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Abstract
The notion of the derandomized square of two graphs, denoted as G s H, was introduced by
Rozenman and Vadhan as they rederived Reingold’s Theorem, SL = L. This pseudorandom
primitive, closely related to the Zig-Zag product, plays a crucial role in recent advancements on
space-bounded derandomization. For this and other reasons, understanding the spectral expansion
λ(G s H) becomes paramount. Rozenman and Vadhan derived an upper bound for λ(G s H) in
terms of the spectral expansions of the individual graphs, λ(G) and λ(H). They also proved their
bound is optimal if the only information incorporated to the bound is the spectral expansion of the
two graphs.

The objective of this work is to gain deeper insights into the behavior of derandomized squaring
by taking into account the entire spectrum of H, where we focus on a vertex-transitive c-regular H.
Utilizing deep results from analytic combinatorics, we establish a lower bound on λ(G s H) that
applies universally to all graphs G. Our work reveals that the bound is the minimum value of the
function

d · x − d(d − 1)χx(H)
χ′

x(H)

in the domain (c, ∞), where χx(H) is the characteristic polynomial of the d-vertex graph H. This
bound lies far below the known upper bound for λ(G s H) for most reasonable choices for H.
Empirical evidence suggests that our lower bound is optimal. We support the tightness of our lower
bound by showing that the bound is tight for a class of graphs which exhibit local behavior similar
to a derandomized squaring operation with H. To this end, we make use of finite free probability
theory.

In our second result, we resolve an open question posed by Cohen and Maor (STOC 2023)
and establish a lower bound for the spectral expansion of rotating expanders. These graphs are
constructed by taking a random walk with vertex permutations occurring after each step. We prove
that Cohen and Maor’s construction is essentially optimal. Unlike our results on derandomized
squaring, the proof in this instance relies solely on combinatorial methods. The key insight lies in
establishing a connection between random walks on graph products and the Fuss-Catalan numbers.
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1 Introduction

Expander graphs have played a crucial role in essentially all areas within theoretical computer
science as well as in coding theory, and cryptography, among others. Their utility stems
to a large extent from the ability to interpret expansion from various perspectives, be it
combinatorial, probabilistic, or linear algebraic. This multifaceted understanding offers a
unique advantage: it enables the otherwise challenging inference of combinatorial attributes
of graphs by examining the spectral properties of related operators.

We briefly recall the notion of spectral expansion. Let G be an undirected d-regular graph
on n vertices with adjacency matrix A. Since G is undirected, A is symmetric and so its
spectrum is real-valued. We denote the eigenvalues of A by d = λ1 ≥ λ2 ≥ · · · ≥ λn. The
spectral expansion of G, denoted as λ(G), is given by max(λ2, |λn|). We further denote the
normalized spectral expansion of G by ω(G) = λ(G)

d ∈ [0, 1]. We alternate between the two
variants–the normalized and the unnormalized–depending on context.

An expander is a graph G with a normalized spectral expansion ω(G) that is bounded
away from 1 1. However, for a typical application of expander graphs one “pays” a cost that
increases with the degree d and has an “error” that vanishes as ω(G) → 0. This raises the
question of what is the lowest possible value of ω(G) attainable by d-regular graphs. From
the Alon-Boppana bound [30], which is usually stated in terms of λ(G), it follows that for
every ε > 0 there are only finitely many d-regular graphs G with λ(G) ≤ 2

√
d− 1 − ε. A

d-regular graph G satisfying λ(G) ≤ 2
√
d− 1 is called a Ramanujan graph. Over the past

several decades, Ramanujan graphs have been a focal point of research. The constructions of
Ramanujan graphs and their variants lean on profound number theoretic results [19, 24, 27]
(see also [18]), or is rooted in deep analytical methods and on the accompanied technique of
polynomial interlacing [20, 23, 22, 13, 16].

In their highly influential paper [34], Reingold, Vadhan, and Wigderson introduced the
Zig-Zag product which enabled them to obtain a combinatorial construction of expander
graphs by elementary means. While the expanders that were constructed were not quite
close to Ramanujan, the fact that the construction is combinatorial and highly flexible
made the Zig-Zag product extremely useful. Indeed, no long after, Reingold [33] based his
breakthrough result, SL = L, on the Zig-Zag product, not for constructing expanders per se
but for the purpose of “transforming” a given graph to an expander while maintaining its
connected components structure. In a subsequent work, Ben-Aroya and Ta-Shma [5] put
forth an improved variant of the Zig-Zag product, dubbed the wide-replacement product,
that enabled the combinatorial construction of graphs that come quite close to Ramanujan.
That variant was key in a recent breakthrough by Ta-Shma who constructed near-optimal
small-bias sets [36]. Several other expander construction paradigms have been put forth in
the literature, e.g., [6, 26]. We refer the reader to the excellent survey by Hoory, Linial, and
Wigderson [17] for a comprehensive exposition on expander graphs.

