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Abstract
We investigate prophet inequalities with competitive ratios approaching 1, seeking to generalize
k-uniform matroids. We first show that large girth does not suffice: for all k, there exists a matroid
of girth ≥ k and a prophet inequality instance on that matroid whose optimal competitive ratio is 1

2 .
Next, we show k-fold matroid unions do suffice: we provide a prophet inequality with competitive
ratio 1 − O(

√
log k

k
) for any k-fold matroid union. Our prophet inequality follows from an online

contention resolution scheme.
The key technical ingredient in our online contention resolution scheme is a novel bicriterion con-

centration inequality for arbitrary monotone 1-Lipschitz functions over independent items which may
be of independent interest. Applied to our particular setting, our bicriterion concentration inequality
yields “Chernoff-strength” concentration for a 1-Lipschitz function that is not (approximately)
self-bounding.
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4:2 Prophet Inequalities for k-Fold Matroid Unions

1 Introduction

Prophet inequalities are fundamental problems in optimal stopping theory, whose study dates
back to seminal work of Krengel and Sucheston [17], and that have wide applications across
Economics and Computer Science (e.g., [8, 11]). A prophet inequality instance contains a
ground set E of elements, a family F ⊆ 2E of feasible sets, and a collection of distributions
{De}e∈E . For one element at a time, a random variable ve is drawn from distribution De

independently and revealed to a gambler, who immediately and irrevocably decides whether
to accept or reject e. The gambler must at all times maintain the set of accepted elements
A ∈ F , and gets payoff

∑
e∈A ve at the end of the game. A prophet inequality is c-competitive

if it guarantees E[
∑

e∈A ve] ≥ c ·E[maxS∈F
∑

e∈S ve].1
Krengel and Sucheston’s seminal result establishes a 1

2 -competitive prophet inequality
for any instance where F is a 1-uniform matroid (i.e. at most one element is feasible to
accept), and moreover establish that no better guarantee is possible.2 For k-uniform matroids,
however, a significantly improved guarantee of 1−O( 1√

k
) is possible [1, 14, 10]. This motivates

the following question: for a given ε > 0, what conditions on F suffice for a (1−ε)-competitive
prophet inequality?

Main Result I: Large Girth does not Suffice

A natural starting point to address this question is to first understand what makes k-uniform
matroids “special” in the sense that the canonical hard instance cannot be embedded. One
conjecture might be because k-uniform matroids have large girth: there are no infeasible sets
of size ≤ k. So, a natural first question to ask is whether F having large girth suffices in
order to conclude that any instance over F admits a c-competitive prophet inequality. Our
first main result establishes that large girth does not suffice.

▶ Theorem 1. For all k ≥ 1 and ε > 0, there exists a prophet inequality instance
(E,F , {D}e∈E) such that: (a) (E,F) is a graphic matroid with girth k, and (b) (E,F , {D}e∈E)
does not admit a ( 1

2 + ε)-competitive prophet inequality.

Our construction leverages dense graphs of high girth (and a particular construction
of [18]) in order to effectively embed multiple copies of the canonical hard 1-uniform instance.
See Section 3 for further details.

Main Result II: k-fold Matroid Unions Suffice

Theorem 1 motivates richer generalizations of k-uniform matroids. We next consider k-fold
matroid unions, observing that k-uniform matroids are the union of k 1-uniform matroids.
Given a matroid M = (E,F) over ground set E with feasible sets F , the k-fold union of
M is a new matroid Mk with ground set E and feasible sets Fk := {F1 ∪ F2 ∪ · · · ∪ Fk :
F1, F2, . . . , Fk ∈ F}. That is, a set is feasible in Mk if it can be partitioned into k sets that
are each feasible in M.

1 The expectation is taken with respect to the random variables {ve}e∈E , which in turn makes A a
random variable.

2 That is, there exist prophet inequality instances over 1-uniform matroids for which better than a
1
2 -competitive ratio is impossible. The hard instance is quite simple: v1 ∼ D1 is a point mass at 1, and
v2 ∼ D2 is equal to 1

ε with probability ε and 0 otherwise. A gambler who sees v1 first cannot achieve
expect reward exceeding 1, but a prophet who always takes the maximum can achieve expected reward
of 2 − ε.
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▶ Theorem 2. For every prophet inequality instance (E,Fk, {De}e∈E) where (E,Fk) is
the k-fold union of a matroid (E,F), there exists a (1 − O(

√
log k

k ))-competitive prophet
inequality.

Our proof of Theorem 2 follows from a novel Online Contention Resolution Scheme
(OCRS). An OCRS is parameterized by a ground set E, a feasibility family F , and a vector
of probabilities x ∈ ConvexHull({1F : F ∈ F}) ⊆ [0, 1]E (that is, x can be written as a
convex combination of indicator vectors of feasible sets). One at a time, elements of E are
revealed and active with probability xe independently. If an element is active, it can be
accepted or rejected (if inactive, it must be rejected), and the accepted elements must at
all times be in F . An OCRS is c-selectable if every element e is accepted with probability
at least c · xe. In this language, Theorem 2 follows from a novel (1−O(

√
log k

k ))-selectable
OCRS for k-fold matroid unions.

To prove our OCRS, we follow a similar framework as [12], and design a recursive
decomposition of F over which to greedily accept active elements. There are two key
challenges to applying their framework, which we overview in greater detail in Subsection 4.2.
We give a representative example below.

Applied to the 1-uniform matroid, the [12] algorithm simply proposes “accept any active
element independently with probability b.” Then, linearity of expectation suffices to observe
that there are at most b elements in expectation that are both active and accepted,3 and
Markov’s inequality suffices to guarantee that with probability at least 1− b, no elements
are accepted at all. This suffices to guarantee that for all e: (a) with probability at least
1− b it is feasible to accept e when revealed, and (b) independently, we will accept e with
probability b conditioned on e being active and feasible. This implies a b(1− b)-selectable
algorithm, which is optimized at b = 1

2 .
Applied to the k-uniform matroid, a natural algorithm would again be “accept any active

element independently with probability b.” Then, linearity of expectation still suffices to
observe that there are at most bk elements in expectation that are both active and accepted,
but Markov’s inequality only guarantees that with probability at least 1−b, at most k elements
are accepted. This would lead to the same 1

4 -selectable OCRS, which is not the desired

1 − O(
√

log k
k ). Of course, the obvious fix is to use a significantly stronger concentration

inequality than Markov’s. E.g., a Chernoff bound suffices to guarantee that with probability
at least 1 − 1

k at most k − 1 elements are accepted, when b = 1 − O(
√

log k
k ). This leads

to the desired 1−O(
√

log k
k ) selectable OCRS for k-uniform matroids. However, Chernoff

bounds are insufficient for the general class of k-fold matroid unions – the probability that
a particular element is feasible to accept is a highly combinatorial function that depends
on the underlying matroid structure. Thus our Theorem 2 has two components: first, a
decomposition that reduces the OCRS problem to a concentration inequality and second, a
novel concentration inequality, which is our third main result.

Main Result III: A Bicriterion Concentration Inequality

Putting aside prophet inequalities for a moment, concentration inequalities are a core aspect
of applied probability with widespread application across many areas of Computer Science.
One representative setting is the following: Let f : {0, 1}E → R be some function, and let
X = ⟨Xe⟩e∈E be a vector of independent Bernoulli random variables, where Xe ∼ Ber(pe).
A canonical question asks: what is the probability that f(X) exceeds E[f(X)] + t?

3 There are at most 1 elements in expectation that are active, and each active element is accepted with
probability b.

ITCS 2025



4:4 Prophet Inequalities for k-Fold Matroid Unions

On one extreme, McDiarmid’s inequality holds whenever f is 1-Lipschitz. On the other,
Chernoff bounds are significantly stronger, if f is linear (and 1-Lipschitz). In between,
“Chernoff-strength” concentration holds whenever f is fractionally-subadditive or (approx-
imately) self-bounding [5, 6, 22, 7, 27], but this provably does not extend even to the case
when f is subadditive [27].

Our third main result provides a bicriterion concentration inequality for any monotone 1-
Lipschitz function. Specifically, if X is a vector of Bernoulli random variables with probability
vector p, let X(s) denote a vector of Bernoulli random variables with probability vector e−sp.
That is, each probability pi has been decreased by a factor of e−s. Our new concentration
inequality establishes:

▶ Theorem 3. Let f : {0, 1}E → R be a monotone 1-Lipschitz function. For any s ∈ (0, 1],
t > 0:

Pr
[
f(X(s)) ≥ E[f(X)] + t

]
≤ e−st.

