem 4.3. Now
since the m samples in xW are independent, the variance of their sum is the sum of their
variances, and we obtain

VarppLq “ 1
m2 ¨ Var

´

ÿ

pσ,pqPxW

Xσ,p

¯

ď 1
m2 ¨m ¨ p2 optpP qq2 “ 4

m poptpP qq2. (12)

This completes the proof of Theorem 4.8. ◀

4.2 Lower bound for value-preserving 0-coreset
The Helly number of a body S, denoted HpSq, is the smallest positive integer h, such that if
every subset of size h from a family of translations of S has a non-empty intersection, then
the entire family also has a non-empty intersection. The Helly theorem shows that the Helly
number of every convex body is smaller than or equal to d` 1.

The Helly number is equivalent to a worst-case result of value-preserving 0-coreset (cf. [6]).
In the next proposition we show that the d ` 1 upper bound is tight, that is, the Helly
number of the ℓ1 ball is d` 1.

▶ Proposition 4.10. Assume d ą 2. There exists P Ă Rd, such that every value-preserving
0-coreset must have size d` 1.

Proof. Consider the set of d` 1 points P “ tp0, . . . , pdu, where p0 “ p´1,´1, . . . ,´1q and
pi is the vector with all entries equal to 1 except for a ´1 in the i-th position. We will show
that:

The point 0⃗ “ p0, 0, . . . , 0q is the only center of P with a cost of d.
Each subset of P containing d points has a cost strictly less than d.

To prove the first claim, let c be an optimal center of P , clearly c P r´1, 1sd. We know
that for every i:

costpc, P q ě
1
2 p∥c´ p0∥1 ` ∥c´ pi∥1q “

1
2 p2pd´ 1q ` 2 |ci ` 1|q “ d´ 1 ` |ci ` 1|

On the other hand, costpc, P q ď d, since the zero vector 0⃗ has a cost d, consequently
1 ě |ci ` 1| for all i. This implies ci ď 0 for all i, leading to:

costpc, P q ě ∥c´ pi∥1 ě pd´ 1q ` p1 ` ciq ´
ÿ

j‰i

cj “ d` ci ´
ÿ

j‰i

cj

Since d ě costpc, P q, it follows that
ř

j‰i cj ě ci for all i. Given that d ą 2, this implies
c “ 0⃗.

For the second claim, consider any subset Q of d points. If p0 R Q, then clearly optpQq ă d.
Assuming p0 P Q and, without loss of generality, pd R Q, we set ci “ ´ 1

d´2 for i ă d, and
cd “ 1. The cost for this choice of c is:

costpc, P q “ max
!

2 ` pd´ 1q| ´ 1 ´ ci|, pd´ 2q|1 ´ ci| ` | ´ 1 ´ ci|

)

“ max
!

2 ` pd´ 1qp1 ` ciq, pd´ 2qp1 ´ ciq ` p1 ` ciq

)

ă d ◀

5 Generalization to discrete metric spaces

In this section we show how to extend our lower bounds results to other discrete metric
spaces by providing two examples for Jaccard and Kendall’s tau metric spaces.
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σ1
p1, 2, 3, 4q

σδ

p1, 3, 2, 4q

σ0
p1, 4, 3, 2q

σ´δ

p4, 3, 1, 2q

σ´1
p4, 3, 2, 1q

σc

p1, 3, 4, 2q

1 2 2 1

2
1 1 3

4

Figure 1 The figure shows the distances between the different base permutations used in the
construction of the set P in Proposition 5.1. The distances between σ1, σδ, σ0, σ´δ, σ´1 are additive
over the straight lines. The curved lines indicate the distances from p1, 3, 4, 2q to the others.

5.1 Theorem 2.2 in Kendall’s tau metric space
Denote by Sd the set of permutations over the set of elements rds. For two permutations
σ1, σ2 P Sd, the Kendall’s tau distance is the number of pairs pi, jq such that the order of i
and j is reversed between σ1 and σ2. Formally,

τpσ1, σ2q “

∣∣∣!ti, ju : pσ1piq ´ σ1pjqqpσ2piq ´ σ2pjqq ă 0
)∣∣∣

Following a similar approach as in Section 2 we will prove a lower bound of size 2Ωpdq on
the size of weak coreset.

