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Abstract
The Circuit Size Hierarchy (CSHa

b ) states that if a > b ≥ 1 then the set of functions on n variables
computed by Boolean circuits of size na is strictly larger than the set of functions computed by
circuits of size nb. This result, which is a cornerstone of circuit complexity theory, follows from the
non-constructive proof of the existence of functions of large circuit complexity obtained by Shannon
in 1949.

Are there more “constructive” proofs of the Circuit Size Hierarchy? Can we quantify this?
Motivated by these questions, we investigate the provability of CSHa

b in theories of bounded arithmetic.
Among other contributions, we establish the following results:

(i) Given any a > b > 1, CSHa
b is provable in Buss’s theory T2

2.
(ii) In contrast, if there are constants a > b > 1 such that CSHa

b is provable in the theory T1
2, then

there is a constant ε > 0 such that PNP requires non-uniform circuits of size at least n1+ε.
In other words, an improved upper bound on the proof complexity of CSHa

b would lead to new lower
bounds in complexity theory.

We complement these results with a proof of the Formula Size Hierarchy (FSHa
b ) in PV1 with

parameters a > 2 and b = 3/2. This is in contrast with typical formalizations of complexity lower
bounds in bounded arithmetic, which require APC1 or stronger theories and are not known to hold
even in T1

2.
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30:2 Provability of the Circuit Size Hierarchy and Its Consequences

1 Introduction

1.1 Context and Motivation
The existence of Boolean functions requiring large circuits can be shown by a non-constructive
counting argument, as established by Shannon in 1949 [24]. It follows from Shannon’s seminal
result and a simple padding argument that if a > b ≥ 1 there are functions computable
by circuits of size na that cannot be computed by circuits of size nb. In other words, the
classification of Boolean functions by their minimum circuit size forms a strict hierarchy.

Obtaining a “constructive” form of these results has been a holy grail in computational
complexity theory for several decades due to its connections to derandomization and as an
approach to separating P and NP. For instance, if there is a polynomial-time algorithm
that given 1n outputs the truth-table of a function f : {0, 1}log n → {0, 1} that requires
circuits of size nΩ(1), then P = BPP [9]. In results of this form, a constructive form of the
(non-constructive) proof of the existence of hard functions is interpreted computationally as
the existence of an algorithm of bounded complexity that computes a hard function.

In this paper, rather than focusing on the existence of algorithms to capture the construct-
iveness of a statement, we explore this notion from the perspective of mathematical logic,
specifically concerning its provability in certain mathematical theories. We are interested
in identifying the weakest theory capable of establishing the aforementioned circuit size
hierarchy for Boolean circuits and related results.

As one of our contributions, we present a tight connection between the computational
and proof-theoretic perspectives. We demonstrate that proving the non-uniform circuit size
hierarchy in a theory known as T1

2 implies the existence of a function in PNP that requires
Boolean circuits of size at least n1+ε. The latter is a frontier question in complexity theory
(see, e.g., [5]). Thus, in a precise sense, developing more constructive proofs of the circuit
size hierarchy would lead to significant progress on explicit circuit lower bounds.

We now proceed to describe this result and other contributions of this work in detail.

1.2 Results
We will be concerned with standard theories of bounded arithmetic. These theories are de-
signed to capture proofs that manipulate and reason with concepts from a specified complexity
class. Notable examples include Cook’s theory PV1 [7], which formalizes polynomial-time
reasoning; Jeřábek’s theory APC1 [10, 11, 13], which extends PV1 by incorporating the
dual weak pigeonhole principle for polynomial-time functions and formalizes probabilistic
polynomial-time reasoning; and Buss’s theories Ti

2 [2], which incorporate induction principles
corresponding to various levels of the polynomial-time hierarchy.

For an introduction to bounded arithmetic, we refer to [3]. For its connections to
computational complexity and a discussion on the formalization of complexity theory, we
refer to [23].1 Here we only recall that theory PV1 corresponds essentially to T0

2 [12], and
that T0

2 ⊆ T1
2 ⊆ T2

2 correspond to the first levels of Buss’s hierarchy. A brief overview of the
theories is provided in Section 2.

For a given n ∈ N, we use CIRCUIT[s(n)] to denote the set of Boolean functions
f : {0, 1}n → {0, 1} computed by circuits of size at most s(n). Similarly, when referring to
formula size, we write FORMULA[s(n)]. We use SIZE[s(n)] to denote the set of languages
L ⊆ {0, 1}∗ that admit a sequence of circuits of size at most s(n).

1 In particular, the reference [23] contains a detailed discussion of some aspects of the formalization of
the statements appearing below.
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Circuit Size Hierarchy

For rationals a > b ≥ 1 and n0, we consider the following sentence:2

CSH[a, b, n0] ≡ ∀n ≥ n0 ∈ Log, ∃ circuit D : {0, 1}n → {0, 1} of size ≤ na,

∀ circuit C : {0, 1}n → {0, 1} of size ≤ nb, ∃x ∈ {0, 1}n such that D(x) ̸= C(x).

In other words, CSH[a, b, n0] states that CIRCUIT[na] ⊈ CIRCUIT[nb] whenever n ≥ n0.

Next, we state our first result.

▶ Theorem 1. The following results hold:
(i) For every choice of rationals a and b with a > b > 1, and for every large enough n0 ∈ N,

T2
2 ⊢ CSH[a, b, n0] .

(ii) If there are rationals a > b > 1 and a constant n0 ∈ N such that

T1
2 ⊢ CSH[a, b, n0] ,

then there is a constant ε > 0 and a language L ∈ PNP such that L /∈ SIZE[n1+ε].
(iii) Similarly to the previous item, if PV1 ⊢ CSH[a, b, n0], there is L ∈ P such that L /∈

SIZE[n1+ε].

To put it another way, we can establish a circuit size hierarchy within the theory T2
2. If

this result could also be proven in the theory T1
2, it would lead to a significant breakthrough

in circuit lower bounds. Thus, by enhancing the proof complexity upper bound for the
provability of the circuit size hierarchy, we can achieve new circuit lower bounds.

The proof technique of Item (ii) also applies to the theory T2
2, which combined with Item

(i) gives us a superlinear lower bound for a language in PΣp
2 , but this is already known by

Kannan’s theorem [15].
Note that in Theorem 1 Items (ii) and (iii) we obtain a lower bound against circuits of size

n1+ε, where the constant ε > 0 depends on the proof of CSH[a, b, n0] in the corresponding
theory. In other words, while the sentence claims the existence of hardness against circuits
of size nb, we are only able to extract a weaker lower bound for an explicit problem.

In our next result, we describe a setting where we can extract all the hardness from a
proof of the corresponding sentence.

Succinct Circuit Size Hierarchy

We define what we call the succinct version of the circuit size hierarchy, where we substitute
the upper bound circuit with a collection of labelled examples for the function, which can
always represent a circuit. For rationals a > b ≥ 1 and n0, we consider the following sentence:

SCSH[a, b, n0] ≡ ∀n ≥ n0 ∈ Log, ∃ collection {(x1, b1), . . . , (xℓ, bℓ)} of size ℓ ≤ na with
|xi| = n ∧ |bi| = 1 for each i ∈ [ℓ] and xi ̸= xj for distinct i, j ∈ [ℓ] ,

∀ circuit C : {0, 1}n → {0, 1} of size ≤ nb, ∃i ∈ [ℓ] s.t. C(xi) ̸= bi.

In other words, SCSH[a, b, n0] states that for every n ≥ n0 there is a collection of ℓ ≤ na

labelled examples such that every circuit of size at most nb disagrees with at least one of its
labels. The truth of this statement can be validated by a counting argument, similarly with
the circuit size hierarchy proof.

2 The abbreviation n ∈ Log denotes that n is the length of a variable N (see, e.g., [23] for more details).

ITCS 2025



30:4 Provability of the Circuit Size Hierarchy and Its Consequences

We obtain the following results on the proof complexity of the succinct circuit size
hierarchy.

▶ Theorem 2. The following results hold:
(i) For every choice of rationals a > b > 1 and for every large enough n0 ∈ N,

T2
2 ⊢ SCSH[a, b, n0] .

(ii) If there are rationals a > b > 1 and a constant n0 ∈ N such that

T1
2 ⊢ SCSH[a, b, n0] ,

then there is a language L ∈ PNP such that L /∈ SIZE[nb].