A helpful comparison point is McDiarmid’s inequality, which instead proves the following:
Pr [f(X) ≥ E[f(X)] + t] ≤ e−2t2/|E|. The distinctions are: (a) our concentration inequality
is bicriterion – we analyze f(X(s)) instead of f(X), and (b) our concentration has an
exponent of −st instead of −2t2/|E|. In particular, McDiarmid’s inequality depends on
the dimension |E| and cannot possibly kick in for t ≪

√
|E|, whereas our concentration

inequality can kick in for any t > 1/s. A representative example to have in mind might be
s =

√
log(1/ε)/ E[f(X)] and t =

√
log(1/ε) E[f(X)]. This results in a tail probability of ε

for exceeding E[f(X)] by
√

log(1/ε) multiples of
√

E[f(X)], which is “Chernoff-strength”.
But, this concentration holds only for f(X(s)), rather than f(X). This suffices for our
application.

To prove Theorem 3, we utilize the entropy method for self-bounding functions [5, 6, 22, 7]
in an unconventional way. We give a more detailed technical overview in Subsection 5.1.

1.1 Related Work

There are three strands of related work: prophet inequalities, concentration inequalities, and
attempts to generalize k-uniform guarantees.

Prophet Inequalities

Prophet inequalities have a long history in Mathematics, Computer Science, and Operations
Research. Representative results include Krengel and Sucheston’s initial 1

2 -approximation [17],
Samuel-Cahn’s elegant thresholding strategy [25], Chawla et al.’s connection to Bayesian
mechanism design [8], Kleinberg and Weinberg’s extension to matroids [16], and Dutting et
al.’s connection to Price of Anarchy [11].

Of particular relevance to our work are prophet inequalities for k-uniform matroids. The
first 1−O(

√
log k

k ) approximation was developed by [13], and the first asymptotically tight
1−O( 1√

k
) approximation was developed by [1]. Subsequent works achieve the same 1−O( 1√

k
)

approximation with sample access [4], the optimal OCRS [14], or a simpler OCRS [10]. The
most technically related paper to our work is [12], whose OCRS framework we leverage. It
remains an open question whether the prophet inequality for k-fold matroid unions can be
improved to 1−O( 1√

k
).
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Concentration Inequalities

The most related concentration inequalities fit the same framework but consider different f .
McDiarmid’s inequality [21] holds for all 1-Lipschitz f , Schechtman’s inequality holds for f

that are subadditive [26], Bucheron et al. derive an inequality for f that are self-bounding
functions [5], and Vondrák derives an inequality for f that are fractionally subadditive [27].
These inequalities are commonly used across Theoretical Computer Science, and especially
within combinatorial prophet inequalities and Bayesian mechanism design [24, 23].

Generalizing k-uniform matroids

Recent work of [9] considers (offline) contention resolution and correlation gap inequalities.
Here too, guarantees for k-uniform matroids are significantly stronger than what is achievable
for arbitrary matroids. Their work similarly extends guarantees achievable for k-uniform
matroids to k-fold matroid unions. In comparison to our work: (a) the general motivation is
the same – both works seek to extend stronger guarantees for k-uniform matroids to more
general settings, (b) the problems studied and technical aspects are orthogonal,4 (c) our
work also proposes a bicriterion concentration inequality.

Another generalization of k-uniform matroids are packing constraints, where each element
has a d-dimensional size in [0, 1]d and one can accept a subset of elements if their size vectors
sum to at most k in every coordinate. Packing constraints have been studied in various
online settings, including secretary model [15], prophet model [2], and mixed model [3].

2 Preliminaries

Prophet Inequalities

In the prophet inequality problem, we are given a ground set of elements E, a downward-
closed family of feasible sets F ⊆ 2E , and a distribution De associated with each element
e ∈ E. Elements arrive in an adversarial order.5 As each element e arrives, its value ve,
independently drawn from De, is revealed. At this point, an irrevocable decision must be
made whether to include e in its output A, while keeping A ∈ F .

For c ∈ [0, 1], we say an online algorithm implies a c-competitive prophet inequality for
F , if for any distributions {De}e∈E ,

E
[∑

e∈A

ve

]
≥ c ·E

[
max
S∈F

∑
e∈S

ve

]

where the expectation is taken with respect to random variables {ve}e∈E and the internal
randomness of the algorithm.

Online Contention Resolution Schemes

Given a ground set of elements E and a downward-closed family of feasible sets F ⊆ 2E , we
define the polytope of F as the convex hull of all characteristic vectors of feasible sets, i.e.,
PF = ConvexHull({1F : F ∈ F}) ⊆ [0, 1]E .

4 While in principle, contention resolution and online contention resolution may appear similar, the
relevant techniques are fundamentally different with little overlap. Similarly, while correlation gap
inequalities are sometimes a useful tool in prophet inequalities, in this case there is no overlap.

5 There are various adversarial models. The weakest is the fixed-order adversary, which sets the arrival
order offline, based solely on the distributions. The strongest is the almighty adversary, which sets
the arrival order online, with full knowledge of all realizations of randomness and the algorithm’s past
decisions. Our negative result in Section 3 applies to fixed-order adversary, while our positive result in
Section 4 holds against almighty adversary.

ITCS 2025



4:6 Prophet Inequalities for k-Fold Matroid Unions

An online contention resolution scheme (OCRS) takes a vector x ∈ PF as input. Let
R(x) ⊆ E be a random set where each element e ∈ E is in R(x) independently with
probability xe. The OCRS sees membership in R(x) of elements in E, arriving in an
adversarial order; when each e ∈ E arrives, if e ∈ R(x) (i.e., e is “active”), the scheme must
decide irrevocably whether to include e in its output A, while keeping A ∈ F .

For c ∈ [0, 1], an OCRS is called c-selectable for F , if for any x ∈ PF ,

Pr[e ∈ A | e ∈ R(x)] ≥ c ∀e ∈ E

where A ∈ F is the output of the OCRS, and the probability is measured with respect to
R(x) and internal randomness of the OCRS. As shown in [12], a c-selectable OCRS directly
implies a c-competitive prophet inequality.

▶ Lemma 4 ([12]). For a ground set E and a family of feasible sets F ⊆ 2E, a c-selectable
OCRS for F implies a c-competitive prophet inequality for F .

Matroids

A matroid M = (E, I) is defined by a ground set of elements E and a non-empty downward-
closed family of independent sets I ⊆ 2E with the exchange property, i.e., for every A, B ∈ I
where |A| > |B|, there exists an element e ∈ A \B such that B ∪ {e} ∈ I. Given a matroid
M = (E, I), the following notations are used throughout the paper:

The rank of a set S ⊆ E is the size of the largest independent set contained in S:
rank(S) = max{|I| : I ⊆ S, I ∈ I}.
The span of a set S ⊆ E is the set of elements that is not independent from S: span(S) =
{e ∈ E : rank(S) = rank(S ∪ {e})}.
The restriction of M to a set S ⊆ E is a matroid M|S = (S, I|S) = (S, {I ∈ I : I ⊆ S}).
The girth of M is the size of the smallest dependent set: girth(M) = min{|S| : S ⊆
E, S /∈ I}.

Following are some special matroids that we will use later.

▶ Example 5 (Uniform matroid). A k-uniform matroid M = (E, I) is a matroid in which
the independent sets are exactly the sets that contains at most k elements for an integer
k ≥ 1, i.e, I = {I ⊆ E : |I| ≤ k}.

▶ Example 6 (Graphical matroid). A graphical matroid M = (E, I) is a matroid in which
the independent sets are the forests in a given undirected graph G = (V, E), i.e., I = {I ⊆
E : I is acyclic in G}.

We formally define k-fold matroid union as follows.

▶ Definition 7 (k-fold matroid union). Given a matroid M = (E, I) and an integer k ≥ 1,
the k-fold union of M is defined as Mk =M∨M∨ · · · ∨M︸ ︷︷ ︸

k times

= (E, Ik) where

Ik = {I1 ∪ I2 ∪ · · · ∪ Ik : I1, I2, . . . , Ik ∈ I}.

In other words, a set I is independent in Mk if and only if I can be partitioned into at
most k independent sets in M. Note that Mk remains a matroid by the closure property of
matroid union.
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3 Large Girth is Not Sufficient

In this section, we prove that a large girth is not sufficient for matroids (specifically, graphical
matroids) to have a prophet inequality with a competitive ratio better than 1

2 .

▶ Theorem 1. For all k ≥ 1 and ε > 0, there exists a prophet inequality instance
(E,F , {D}e∈E) such that: (a) (E,F) is a graphic matroid with girth k, and (b) (E,F , {D}e∈E)
does not admit a ( 1

2 + ε)-competitive prophet inequality.

To construct a hard instance, we start with a dense graph of large girth. We then
transform the graph by splitting each edge (v1, v2) into two edges (v1, u) and (v2, u), where
u is a newly introduced vertex. We obtain the final hard instance of the prophet inequality
problem by embedding the hard instance of the single-item case into each of these edge pairs
(v1, u), (v2, u).