▶ Proposition 5.1. There exists a set P Ď S4d, such that for all ϵ P r0, 1
3 q, if Q Ď P is a

weak ϵ-coreset of P , then |Q| ě 2Ωpdq.

Proof. We will design a gadget that will allow us to replicate the structure of P that is given
in the proof of Theorem 2.2. We denote σ1 “ p1, 2, 3, 4q, σδ “ p1, 3, 2, 4q, σ0 “ p1, 4, 3, 2q,
σ´δ “ p4, 3, 1, 2q, σ´1 “ p4, 3, 2, 1q and σc “ p1, 3, 4, 2q. The distances between these base
permutations are detailed in Figure 1.

We will now introduce some notations that will allow us to describe permutations in
S4d using the base permutations. For σ = pπ1, . . . , πkq, with a slight abuse of notation, we
denote by i ` σ the permutation pi ` π1, . . . , i ` πkq and also introduce an operator d to
denote the product AdB “ tσ ¨ σ̂ : σ P A, σ̂ P Bu where the product of two permutations
is their composition. We will extend a base permutation over 4 elements to a permutation
over 4d elements using the notation σx⃗ “ p0 ` σxq ¨ p4 ` σxq ¨ . . . ¨ p4pd ´ 1q ` σxq, for
x P t´1,´δ, 0, δ, 1, cu. Now we are ready to describe P . Let B “ d

d´1
i“0 t4i ` σδ, 4i ` σ´δu,

then P “ B Y tσ1⃗, σ´1⃗u. The permutation σ0⃗, has cost 3d (see also Figure 1) and this cost
is optimal the base permutations composing σ1⃗, σ´1⃗ are antipodal (for every i ď d´ 1, every
pair that agrees with p4i` σ1q disagrees with p4i` σ´1q, and vice versa).

Let Q be a weak ϵ-coreset of P . Notice that Q must contain both σ
´1⃗ and σ1⃗, as otherwise,

if σ
´1⃗, σ1⃗ R Q, consider σ0⃗ as a center, and if Q contains just one of tσ

´1⃗, σ1⃗u say σ1⃗, consider
the permutation σc⃗ as a center. In both cases, we obtain that 2d “ optpQq ă 1

1`ϵ optpP q “
1

1`ϵ 3d, in contradiction that Q is a weak ϵ-coreset.
Similarly to Proposition 2.3 it follows that if |Q| ď 1?

2d
20.18d, then there exists b P B

such that the Kendall tau distance τpb, qq ď 3d for every q P Q. That is, b is an optimal
center of Q. However, costpb, P q “ 4d, by considering the opposite permutation of b in P ,
thus |Q| ě 2Ωpdq. ◀
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5.2 Theorem 3.1 in the Jaccard metric space
For two sets A and B, the Jaccard distance is defined as: JpA,Bq “ 1 ´

|AXB|

|AYB|
. We will use

the symbol f to denote the product AfB “ taY b : a P A, b P Bu.
Following a similar approach as in Section 3.1 we will prove a lower bound of size Ωplog dq

on the size of weak coreset.

▶ Proposition 5.2. Let P “ f
d´1
i“0 tt3iu, t3i, 3i` 1, 3i` 2uu be a collection of sets, i.e. points

in the Jaccard metric space. For every ϵ ă 1
3 , a weak ϵ-coreset has Ωplog dq points.

Proof. Let U “ t0, 1, . . . , 3d´ 1u denote the universe. We also denote elements in U as type
0 if their remainder modulo 3 is 0 and type 1 otherwise. Note that all type 0 elements appear
in every subset of P and thus appear in every optimal center of every coreset of P . It is then
easy to verify that the set of optimal centers of P is the f product of t3i ` 1, 3i ` 2u for
i P rds, along with all type 0 elements, and that optpP q “ 1

2 .
Using the same arguments as in the proof of Theorem 3.1, assume Q Ă P is a weak

ϵ-coreset of size t ď 1
2 log d. We denote by Ai “ t3iu and Bi “ t3i, 3i ` 1, 3i ` 2u the two

building blocks of the set P , corresponding to ´1 and 1 in the proof of Theorem 3.1. Every
set in p P Q induces a partition of U into at most two parts, depending on their assignment
to Ai or Bi. Again, we use Π to denote the common refinement of all these partitions.