In our final result, we investigate the provability of size hierarchies for more restricted
computational models in T1

2 and weaker theories.

Formula Size Hierarchy

For rationals a > b ≥ 1 and n0, we consider the following sentence:

FSH[a, b, n0] ≡ ∀n ≥ n0 ∈ Log, ∃ formula F : {0, 1}n → {0, 1} of size ≤ na,

∀ formula G : {0, 1}n → {0, 1} of size ≤ nb, ∃x ∈ {0, 1}n such that F (x) ̸= G(x).

In other words, FSH(a, b, n0) states that FORMULA[na] ⊈ FORMULA[nb] whenever n ≥ n0.

We establish that for some parameters a formula size hierarchy is provable already in PV1.

▶ Theorem 3. Consider rationals a > 2 and b = 3/2, and let n0 be a large enough positive
integer. Then

PV1 ⊢ FSH[a, b, n0] .

While many lower bounds can be proven in APC1 and stronger theories (see [22, 23, 4]
and references therein), Theorem 3 provides an example of a non-trivial lower bound (under
a “Log” formalization; see [23, Section 4.1]) that can be established in PV1, which might be
of independent interest.

1.3 Techniques
The proofs of Items (ii) and (iii) in Theorem 1 are inspired by arguments from [18, 17] that
rely on a combination of a witnessing theorem with a term elimination strategy. Recall that
the witnessing theorem allows us to extract computational information from a proof of the
sentence in the theory. Roughly speaking, in our context this implies that the first existential
quantifier in the sentence CSH[a, b, n0], which corresponds to a circuit computing a hard
function, can be witnessed by a finite number of terms t1, . . . , tk of the corresponding theory.
In PV1, a term yields a polynomial-time function, while in T1

2 a term yields a polynomial-time
function with access to an NP oracle. The main difficulty is that (1) for a given input length
n it is not clear which term among t1, . . . , tk succeeds in constructing a hard function, and (2)
for a term to succeed we must provide counter-examples to the candidate witnesses provided
by previous terms.

As in previous papers, we assume that the conclusion of the theorem does not hold, and
use this assumption to rule out the correctness of each term. This leads to a contradiction,
meaning that the original sentence is not provable in the corresponding theory. Implementing
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this plan requires a careful argument, and we are currently only able to carry it out under a
complexity inclusion in SIZE[n1+ε] as opposed to SIZE[nb]. The proof of the result is given
in Section 3.1.

On the other hand, in the case of the succinct circuit size hierarchy, the argument
for Item (ii) of Theorem 2 is simpler and allows us to start with the weaker assumption
that PNP ⊆ SIZE[nb]. Without getting into the technical details, the main reason for not
losing hardness in this result is that given a labelled list of examples and access to an NP
oracle, we can efficiently compute a minimum size circuit that agrees with this list of inputs.
Consequently, we can check if a candidate labelled list provided by a term is indeed hard, or
produce a counter-example when this is not the case. The same computation is not available
in the case of Theorem 1, since it is not clear how to efficiently compute with access to an
NP oracle if a given circuit admits a smaller equivalent circuit. The proof of Item (ii) of
Theorem 2 appears in Section 3.2.

The proofs of Theorem 1 Item (i) and Theorem 2 Item (i) are given in Section 3.3. The
formalization of these hierarchies in T2

2 is easily done with access to the dual Weak Pigeonhole
Principle for polynomial-time functions, a principle which is known to be available in T2

2. In
more detail, CSH follows from SCSH in PV1, while SCSH can be established in theory APC1,
which is contained in T2

2.
Finally, in the proof of Theorem 3 we formalize in PV1 that the parity function on n

bits can be computed by formulas of size O(n2) and require formulas of size Ω(n3/2). This
yields in PV1 a proof of FSH[a, b, n0] for any choice of parameters a > 2, large enough n0,
and b = 3/2. The upper bound on the complexity of parity follows from a straightforward
formalization of the correctness of the formula obtained via a divide-and-conquer procedure.
On the other hand, in order to show the formula lower bound we formalize Subbotovskaya’s
argument [25] based on the method of restrictions. To implement the proof in PV1, we
directly define an efficient refuter that given a small formula outputs an input string where it
fails to compute the parity function. The correctness of the refuter is established by induction
using an induction principle available in the theory S1

2. We then rely on a conservation result
showing that the proof can also be done in PV1. A detailed exposition of the argument
appears in Section 4.

2 Preliminaries

2.1 Complexity Theory
We employ standard definitions from complexity theory, such as basic complexity classes,
Boolean circuits, and Boolean formulas (see, e.g., [1]).

Let N represent the set of non-negative integers. For any a ∈ N, let |a| denote the length
of its binary representation, defined as |a| ≜ ⌈log2(a+ 1)⌉. For a constant k ≥ 1, a function
f : Nk → N is said to be computable in polynomial time if f(x1, . . . , xk) can be computed in
time polynomial in |x1|, . . . , |xk|. For convenience, we might write |x⃗| ≜ |x1|, . . . , |xk|. The
class FP denotes the set of polynomial-time computable functions. Although the definition
of polynomial time typically refers to a machine model, FP can also be defined in a machine-
independent manner as the closure of a set of base functions F (not described here) under
composition and limited recursion on notation. A function f(x⃗, y) is defined from functions
g(x⃗), h(x⃗, y, z), and k(x⃗, y) by limited recursion on notation if

f(x⃗, 0) = g(x⃗)
f(x⃗, y) = h(x⃗, y, f(x⃗, ⌊y/2⌋))
f(x⃗, y) ≤ k(x⃗, y)

ITCS 2025



30:6 Provability of the Circuit Size Hierarchy and Its Consequences

for every sequence (x⃗, y) of natural numbers. Cobham [6] established that FP is the smallest
class of functions that contains the base functions F and is closed under composition and
limited recursion on notation.

2.2 Bounded Arithmetic
2.2.1 Logical Theories
We recall the definitions of some standard theories of bounded arithmetic. For more details,
the reader can consult [16, 8, 20].

2.2.1.1 Cook’s Theory PV [7]

The theory PV1 is designed to model the set N of natural numbers with the standard
interpretations for constants and function symbols like 0,+,×, etc. The vocabulary (language)
of PV, denoted LPV, includes a function symbol for each polynomial-time algorithm f : Nk →
N, where k is any constant. These function symbols and their defining axioms are derived
using Cobham’s characterization of polynomial-time functions discussed above. While Cook’s
PV was an equational theory, it was later extended in [19] to a first-order theory PV1, which
includes an induction axiom scheme that simulates binary search. It can be shown that PV1
allows induction over quantifier-free formulas (i.e., polynomial-time predicates).

PV1 can be formulated with all axioms as universal formulas (i.e., ∀x⃗ ϕ(x⃗), where ϕ is
free of quantifiers). Thus, PV1 is a universal theory. Although the definition of PV1 is quite
technical, the theory is fairly robust and the details of its definition are often unnecessary for
practical purposes. In particular, PV1 has an equivalent formalizations that does not rely on
Cobham’s result, e.g. [12].

2.2.1.2 Jeřábek’s Theory APC1 [10, 11, 13]

APC1 extends PV1 with the dual Weak Pigeonhole Principle (dWPHP) for PV1 functions:

APC1 ≜ PV ∪ {dWPHP(f) | f ∈ LPV}.

Each sentence dWPHP(f) postulates that, for every length n = |N | and for every choice of z⃗,
there is y < (1 + 1/n) · 2n such that f(z⃗, x) ̸= y for every x < 2n. It is known that APC1 is
contained in T2

2 [21].

2.2.1.3 Buss’s Theories Si
2 and Ti

2 [2]

The language LB for these theories includes predicate symbols = and ≤, constant symbols 0
and 1, and function symbols S (successor), +, ·, ⌊x/2⌋, |x| (interpreted as the length of x),
and # (interpreted as x#y = 2|x|·|y|, known as “smash”).

Recall that a bounded quantifier is a quantifier of the form Qy ≤ t, where Q ∈ {∃,∀}
and t is a term not involving y. Similarly, a sharply bounded quantifier is one of the form
Qy ≤ |t|. A formula where each quantifier appears bounded (or sharply bounded) is called a
bounded (or sharply bounded) formula.