The hardness of this instance arises from the following observation: without accepting
both edges in a pair, the instance essentially reduces to |E| independent hard instances of
the single-item case. On the other hand, one can accept at most |V | − 1 extra pairs of edges
(in addition to |E| single-item problems) at the same time without forming a cycle, which
could not contribute a lot to the final solution because the graph is dense.

Proof of Theorem 1. We employ a construction of [18] which provides dense graphs of
large girth. In particular, we will use that for any fixed k there exists some arbitrarily
large n such that there is a graph Gn on n vertices with at least n log n edges and girth
at least k.6 Specifically, consider the graph Gn with vertices V (Gn) = {v1, v2, . . . , vn} and
edges E(Gn) = {e1, e2, . . . , em}, where m ≥ n log n and each edge ei = (a(i), b(i)) ∈ E(Gn)
connects vertices a(i) and b(i) in V (Gn). We construct a new graph Hn with n + m vertices
as follows:

Begin with a set of n + m vertices, labeled V (Hn) := {w1, w2, . . . , wn}⊔{u1, u2, . . . , um}.
For each edge ei in Gn connecting va(i) and vb(i), add in Hn an edge between ui and
wa(i) (call it fi) as well as an edge between ui and wb(i) (call it f ′

i).
Hence Hn has a total of 2m edges. For 1 ≤ i ≤ m, let the associated random variable Xfi

of
fi be a constant 1, and let the associated random variable Xf ′

i
of f ′

i follow a distribution
which takes a value of 1

ε with probability ε, and a value of 0 with probability 1 − ε. We
consider an instance of the prophet inequality problem where the online algorithm is presented
edges in the order (f1, f ′

1, f2, f ′
2, . . . , fm, f ′

m).
We first lower bound OPT(Hn), the expected value the optimal offline algorithm gets

on this instance. Note that an offline algorithm could simply look at each pair {fi, f ′
i} and

take whichever edge has higher realized weight; this cannot create a cycle because every edge
selected will be incident to a vertex of degree 1. We hence have the bound

OPT(Hn) ≥
m∑

i=1

(
ε · 1

ε
+ (1− ε) · 1

)
= m(2− ε).

Fix an online algorithm A, and we now give an upper bound on its expected performance
A(Hn) on the instance. The lower bound relies on the following observation.

▷ Claim 8. There are at most n− 1 values of i in {1, 2, . . . , m} such that A accepts both fi

and f ′
i .

6 In fact, [18] prove a significantly stronger result, but the weaker version stated above suffices for our
purposes.

ITCS 2025



4:8 Prophet Inequalities for k-Fold Matroid Unions

Proof. Suppose there are at least n such values of i; call them i1, i2, . . ., in. As the original
graph G has n vertices, and a forest on n vertices has at most n− 1 edges, we clearly see
that there is a cycle among {ei1 , ei2 , . . . , ein

}. That however would imply there is a cycle
in H; namely, follow the cycle that existed in G, but replace each edge ei with the edge fi

followed by the edge f ′
i . ◁

For each 1 ≤ i ≤ m, we now consider cases for what A gets in expectation from {fi, f ′
i}

right after fi arrives:
If A rejects fi, then it clearly gets in expectation at most 1 from {fi, f ′

i} because
E[Xf ′

i
] = 1.

If A accepts fi and rejects f ′
i , then it clearly gets weight at most 1 from {fi, f ′

i}.
If A accepts fi and accepts f ′

i , then it clearly gets weight at most 1 + 1
ε from {fi, f ′

i}.

Let C1 denote the set of all i ∈ [m] such that A rejects fi, let C2 denote the set of all
i ∈ [m] such that A accepts fi and rejects f ′

i , and let C3 denote the set of all i ∈ [m] such
that A accepts fi and f ′

i . Note C1, C2, and C3 are random (disjoint) sets that may depend
on the values realized by {Xfi

, Xf ′
i
}m

i=1 and any randomness in A. By the above cases, we
can see that in expectation, A gets score at most

∑
i∈C1

1 +
∑
i∈C2

1 +
∑
i∈C3

(
1 + 1

ε

)
= |C1|+ |C2|+ |C3| ·

(
1 + 1

ε

)
.

Although |C1|, |C2|, and |C3| are random variables, |C1|+ |C2| ≤ m always, and by Claim 8
we have |C3| ≤ n− 1 always. Hence, in expectation (averaging over all possible realizations
of C1, C2, and C3), we can bound the performance of A on Hn by A(Hn) ≤ m + n

(
1 + 1

ε

)
.

As n grows, we can compute

lim inf
n→∞

A(Hn)
OPT(Hn) ≤ lim

n→∞

m + n
(
1 + 1

ε

)
m(2− ε) = 1

2− ε
.

Taking ε→ 0 demonstrates the claimed result. ◀

4 k-Fold Unions are Sufficient

Our main goal in the section is to construct a good OCRS for k-fold matroid unions
(Theorem 9). Combining with the reduction from prophet inequalities to OCRSs by [12]
(Lemma 4), this immediately implies the existence of good prophet inequality for all k-fold
matroid unions (Theorem 2).

▶ Theorem 9. There exists a (1 − O(
√

log k
k ))-selectable OCRS for any k-fold matroid

union Mk.

Our OCRS for k-fold matroid unions builds on the chain decomposition approach used
in the matroid OCRS by [12], outlined in Subsection 4.1. We overview our approach and
highlight main difficulties in Subsection 4.2. The construction is then formally given and
analyzed in Subsection 4.3, where the bicriterion concentration inequality in Section 5 is
used to bound its selectability.



N. Alon et al. 4:9

4.1 Recap: OCRS for general matroids

We briefly describe the idea of the 1
4 -selectable matroid OCRS by [12]. Specifically, they

show that for any parameter b ∈ (0, 1), there exists a (1− b)-selectable OCRS for any matroid
M = (E, I) and x ∈ b · PM. Note that one can “scale down” a vector x from PM to b · PM
by only considering each element independently with probability b. Formally:

▶ Fact 10. For b, c ∈ (0, 1) and any matroid M, a c-selectable OCRS for all x ∈ b · PM
implies a bc-selectable OCRS for all x ∈ PM.

Therefore, it follows that a b(1 − b)-selectable ORCS exists for any matroid M and
x ∈ PM. By letting b = 1

2 , they obtain a 1
4 -selectable matroid OCRS.

The greedy algorithm

Let us start with the simple greedy algorithm that always accepts the active element whenever
possible. WhenM is a 1-uniform matroid, the greedy algorithm is actually (1− b)-selectable
for x ∈ b · PM (i.e.,

∑
e∈E xe ≤ b since M is 1-uniform), since the selectability of an element

e ∈ E can be easily lower bounded as

Pr[e is accepted | e is active] ≥ Pr[no other element is active | e is active]
≥ Pr[no element is active].

The first inequality holds because when there is no active elements besides e, the greedy
algorithm can always accept e even if it arrives at the end. The second inequality holds due
to the independence between elements. Moreover, by Markov’s inequality,

Pr[no element is active] = 1−Pr[|R(x)| ≥ 1]

≥ 1−E[|R(x)|] = 1−
∑
e∈E

xe ≥ 1− b.

(Recall that R(x) is the set of active elements.)
The first half of argument applies when M is a general matroid: for every element e ∈ E,

Pr[e is accepted | e is active] ≥ Pr[e /∈ span(R(x))].

However, unlike in 1-uniform matroids, the probability that an element e ∈ E is spanned by
active elements R(x) could be much smaller than 1 − b, even for a scaled x ∈ b · PM. In
fact, the selectability of the greedy algorithm can be arbitrarily bad for a general matroid
M (see, e.g., [19]).

Protection

Consider Algorithm 1, a modified greedy algorithm with a protection set S ⊊ E that only
handles elements in E \ S. Intuitively, the algorithm accepts every active element e ∈ E \ S

whenever it does not conflict with any element in S. As a result, elements in S are “prioritized”
over those in E \ S: regardless of which independent set from S is accepted, it remains an
independent set when combined with the accepted elements in E \ S.
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Algorithm 1 Modified greedy algorithm for M = (E, I) with a protection set S ⊆ E.

A← ∅ ▷ the set of accepted elements in E \ S

for each arriving active element e ∈ E \ S do
if e /∈ span(A ∪ S) then

A← A ∪ {e} ▷ accepts element e

For the modified greedy algorithm, we can similarly lower bound the selectability for
e ∈ E \ S:

Pr[e is accepted | e is active] ≥ Pr[e /∈ span(R(x) ∪ S)].

The good news is that, such probabilities can be further lower bounded by 1− b for the S

obtained using Algorithm 2, an iterative algorithm that updates S by adding an element e

whenever Pr[e ∈ span(R(x) ∪ S)] > b.