1 To be more precise, it is common to consider a family of graphs in this context. However, we will
exclude this technical detail from our discussion for simplicity.
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1.1 Derandomized squaring
Not long after the work of Reingold [33], Rozenman and Vadhan [35] introduced a close
sibling to the Zig-Zag product, dubbed derandomized squaring, which we describe soon.
This operation can be “cleaner” than the Zig-Zag product in some settings, in particular
for their rederivation of Reingold’s result, though the two operations are tightly connected.
In the past few years, derandomized squaring has gained significant traction in the space-
bounded derandomization literature (see, e.g., [28, 1, 2, 11]) mostly since it facilitated the
adaptation of ideas from the realm of fast Laplacian solvers into the domain of space-bounded
derandomization. For these reasons, in this paper we focus on the operation of derandomized
squaring though we are confident that our techniques can be extended to other operations
such as the Zig-Zag product and the wide-replacement product.

Squaring a graph is an easy way of improving its normalized spectral expansion. The
square of a graph G, denoted as G2, is the graph on the same vertex set that has an edge
between a pair of vertices for every length-2 path in G between the vertices. Clearly, if A is
the adjacency matrix of G then A2 is the adjacency matrix of G2. Hence, ω(G2) = ω(G)2.
However, if G is d-regular, G2 is a d2-regular graph. As a result, the degree growth associated
with squaring the graph often surpasses the advantages gained from reducing the normalized
spectral expansion. The purpose of derandomized squaring is to obtain a comparable
improvement to the normalized spectral expansion without blowing up the degree by a
quadratic factor.

From the view point of a vertex v of G, in the graph G2, the neighbors of v are all
connected to each other. That is, G2 is obtained by adding copies of the complete graph
with self-loops, one copy for each vertex v, where the complete graph associated with v is
placed on the neighbors of v. Let H be a graph on d vertices, where we focus on the case in
which H is vertex-transitive, and denote the degree of a vertex in H by c. The derandomized
square of G and H, denoted as G s H, is defined by replacing each such copy of the complete
graph with a copy of H. Note that G s H is a D-regular graph where D = dc. Formally,
the derandomized squaring, like the Zig-Zag product, requires working with edge-labeled
graphs, but we sidestep this technicality. For the reader that is familiar with these intricacies,
we remark that, for simplicity, in this extended abstract we circumvent labeling issues by
assuming that G is given as the union of d perfect matchings, though this condition can be
relaxed.

Given that an expander H approximates the complete graph, one is correct to expect that
the derandomized square G s H approximates G2 for every graph G. Rozenman and Vadhan
formalized this intuition with regards to the normalized spectral expansion by establishing
the bound

ω(G s H) ≤ (1 − ω(H))ω(G)2 + ω(H) ≤ ω(G)2 + ω(H). (1.1)

How tight is this bound? This is a somewhat subtle question. Rozenman and Vadhan
proved that the bound is tight as a function of ω(G) and ω(H), however, it is certainly
conceivable that a superior bound might be achieved if one incorporates more information
about the graphs beyond just their spectral expansions into the bound. In particular, if we fix
H and consider the mapping λ(· s H) which maps every d-regular graph G to λ(G s H), then
it is interesting to ask how strong a bound can be obtained on this mapping as a function of
the entire spectrum of H.

Given the significance of the derandomized squaring operation, and the related Zig Zag
product as well as the wide-replacement product, a substantial improvement to the bound
could profoundly impact our understanding on several fundamental problems, including
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in space-bounded derandomization and in coding theory. For example, in the context
of space-bounded derandomization such a result may reduce the seed length of PRGs or
weighted PRGs (see [9, 10, 11] and references therein). Such a result may also lead to a
better construction of small-bias sets in which the wide-replacement product is used for
bias-reduction. Therefore, gaining a thorough understanding of derandomized squaring is
highly motivated from the theoretical computer science standpoint.

1.2 Two case studies
Before presenting our results, which we view as a first step towards the above goal, we wish to
highlight the gap between the Rozenman-Vadhan bound, as given in Equation (1.1), and the
“true” behavior of the derandomized squaring operation. We do so by considering two case
studies, starting with H = Kc,c, the complete c = d

2 -regular bipartite graph on d vertices.

1.2.1 Derandomized squaring with the complete regular bipartite graph
Since H = Kc,c is bipartite, ω(H) = 1, and so the bound given by Equation (1.1) becomes
trivial, ω(G s H) ≤ 1 for all d-regular graphs G. For this special case, one can get a nontrivial
bound by elementary means by incorporating some information on G. To see this, assume
that G is the union of two c-regular Ramanujan graphs on n vertices, whose adjacency
matrices are denoted B and R, respectively. That is, the adjacency matrix of G is given by
A = B + R. Thus, it can be shown that the adjacency matrix of G s H can be expressed as
RB + BR 2, and so by the Courant-Fischer Theorem,

λ(G s H) = 2 · max
x⊥1

xTBRx

xTx
≤ 2

(
2
√
d

2 − 1
)2

≤
√

32
√
D − 1 ≈ 5.66

√
D − 1,

where D = d2

2 is the regularity of G s H.
Although the above bound on λ(G s H) certainly beats the trivial bound, D, it still

seems to undersell the typical behavior of G s H. In fact, by sampling 3 a random d-regular
graph G and evaluating λ(G s H), one can verify that for a sufficiently large d, the value of
λ(G s H) distributes around 2.35

√
D − 1. But where does the 2.35 value originate? How

can this number be determined based on our selected H? Jumping the gun, the analytical
tool we introduce predicts that the exact value, for this H, is

1
2

√
11 + 5

√
5 ≈ 2.35. (1.2)

By saying that we “predict” this bound captures the true behavior of derandomized
squaring with H = Kc,c, we mean the following: First, we prove the aforementioned value to
be a lower bound on λ(G s H) for every d-regular graph G; Second, we prove the existence
of infinitely many graphs that meet this bound. These graphs exhibit a local structure
resembling a derandomized square with H. Lastly, our predictions align with every experiment
we made for every graph H and when G is sampled uniformly at random. We provide further
details in Section 2, where our results are formally presented.