We can create a hierarchy of formulas by counting alternations of bounded quantifiers.
The class Πb

0 = Σb
0 contains the sharply bounded formulas. Recursively, for each i ≥ 0, the

classes Σb
i and Πb

i are defined by the quantifier structure of the sentence, ignoring sharply
bounded quantifiers. For instance, if φ ∈ Σb

0 and ψ ≜ ∃y ≤ t(x⃗) φ(y, x⃗), then ψ ∈ Σb
1. For
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the general case of the definition, see [16]. It is known that for each i ≥ 1, a predicate P (x⃗)
is in Σp

i (the i-th level of the polynomial hierarchy) if and only if there is a Σb
i -formula that

agrees with it over N.
These theories share a common set of finitely many axioms, BASIC, which postulate the

expected arithmetic behavior of the constants, predicates, and function symbols. The only
difference among the theories is the type of induction axiom scheme each one postulates.

Ti
2 is a theory in the language LB that extends BASIC by including the induction axiom

IND:

φ(0) ∧ ∀x (φ(x) → φ(x+ 1)) → ∀xφ(x)

for all Σb
i -formulas φ(a). The formula φ(a) may contain other free variables in addition to a.

Si
2 is a theory in the language LB that extends BASIC by including the polynomial

induction axiom PIND:

φ(0) ∧ ∀x (φ(⌊x/2⌋) → φ(x)) → ∀xφ(x)

for all Σb
i -formulas φ(a). The formula φ(a) may contain other free variables in addition to a.

2.2.1.4 Theory S1
2(PV)

When proving some results in S1
2, it is often convenient to use a more expressive vocabulary

that easily describes any polynomial-time function. This can be done in a conservative
manner, meaning the power of the theory is not increased. Specifically, let Γ be a set of
LB-formulas. We say that a polynomial-time function f : Nk → N is Γ-definable in S1

2 if
there exists a formula ψ(x⃗, y) ∈ Γ such that the following conditions are met:

(i) For every a⃗ ∈ Nk, f (⃗a) = b if and only if N |= φ(⃗a, b).
(ii) S1

2 ⊢ ∀x⃗ (∃y (φ(x⃗, y) ∧ ∀z (φ(x⃗, z) → y = z))) .
Every function f ∈ FP is Σb

1-definable in S1
2. By incorporating all functions in FP into the

vocabulary of S1
2 and extending the axioms of S1

2 with their defining equations, we obtain
a theory S1

2(PV). This theory allows polynomial-time predicates to be referred to using
quantifier-free formulas. S1

2(PV) remains conservative over S1
2, meaning any LB-sentence

provable in S1
2(PV) is also provable in S1

2. Finally, it is known that S1
2(PV) proves the

polynomial induction scheme for both Σb
1-formulas and Πb

1-formulas within the extended
vocabulary.

2.2.2 The KPT Witnessing Theorem
The following witnessing theorem (a variant of Herbrand’s theorem) is proved in [19] (cf. also
[16, Theorem 7.4.1]) for universal theories (like the theory PV1).

▶ Theorem 4 (KPT Theorem for ∀∃∀∃ sentences). Let T be a universal theory with vocabulary
L. Let φ be an open L-formula, and suppose that

T ⊢ ∀x ∃y ∀z ∃w φ(x, y, z, w).

Then there is a finite sequence s1, . . . , sk of L-terms such that

T ⊢ ∀x, z1, . . . , zk

(
ψ(x, s1(x), z1) ∨ψ(x, s2(x, z1), z2) ∨ · · · ∨ψ(x, sk(x, z1, . . . , zk−1), zk)

)
,

where

ψ(x, y, z) ≜ ∃w φ(x, y, z, w).

ITCS 2025
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We can also apply the KPT Theorem to each theory Ti
2 (for i ≥ 1) using a conservative

extension of the theory that admits a universal axiomatization. The corresponding theory is
called PVi+1 [19]. In PVi+1, each term is equivalent to an FPΣp

i function over the standard
model. This leads to the following result.

▶ Theorem 5 (Consequence of the KPT Theorem for Theory Ti
2). Let i ≥ 1, φ(x, y, w, z) be a

Πb
i -formula, and suppose that

Ti
2 ⊢ ∀x ∃y ∀z ∃w φ(x, y, w, z).

Then there is a finite sequence f1, . . . , fk of function symbols, each corresponding to an FPΣp
i

function, such that

N |= ∀x, z1, . . . , zk

(
ψ(x, f1(x), z1)∨ψ(x, f2(x, z1), z2)∨· · ·∨ψ(x, fk(x, z1, . . . , zk−1), zk)

)
,

where

ψ(x, y, z) ≜ ∃w φ(x, y, z, w).

3 Circuit Size Hierarchies in Bounded Arithmetic

3.1 Explicit Circuit Lower Bounds from Provability in PV1 and T1
2

In this section, we prove Theorem 1 Items (ii) and Items (iii).

▶ Theorem 6 (Theorem 1 Item (iii)). If there are rationals a > b > 1 and n0 ∈ N such that

PV1 ⊢ CSH[a, b, n0] ,

then there is a constant ε > 0 and a language L ∈ P such that L /∈ SIZE[n1+ε].

Proof. Towards a contradiction, suppose that PV1 ⊢ CSH[a, b, n0] for rationals a > b > 1
and some constant n0 and that P ⊆

⋂
ε>0 SIZE[n1+ε]. The sentence CSH[a, b, n0] has the

form ∀∃∀∃:

CSH[a, b, n0] ≜ ∀n ≥ n0 ∈ Log, ∃ circuit D ∀ circuit C ψa,b(n,D,C) ,

where ψa,b(n,D,C) is the existential formula:

ψa,b(n,D,C) ≜ ∃x |x| ≤ n ∧ SIZE(D) ≤ na ∧ (SIZE(C) ≤ nb → D(x) ̸= C(x)).

Therefore, we can apply the KPT Theorem (Theorem 4), which provides PV1-terms, equival-
ently FP functions, s1, . . . , sk, where k is a constant, such that

N |= ψa,b(n, s1(1(n)), C1)∨ψa,b(n, s2(1(n), C1), C2)∨· · ·∨ψa,b(n, sk(1(n), C1, . . . , Ck−1), Ck).
(1)

In the formula above the circuits C1, . . . , Ck are universally quantified.
Next, we use P ⊆

⋂
ε>0 SIZE[n1+ε] to refute each of these disjuncts. We start by

considering the following language, D-Eval:
D-Eval is in P due to the fact that s1, . . . , sk ∈ FP and circuit evaluation is in FP. By

our assumption on the circuit complexity of the complexity class P, for every input length m
and every ε > 0, D-Eval ∈ SIZE[m1+ε], so we can choose

ε0 ≜ b1/(2k) − 1 > 0
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Algorithm 1 The pseudocode of an algorithm that decides the language D-Eval.

Input : A string x and a sequence ⟨C1, C2, . . . , Cr⟩ of r ≤ k − 1 circuits
1 Define n ≜ |x|;
2 Simulate sr+1(1(n), C1, . . . , Cr) and interpret the output as a Boolean circuit

D : {0, 1}n → {0, 1};
// We assume w.l.o.g. that D is a valid n-bit circuit of size ≤ na,

since otherwise the disjunct is trivially false.
3 Evaluate D on input x and output the result.

and have D-Eval ∈ SIZE[mb1/(2k) ]. We also define the constants

ϵi ≜ bi/k and δi ≜ b(2i−1)/(2k)

for i = 1, . . . , k. Note that ϵi = (1 + ε0)δi and δi+1 > ϵi.
We start by refuting ψa,b(n, s1(1(n)), C1). We consider inputs of the form x, λ to D-Eval,

where λ is the empty sequence. Then the input has length n + c , where c = O(logn)
accounts for the overhead in the encoding of the input. We consider the circuit C∗

1 ∈
CIRCUIT[(n+ c)1+ε0 ], which evaluates as D-Eval on inputs of length n+ c, and we fix the
input variables not related to x to represent the empty sequence. The resulting circuit has
as input an n-bit string x and computes according to s1(1(n)) by definition of the D-Eval
algorithm. For sufficiently large n, we have that n+ c ≤ nδ1 ⇒ (n+ c)1+ε0 ≤ n(1+ε0)δ1 = nϵ1 ,
therefore we have the circuit C∗

1 ∈ CIRCUIT[nϵ1 ] which agrees with the circuit s1(1(n)) on all
n-bit inputs. Since ϵ1 ≤ b, we have that N ̸|= ψa,b(n, s1(1(n)), C∗