Algorithm 2 Find a protection set S for M = (E, I) and x ∈ b · PM.

function Protect(M, x, b)
S ← ∅
while ∃e ∈ E \ S, Pr[e ∈ span(R(x) ∪ S)] > b do

S ← S ∪ {e}
return S

Note that Algorithm 2 always terminates since E is a finite set, and the modified greedy
algorithm with this protection set S guarantees (1−b)-selectability for every element e ∈ E\S.
More importantly, the protection is non-trivial, i.e., S is a proper subset of E.

▶ Lemma 11 ([12]). For any matroid M = (E, I) and x ∈ b · PM, Protect(M, x, b) ⊊ E.

Therefore, it remains to get a good OCRS forM|S and x|S , the restriction of the original
matroid and vector to the protection set S.

Chain decomposition

The matroid OCRS in [12] starts with an offline prepossessing that finds the following chain
decomposition of the elements:

∅ = Nℓ ⊊ Nℓ−1 ⊊ · · · ⊊ N1 ⊊ N0 = E

where Ni+1 = Protect(M|Ni
, x|Ni

, b) for every 0 ≤ i < ℓ. And the OCRS is then operates
by invoking Algorithm 1 on matroidM|Ni with a protection set Ni+1 for each e ∈ Ni \Ni+1.

It is easy to see that these algorithms together produces an independent set of M, and
the selectability for each element e ∈ Ni \Ni+1 is

Pr[e is accepted | e is active] ≥ 1−Pr[e ∈ spanM|Ni
(R(x|Ni

) ∪Ni+1)] ≥ 1− b

where the last inequality holds due to the way Ni+1 is obtained using Algorithm 2. By
setting b = 1

2 , the resulting OCRS is 1
2 -selectable given any matroid M and x ∈ 1

2 · PM.

4.2 Overview of our construction
We now give a high-level overview of our construction and highlight main difficulties. Let
us first examine the case when M is a k-uniform matroid and see why the simple greedy
algorithm works better for larger k.
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Intuition from k-uniform matroids

When M is a k-uniform matroid, it turns out that the simple greedy algorithm that
always accepts the active element whenever possible yields an OCRS with a selectability
of 1 − O(

√
log k

k ). To see this, consider the following tighter analysis of selectability for
k-uniform matroids: for every element e ∈ E,

Pr[e is accepted | e is active] ≥ Pr[e /∈ span(R(x))] = Pr[|R(x)| < k].

Intuitively, |R(x)| represents the number of slots occupied by active elements, and we know
|R(x)| < k indicates e /∈ span(R(x)). We want the bad event |R(x)| ≥ k to occur with a
small probability.

Note that |R(x)| is a sum of Bernoulli random variables and it concentrates very well: if
we consider a slightly scaled-down x ∈ (1−O(

√
log k

k )) · PM, Chernoff bound (Theorem 27)
tells us that Pr[|R(x)| ≥ k] ≤ 1

k . By Fact 10, one can further derive an OCRS for k-uniform

matroids with a selectability of (1−O(
√

log k
k ))(1− 1

k ) = 1−O(
√

log k
k ).

To summarize, the greedy algorithm performs well on k-uniform matroids because of the
existence of a fine-grained occupancy indicator |R(x)| that concentrates well.

Main idea and challenges

For a k-fold matroid union Mk = (E, Ik), the simple greedy algorithm could perform very
poor due to inherent non-uniformity of Mk. In the matroid OCRS by [12], this is resolved
using the idea of chain decomposition. For each level, an iterative procedure (Algorithm 2) is
used to find a protection set S that includes all elements that are easily spanned by R(x)∪S.
This is done by directly looking at the probability Pr[e ∈ span(R(x) ∪ S)].

Our idea is to construct a different chain decomposition based on functions ωe(·) : 2E →
[0, k] that act as a “generalized occupancy indicator” for each element e, such that ωe(∅) = 0,
ωe(S) = k if e is spanned by the set S, and we want ωe(·) to be as smooth as possible (i.e.,
1-Lipschitz). For each level of the chain decomposition, we will add e to the protection set S

whenever the expected occupancy E[ωe(R(x) ∪ S)] is large.
For k-uniform matroids, a simple occupancy indicator would be ωe(S) = min(k, |S|)

(since we require its value to be between 0 and k). However, extending the definition of an
occupancy function to a general k-fold matroid union introduces several challenges:
1. (Compatibility with chain decomposition) The most crucial part of the chain

decomposition in [12] is to show the protection set S is always a proper subset of E

(Lemma 11). Similarly, we will need to show that it is always possible to find a protection
set S ⊊ E such that the expected occupancy E[ωe(R(x) ∪ S)] for every e ∈ E \ S is
smaller than k by a large enough margin.

2. (Chernoff-strength concentration) Based on the fact that E[ωe(R(x)∪S)] is sufficiently
smaller than k, we ultimately want to show that Pr[ωe(R(x) ∪ S) = k] is very small,
which would imply a good selectability for e. This is simple for k-uniform matroids by
using Chernoff bound. However, it turns out ωe(·) for general k-fold matroid unions does
not admit a standard Chernoff-strength concentration inequality, and much more efforts
are required to achieve a similar selectability guarantee.

4.3 An OCRS for k-fold matroid unions
In Subsubsection 4.3.1, we define our candidate occupancy functions and show some useful
properties. Then, in Subsubsection 4.3.2, we show these functions are compatible with the
chain decomposition approach and can be used to get an OCRS for k-fold matroid unions.
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Finally, in Subsubsection 4.3.3, we prove the selectability of this OCRS by showing these
functions concentrates well enough using Theorem 3. Some proofs in the section are deferred
to Appendix B for ease of reading.

4.3.1 The occupancy function
To define the occupancy function, we will instead work with the following extended k-fold
unions which essentially introduces k parallel copies for each element. They are still matroids,
and OCRS for them implies OCRS for k-fold matroid unions. Therefore, it suffices for us to
give an OCRS for the extended k-fold union.

▶ Definition 12 (Extended k-fold union). Given a matroid M = (E, I) and an integer k ≥ 1,
let M∗ = (E∗, I∗) be the matroid that contains k parallel copies (e, 1), . . . , (e, k) of each
element e ∈ E. Formally,

E∗ = E × [k] = {(e, i) : e ∈ E, i ∈ [k]},
I∗ = {{(e1, i1), . . . , (et, it)} : {e1, . . . , et} ∈ I, i1, . . . , it ∈ [k]}.

And we define the extended k-fold union Mk
∗ = (E∗, Ik

∗ ) of M to be the k-fold union of M∗.

▶ Lemma 13. The extended k-fold union Mk
∗ of a matroid M is a matroid. Furthermore, a

c-selectable OCRS for Mk
∗ implies a c-selectable OCRS for Mk.

We are now ready to define the following occupancy function onMk
∗ = (E∗ = E× [k], Ik

∗ ).
Intuitively, the function indicates the number of “slots” for elements (e, ·) ∈ E∗ that are
occupied by the elements in S. We then show the occupancy function has good properties:
it is monotone and 1-Lipschitz. More importantly, the value of ωe(S) can be used to deduce
whether (e, ·) ∈ E∗ is spanned by other elements in S.

▶ Definition 14 (Occupancy function). Given an extended k-fold union Mk
∗ = (E∗ =

E × [k], Ik
∗ ), for every e ∈ E, define its occupancy function ωe : 2E∗ → [0, k] as the function

where for all S ⊆ E∗,7

ωe(S) = k − rank(S ∪ ({e} × [k])) + rank(S).

▶ Lemma 15. For any extended k-fold union Mk
∗ = (E∗, Ik

∗ ) and element (e, i) ∈ E∗, ωe

satisfies
1. (Monotone) ωe(S) ≤ ωe(T ) for every S ⊆ T ⊆ E∗;
2. (1-Lipschitz) ωe(S ∪ {a})− ωe(S) ≤ 1 for every S ⊆ E∗ and a ∈ E∗.

▶ Lemma 16. For any extended k-fold union Mk
∗ = (E∗, Ik

∗ ), element (e, i) ∈ E∗, and set
S ⊆ E∗, ωe(S) < k implies (e, i) /∈ span(S \ {(e, i)}).

▶ Example 17. When M is a 1-uniform matroid of size n, its extended k-fold union Mk
∗ is

a k-uniform matroid of size kn. For every e ∈ E and S ⊆ E∗, we have

rank(S ∪ ({e} × [k])) = min(k, |S ∪ ({e} × [k])|) = k,

rank(S) = min(k, |S|).

Therefore, ωe(S) = min(k, |S|), i.e., the number of occupied slots by S.
Also, note that for any x∗ ∈ (1− O(

√
log k

k )) · PMk
∗
, the value ωe(R(x∗)) concentrates

very well as a capped sum over Bernoulli random variables. Therefore, the bad event
ωe(R(x∗)) = k rarely happens and the simple greedy algorithm without protection works.