2 With regards to the edge labeling, for the last statement to hold we assume that neighbors 1, . . . , d
2 of

every vertex are those coming from B and the remaining neighbors d
2 + 1, . . . , d are coming from R.

3 Our sampling is done by taking the union of d uniformly random and independent perfect matchings,
where edges that are sampled multiple times are counted with the respective multiplicity.
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1.2.2 Derandomized squaring with a Paley graph
In the aforementioned example, the Rozenman-Vadhan bound was non-informative. It is
worth noting that it is not just in these instances where the typical performance of the
derandomized square surpasses the predictions of the bound. To give one such example,
consider a Paley graph on d vertices, denoted as Pald. For a typical d-regular graph G, the
limit behavior as d → ∞ of the spectral expansion λ(G s Pald), when properly normalized,
is predicted by our analytic tool to equal

lim
d→∞

λ(G s Pald)√
D − 1

= 1 +
√

13 + 16
√

2√
8

≈ 2.46, (1.3)

where D = d(d−1)
2 is the degree G s Pald. This should be compared with a bound of 2, the

least possible value given the Alon-Boppana bound. Additionally, it should be compared
with Equation (1.1), which, irrespective of the choice of G, cannot produce a bound lower
than O(D1/4).

From the preceding discussion and, in particular, the two case studies, a key question
lingers: Is there an exact formula or efficient method that enables us to compute, and more
importantly, to gain insight on the spectral expansion of the operation of derandomized
squaring with H?

2 Our Results

As our case studies suggest, the spectral expansion of the graphs G and H might not
adequately represent the spectral expansion of their derandomized square. In this paper we
initiate the study of the following question:

▶ Main Question. What is the “true” behavior of the spectral expansion of derandomized
squaring?

We turn to give a brief summary of our results. We elaborate further on each of these
results in the subsequent sections, Sections 2.1–2.3.

Limitations of derandomized squaring

Our first result is a lower bound on λ(G s H), factoring in the full spectrum of H, which
holds for every graph G. Encoding this spectrum by the characteristic polynomial of H,
denoted as χx(H), our work reveals that the bound is the minimum value of the function

d · x− d(d− 1)χx(H)
χ′

x(H) (2.1)

in the domain (c,∞), where recall that d and c are the degrees of G and H, respectively. Our
proof leans on deep results from analytic combinatorics and the symbolic method. Although
this bound may look more complicated than Equation (1.1), it is easy to calculate for various
explicit choices of H, and easy to bound for families of graphs, as we will examplify in
Section 2.1 (a more comprehensive review of examples, including the ones discussed in
Section 1.2, is done in Section 4).

Based on our empirical experiments, it appears that our lower bound is tight in a strong
sense, namely, for every vertex-transitive graph H and for a typical graph G. However,
a definitive proof of the bound’s tightness eludes us in general. In spite of this, we have

ITCS 2025
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made notable progress by first proving tightness of the bound for particular choices of H,
and second by proving its tightness for a broader class of graphs, we term H-local graphs.
For obtaining this result we make use of finite free probability theory and the accompanied
technique of interlacing. These were instrumental in the seminal works of Marcus, Spielman,
and Srivastava [21, 22, 23] who introduced these techniques for their study of bipartite
Ramanujan graphs. We elaborate on this in Section 2.2.

Comparison to known bounds

The lower bound described above requires solving a separate polynomial equation for every
choice of H. However, restricting the discussion to reasonable choices of H–for example,
graphs H having no self loops–we show universally that the lower bound for ω(G s H) lies
within the range

(
2√
dc
, 3√

dc

)
, very close to the Alon-Boppana bound and significantly distant

from Equation (1.1) that suggests at best that ω(G s H) = O
(

1√
c

)
. As discussed above,

we also expect our lower bound to represent the behavior of G s H for a typical choice of
G. Note that the restriction of H to simple graphs makes sense, as in all applications of
derandomized squaring we are aware of, H is for our choosing.

The proof of Rozenman and Vadhan [35] for the tightness of Equation (1.1) involves a
choice of H which is a graph with many self loops. Moreover, our lower bound applied to
this specific choice (see Section 4.1.3) exactly yields the formula given by Equation (1.1).
This suggests that a better upper bound should hold for particular choices of H (potentially
under some assumptions on G). We leave these intriguing open questions for future work.

A lower bound for rotating expanders

In the process of establishing our lower bound on the spectral expansion of derandomized
squaring, we address an open problem concerning the spectral expansion of rotating ex-
panders [12]. In this recent paper, random walks on expanders were studied, wherein a
permutation is applied to the vertices following each step. The objective of this approach is to
mitigate the inherent exponential deterioration of the spectral expansion with respect to the
length of the walk. Indeed, the authors proved that by using a carefully chosen permutation
sequence, the deterioration can be reduced from exponential to linear. The authors left open
the question of whether their construction is optimal.