1 ).
We can apply a similar argument to the next disjunct using the aforementioned circuit

C∗
1 . In more detail, we consider the input (x, ⟨C∗

1 ⟩) on D-Eval, which has length m =
n+ 9nϵ1 log(nϵ1) + c ≤ nδ2 for sufficiently large n due to δ2 > ϵ1, and a corresponding circuit
C∗

2 ∈ CIRCUIT[m1+ε0 ] provided by the circuit upper bound hypothesis. Similarly, we can
fix the 9nϵ1 log(nϵ1) + c variables not related to the input string x. This provides an n-bit
circuit C∗

2 ∈ CIRCUIT[nϵ2 ] that computes according to the circuit s2(1(n), C∗
1 ), due to the

definition of the D-Eval algorithm. Since ϵ2 < b, we have that N ̸|= ψa,b(n, s2(1(n), C∗
1 ), C∗

2 ).
Inductively, if we have circuits C∗

1 , C
∗
2 , . . . , C

∗
i for some i ≤ k − 1 of sizes at most

nϵ1 , nϵ2 , . . . , nϵi , respectively, we consider the input (x, ⟨C∗
1 , . . . , C

∗
i ⟩) to D-Eval, which

has length m = n + 9nϵ1 log(nϵ1) + · · · + 9nϵi log(nϵi) + c ≤ nδi+1 for sufficiently large
n. Therefore, by taking a corresponding m1+ε0-size circuit for D-Eval and fixing all the
inputs except for x, we get the circuit C∗

i+1 ∈ CIRCUIT[nϵi+1 ] ⊆ CIRCUIT[nb] which
agrees with the circuit si+1(1(n), C∗

1 , . . . , C
∗
i ) on all n-bit inputs. Consequently, N ̸|=

ψa,b(n, si+1(1(n), C∗
1 , . . . , C

∗
i ), C∗

i+1).
Overall, we can refute all disjuncts in Equation (1), which gives us a contradiction. This

completes the proof. ◀

▶ Theorem 7 (Theorem 1 Item (ii)). If there are rationals a > b > 1 and n0 ∈ N such that

T1
2 ⊢ CSH[a, b, n0] ,

then there is a constant ε > 0 and a language L ∈ PNP such that L /∈ SIZE[n1+ε].

Proof. In this case, provability in T1
2 provides by the KPT Theorem (Theorem 5) functions

s1, . . . , sk which are in FPNP instead of FP as in the previous proof. Therefore, the algorithm
D-Eval is in PNP and we use the upper bound PNP ⊆

⋂
ε>0 SIZE[n1+ε] to get a contradiction

in the same way as above. ◀
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Note that in the arguments above we have no control over the constant ε > 0. It depends
on the number of disjuncts obtained from the KPT Theorem, which depends on the supposed
proof of the hierarchy sentence.

3.2 Extracting All the Hardness from Proofs of a Succinct Hierarchy
Theorem

In this section, we prove Theorem 2 Item (ii).

▶ Theorem 8 (Theorem 2 Item (ii)). If there are rationals a > b > 1 and a constant n0 ∈ N
such that

T1
2 ⊢ SCSH[a, b, n0] ,

then there is a language L ∈ PNP such that L /∈ SIZE[nb].

Proof. The main idea here is to use the proof of SCSH in order to define a Turing machine
M which runs in polynomial time using an NP oracle and its language is hard against nb-size
circuits.

Starting from T1
2 ⊢ SCSH[a, b, n0], we see that the structure of the sentence is ∀∃∀∃:

SCSH[a, b, n0] ≜ ∀n ≥ n0 ∈ Log, ∃ collection F , ∀ circuit C ϕa,b(n,F , C),

where ϕa,b(n,F , C) is the formula that states that F is a collection {(x1, b1), . . . , (xℓ, bℓ)}
with ℓ ≤ na, where |xi| = n and |bi| = 1, and that if C is a circuit on n variables and of size
≤ nb, then there is some i ∈ [ℓ] such that C(xi) ̸= bi (we can move the existential quantifier
at the front of the formula).

Thus, by the KPT Theorem (Theorem 5), there are FPNP functions f1, . . . , fk, where k is
a fixed constant, such that

N |= ϕa,b(n, f1(1(n)), C1)∨ϕa,b(n, f2(1(n), C1), C2)∨· · ·∨ϕa,b(n, fk(1(n), C1, . . . , Ck−1), Ck).
(2)

From the relation above, we can see that one of the functions f1, . . . , fk will output a
collection that refutes every circuit of size ≤ nb. If it is not f1, then there is a counterexample
circuit C1, which is used as extra input in f2 and so on. Since f1, . . . , fk are in FPNP, we can
simulate this procedure in a PNP Turing machine Ma,b, described below.
▶ Remark. In contrast with Algorithm 1, the algorithm of the Turing machine Ma,b does
not need to have the counterexample circuits as input, since it can guess and check them
during its process, using the NP oracle. This difference in the input size is what gives us the
nb lower bound instead of n1+ϵ.

It is easy to see that the language L(Ma,b) recognised by the Turing machine Ma,b, is in
PNP. It suffices to show that L(Ma,b) ̸∈ SIZE[nb].

Consider a circuit C ∈ CIRCUIT[nb]. We will show that it fails to recognise L(Ma,b). As-
sume that the for-loop in Algorithm 2 ends in the r-th iteration with r ≤ k. We fix the circuits
C1, C2, . . . , Cr−1 found by the algorithm. Then the formula ϕa,b(n, fr(1(n), C1, . . . , Cr−1), C)
always holds. If r < k and C did not satisfy it, then the NP oracle would find C as a
counterexample and it would continue to the (r + 1)-th iteration. If r = k, then by the
construction of C1, C2, . . . , Ck−1, the formulas ϕa,b(n, fi(1(n), C1, . . . , Ci−1), Ci) for i < k do
not hold, which means by Equation (2) that ϕa,b(n, fk(1(n), C1, . . . , Ck−1), C) is true.
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Algorithm 2 The Turing machine Ma,b, whose language is hard for nb-size circuits.

Input : A bit-string x
1 Define n ≜ |x|;
2 for i = 1, . . . , k do
3 Simulate fi with input 1(n) and, if i > 1, C1, . . . , Ci−1. Interpret the output as a

collection F = {(x1, b1), . . . , (xℓ, bℓ)} with ℓ = na;
4 Check with an NP oracle whether there exists a circuit C of size ≤ nb, such that

C(xi) = bi for all i ∈ [ℓ];
5 If not or if i = k, exit the for-loop with the current F ;
6 If there is such a circuit, then use the NP oracle to find it and name it Ci.
7 end
8 If the pair (x, 1) is in the collection F , then accept. Else reject.

Since F ≡ fr(1(n), C1, . . . , Cr−1), from ϕa,b(n,F , C) we get that there is some i ∈ [ℓ],
such that C(xi) ̸= bi. However, if bi = 1, then xi ∈ L(Ma,b), and if bi = 0, then xi ̸∈ L(Ma,b).
In both cases, the circuit C fails to recognise the language L(Ma,b), and the proof is
complete. ◀

3.3 Formalization in T2
2

In this section, we prove Theorem 1 Item (i) and Theorem 2 Item (i). To achieve this, we
show that the succinct circuit size hierarchy is provable in APC1, which is contained in T2

2.
We then observe that the circuit size hierarchy is easily provable from the succinct circuit
size hierarchy.

▶ Theorem 9. For every choice of rationals a > b > 1 and for every large enough n0 ∈ N,

APC1 ⊢ SCSH[a, b, n0] .

In particular, SCSH[a, b, n0] is provable in T2
2.

Proof. We define the polynomial-time function, f , which takes as input the description of
a circuit, C, of size nb, which means that the length of the description of C is 9nb lognb,
and outputs a bit string y of length na with the property that for all i = 0, 1, . . . , na − 1,
yi = C(i).