7 When it is clear from context, we will use rank(·)/span(·) to denote the rank/span of a set of elements
in Mk

∗ for the ease of notation.
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4.3.2 Chain decomposition based on occupancy functions
Similar to the matroid OCRS by [12], our OCRS for extended k-fold union Mk

∗ = (E∗, Ik
∗ )

and x∗ ∈ b · PMk
∗

starts with an offline prepossessing step that finds the following chain
decomposition of elements in E∗,

∅ = Nℓ ⊊ Nℓ−1 ⊊ · · · ⊊ N1 ⊊ N0 = E∗

where Nj+1 = KFoldProtect(Mk
∗|Nj

, x∗|Nj
, b) for every 0 ≤ j < ℓ, as described in

Algorithm 3. Unlike Algorithm 2, it relies on the occupancy functions which are only defined
for extended k-fold unions.

Algorithm 3 Find a protection set S for extended k-fold union Mk
∗ = (E∗, Ik

∗ ) and x∗ ∈ b · PMk
∗
.

function KFoldProtect(Mk
∗, x∗, b)

S0, S ← ∅
while ∃e ∈ E \ S0, E[ωe(R(x∗) ∪ S)] > bk do

S0 ← S0 ∪ {e}
S ← S ∪ ({e} × [k])

return S

Before introducing our OCRS, we need to make sure the chain decomposition above is
well-defined, i.e., Algorithm 3 will always returns a proper subset S of elements, and Mk

∗|S
remains an extended k-fold union. This is formally stated in Lemma 18, which resembles
Lemma 11 in [12].

▶ Lemma 18. For any b ∈ (0, 1), any extended k-fold unionMk
∗ = (E∗, Ik

∗ ) and x∗ ∈ b·PMk
∗
,

S ⊊ E∗ for S = KFoldProtect(Mk
∗, x∗, b). Moreover, Mk

∗|S remains an extended k-fold
union.

Having obtained such a chain decomposition for Mk
∗ and x∗ ∈ b · PMk

∗
, our OCRS is

simply running the modified greedy algorithm, Algorithm 1, for each submatroidMk
∗|Nj

with
a protection set Nj+1 for all 0 ≤ j < ℓ together. Note that although the chain decomposition
is constructed with x∗, an extra scaling factor of e−(1−b) will be applied before invoking
Algorithm 1. This will be useful later when we apply the bicriterion concentration inequality.

Algorithm 4 OCRS for extended k-fold union Mk
∗ = (E∗, Ik

∗ ) and x∗ ∈ b · PMk
∗
.

Construct the chain decomposition ∅ = Nℓ ⊊ · · · ⊊ N1 ⊊ N0 = E∗ for Mk
∗ and x∗

for each arriving active element (e, i) ∈ E∗ do
Sample r ∼ Ber(e−(1−b))
if r = 0 then

Reject (e, i)
else

▷ The set of remaining active elements follows the same distribution as
R(e−(1−b)x∗). ◁

Find 0 ≤ j < ℓ such that (e, i) ∈ Nj \Ni+1
Invoke Algorithm 1 for Mk

∗|Nj with protection set Nj+1 for (e, i)

The feasibility of such a scheme follows exactly from [12] as running Algorithm 1 on any
chain decomposition always produces an independent set. We are left to show the OCRS
guarantees a good selectability for any Mk

∗ and x∗ ∈ b · PMk
∗

for some parameter b. In

fact, we will set b = 1−
√

log k
k and show the selectability is at least 1−O(

√
log k

k ), proving
Theorem 9.
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4.3.3 Analyzing the selectability
Without loss of generality, let us focus on the selectability of elements in the first layer
E∗ \ N1, since a same proof would work for all submatroid Mk

∗|Nj
as they remains to be

extended k-fold unions.
By Lemma 16, for every element (e, i) ∈ E∗ \N1, its selectability can be lower bounded as

Pr[(e, i) is accepted | (e, i) is active] ≥ Pr[(e, i) /∈ span((R(e−(1−b)x∗) \ {(e, i)}) ∪N1)]

≥ Pr[ωe(R(e−(1−b)x∗) ∪N1) < k].

On the other hand, by the way chain decomposition is obtained using Algorithm 3, we know
even without the extra scaling of e−(1−b), the expected value of ωe(R(x∗) ∪N1) is not too
close to k:

E[ωe(R(x∗) ∪N1)] ≤ bk.

For the ease of notation, denote X = R(x∗) and X ′ = R(e−(1−b)x∗). Fixing an element
(e, i) ∈ E∗, define the function f : 2E∗ → [0, k] where for every S ⊆ E∗,

f(S) = ωe(S ∪N1).

Then, to lower bound selectability for (e, i), it is equivalent to upper bound Pr[f(X ′) = k]
given that E[f(X)] ≤ bk. Specifically, to get a selectability of 1 − O(

√
log k

k ), we will set

b = 1−
√

log k
k , and it suffices to show the following bicriterion concentration inequality:

E[f(X)] ≤ k −
√

k log k =⇒ Pr
[
f(X ′) ≥ E[f(X)] +

√
k log k

]
≤ O

(
1
k

)
. (∗)

By Lemma 15, we know f is always monotone and 1-Lipschitz. Then, using Theorem 3
(and recall that X ′ = R(e−

√
log k/kx∗)), we have

Pr
[
f(X ′) ≥ E[f(X)] +

√
k log k

]
≤ exp

(
−
√

log k

k
·
√

k log k

)
= 1

k
.

Therefore, for extended k-fold union Mk
∗ and x∗ ∈ b · PMk

∗
, running Algorithm 4 yields

Pr[(e, i) is accepted | (e, i) is active] ≥ 1−Pr [f(X ′) ≥ k]

≥ 1−Pr
[
f(X ′) ≥ E[f(X)] +

√
k log k

]
≥ 1− 1

k
.

Together with Fact 10 and Lemma 13, we prove Theorem 9 by showing the existence of an
OCRS for all k-fold union Mk and x∗ ∈ PMk with a selectability of(

1− 1
k

)
· b · e−(1−b) =

(
1− 1

k

)
·

(
1−

√
log k

k

)
· e−

√
log k

k = 1−O

(√
log k

k

)
.

▶ Remark 19. It might seems bizarre and unnecessary to consider f(X ′) instead of f(X).
Indeed, since f is monotone non-decreasing, the following claim that only contains f(X)
would imply (∗), and it looks more like a standard concentration inequality:

E[f(X)] ≤ k −
√

k log k =⇒ Pr
[
f(X) ≥ E[f(X)] +

√
k log k

]
≤ O

(
1
k

)
. (∗∗)
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We know (∗∗) is true when f is a sum over Bernoulli random variables by Chernoff
bound, and it is tempting to use more powerful concentration inequalities to prove (∗∗) for
general 1-Lipschitz f . Unfortunately, such a bound does not exist for general monotone and
1-Lipschitz set functions (see Section 5 for details), and it turns out to be impossible even
for the specific f we use here, as Example 29 shown.

5 A Bicriterion Concentration Inequality

In this section, we assume the ground set E = [n] and consider a function f : {0, 1}n → R
that satisfies the following properties:8

1. (Monotone) f(x) ≤ f(y) for all x, y ∈ {0, 1}n where x ≤ y (element-wise).
2. (1-Lipschitz) |f(x)− f(y)| ≤ ∥x− y∥1 for all x, y ∈ {0, 1}n.
Also, let X = (X1, X2, . . . , Xn) be a vector of n independent Bernoulli random variables
where Xi ∼ Ber(pi) for each i ∈ [n] and p ∈ [0, 1]n. For simplicity, we denote this as
X ∼ Ber(p).

We are interested in how well f(X) concentrates on its upper tail. By McDiarmid’s
inequality (Theorem 28), for every t > 0,

Pr [f(X) ≥ E[f(X)] + t] ≤ e− 2t2
n ,

Unfortunately, the bound depends on the dimension n, whereas our application in Section 4
requires a dimension-free bound that is independent from n. In fact, it is known that
dimension-free concentration inequality does not exist for f in general (see, e.g., [27]).

The good news is that, for our application, it suffices to consider another X′ ∼ Ber(p′)
with slightly smaller parameters p′ < p and show f(X′) does not exceed E[f(X)] by much,
with high probability. Formally, we define X(s) with a scaling factor s as follows:

▶ Definition 20 (Scaling). Given n independent Bernoulli random variables X ∼ Ber(p),
for any scaling factor s ≥ 0, define X(s) ∼ Ber(e−sp). In other words, X

(s)
i ∼ Ber(e−spi)

for all i ∈ [n].

And we prove Theorem 3, a bicriterion concentration inequality, where the bound depends
on both the scaling factor s and the deviation size t.