In this work, we resolve this question by proving the optimality of their construction.
More generally, we prove that a graph which is constructed as a graph product is inherently
far from Ramanujan. Our key observation lies in relating the problem with the Fuss-Catalan
numbers which generalize the Catalan numbers that emerge when bounding the spectral
expansion of d-regular graphs. We elaborate on this in Section 2.3, where we also give the
necessary background on rotating expanders.

A broader perspective: beyond spectral expansion

Almost all of the numerous works and applications of spectral expanders in theoretical
computer science, indeed, the very definition of a spectral expander G, rely on the notion
of the spectral expansion, λ(G). Only a few instances utilize the entire spectrum of G,
which holds significantly more, and sometimes vital, information about the graph. In their
seminal series of works, Marcus, Spielman, and Srivastava developed finite free probability
as a framework to handle the full spectrum of a graph. As mentioned, this enabled them to
establish the existence of bipartite Ramanujan graphs of all sizes and degrees.
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Our current work serves as a further exploration into analyzing graphs beyond their
spectral expansion. Instead of aiming to construct expanders, our objective is to achieve
a deeper insight into the derandomized squaring operation. While we primarily target the
spectral expansion of the derandomized square G s H, our approach involves leveraging
the entire spectrum of H for establishing our bounds. In addition to our use of finite free
probability, we employ deep results from analytic combinatorics, and the framework offered
by the symbolic method. We posit that working with the full spectrum of a graph could yield
significant results and improvements for various problems in theoretical computer science,
and we believe that the deep results we use could be advantageous in other scenarios where
analyzing the full spectrum is desired.

Related work

Already at this point, prior to delving into the formal details concerning our results, we would
like to highlight some related work. Our study of the graph G s H for a d-regular graph G is
done by considering the graph Td s H, where Td is the d-ary infinite tree. The study of graphs,
which represent the quotient of a given (typically infinite) graph X, has a long history (see
[15] as an example). Of particular interest are the extreme graphs, known as X-Ramanujan
graphs. The reader is referred to [25, 31] and references therein for more details. Our result
supporting the tightness of our lower bound, presented in Section 3.2.2, can also be derived
from the work of Mohanty and O’Donnell [25]. For completeness and accessibility of our
paper, we present the full proof here, as it sheds more light on Equation (2.1) and connections
between analytic combinatorics and free probability which we discuss further in Section 2.2.

Regarding our lower bound, the spectral radius of operators associated with infinite
graphs has been extensively explored. This is particularly true when these graphs exhibit a
well-defined group-theoretic structure. Analytic combinatorics has a well-established presence
in this context [37]. Finally, it is noteworthy that the Fuss-Catalan numbers are significant
in free probability theory and have known associations with the product of certain random
matrices [32].

2.1 Limitations of derandomized squaring

Let H be a vertex-transitive graph on d vertices. Recall that, throughout, c denotes the
degree of a vertex in H. In this section we state our result regarding the lower bound on
λ(G s H) which holds for every d-regular graph G. As previously suggested, our approach
integrates the complete spectrum of H into the bound. This integration is accomplished
by encoding the spectrum through the characteristic polynomial of H-s adjacency matrix,
denoted as χx(H) =

∏d
i=1 (x− λi), where, as before, c = λ1 ≥ · · · ≥ λd are the corresponding

eigenvalues.

▶ Theorem 1. Let H be a vertex-transitive c-regular graph on d ≥ 3 vertices, where c ≥ 1.
Let x0 be the largest real solution to the polynomial equation

(d− 1)χx(H)χ′′
x(H) = (d− 2)χ′

x(H)2. (2.2)

Then, for every d-regular graph G on n vertices, λ(G s H) ≥ ΛH − on(1), where

ΛH ≜ d

(
x0 − (d− 1)χx0(H)

χ′
x0

(H)

)
. (2.3)

ITCS 2025
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As shown in the proof of Theorem 1, despite the polynomial equation from Equation (2.2)
usually yielding complex solutions, there is always at least one real solution. Experiments over-
whelmingly suggest that the bound accurately reflects the behavior of λ(G s H) for a typical
graph G. Having this in mind, we may posit that the structure of Equations (2.2) and (2.3),
namely, (d− 1)ΦΦ′′ = (d− 2)(Φ′)2, and the accompanied expression d

(
x− (d− 1) Φ(x)

Φ′(x)

)
,

epitomize the derandomized squaring operation with a typical d-regular graph. By setting
Φ = χ(H), we incorporate details about H.

Although the proof of Theorem 1 leans on deep results from analytic combinatorics and
the symbolic method, employing the theorem remains elementary. However, as perhaps
anticipated, it is not as direct as the Rozenman-Vadhan bound from Equation (1.1), but
rather it requires finding the largest real solution to a polynomial equation.

Before proceeding further, we introduce the following notation. Recall that G s H is
D-regular where D = cd. We define κH = ΛH√

D−1 , and note that, due to the Alon-Boppana

bound, κH ∈
[
2, D√

D−1

]
≈
[
2,

√
D
]
.

Equivalent reformulations of Theorem 1

One can alternatively recast our procedure for finding a lower bound for λ(G s H), as given
by Theorem 1, in several equivalent ways, as we describe next.