The correctness of the polynomial-time algorithm f is provable in PV1. In other words,

PV1 ⊢ ∀n ∈ Log ( |x| ≤ 9nb lognb ∧ |y| ≤ na ) →
( |f(x)| ≤ na ∧ (f(x) = y ↔ ∀i < na yi = Eval(x, i))). (3)

The quantifier ∀i ≤ na is sharply bounded, so this formula is provable in PV1.
The theory APC1 includes the dWPHP axiom for all PV functions with input length n

and output length n+ 1, or equivalently input length n and output length m with n < m.
From the first part of Equation (3), the input length of f is 9nb lognb, while the output
length is na. Furthermore, it is provable in PV1 that there is some constant n0, such that
∀n ≥ n0 n

a > 9nb lognb. Therefore, we can use the axiom:

dWPHP(f) ≜ ∀n ≥ n0 ∃y (|y| = na) ∀x (|x| = 9nb lognb) f(x) ̸= y (4)

Every circuit of size nb can be described by a string of size 9nb lognb, which means that

∀C ∈ CIRCUIT[nb] |C| ≤ 9nb lognb.
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Also, from the second part of Equation (3), using the notation for the circuit C, we get that

f(C) ̸= y ↔ ∃i < na C(i) ̸= yi.

Substituting the last two relations to Equation (4), we get that

APC1 ⊢ ∀n ≥ n0 ∈ Log ∃y (|y| = na) ∀C ∈ CIRCUIT[nb] ∃i < na C(i) ̸= yi,

which is equivalent with SCSH[a, b, n0], if we interpret y as the collection

Fy ≜ {(0, y0), (1, y1), . . .}. ◀

▶ Corollary 10. For every choice of rationals a > b > 1 and for every large enough n0 ∈ N,

T2
2 ⊢ CSH[a, b, n0] .

Proof. Since a > b, there is some rational ϵ > 0, such that a− ϵ > b. From Theorem 9, we
have got a collection F = {(x1, b1), . . . , (xℓ, bℓ)} of size ℓ ≤ na−ϵ, such that for all circuits C
of size less than nb, there exists i ∈ [ℓ] such that C(xi) ̸= bi. So, we only need to prove that

PV1 ⊢ ∃ circuit D : {0, 1}n → {0, 1} of size ≤ na, ∀i ∈ [ℓ] D(xi) = bi,

and then we can easily deduce that APC1 ⊢ CSH[a, b, n0]. The same holds also for T2
2.

It is sufficient to argue in PV1 that there is a polynomial-time function Circuit(F) such
that given the collection F from Theorem 9 outputs a circuit D : {0, 1}n → {0, 1} of the
required size such that ∀i ∈ [ℓ] D(xi) = bi. In order to optimize the circuit size, we use
that the obtained collection has a specific structure. More precisely, we have that for any
i ∈ [ℓ], the strings xi is the n-bit binary representation of the integer i− 1. Therefore, we can
construct the circuit D in the following way: For every n-bit string xi such that (xi, 1) ∈ F ,
we construct the term T i, which is the conjunction of the first |ℓ| least significant bits of xi

(we put the literal zj if the j-th bit of xi is 1 and ¬zj if the j-th bit of xi is 0, where j ≤ |ℓ|).
Then we make the DNF

D ≜
∨

(xi,1)∈F

T i.

It is easy to see that D agrees with all the pairs of the collection F . For an arbitrary pair
(xi, bi), if bi = 1, then the bits of xi satisfy the term T i, hence D(xi) = 1. Otherwise, if
bi = 0, we know that the first |ℓ| least significant bits of xi do not satisfy any term of the
disjunction (since for all i, xi ≤ ℓ), thus we get that D(xi) = 0.

The DNF D can be viewed as a circuit and its correctness is easily provable in PV1. This
circuit has size at most na−ϵ|ℓ| (derived by |ℓ| − 1 ∧-gates for each one of the at most na−ϵ

terms and at most na−ϵ ∨-gates for the final disjunction), which is at most na−ϵ(logna−ϵ +1).
For large enough n0, we can prove that ∀n ≥ n0, n

a−ϵ(logna−ϵ + 1) ≤ na, hence we have
the desired result. ◀

4 Provability of Formula Size Bounds in PV1

In this section, we prove Theorem 3. To achieve this, we establish that:
1. The parity function on n bits requires formulas of size ≥ n3/2 (Section 4.1).
2. The parity function on n bits can be computed by formulas of size O(n2) ≤ na for any

fixed rational a > 2 and large enough n (Section 4.2).
3. Consequently, the formula size hierarchy holds with parameters a > 2 and b = 3/2,

provided that n0 is large enough (Section 4.3).
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4.1 Subbotovskaya’s Lower Bound

4.1.1 High-Level Details of the Formalization
In this section, we sketch a formalization in PV1 of the proof that the parity function on n

bits requires Boolean formulas of size ≥ n3/2 [25].3 We adapt the argument presented in [14,
Section 6.3], which proceeds as follows:
1. [14, Lemma 6.8]: Given a Boolean formula F on n-bit inputs, it is possible to fix one of

its variables so that the resulting formula F1 satisfies

Size(F1) ≤ (1 − 1/n)3/2 · Size(F ).

In order to pick the variable to be restricted and its value, one first “normalizes” the
formula F , as implicitly described in [14, Claim 6.9] (see more details below).

2. [14, Theorem 6.10]: By applying this result ℓ ≜ n − k times, it is possible to obtain a
formula Fℓ on k-bit inputs such that

Size(Fℓ) ≤ Size(F )·(1−1/n)3/2·(1−1/(n−1))3/2 . . . (1−1/(k+1))3/2 = Size(F )·(k/n)3/2.

3. [14, Example 6.11]: If the initial formula F computes the parity function, by setting
ℓ = n− 1 we obtain

1 ≤ Size(Fℓ) ≤ (1/n)3/2 · Size(F ),

and consequently Size(F ) ≥ n3/2.

We recommend reading this section with [14, Section 6.3] at hand. We will slightly
modify the argument when formalizing the lower bound in PV1. In more detail, given a small
formula F , we recursively construct (and establish correctness by induction) an n-bit input
y witnessing that F does not compute the parity function. (Actually, for technical reasons
related to the induction step, we will simultaneously construct an n-bit input y0

n witnessing
that F does not compute the parity function and an n-bit input y1

n witnessing that F does
not compute the negation of the parity function.)

Let s(n) be a size bound and ⊕(x) be a PV function that computes the parity of the
binary string described by x, i.e., ⊕(x) ≜ x1 ⊕ x2 ⊕ . . . ⊕ xn, where xi denotes the i-th
bit of x. To simplify notation, we tacitly view x as a binary string. We assume that the
formalization employs a well-behaved function symbol ⊕ such that PV1 proves the basic
properties of the parity function, e.g., PV1 ⊢ ⊕(x1) = 1 − ⊕(x) and PV1 ⊢ ⊕(x0) = ⊕(x).

We consider the following LPV-sentence stating that the parity function requires formulas
of size at least s(n) for every input length n ≥ 1:

FLBs ≜ ∀N ∀n∀F (n = |N | ≥ 1 ∧ Size(F ) < s(n) → ∃x (|x|ℓ = n ∧ Eval(F, x) ̸= ⊕(x)) , 4

where for convenience of notation we use the function symbol |w|ℓ to compute the bit-length
of the string represented by w (under some reasonable encoding).

▶ Theorem 11. Let s(n) ≜ n3/2. Then PV1 ⊢ FLBs.

3 For concreteness, we let the size of a Boolean formula F be the number of leaves of F labeled by an input
literal. We allow leaves that are labeled by constants, but we do not charge for them. Consequently, a
constant function has formula complexity 0, while a non-constant function has formula complexity at
least 1.
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Proof. Given b ∈ {0, 1}, we introduce the function ⊕b(x) ≜ ⊕(x) + b (mod 2). In order to
prove FLBs in PV1, we explicitly consider a polynomial-time function R(1(n), F, b) with the
following properties:5

1. Let b ∈ {0, 1}.
2. If Size(F ) < s(n) then R(1(n), F, b) outputs an n-bit string yb

n such that Eval(F, yb
n) ̸=

⊕b(yb
n).