▶ Theorem 3. Let f : {0, 1}E → R be a monotone 1-Lipschitz function. For any s ∈ (0, 1],
t > 0:

Pr
[
f(X(s)) ≥ E[f(X)] + t

]
≤ e−st.

For our application in Section 4, we basically set s =
√

log k
k , t =

√
k log k for some

k ≈ E[f(X)] and the inequality gives us Pr[f(X(s)) ≥ k +
√

k log k] ≤ 1
k . Note that this

bound is sharp up to a constant factor in the exponent: even in the case where f(x) =
∑n

i=1 xi,
the Chernoff bound of f(X(s)) only yields Pr[f(X(s)) ≥ k +

√
k log k] ≤ O( 1

kc ) for some
constant c.

8 Note that f can be equivalently viewed as a function over subsets of a ground set of size n, as we did in
Section 4.
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5.1 Technical overview
Before getting into the proof, let us first outline our approach and highlight the main difficulty.
Our proof utilizes the entropy method for self-bounding functions [5, 6, 22, 7]. Roughly
speaking, to prove a exponential concentration inequality for some Z = f(X), the plan is
to establish a differential inequality for the moment-generating function E[eλZ ] based on
the following modified logarithmic Sobolev inequality. If this differential inequality implies
strong bounds for E[eλZ ], a concentration inequality can be subsequently obtained.

▶ Lemma 21 (A modified logarithmic Sobolev inequality [20]). Given n independent
Bernoulli random variables X and a function f : {0, 1}n → R. Let Z = f(X) and
Zi = fi(X1, . . . , Xi−1, Xi+1, . . . , Xn) for an arbitrary function fi : {0, 1}n−1 → R. For any
λ ∈ R,

λ E
[
ZeλZ

]
−E

[
eλZ

]
log E

[
eλZ

]
≤

n∑
i=1

E
[
eλZϕ(−λ(Z − Zi))

]
where ϕ(x) = ex − x− 1.

Whether Lemma 21 can be effectively converted into a useful differential inequality for
E[eλZ ] depends on the choice of {Zi}i∈[n]. For a monotone function f , a typical choice is
Zi = f(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn), and previous works have demonstrated that such a
conversion is possible if f is 1-Lipschitz and the following condition holds almost surely for
some constants a, b ≥ 0: 9

n∑
i=1

Z − Zi ≤ aZ + b. (†)

Now, given Z(s) = f(X(s)) under a scaling factor s > 0, one might attempt to similarly
derive a differential inequality of E[eλZ(s) ] based on Lemma 21 if the condition (†) can be
satisfied. In fact, if we define Z

(s)
i = f(X(s)

1 , . . . , X
(s)
i−1, 0, X

(s)
i+1, . . . , X

(s)
n ), the following holds:

E
[

n∑
i=1

Z(s) − Z
(s)
i

]
= − d

ds
E
[
Z(s)

]
.

Thus, if − d
ds E[Z(s)] ≤ aZ(s) + b, then (†) holds in expectation for Z(s); otherwise, E[Z(s)]

is decreasing rapidly with respect to s at that point.
As a result, either there exists some s∗ ∈ (0, s) such that (†) holds in expectation for

Z(s∗), or E[Z(s)] becomes significantly smaller than E[Z(0)]. Intuitively, the latter case
should directly imply a bicriterion concentration result, leaving only the former case to be
addressed.10 However, it turns out that such a use of Lemma 21 crucially depends on (†)
holding almost surely, which is not applicable to such Z(s∗) in the former case.11

Given this limitation, rather than working with moment-generating functions directly,
we propose an alternative approach. Our key idea is to relate Lemma 21 with the following
unconventional function, defined for every λ ≥ 0:

F (λ) = E
[
eλZ(λ)

]
.

9 In this case, f is a so-called (a, b)-self-bounding function [22, 7].
10 If we do not aim for an exponential tail bound, these observations indeed suffice to get a Chebyshev-type

bicriterion concentration inequality for Z(s), by using Efron-Stein inequality to bound its variance in
the former case.

11 Specifically, applying the entropy method for E[eλZ ] requires
∑n

i=1 E[eλZ(Z − Zi)] ≤ E[eλZ(aZ + b)]
for every λ, which might be false even if (†) holds with very high probability.
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Note that this is not a moment-generating function, as λ here also serves as the scaling factor
of Z, causing the random variable Z(λ) to change with it. Surprisingly, we can obtain the
following upper bound for the derivative of F (λ) that aligns well with Lemma 21.

▶ Lemma 22. Given n independent Bernoulli random variables X and a monotone 1-
Lipschitz function f : {0, 1}n → R. For any λ ∈ (0, 1],

F ′(λ) ≤ E
[
Z(λ)eλZ(λ)

]
− 1

λ

n∑
i=1

E
[
eλZ(λ)

ϕ(−λ(Z(λ) − Z
(λ)
i ))

]
where Z(λ) = f(X(λ)), Z

(λ)
i = f(X(λ)

1 , . . . , X
(λ)
i−1, 0, X

(λ)
i+1, . . . , X

(λ)
n ), and F (λ) = E[eλZ(λ) ].

By combining Lemma 22 with Lemma 21, we can conclude that for all λ ∈ (0, 1],

λF ′(λ) ≤ F (λ) log F (λ).

Solving this differential inequality provides an upper bound for F (λ). Theorem 3 then follows
by applying Markov’s inequality to the random variable esZ(s) .

5.2 Proof of Theorem 3
Let Z(λ) = f(X(λ)) and Z

(λ)
i = f(X(λ)

1 , . . . , X
(λ)
i−1, 0, X

(λ)
i+1, . . . , X

(λ)
n ) throughout the proof.

Given Lemma 21 and Lemma 22, it is not hard to show the bicriterion concentration
inequality.

Proof of Theorem 3. For any λ > 0, we apply Lemma 21 to Z(λ) and {Z(λ)
i }i∈[n] and obtain

λ E
[
Z(λ)eλZ(λ)

]
−E

[
eλZ(λ)

]
log E

[
eλZ(λ)

]
≤

n∑
i=1

E
[
eλZ(λ)

ϕ(−λ(Zλ − Z
(λ)
i ))

]
where ϕ(x) = ex − x− 1. Rearranging the inequality, we have

λ

(
E
[
Z(λ)eλZ(λ)

]
− 1

λ

n∑
i=1

E
[
eλZ(λ)

ϕ(−λ(Zλ − Z
(λ)
i ))

])
≤ E

[
eλZ(λ)

]
log E

[
eλZ(λ)

]
.

Together with Lemma 22, this gives us the following differential inequality for F (λ) =
E[eλZ(λ) ]:

λF ′(λ) ≤ F (λ) log F (λ), ∀λ ∈ (0, 1].

And by letting G(λ) = log F (λ), we can rewrite the inequality as

λG′(λ) ≤ G(λ), ∀λ ∈ (0, 1].

Note that G0(λ) = λ E[Z(0)] is a solution to λG′(λ) = G(λ) for λ ∈ (0, 1]. Define
g(λ) = G(λ)−G0(λ)

λ and we have

g′(λ) = G′(λ)−G′
0(λ)

λ
− G(λ)−G0(λ)

λ2 = (λG′(λ)−G(λ))− (λG′
0(λ)−G0(λ))

λ2 ≤ 0.

Also note that limλ→0+
G(λ)

λ = G′(0) = F ′(0)
F (0) = E[Z(0)] (where the last equality holds by

Lemma 23), therefore limλ→0+ g(λ) = 0. Combining this with g′ ≤ 0, we conclude that g is
non-positive on (0, 1]. In other words, for λ ∈ (0, 1],

G(λ) ≤ G0(λ) = λ E[Z(0)].
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Finally, by Markov’s inequality, we conclude that for any λ ∈ (0, 1] and t > 0,

Pr
[
Z(λ) ≥ E[Z(0)] + t

]
= Pr

[
eλZ(λ)

≥ eλ(E[Z(0)]+t)
]
≤ E[eλZ(λ) ]

eλ(E[Z(0)]+t) ≤ e−λt. ◀

We are left to prove Lemma 22. Let us first compute F ′(λ) by definition.

▶ Lemma 23. For any λ ≥ 0, F ′(λ) = E[Z(λ)eλZ(λ) ]−
∑n

i=1 E[eλZ(λ) − eλZ
(λ)
i ].

Proof. Define a function h : R× [0, 1]n → R as

h(t, q) = E
Y ∼Ber(q)

[
etf(Y )

]
.

For each i ∈ [n] and b ∈ {0, 1}, denote fi,b(Y ) = f(Y1, . . . , Yi−1, b, Yi+1, . . . , Yn) and we can
compute the partial derivative of h with respect to qi as

∂

∂qi
h(t, q) = ∂

∂qi

(
qi E

Y ∼Ber(q)
[etfi,1(Y )] + (1− qi) E

Y ∼Ber(q)
[etfi,0(Y )]

)
= E

Y ∼Ber(q)
[etfi,1(Y ) − etfi,0(Y )].