The Cauchy transform is a useful analytic tool which we will make an extensive use of in
this paper. For a graph H on d vertices, the Cauchy transform takes a simple form and is
given by

GH(x) = 1
d

· χ
′
x(H)
χx(H) = 1

d

d∑
i=1

1
x− λi

. (2.4)

Using the Cauchy transform we can reformulate Theorem 1 as follows.

▶ Theorem 2 (Recasting Theorem 1 in terms of the Cauchy transform). Let H be a vertex-
transitive c-regular graph on d ≥ 3 vertices, where c ≥ 1. Let x0 be the unique positive real
solution to the equation

d

d− 1GH(x)2 + G′
H(x) = 0. (2.5)

Then, for every d-regular graph G on n vertices, λ(G s H) ≥ ΛH − on(1), where

ΛH = d · x0 − d− 1
GH(x0) . (2.6)

We emphasize that, as demonstrated in the proof of Theorem 2, there always exists a
positive real solution to Equation (2.5) and it is unique.

By defining ψH(x) = d · x− d−1
GH (x) , it can further be shown that

ΛH = min
x>c

ψH(x), (2.7)

where the minimal point x0 > c exists and is unique (see the full version of the paper for the
details).
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2.2 Tightness of the lower bound
As previously discussed, we have yet to establish that the lower bound provided by Theorem 1
is tight in general. However, empirical results strongly suggest its accuracy. Specifically, we
believe this to be true for every vertex-transitive graph H on d vertices and for a typical
d-regular graph G. In light of the evidence supporting this assertion, as we discuss next, we
will formulate it as a conjecture in Section 2.4. In order to state our analytic evidence for
the tightness of our bound, we observe that from the perspective of a vertex v in G s H,
the vertex v participates in d instances of H. This is because each of the d neighbors of v
positions it within a copy of H. We call a graph that has the above local property an H-local
graph (see the full version of this paper for the formal definition). The following theorem
formalizes the evidence we have gathered for the tightness of our lower bound.

▶ Theorem 3. For every vertex-transitive graph H on d ≥ 3 vertices and for every n ≥ 1,
there exists an H-local graph XH on nd vertices such that λ2(XH) ≤ ΛH .

In addition to Theorem 3, we prove the optimality of our lower bound for λ(G s H) in
three specific cases of H: the clique with self-loops, where G s H corresponds to the actual
squaring operation; the clique without self-loops, which corresponds to a non-backtracking
length-2 random walk; and lastly, the graph employed in the Rozenman-Vadhan bound’s
tightness result. We provide further details on these cases in Section 4.1. Going back to
Theorem 3, note that we manage to bound only the second-largest eigenvalue, λ2(X), rather
than the spectral expansion λ(X) = max(λ2(X), |λn(X)|). Graphs with such property are
termed one-sided spectral expanders. These graphs are suitable for numerous applications,
primarily due to the fact that this property alone suffices for the Alon-Chung Lemma [3].

The proof of Theorem 3 leverages finite free probability and the interlacing technique that
were developed by Marcus, Spielman, and Srivastava [21, 22, 23]. We provide a high-level
overview for the proof of Theorem 3 in Section 3.2, however, already here we emphasize that
the fact that our lower bound, which is based on results from analytic combinatorics, matches
our upper bound which is rooted in tools from free probably theory is an instantiation of a
deep connection between the two fields. This has to do with the fact that one combinatorial
proof for the Lagrange inversion formula–a tool used under the hood in our lower bound–
makes use of Lukasiewicz paths that in turn are tightly connected to the lattice of non-crossing
partitions which is at the heart of free probability theory. The reader is referred to Chapter
16 in the excellent book by Nica and Speicher [29] to learn more about this connection,
though for our purpose, of studying the derandomized squaring operation, we give a direct
and self-contained proof in the full version of the paper.

2.3 Lower bound on the spectral expansion of rotating expanders
A “standard” length-t random walk on a graph G is analyzed by considering the power
graph, denoted as Gt, generalizing the square of the graph G2 which was discussed so far.
This graph encodes the number of length-t walks by introducing an edge for each such
walk between the two corresponding vertices. It is easy to see that if A is the adjacency
matrix of G, then the matrix At is the adjacency matrix of Gt. Consequently, the spectral
expansion of Gt, which is the most pertinent quantity when examining length-t random
walks on G, is given by λ(Gt) = λ(G)t. In particular, if G is a d-regular Ramanujan graph,
then λ(Gt) = 2Ω(t)√D − 1, where D = dt is the degree of Gt. Therefore, even if G is initially
Ramanujan, the power graph is exponentially distant, in t, from Ramanujan.

With an eye towards potential applications to theoretical computer science, Cohen and
Maor [12] proposed that permuting the vertices after each step (in a palindrome fashion
to result in an undirected graph) can circumvent this exponential deterioration. More
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precisely, the authors proved that for every d-regular Ramanujan graph G with adjacency
matrix A, and for every integer t ≥ 2, there exists a sequence of permutation matrices
P = (P1, . . . ,Pt−1) such that the graph GP, whose adjacency matrix is given by

AP = APt−1 · · · AP1A2PT
1 A · · · PT

t−1A,

has spectral expansion

λ(GP) ≤
(

1 + 1
t

)t

(t+ 1)
√
D + o(1), (2.8)

where D = d2t is the degree of GP and the o(1) term is a quantity that vanishes exponentially
fast with the girth of G, and should be ignored in this introductory section. Specifically,
by permuting the vertices after each step using suitable permutations, the deterioration is
reduced from exponential to linear in t.