In other words, R(1(n), F, b) witnesses that the formula F does not compute the function
⊕b over n-bit strings. Note that the correctness of R is captured by the bounded universal
sentence:

RefR,s ≜ ∀1(n) ∀F (Size(F ) < s(n) → |y0
n|ℓ = |y1

n|ℓ = n∧F (y0
n) ̸= ⊕0(y0

n)∧F (y1
n) ̸= ⊕1(y1

n)) ,

where we employed the abbreviations y0
n ≜ R(1(n), F, 0) and y1

n ≜ R(1(n), F, 1). Our plan is
to define R and show that PV1 ⊢ RefR,s. Note that this implies FLBs in PV1. Jumping ahead,
the correctness of R(1(n), F, b) will be established by polynomial induction on N (equivalently,
induction on n = |N |). Since RefR,s is a universal sentence and S1

2 is ∀Σb
1-conservative over

PV1, polynomial induction for NP and coNP predicates (admissible in S1
2; see, e.g., [16,

Section 5.2]) is available during the formalization. More details follow.
The procedure R(1(n), F, b) makes use of a few polynomial-time sub-routines (discussed

below) and is defined in the following way:

Algorithm 3 Refuter Algorithm R(1(n), F, b).

Input : 1(n) for some n ≥ 1, formula F over n-bit inputs, b ∈ {0, 1}.
1 Let s(n) ≜ n3/2. If Size(F ) ≥ s(n) return “error” ;
2 If Size(F ) = 0, F computes a constant function bF ∈ {0, 1}. In this case, return the

n-bit string yb
n ≜ yb

10n−1 such that ⊕b(yb
10n−1) ̸= bF ;

3 Let F̃ ≜ Normalize(1(n), F );
// F̃ satisfies [14, Claim 6.9], Size(F̃ ) ≤ Size(F ),

∀x ∈ {0, 1}n F (x) = F̃ (x).
4 Let ρ ≜ Find-Restriction(1(n), F̃ ), where ρ : [n] → {0, 1, ⋆} and |ρ−1(⋆)| = n− 1;

// ρ restricts a suitable variable xi to a bit ci, as in [14, Lemma
6.8].

5 Let F ′ ≜ Apply-Restriction(1(n), F̃ , ρ). Moreover, let b′ ≜ b⊕ ci and n′ ≜ n− 1;
// F ′ is an n′-bit formula; ∀z ∈ {0, 1}ρ−1(⋆) F ′(z) = F̃ (z ∪ xi 7→ ci).

6 Let yb′

n′ ≜ R(1n′
, F ′, b′) and return the n-bit string yb

n ≜ yb′

n′ ∪ yi 7→ ci;

4.1.1.1 Normalize(1(n), F ) and its properties (in S1
2)

We say that a subformula G of F is a neighbor of a leaf z if either z ∧ G or z ∨ G is a
subformula of F . We say that a formula F over variables {x1, . . . , xn} is in normal form if
for every i ∈ [n] and every literal z ∈ {xi, xi}, if z is a leaf of F and G is a neighbor of z in
F , then G does not contain the variable xi.

5 For convenience, we often write 1(n) instead of explicitly considering parameters N and n = |N |. We
might also write just F (x) instead of Eval(F, x).
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▶ Lemma 12. There is a polynomial-time function Normalize(1(n), F ) that given a Boolean
formula F over n input variables, outputs a formula F̃ over n input variables such that the
following holds:

(i) Size(F̃ ) ≤ Size(F ).
(ii) For every input x ∈ {0, 1}n, F̃ (x) = F (x).
(iii) F̃ is in normal form.
(iv) F̃ is either a constant 0 or 1, or F̃ contains no leaves labeled by constants 0 and 1.

Moreover, the correctness of Normalize(1(n), F ) is provable in S1
2.

Proof Sketch. It is enough to verify that the proof of [14, Claim 6.9] provides such a
polynomial-time function and that its correctness can be established in S1

2. In more detail,
if F is not in normal form, we can efficiently compute a literal z ∈ {xi, xi} and a neighbor
G of z that violates the corresponding property. As shown in [14, Claim 6.9], we can fix
any leaf z′ ∈ {xi, xi} in G by an appropriate constant c so that the resulting formula F1
satisfies conditions (i) and (ii) of Lemma 12. After at most ℓ ≜ Size(F ) iterations, we obtain
a sequence F1, . . . , Fℓ of formulas such that F̃ ≜ Fℓ satisfies conditions (i), (ii), and (iii)
of the lemma. Moreover, condition (iv) can always be guaranteed by simplifying the final
formula, i.e., by replacing subformulas 0 ∨G by G, 1 ∨G by 1, 0 ∧G by 0, and 1 ∧G by G.
The correctness of F̃ ≜ Normalize(1(n), F ) can be established by polynomial induction for
coNP predicates (i.e., Πb

1 formulas), which is available in S1
2. ◀

4.1.1.2 Find-Restriction(1(n), F̃ ) and its properties (in S1
2)

We argue in S1
2 and follow the argument from the proof of [14, Lemma 6.8]. Let F̃ be

a formula over n input variables in normal form. We focus on the non-trivial case, and
assume that n ≥ 2, Size(F̃ ) ≥ 2, and that F̃ contains no leaves labeled by constants. Let
Count(1(n), F, i) be a polynomial-time algorithm that outputs the number of leaves of F
that contain the variable xi (including its appearances as xi). Let w = (w1, . . . , wn) be the
corresponding sequence of multiplicities, i.e., wi ≜ Count(1(n), F, i). Note that

∑
i wi = s̃,

where s̃ ≜ Size(F̃ ).
We claim that S1

2 proves the existence of an index i ∈ [n] such that wi ≥ s̃/n. First, for
each j ∈ [n], we define the cumulative sum vj ≜

∑
i≤j wj . Let v ≜ (v0, v1, . . . , vn) be the

corresponding sequence, where we set v0 ≜ 0. Notice that vn = s̃. Since v contains n + 1
elements, it can be efficiently computable from w. We now argue by induction on n that for
some index j ∈ [n] we have vj −vj−1 ≥ vn/n. This implies that wj = vj −vj−1 ≥ vn/n = s̃/n,
as desired.

If n = 1, then v1 − v0 = v1 = v1/1 and the result holds for j = 1. Assume the result
holds for n− 1, and consider vn. If vn − vn−1 ≥ vn/n, we can pick j = n and we are done.
Otherwise, vn−1 ≥ vn − vn/n = vn(n− 1)/n. By the induction hypothesis, there is an index
j ∈ [n− 1] such that vj − vj−1 ≥ vn−1/(n− 1). Using the lower bound on vn−1, we get that
vj − vj−1 ≥ vn/n, which concludes the proof.

Consequently, S1
2 proves the existence of a variable xi which appears t ≥ s̃/n times as

a leaf of F̃ . Let z1, . . . , zt be the leaves of F̃ labeled by either xi or xi. Recall that we
assume that n ≥ 2, Size(F̃ ) ≥ 2, and that F̃ satisfies conditions (iii) and (iv) of Lemma 12.
Therefore, each leaf zj has a neighbor subformula Gj in F̃ that contains some leaf labeled
by a literal not in {xi, xi}. For this reason, if we set xi to an appropriate constant cj , Gj

will disappear from F , thereby erasing at least another leaf not among z1, . . . , zt. As in the
proof of [14, Lemma 6.8], if we let c ∈ {0, 1} be the constant that appears more often among
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c1, . . . , ct and set xi 7→ c in the restriction ρ, all the leaves z1, . . . , zt will be eliminated from
F̃ together with at least t/2 additional leaves.6 Thus the total number of eliminated leaves,
which we specify using a polynomial-time function NumRemoved(1(n), F̃ , ρ), satisfies

NumRemoved(1(n), F̃ , ρ) ≥ t+ t

2 ≥ 3s̃
2n.

Overall, it follows that

S1
2 ⊢F̃ = Normalize(1(n), F ) ∧ ρ = Find-Restriction(1(n), F̃ ) →

NumRemoved(1(n), F̃ , ρ) ≥ 3
2n · Size(F̃ ) .