Recall that X ∼ Ber(p) and F (λ) = E[eλZ(λ) ] = h(λ, e−λp). Therefore,

F ′(λ) = dt

dλ
· ∂

∂t
h(λ, e−λp) +

n∑
i=1

dqi

dλ
· ∂

∂qi
h(λ, e−λp)

= 1 ·E
[
f(X(λ))eλf(X(λ))

]
+

n∑
i=1

(−e−λpi) · E
Y ∼Ber(e−λp)

[
eλfi,1(Y ) − eλfi,0(Y )

]
= E

[
f(X(λ))eλf(X(λ))

]
−

n∑
i=1

E
Y ∼Ber(e−λp)

[
eλf(Y ) − eλfi,0(Y )

]
= E

[
Z(λ)eλZ(λ)

]
−

n∑
i=1

E
[
eλZ(λ)

− eλZ
(λ)
i

]
. ◀

Then we further derive a lower bound to the latter term,
∑n

i=1 E[eλZ(λ) − eλZ
(λ)
i ].

▶ Lemma 24. For any λ ≥ 0,
∑n

i=1 E[eλZ(λ) − eλZ
(λ)
i ] ≥ λe−λ

∑n
i=1 E[eλZ(λ)(Z(λ) − Z

(λ)
i )].

Proof. We prove the inequality for each term separately and without expectation. For any
i ∈ [n], note that

eλZ(λ)
− eλZ

(λ)
i = eλZ

(λ)
i (eλ(Z(λ)−Z

(λ)
i

) − 1) ≥ eλZ
(λ)
i · λ(Z(λ) − Z

(λ)
i )

since ex − 1 ≥ x. Meanwhile, we know Z
(λ)
i ≥ Z(λ) − 1 by 1-Lipschitzness of f . Therefore,

eλZ(λ)
− eλZ

(λ)
i ≥ λe−λ · eλZ(λ)

(Z(λ) − Z
(λ)
i ). ◀

The following two facts of the function ϕ(x) = ex − x− 1 will also be used.

▶ Fact 25. For any λ ∈ (0, 1], ϕ(−λ)
λ ≤ λe−λ.

▶ Fact 26. For any λ ∈ R and x ∈ [0, 1], ϕ(−λx) ≤ ϕ(−λ)x.

Now we are ready to prove the lemma.
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Proof of Lemma 22. We upper bound F ′(λ) step-by-step as follows:

F ′(λ) = E[Z(λ)eλZ(λ)
]−

n∑
i=1

E
[
eλZ(λ)

− eλZ
(λ)
i

]
(Lemma 23)

≤ E[Z(λ)eλZ(λ)
]− λe−λ

n∑
i=1

E
[
eλZ(λ)

(Z(λ) − Z
(λ)
i )

]
(Lemma 24)

≤ E[Z(λ)eλZ(λ)
]− ϕ(−λ)

λ

n∑
i=1

E
[
eλZ(λ)

(Z(λ) − Z
(λ)
i )

]
(Fact 25)

≤ E[Z(λ)eλZ(λ)
]− 1

λ

n∑
i=1

E
[
eλZ(λ)

ϕ(−λ(Z(λ) − Z
(λ)
i ))

]
(Fact 26)

where in the last step we also use the fact that Z(λ) − Z
(λ)
i ∈ [0, 1], as f is monotone and

1-Lipschitz. ◀

References
1 Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mechanisms to many

buyers. SIAM Journal on Computing, 43(2):930–972, 2014. doi:10.1137/120878422.
2 Saeed Alaei, Hu Fu, Nima Haghpanah, Jason Hartline, and Azarakhsh Malekian. Bayesian

optimal auctions via multi- to single-agent reduction. In Proceedings of the 13th ACM
Conference on Electronic Commerce, EC ’12, page 17, New York, NY, USA, 2012. Association
for Computing Machinery. doi:10.1145/2229012.2229017.

3 C. J. Argue, Anupam Gupta, Marco Molinaro, and Sahil Singla. Robust secretary and prophet
algorithms for packing integer programs. In Joseph (Seffi) Naor and Niv Buchbinder, editors,
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual
Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1273–1297. SIAM, SIAM,
2022. doi:10.1137/1.9781611977073.53.

4 Pablo Daniel Azar, Robert Kleinberg, and S. Matthew Weinberg. Prophet inequalities with
limited information. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1358–1377,
2014. doi:10.1137/1.9781611973402.100.

5 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. A sharp concentration inequality
with applications. Random Structures & Algorithms, 16(3):277–292, 2000. doi:10.1002/
(SICI)1098-2418(200005)16:3\%3C277::AID-RSA4\%3E3.0.CO;2-1.

6 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities using the
entropy method. The Annals of Probability, 31(3):1583–1614, 2003.

7 Stephane Boucheron, Gabor Lugosi, and Pascal Massart. On concentration of self-bounding
functions. Electronic Journal of Probability, 14:1884–1899, 2009.

8 Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-
parameter mechanism design and sequential posted pricing. In Leonard J. Schulman, editor,
Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 311–320. ACM, 2010. doi:10.1145/1806689.
1806733.

9 Chandra Chekuri, Junkai Song, and Weizhong Zhang. Contention resolution for the l-fold
union of a matroid via the correlation gap. In 2024 Symposium on Simplicity in Algorithms
(SOSA), pages 396–405. SIAM, 2024. doi:10.1137/1.9781611977936.36.

10 Atanas Dinev and S. Matthew Weinberg. Simple and Optimal Online Contention Resolution
Schemes for k-Uniform Matroids. In Venkatesan Guruswami, editor, 15th Innovations in
Theoretical Computer Science Conference (ITCS 2024), volume 287 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 39:1–39:23, Dagstuhl, Germany, 2024. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2024.39.

ITCS 2025

https://doi.org/10.1137/120878422
https://doi.org/10.1145/2229012.2229017
https://doi.org/10.1137/1.9781611977073.53
https://doi.org/10.1137/1.9781611973402.100
https://doi.org/10.1002/(SICI)1098-2418(200005)16:3%3C277::AID-RSA4%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1098-2418(200005)16:3%3C277::AID-RSA4%3E3.0.CO;2-1
https://doi.org/10.1145/1806689.1806733
https://doi.org/10.1145/1806689.1806733
https://doi.org/10.1137/1.9781611977936.36
https://doi.org/10.4230/LIPIcs.ITCS.2024.39


4:20 Prophet Inequalities for k-Fold Matroid Unions

11 Paul Dütting, Michal Feldman, Thomas Kesselheim, and Brendan Lucier. Prophet inequalities
made easy: Stochastic optimization by pricing nonstochastic inputs. SIAM J. Comput.,
49(3):540–582, 2020. doi:10.1137/20M1323850.

12 Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution schemes.
In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,
pages 1014–1033. SIAM, 2016. doi:10.1137/1.9781611974331.ch72.

13 Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm. Automated online
mechanism design and prophet inequalities. In AAAI, volume 7, pages 58–65, 2007. URL:
http://www.aaai.org/Library/AAAI/2007/aaai07-009.php.

14 Jiashuo Jiang, Will Ma, and Jiawei Zhang. Tight guarantees for multi-unit prophet inequalities
and online stochastic knapsack. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1221–1246. SIAM, 2022. doi:10.1137/1.9781611977073.
51.

15 Thomas Kesselheim, Andreas Tönnis, Klaus Radke, and Berthold Vöcking. Primal beats dual
on online packing lps in the random-order model. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 303–312, 2014. doi:10.1145/2591796.2591810.

16 Robert Kleinberg and S. Matthew Weinberg. Matroid prophet inequalities. In Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, pages 123–136, 2012. doi:10.1145/2213977.2213991.

17 Ulrich Krengel and Louis Sucheston. On semiamarts, amarts, and processes with finite value.
Advances in Probability and Related Topics, 4:197–266, 1978.

18 Felix Lazebnik, Vasiliy A Ustimenko, and Andrew J Woldar. A new series of dense graphs of
high girth. Bulletin of the American mathematical society, 32(1):73–79, 1995.

19 Euiwoong Lee and Sahil Singla. Optimal Online Contention Resolution Schemes via Ex-
Ante Prophet Inequalities. In 26th Annual European Symposium on Algorithms (ESA 2018),
volume 112, pages 57:1–57:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ESA.2018.57.

20 Pascal Massart. About the constants in talagrand’s concentration inequalities for empirical
processes. The Annals of Probability, 28(2):863–884, 2000.

21 Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics,
141(1):148–188, 1989.

22 Colin McDiarmid and Bruce Reed. Concentration for self-bounding functions and an inequality
of talagrand. Random Structures & Algorithms, 29(4):549–557, 2006. doi:10.1002/rsa.20145.