An open problem left in [12] is to establish a lower bound on the spectral expansion of
GP that is applicable for any permutation sequence P. Specifically, the authors left open
the question of whether the linear dependence in t is optimal. Experimental results suggest
that for a typical P, Equation (2.8) holds with equality, up to the vanishing o(1) term.
However, it is entirely plausible that the typical behavior does not accurately represent the
behavior of the optimal permutation sequence P. The logic would be that for a graph with
substantial structure, such as a Cayley graph, a permutation sequence that takes into account
the structure of the underlying group and the set of generators may yield a superior spectral
expansion. However, in this work we resolve this open problem by proving that the bound is
indeed tight.

▶ Theorem 4. For every d-regular graph G and for every permutation sequence P =
(P1, . . . ,Pt−1),

λ(GP) ≥
(

1 + 1
t

)t

(t+ 1)
√
D − o(1).

In fact, our lower bound applies to the product of any d-regular graphs, not only isomorphic
graphs as used in the construction of GP. For t = 1, where no actual product is involved,
this essentially aligns with the Alon-Boppana bound. As suggested by Theorem 4 (ignoring
the o(1) term), we have λ(GP) = λ(G2) ≥ 4

√
D. However, for t = 2, the bound increases

to λ(GP) ≥ 33

22

√
D = 6.75

√
D, and for t = 3, it further deteriorates to λ(GP) ≥ 44

33

√
D ≈

9.48
√
D. As indicated, the gap for graph products increases linearly with the number of

graphs involved, making them inherently far from Ramanujan.

2.4 Two conjectures and open problems
Given our results and the above discussion, we wish to put forth two conjectures that capture
different aspects of the tightness of our lower bound as given by Theorem 1. These are analog
to fundamental questions on Ramanujan graphs where Theorem 1 plays in this analogy the
role of the Alon-Boppana bound.

▶ Conjecture 5. For every vertex-transitive graph H, λ(G s H) ≤ ΛH holds for infinitely
many graphs G.

Conjecture 5 is analog to the fundamental question regarding the existence of Ramanujan
graphs which has received significant attention in the literature. Resolving Conjecture 5 with
respect to λ2(G s H) would be interesting as well. Our second conjecture focuses on the
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typical behavior, and is analogous to Friedman’s resolution [14] of Alon’s conjecture [4] (see
also [7]). We first introduce the following notation: For an even integer n and for an integer
d, we let Mn,d denote the distribution over d-regular graphs on n vertices that are sampled
by taking the union of d uniformly random and independent perfect matchings, where edges
that are sampled multiple times are counted with the respective multiplicity.

▶ Conjecture 6. For every vertex-transitive graph H on d vertices and for every ε > 0,

Pr
G∼Mn,d

[λ(G s H) ≥ ΛH + ε] = on(1).

Note that a similar statement is proven in [8] for a wide variety of graph distributions.
However, these do not include the one suggested above for graphs of the form G s H.

In addition to the conjectures previously discussed, our research raises several intriguing
questions. An obvious open problem is the generalization of our results to non-vertex-
transitive graphs. For potential theoretical computer science applications, it would be
pertinent to identify conditions that a pair of graphs G and H satisfy so that the spectral
expansion λ(G s H) is close to our lower bound or, at a minimum, substantially improves
upon the Rozenman-Vadhan bound. Once this aspect is clearer, problems regarding the
explicitness can be addressed. To give just one additional research question, we believe that
the extension of our techniques to additional graph operations, including the Zig-Zag product
and the wide-replacement product, is feasible. We defer this exploration to future research.

Organization of the rest of the paper
In Section 3 we give a high-level proof overview of our results on the derandomized squaring
operator. The detailed proofs of the theorems stated above are provided in the full version
of this paper. In Section 4 we apply our results to interesting graph families, and prove our
universal bound on κH for simple graphs.

3 Proof Overview

In this section, we provide an informal overview of the proofs for our results. We begin with
our lower bound for the spectral expansion of derandomized squaring, as given by Theorem 1
(outlined in Section 3.1). Our proof relies on the symbolic method and leverages results from
analytic combinatorics, both of which we introduce and explain in the full version of this
paper. Additionally, we briefly outline the proof for our evidence regarding the tightness
of our lower bound, as stated in Theorem 3, in Section 3.2. In that section, we provide
the necessary background on finite free probability, which is essential for understanding the
proof.

3.1 Limitations of derandomized squaring
As before, let G be a d-regular graph and H a vertex-transitive c-regular graph on d vertices.
In this section we sketch the proof for our lower bound on λ(G s H), as stated in Theorem 1.
Our starting point is standard, relying on the trace method which asserts that λ(G s H) is
lower bounded by roughly cℓ(G s H)1/ℓ for every ℓ > 0, where cℓ(G s H) is the number of
length-ℓ cycles that originate at some fixed vertex v of G s H. Thus, the task at hand is to
compute, or at least lower bound cℓ(G s H), where we will choose ℓ to be sufficiently large.
A common strategy for this is to consider a suitable infinite cover of the graph of interest,
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G s H in our case, which we take to be Td s H, where Td is the d-regular infinite tree. Indeed,
for every ℓ, every length-ℓ cycle in Td s H that originated at some fixed vertex induces a
unique cycle in G s H, initiated at some fixed vertex, and so cℓ(G s H) ≥ cℓ(Td s H).