4.1.1.3 Apply-Restriction(1(n), F̃ , ρ) and its properties (in S1
2)

We only sketch the details. This is simply a polynomial-time algorithm that, given a formula
F̃ on n input variables and a restriction ρ : [n] → {0, 1, ∗} with |ρ−1(⋆)| = n − 1 (i.e., ρ
restricts a single variable xi to a constant ci ∈ {0, 1}), outputs a formula F ′ over n− 1 input
variables that sets every literal z ∈ {xi, xi} to the corresponding constant and simplifies the
resulting formula, e.g., replaces subformulas 0 ∨G by G, 1 ∨G by 1, 0 ∧G by 0, and 1 ∧G

by G. Additionally, for F ′ = Apply-Restriction(1(n), F̃ , ρ), we have

S1
2 ⊢Size(F ′) ≤ Size(F̃ ) − NumRemoved(1(n), F̃ , ρ) ∧

∀z ∈ {0, 1}ρ−1(⋆) F ′(z) = F̃ (z ∪ xi 7→ ci) . (5)

Using the computed bound on NumRemoved(1(n), F̃ , ρ) for ρ = Find-Restriction(1(n), F̃ ), we
obtain that for F̃ and F ′ defined as above (with s′ ≜ Size(F ′) and s̃ ≜ Size(F̃ )), and assuming
that n ≥ 2,

S1
2 ⊢ s′ ≤ s̃− 3

2n · s̃ = s̃ ·
(

1 − 3
2n

)
≤ s̃ ·

(
1 − 1

n

)3/2
. (6)

The last inequality uses that S1
2 ⊢ ∀a, a ≥ 2 → (1 − 3/(2a))2 ≤ (1 − 1/a)3 , which one can

easily verify.

Note that R(1(n), F, b) runs in time polynomial in n+ |F | + |b| and that it is definable in
S1

2. Next, we establish the correctness of R(1(n), F, b) in S1
2 .

▶ Lemma 13. Let s(n) ≜ n3/2. Then S1
2 ⊢ RefR,s.

Proof. We consider the formula φ(N) defined as

∀F ∀n = |N | ≥ 1(Size(F ) < s(n)) → (|y0
n|ℓ = |y1

n|ℓ = n∧F (y0
n) ̸= ⊕0(y0

n)∧F (y1
n) ̸= ⊕1(y1

n)) ,

where as before we use y0
n ≜ R(1(n), F, 0) and y1

n ≜ R(1(n), F, 1). Note that φ(N) is a Πb
1

formula. Below, we argue that

S1
2 ⊢ φ(1) and S1

2 ⊢ ∀N φ(⌊N/2⌋) → φ(N) .

Then, by polynomial induction for Πb
1 formulas (available in S1

2) and using that φ(0) trivially
holds, it follows that S1

2 ⊢ ∀N φ(N). In turn, this yields S1
2 ⊢ RefR,s.

6 The existence of such a constant c can be proved in S1
2 in a way that is similar to the proof that some

variable xi appears in at least s̃/n leaves.
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Base Case: S1
2 ⊢ φ(1) . In this case, for a given formula F and length n, the hypothesis of

φ(1) is satisfied only if n = 1 and Size(F ) = 0. Let y0
1 ≜ R(1, F, 0) and y1

1 ≜ R(1, F, 1). We
need to prove that

|y0
1 |ℓ = |y1

1 |ℓ = 1 ∧ F (y0
1) ̸= ⊕0(y0

1) ∧ F (y1
1) ̸= ⊕1(y1

1) .

Since n = 1 and Size(F ) = 0, F evaluates to a constant bF on every input bit. The statement
above is implied by Line 2 in the definition of R(n, F, b).

(Polynomial) Induction Step: S1
2 ⊢ ∀N φ(⌊N/2⌋) → φ(N) . Fix an arbitrary N , let

n ≜ |N |, and assume that φ(⌊N/2⌋) holds. By the induction hypothesis, for every formula
F ′ with Size(F ′) < n′3/2, where n′ ≜ n− 1, we have

|y0
n′ |ℓ = |y1

n′ |ℓ = n′ ∧ F ′(y0
n′) ̸= ⊕0(y0

n′) ∧ F ′(y1
n′) ̸= ⊕1(y1

n′) , (7)

where y0
n′ ≜ R(1n′

, F ′, 0) and y1
n′ ≜ R(1n′

, F ′, 1).
Now let n ≥ 2, and let F be a formula over n-bit inputs of size < n3/2. By the

size bound on F , R(1(n), F, b) ignores Line 1. If Size(F ) = 0, then similarly to the base
case it is trivial to check that the conclusion of φ(N) holds. Therefore, we assume that
Size(F ) ≥ 1 and R(1(n), F, b) does not stop at Line 2. Let F̃ ≜ Normalize(1(n), F ) (Line 3),
ρ ≜ Find-Restriction(1(n), F̃ ) (Line 4), F ′ ≜ Apply-Restriction(1(n), F̃ , ρ) (Line 5), n′ ≜ n− 1
(Line 5), and b′ ≜ b⊕ ci (Line 5), where ρ restricts the variable xi to the bit ci. Moreover,
for convenience, let s ≜ Size(F ), s̃ ≜ Size(F̃ ), and s′ ≜ Size(F ′). By Lemma 12 Item (i),
Equation (6), and the bound s < n3/2,

S1
2 ⊢ s′ ≤ s̃ · (1 − 1/n)3/2 ≤ s · (1 − 1/n)3/2 < n3/2 · (1 − 1/n)3/2 = (n− 1)3/2 .

Thus F ′ is a formula on n′-bit inputs of size < n′3/2. Recall that for a given b ∈ {0, 1} we have
b′ = b⊕ci. Let yb′

n′ ≜ R(1n′
, F ′, b′) (Line 6). By the first condition in the induction hypothesis

(Equation (7)) and the definition of each yb
n ≜ yb′

n′ ∪yi 7→ ci, we have |y0
n|ℓ = |y1

n|ℓ = n. Below,
we also rely on the last two conditions in the induction hypothesis (Equation (7)), Lemma 12
Item (ii), and the last condition in Equation (5). We derive the following statements, where
b ∈ {0, 1}:

F ′(yb′

n′) ̸= ⊕b′
(yb′

n′) ,

F (yb
n) = F ′(yb′

n′) ,

F (yb
n) ̸= ⊕b′

(yb′

n′) .

Notice that

⊕b′
(yb′

n′) = ⊕b⊕ci(yb′

n′) = ci ⊕ (⊕b(yb′

n′)) = ci ⊕ (⊕b(yb
n) ⊕ ci) = ⊕b(yb

n) .

These statements imply that, for each b ∈ {0, 1}, F (yb
n) ̸= ⊕b(yb

n). In other words, the
conclusion of φ(N) holds. This completes the proof of the induction step. ◀

As explained above, the provability of RefR,s in S1
2 implies its provability in PV1. Since

PV1 ⊢ RefR,s → FLBs, this completes the proof of Theorem 11. ◀

4.1.2 On the Low-Level Details of the Formalization
In order to make our presentation accessible to a broader audience, in this section we provide
more details about the formalization of algorithms and about the proofs of their basic
properties. However, due to space restriction, the section is included only in the full version.
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4.2 Upper Bound
In this section, we show that the parity function on n bits can be computed by formulas
of size O(n2), provably in PV1. We can formalize this upper bound in the language of PV,
defining an LPV-sentence stating that the parity function can be computed by a formula of
size s(n) for every input length n ≥ 1:

FUBs ≜ ∀N ∀n∃F (n = |N | ≥ 1 ∧ Size(F ) < s(n) ∧ ∀x (|x| ≤ n → Eval(F, x) = ⊕0
n(x)) .

▶ Theorem 14. Let s(n) ≜ 4n2. Then PV1 ⊢ FUBs.

Proof. FUBs is a ∀Σb
2 sentence and our intended theory is PV1. In order to implement

some inductive proofs, it will be helpful to reduce the complexity of the formula. For this,
we introduce a new polynomial-time function, ParForm(1(n)), which generates the desired
formula that computes the parity function on n bits. Since it is a polynomial-time function,
there is a symbol for it in PV and we can use it in the new formalization:

FUB′
s ≜∀N ∀n (n = |N | ≥ 1 ∧ Size(ParForm(1(n))) < s(n) ∧

∀x (|x| ≤ n → Eval(ParForm(1(n)), x) = ⊕0
n(x)) .

It is immediate that FUB′
s ⇒ FUBs, thus we focus on proving FUB′

s. We continue with the
following steps:
1. We prove an upper bound of n2 for the formulas calculating the parity function and its

negation, when n is a power of 2.
2. We use this construction to derive the 4n2 upper bound for any n.

Next, we define a polynomial-time algorithm Par(1(n)) which computes a formula that
calculates the parity function on n bits and a formula that calculates the negation of the
parity function on n bits, if n is a power of 2.

Algorithm 4 Par(1(n)) outputs Boolean formulas for ⊕0
n and ⊕1

n when n is a power of 2.