23 Aviad Rubinstein and Sahil Singla. Combinatorial prophet inequalities. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1671–1687, 2017. doi:10.1137/1.
9781611974782.110.

24 Aviad Rubinstein and S. Matthew Weinberg. Simple mechanisms for a subadditive buyer and
applications to revenue monotonicity. In Proceedings of the Sixteenth ACM Conference on
Economics and Computation, EC ’15, Portland, OR, USA, June 15-19, 2015, pages 377–394,
2015. doi:10.1145/2764468.2764510.

25 Ester Samuel-Cahn. Comparison of threshold stop rules and maximum for independent
nonnegative random variables. Annals of Probability, 12(4):1213–1216, 1984.

26 Gideon Schechtman. Concentration, results and applications. In Handbook of the geometry of
Banach spaces, volume 2, pages 1603–1634. Elsevier, 2003.

27 Jan Vondrák. A note on concentration of submodular functions. CoRR, abs/1005.2791, 2010.
doi:10.48550/arXiv.1005.2791.

https://doi.org/10.1137/20M1323850
https://doi.org/10.1137/1.9781611974331.ch72
http://www.aaai.org/Library/AAAI/2007/aaai07-009.php
https://doi.org/10.1137/1.9781611977073.51
https://doi.org/10.1137/1.9781611977073.51
https://doi.org/10.1145/2591796.2591810
https://doi.org/10.1145/2213977.2213991
https://doi.org/10.4230/LIPIcs.ESA.2018.57
https://doi.org/10.1002/rsa.20145
https://doi.org/10.1137/1.9781611974782.110
https://doi.org/10.1137/1.9781611974782.110
https://doi.org/10.1145/2764468.2764510
https://doi.org/10.48550/arXiv.1005.2791


N. Alon et al. 4:21

A Useful Concentration Inequalities

▶ Theorem 27 (Multiplicative Chernoff bound). Given n independent Bernoulli random
variables X1, X2, . . . , Xn, let X =

∑n
i=1 Xi denote their sum. For any δ > 0, we have

Pr[X ≥ (1 + δ) E[X]] ≤ exp
(
−δ2 E[X]

2 + δ

)
.

▶ Theorem 28 (McDiarmid’s inequality). Given n independent random variables
X1, X2, . . . , Xn ∈ X and a function f : Xn → R. If for every i ∈ [n] and x1, x2, . . . , xn, x′

i ∈
X , the function f satisfies

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x′
i, xi+1, . . . , xn)| ≤ ci,

then for any t > 0, we have

Pr[f(X) ≥ E[f(X)] + t] ≤ exp
(
− 2t2∑n

i=1 c2
i

)
.

B Missing Proofs and Examples

Proof of Lemma 13. It is straightforward to check M∗ in Definition 12 is a matroid, and
hence its k-fold union Mk

∗ remains a matroid by the closure property of matroid union.
Also, note that the restriction of Mk

∗ to E × {1}, Mk
∗ |E×{1}, is isomorphic to the k-fold

union Mk of M, as there exists a simple bijection (e, 1) 7→ e between E × {1}, I∗|E×{1} and
E, I. Therefore, an α-selectable OCRS for Mk

∗ can also be used as an α-selectable OCRS
for Mk. ◀

Proof of Lemma 15. Note that the rank function for any matroid is a submodular function.
Therefore, rank(S ∪ ({e}× [k]))− rank(S) ≥ rank(T ∪ ({e}× [k]))− rank(T ) for every S ⊆ T

by a simple induction, and thus ωe(·) is monotone.
Also, we know the rank function is monotone, and the rank of a set can increase by at most

1 after adding an element. Therefore, rank(S∪{a}) ≥ rank(S) and rank(S∪{a}∪({e}×[k])) ≤
rank(S ∪ ({e} × [k])) + 1 for every a ∈ E∗ and S ⊆ E∗. As a result, ωe(·) is 1-Lipschitz. ◀

Proof of Lemma 16. When ωe(S) < k, we have rank(S ∪ ({e} × [k])) > rank(S) and there
exists (at least) one element (e, j) ∈ {e} × [k] such that (e, j) /∈ span(S). By definition of
extended k-fold union, it further implies (e, i) /∈ span(S \ {(e, i)}). ◀

Proof of Lemma 18. It is straightforward to see S = S0× [k] when the algorithm terminates,
and thus Mk

∗|S0×[k] is the extended k-fold union of M|S0 by definition. It remains to prove
S ⊊ E∗. Since S must be a subset of the universe E∗, it suffices to show S ≠ E∗. Our plan
is to show that S is not full rank in Mk

∗ , even after combined with all active elements R(x∗)
and take the expectation, i.e.,

E[rankMk
∗
(R(x∗) ∪ S)] < rankMk

∗
(E∗).

This would directly imply S ̸= E∗ by the monotonicity of the rank function.
Denote r = rankM(S0). Let e1, e2, . . . , er ∈ S0 be the elements from M that in-

crease the rank of S0 in M during the execution of Algorithm 3, and denote ei (for
1 ≤ i ≤ r) as the specific element that increases rankM(S0) from i − 1 to i. By defin-
ition, spanM({e1, e2, . . . , er}) = S0. In fact, we also have

spanMk
∗
({e1, e2 . . . , er} × [k]) = S.
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This is because {e1, e2, . . . , er}× [k] ⊆ S is an independent set of size kr inMk
∗ by definition

of the extended k-fold union, and we can further show it is a basis of S. Suppose it is not,
then there must be another independent set T ⊆ S of size larger than kr. Since one can
partition T into k disjoint independent sets T1, T2, . . . , Tk in M∗ where

∑
j∈[k] |Tj | > kr, we

know there exists some Tj of size larger than r, which leads to a contradiction as Tj ⊆ S0× [k]
and rankM∗(S0 × [k]) = r.

Also, by the way the algorithm picks elements to be added to S0, for every 1 ≤ i ≤ r we
have

E[ωei(R(x∗) ∪ ({e1, e2, . . . , ei−1} × [k]))] > bk.

Equivalently, we have

E[rankMk
∗
(R(x∗)∪ ({e1, e2, . . . , ei}× [k]))− rankMk

∗
(R(x∗)∪ ({e1, e2, . . . , ei−1}× [k]))] < (1−b)k.

Together with these observations, we can upper bound E[rankMk
∗
(R(x∗) ∪ S)] by a

telescoping sum as follows:
E[rankMk

∗
(R(x∗) ∪ S)] = E[rankMk

∗
(R(x∗) ∪ {e1, e2, . . . , er} × [k])]

= E[rankMk
∗
(R(x∗))] +

r∑
i=1

E[rankMk
∗
(R(x∗) ∪ ({e1, e2, . . . , ei} × [k]))

− rankMk
∗
(R(x∗) ∪ ({e1, e2, . . . , ei−1}) × [k])]

< E[rankMk
∗
(R(x∗))] + (1 − b)kr.

The former term E[rankMk
∗
(R(x∗))] can be trivially upper bounded by E[|R(x∗)|] and further

by b rankMk
∗
(E∗) due to x∗ ∈ b · PMk

∗
. For the latter term involving kr, we already know

kr = rankMk
∗
(S) ≤ rankMk

∗
(E∗). In conclusion, we have

E[rankMk
∗
(R(x∗) ∪ S)] < b rankMk

∗
(E∗) + (1− b) rankMk

∗
(E∗) = rankMk

∗
(E∗). ◀

▶ Example 29 (A counterexample to (∗∗)). Fix parameters n, k where n≫ k, and consider
the case when M is an n-uniform matroid of size 2n. Its extended k-fold union Mk

∗ is a
kn-uniform matroid of size 2kn. Similar to Example 17, for every e ∈ E and S ⊆ E∗ we can
derive

ωe(S) =


0, |S| ≤ kn− k

|S| − (kn− k), kn− k < |S| < kn

k, |S| ≥ kn.

Since no protection is needed for uniform matroids, let f(·) = ωe(·) for some fixed e ∈ E.
When x∗ = ( 1

2 −
1

2n ) · 1E∗ (namely, every element in E∗ is active with probability 1
2 −

1
2n ),

|X| will follow a binomial distribution with kn− k as both its mean and median. As a result,

E[f(X)] ≤ k Pr[f(X) > 0] = k Pr [|X| > kn− k] ≤ k

2 ,

while Pr[f(X) ≥ k] = Pr [|X| ≥ kn] ≥ Ω(1), (n≫ k)

which is a counterexample to the claim (∗∗).
Note that this is not an actual counterexample to Algorithm 4 (even without the extra

scaling) since x∗ /∈ (1 − O(
√

log k
k )) · PMk

∗
. But it shows that the condition E[f(X)] ≤

k−O(
√

k log k) alone is not enough to derive a good enough upper bound for Pr[f(X) ≥ k],
and it is crucial to also rely on the scaling applied to x∗.
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