We obtain an accurate estimate on cℓ(Td s H) by first expressing the combinatorial class
of cycles in Td s H using the symbolic method, from which we immediately derive a functional
equation that is satisfied by the corresponding generating function. We then use results
from analytic combinatorics to get the desired estimate on the coefficients of the latter.
The symbolic method, a prominent combinatorial theory, allows one to deduce a functional
equation that is satisfied by the class’s generating function straight from its specification.
Following this, in Section 3.1.1, we utilize the symbolic method to define the cycle class
in Td s H and from there, derive a functional equation that is satisfied by the associated
generating function.

With the functional equation in hand, our objective is to deduce estimates of its coefficients.
To achieve the estimate, we employ deep results from analytic combinatorics. These treat
the functional equation as a meromorphic function, considering its singularities to determine
the bound.

3.1.1 The functional equation for derandomized squaring

Figure 1 Cycles in T4 s C4. The black edges represent the edges of T4, while the red edges
represent those of T4 s C4. Dashed red edges indicate the truncated edges. Edges that are irrelevant
to the cycles of v (e.g., (u1, x1)) have not been included in the figure. The blue cycle within T4 s C4

corresponds to the cycle (v → w1 → w2 → w3 → v) within the copy of H centered around vertex u1.
In this cycle, the first, second, and last steps are substituted with the pair (→, ϵ), while the third
step is substituted with the pair

(
→, c

)
, where c represents a nested cycle from CTd

s H
(specifically,

c = (w3 → y1 → y2 → y3 → w3)).

Let H be a vertex-transitive graph on d vertices. Define CTd
s H

as the combinatorial class
of cycles in Td s H that originate at the root. As previously mentioned, the size function
corresponds to the cycle’s length. To prevent double-counting, we exclude the empty cycle
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from this class. When expressing the class using the symbolic method, we use SH to represent
the combinatorial class of nonempty cycles in H that only revisit the originating vertex upon
completing the cycle. Consequently, as detailed below, after truncating one branch of the
root, and overriding the class definition of CTd

s H
to capture cycles on the truncated graph,

it satisfies the recursive relation

CTd
s H

= {1, . . . , d− 1} ×
(

SH ◦
(

→ ×
(

CTd
s H

+ ϵ
)))

. (3.1)

Here, → symbolizes an atom, which we interpret as a step within a cycle in H.
To see this, remember that each child of the root positions the root within a copy of H.

Therefore, when describing a non-empty cycle originating at the root, we first select one of its
d− 1 children, which determines the copy of H in which the root is involved. Now, consider
any cycle within that copy of H starting at the root, v1 → v2 → · · · → vℓ = v1. This cycle
corresponds to a cycle in Td s H that begins at the root in the following manner: After each
step vi → vi+1 on the cycle, we examine the copy of Td s H rooted at vi+1 and attach a cycle
from that copy of Td s H. When we return to vi+1, we proceed with vi+1 → vi+2. Note that
attaching an empty cycle is permissible, even though it is not included in CTd

s H
, leading to

the addition of the neutral element ϵ in Equation (3.1). Furthermore, after the final step
vℓ−1 → vℓ = v1, we attach another (potentially empty) copy of CTd

s H
to account for cycles

that visit the root more than twice. This rationale underpins our definition of SH , which is
designed to prevent over-counting that would have otherwise occur.

Equation (3.1) directly implies that the generating function, CTd
s H

(z), associated with
the class CTd

s H
satisfies

CTd
s H

(z) = (d− 1)SH

(
z
(
CTd

s H
(z) + 1

))
, (3.2)

where SH(z) is the generating function corresponding to the class SH . On its own, this result
does not provide much insight, as the functional equation u = (d− 1)SH(z(u+ 1)) tends to
be intricate, hindering our ability to extract the coefficients of CTd

s H
(z). For instance, even

in the simple case of a length-4 cycle, H = C4, in which case SC4(z) = 2z2

1−2z2 , Equation (3.2)
takes the form

2z2c(z)3 + 10z2c(z)2 + (14z2 − 1)c(z) + 6z2 = 0,

where the term c(z) is a shorthand for CTd
s C4

(z), resulting in a complicated expression
for c(z).

To address this challenge, we leverage a deep result from analytic combinatorics. We
provide the essential background in the full version of the paper. Subsequently, in Section 3.1.3,
we will outline our approach to estimating the coefficients of CTd

s H
(z) using Equation (3.2)

as our starting point.

3.1.2 A brief introduction to analytic combinatorics
The symbolic method classifies combinatorial classes into schemes based on their shared
structures. This approach aims to consolidate solutions to these problems and highlight
their interrelations. A notable schema within this framework is termed smooth inverse-
function schema. These are classes whose generating function ζ(z) satisfies the functional
equation u = z · ϕ(u), namely, ζ(z) = z · ϕ(ζ(z)), for some “well-behaved” function ϕ(u). By
manipulating Equation (3.2), we see that CTd

s H
is tightly connected to this schema. Indeed,

letting ζH(z) = z
(
CTd

s H
(z) + 1

)
, we have that ζH(z) = z · ϕH(ζH(z)), where

ϕH(u) = 1 + (d− 1)SH(u). (3.3)
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Analytic combinatorics provides a method to estimate the coefficients of the generating
function for smooth inverse-function schema. This approach is applicable under certain
technical conditions on ϕ(u), which we hide under the rug in this informal proof overview.
The key requirement though is that there is a real positive solution to the characteristic
equation ϕ(u) = u · ϕ′(u) within ϕ-s analytic domain around the origin. To denote the
k’th coefficient of a function we use the coefficient extractor operator, [zk]. For an analytic
function A(z) =

∑
Akz

k, we have

[zk]A(z) ≜ Ak

With this, we have the following theorem which is informally stated here (see the full version
of the paper for the formal statement).