Let c˚ be any optimal 1-center of Q, and consider a partition A P Π. Let k denote the
number of type 1 elements from A in c˚. By selecting k different type 1 elements from
A, say the first k type 1 indices of A, we preserve the cost of c˚ over Q, as the number
of differences c˚ has with each p P Q remains unchanged. We apply this modifications for
all partitions in Π and denote the new center by c̄˚. However, by the construction of c̄˚

there exists p P P such that p intersects at most one type 1 element of c̄˚ in every partition
and the union of p and c˚ is U . Consequently, the distance between c˚ and p is at least
1 ´

d`|Π|

3d ě 2
3 ´ 2t

3d “ 2
3 ´

?
d

3d ą p1 ` ϵq optpP q. ◀
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A Appendix

A.1 Lower bound for weak 0-coreset for inputs with a unique solution
We present an example of a set P of size 2d, where P is the sole weak 0-coreset of itself.
This demonstrates that the upper bound of 2d is indeed tight.

We start with a simple proposition regarding the distances from a given point within the
unit hypercube to two antipodal vertices of the cube.

▶ Proposition A.1. If p P t´1, 1ud and x P r´1, 1sd then ∥p´ x∥1 ` ∥p´pq ´ x∥1 “ 2d.

Proof. ∥p´ x∥1 ` ∥p´pq ´ x∥1 “
řd

i“1 |1 ´ xi| ` |´1 ´ xi| “
řd

i“1pp1 ´ xiq ` p1 ` xiqq “
řd

i“1 2 “ 2d ◀

An immediate consequence of the above proposition is that the cost of every optimal
center of P is at least d for every set P Ď t´1, 1ud containing an antipodal pair. Since 0⃗
has cost at most d to P we get that optpP q “ d and that 0⃗ is an optimal center. This is
summarized in the following corollary.

▶ Corollary A.2. If P Ď r´1, 1sd contains antipodal pair, then optpP q “ d.

Let H denote the set of row vectors of the Hadamard matrix, and let P “ H Y ´H.

▶ Proposition A.3. There exists P Ă Rd with unique optimum, such that every weak 0-coreset
must have size 2d.

Proof. Following Corollary A.2, optpP q “ d. We will further show that if Q Ď P does not
contain an antipodal pair, then optpQq ă d. Note that for a, b P P , a ‰ ˘b we have a ¨ b “ 0.
Also, since a, b P t´1, 1ud, a ¨ b “

ř

i:ai“bi
1 ´

ř

i:ai‰bi
1 “ d´ 2

ř

i:ai‰bi
1. That is:

∥a´ b∥1 “ 2
ÿ

i:ai‰bi

1 “ d´ a ¨ b “ d (13)

That is, the distance from every a P P to all points P zta,´au is d.
Let c “ 1

|Q|
ř

qPQ q be some center. Since Q does not contain an antipodal pair it follows
that |Q| ď d. Now, using Equation 13, for every q̃ P Q:

∥c´ q̃∥1 “
1

|Q|

∥∥∥∥∥ ÿ

qPQ

q ´ q̃

∥∥∥∥∥
1

“
1

|Q|

∥∥∥∥∥ ÿ

qPQ,q‰q̃

d

∥∥∥∥∥
1

“
|Q| ´ 1

|Q|
d ă d

That is optpQq ă d. It follows that every weak 0-coreset of P contains an antipodal pair.
If a weak 0-coreset Q is a proper subset of P then there exists q P Q with ´q R Q. But
costpq,Qq “ d “ optpQq, whereas costpq, P q “ 2d. Hence P is the sole weak 0-coreset
of P . ◀
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