Input : 1(n) for some n ≥ 1.
1 Let k ≜ |n− 1|. If n ̸= 2k (n is not a power of 2), then return “error” ;

// F will compute the parity function, while F will compute its
negation

2 if k = 0 then
3 Define F to be the formula with one leaf x1 and F to be the formula with one leaf

¬x1.
4 else if k ≥ 1 then

// Construct a pair (F, F ) of formulas on input bits x1, . . . , x2k as
follows:

5 Let (F1, F1) ≜ Par(1n/2), and define a corresponding pair (F2, F2):
6 In F2 and F 2, relabel the leaves by putting x2k−1+i instead of xi for every

i = 1, . . . , 2k−1;
7 Now let F ≜ (F1 ∨ F2) ∧ (F 1 ∨ F 2) and F ≜ (F1 ∧ F2) ∨ (F 1 ∧ F 2).
8 end
9 return (F, F ).

▶ Lemma 15. If n is a power of 2, the algorithm Par(1(n)) correctly outputs two formulas
(F, F ) of size n2 which calculate the parity function and its negation, provably in S1

2(PV).
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Proof. We split the proof of the correctness for the algorithm Par(1(n)) into 3 properties:
1. ϕ1(n) ≜ F, F ∈ VALIDFORM(n), where VALIDFORM(n) is the set of formulas on n

variables;
2. ϕ2(n) ≜ Size(F ) = Size(F ) = n2;
3. ϕ3(n) ≜ ∀x |x| ≤ n → Eval(F, x) = ⊕0

n(x) ∧ Eval(F , x) = ⊕1
n(x).

For now we only care about the case that n is a power of 2, so we prove these properties
conditionally (equivalently we prove (n = (n− 1)#1) → ϕ(n)).7 That is why it suffices to
use polynomial induction on n, which is available in S1

2, since our formulas are at most Πb
1.

We skip the proof of ϕ1, which is proven by simple induction as below, using the fact
that if F1, F2 are formulas then F1 ∧ F2 and F1 ∨ F2 are also formulas.

Property 2: S1
2 ⊢ ϕ2(n). For the base case, ϕ2(1), we have k = 0, which means that the

output (F, F ) ≜ Par(11) will be two formulas with one leaf each, hence

Size(F ) = Size(F ) = 1.

For the induction step, we need S1
2 ⊢ ∀nϕ2(⌊n/2⌋) → ϕ2(n) . If n is not a power of 2,

then the statement is true by default. In the case of n being a power of 2, we fix k = |n− 1|
and we want to prove equivalently:

S1
2 ⊢ ϕ2(2k−1) → ϕ2(2k).

Assume that ϕ2(2k−1) ≡ ϕ2(n/2) holds. From Line 8 we have that

F = (F1 ∨ F2) ∧ (F 1 ∨ F 2) and F = (F1 ∧ F2) ∨ (F 1 ∧ F 2), (8)

where (F1, F1) and (F2, F2) are copies of Par(1n/2). From the induction hypothesis, this
means that Size(F1) = Size(F1) = Size(F2) = Size(F2) = (n/2)2 = 22(k−1). Therefore, from
(Equation (8)) and the properties of the function Size, we get

Size(F ) = Size(F1) + Size(F1) + Size(F2) + Size(F2) = 4 · 22(k−1) = 22k = n2.

Similarly for F , which means that ϕ2(2k) ≡ ϕ2(n) holds. This completes the proof of the
induction for ϕ2.

Property 3: S1
2 ⊢ ϕ3(n). Here the base case is trivial: for F ≜ x1 and x ∈ {0, 1}, then

Eval(F, x) = x = ⊕0
1(x). Similarly for F .

For the induction step, we assume as above that n = 2k and we want to prove:

S1
2 ⊢ ϕ3(2k−1) → ϕ3(2k).

We assume that ϕ2(2k−1) ≡ ϕ2(n/2) holds and we write F in the form

F = (F1 ∨ F2) ∧ (F 1 ∨ F 2) and F = (F1 ∧ F2) ∨ (F 1 ∧ F 2),

where (F1, F1) and (F2, F2) are copies of Par(1n/2). Therefore, instead of Eval(F, x), we can
calculate

Eval((F1 ∨ F2) ∧ (F 1 ∨ F 2), x).

7 It is easy to check that this is true if and only if n is a power of 2.
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We need to prove that Eval(F, x) = ⊕0
n(x) for all x with |x| ≤ n. So, taking one such x

we can split its binary representation into two parts x1, x2 with lengths |x1|, |x2| ≤ n/2, such
that x = (x2x1)b = x1 + 2n/2x2.

The input to subformulas F2, F2 from the definition are the bits x2k−1+i for i = 1, . . . , 2k−1,
which means that their input is x2. Similarly, the input to subformulas F1, F1 is x1. Hence,
we can define

b1 ≜ Eval(F1, x1)b3 ≜ Eval(F1, x1)
b2 ≜ Eval(F2, x2)b4 ≜ Eval(F2, x2)

From the properties of the evaluation function and the form of F , we can prove in S1
2 that

Eval(F, x) = (b1 ∨ b2) ∧ (b3 ∨ b4), where the symbols ∨,∧ are used as Boolean symbols here.
However, since |x1|, |x2| ≤ n/2 and (F1, F1) = (F2, F2) = Par(1n/2), from the induction

hypothesis we get that

b1 = ⊕0(x1)b3 = ⊕1(x1) = 1 − b1

b2 = ⊕0(x2)b4 = ⊕1(x2) = 1 − b2

Next, it is easy to prove by checking all the 4 cases that

∀b1, b2 ∈ {0, 1} (b1 ∨ b2) ∧ ((1 − b1) ∨ (1 − b2)) = b1 ⊕ b2,

and as a result, we get

Eval(F, x) = (⊕0(x1)) ⊕ (⊕0(x2)) = ⊕0(x2x1) = ⊕0(x)

by the properties of the parity function. Similarly, we can prove that Eval(F , x) = ⊕1
n(x),

which concludes the induction. ◀

For the general case, we use a simple padding argument. For a number n, we can define
the number

ñ ≜ (n− 1)#1.

This number is the least power of 2 that is greater or equal to n. It is easy to see that

PV1 ⊢ n ≤ ñ < 2n.

If we replace ParForm(1(n)) by Par1(1ñ) (the first coordinate of Par(1ñ)), we have by the
above lemma that
1. Size(ParForm(1(n))) = Size(Par1(1ñ)) = ñ2 < (2n)2 = s(n).
2. For all x with |x| ≤ n, we have |x| ≤ ñ, which by the lemma gives us

Eval(ParForm(1n), x) = Eval(Par1(1ñ), x) = ⊕0
ñ(x).

Since |x| ≤ n, we also have ⊕0
ñ(x) = ⊕0

n(x). Consequently, we have Eval(ParForm(1n), x) =
⊕0

n(x).

These two together show that PV1 ⊢ FUB′
s and the proof is complete. ◀
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4.3 Formula Size Hierarchy
In this section, we provide the proof of Theorem 3.

▶ Theorem 16 (Theorem 3). Consider rationals a > 2 and b = 3/2, and let n0 be a large
enough positive integer. Then

PV1 ⊢ FSH[a, b, n0] .

Proof. We combine the results of Section 4.1 and Section 4.2. We argue in PV1. From
Theorem 11, we get that

∀n ∈ Log ∀F ∈ FORMULA[n3/2] ∃x (|x| ≤ n ∧ F (x) ̸= ⊕n(x)), (9)

and from Theorem 14, we have that

∀n ∈ Log ∃G ∈ FORMULA[4n2] ∀x (|x| ≤ n → G(x) = ⊕n(x)).

We can eliminate the constant 4 from the latter using that a > 2 and choosing a large enough
n0, such that for every n ≥ n0, na ≥ 4n2 (provably in PV1). Consequently,

∀n ≥ n0 ∈ Log ∃G ∈ FORMULA[na] ∀x (|x| ≤ n → G(x) = ⊕n(x)). (10)

Finally, combining Equation (9) and Equation (10), we get that

∀n ≥ n0 ∈ Log ∃G ∈ FORMULA[na] ∀F ∈ FORMULA[n3/2] ∃x (|x| ≤ n ∧ F (x) ̸= G(x)),

which is exactly the formula size hierarchy, FSH[a, b, n0], for our choice of parameters a > 2
and b = 3/2. ◀
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