▶ Theorem 7. Let ζ(z) belong to the smooth inverse-function schema. Then, with τ the
positive root of the corresponding characteristic equation ϕ(u) = u · ϕ′(u), one has

([
zk
]
ζ(z)

) 1
k ≈ ϕ′(τ). (3.4)

3.1.3 Proof sketch of Theorem 1

With Theorem 7 in hand, and by the discussion above that led us to Equation (3.3),
we are ready to sketch the proof of Theorem 1. In fact, it will be more convenient to
consider the variant using the Cauchy transform of H. Since CH = SEQ(SH), we have that
SH(z) = 1 − 1

CH (z) . It can also be shown that CH(z) = 1
z GH( 1

z ) (see the full version of the
paper for the proof), and so Equation (3.3) takes on the form

ϕH(z) = d− (d− 1)z
GH

( 1
z

) .
Through some algebraic manipulations, it becomes evident that the characteristic equation,

ϕH(z) = z · ϕ′
H(z), transforms into the form presented in Equation (2.5) from Theorem 2

when z is substituted with its reciprocal. Specifically, the equation becomes

d

d− 1GH

(
1
z

)2
+ G′

H

(
1
z

)
= 0.

Upon further analytical exploration, it can be shown that this equation has a positive real
root z0 > d. Consequently, there exists a positive τ < 1

d ≤ R, where τ = 1
z0

, that satisfies
the characteristic equation. This allows us to apply Theorem 7 and derive the sought-after
estimate

[
zk
]
CH(z)1/k ≈ ϕ′

H(τ) = ϕH(τ)
τ

= dz0 − d− 1
GH (z0) .

3.2 Matching the lower bound with H-local graphs

As briefly discussed in Section 2.2, the proof of Theorem 3 makes use of finite free probability.
Thus, to start with, in Section 3.2.1 we give a brief account of this elegant theory. Then, in
Section 3.2.2 we sketch the proof of Theorem 3.



G. Cohen, I. Cohen, G. Maor, and Y. Peled 40:15

3.2.1 Finite free probability
Free probability is a branch of mathematics, initiated by Voiculescu, that extends classical
probability theory into the non-commutative setting. In classical probability, random variables
are analyzed using their joint distribution, which encodes the correlations or lack of between
them. In contrast, free probability introduces the abstract notion of “freeness” to represent
the absence of correlations, appropriately defined, among non-commutative random variables.
Free probability theory provides, in particular, tools to analyze the spectrum of the sum
and product of two operators, given that these operators are free, using knowledge of their
individual spectra. Freeness is an infinite-dimensional phenomena in the sense that a pair of
finite-dimensional operators can only be free from one another if one of them is constant. As
a result, operators associated with finite graphs cannot be studied directly by free probability
theory.

In response to this limitation, Marcus, Spielman, and Srivastava, in their groundbreaking
series of works [21, 22, 23], introduced the theory of finite free probability along with the
associated technique of interlacing. This enabled them to extend some results of free
probability to the finite-dimensional setting, especially regarding the spectra of matrix sums
and products. While finite free probability may not capture all details of the latter spectra,
it provides a one-sided bound on its support. Finite free probability does not depend on
the abstract concept of freeness or any analogous notion. Rather, it demonstrates that
conjugating a finite operator, A, with an orthogonal matrix – sampled according to the Haar
measure on this group – effectively “frees” A from other operators. We consider a specific
application of this principle in the context of operator addition.

▶ Definition 8 (Definition 2.4 in [22]). Let A,B be d × d real symmetric matrices, with
characteristic polynomials a(x) and b(x), respectively. The additive convolution of a(x) and
b(x) is defined as

a(x) ⊞d b(x) = E
Q
χx

(
A + QBQT) , (3.5)

where the expectation is taken over random orthogonal matrices Q sampled according to the
Haar measure on the group of n-dimensional orthogonal matrices.

We note that, while it may not be immediately apparent, the right-hand side of Equa-
tion (3.5) depends only on the spectra of A and B. Consequently, the additive convolution
is well-defined. It was also proved in [23] that a(x) ⊞d b(x) is real-rooted itself, hence a
discussion of bounding its roots is sensible. When d is clear from context, we omit the
subscript d in ⊞d.

The analytic machinery that will allow us to study the additive convolution is the
Cauchy transform and its max-inverse (see the full version for details). More precisely,
the Cauchy transform of a real-rooted degree d polynomial p(t) ∈ R[t], whose roots are
λ1 ≥ λ2 ≥ · · · ≥ λd, is defined as Gp(x) = 1

d

∑d
i=1

1
x−λi

. Clearly, for an undirected graph H,
the Cauchy transform GH(x) as defined in Equation (2.4) can be expressed as Gp(x) where
p(t) = χt(H) is the characteristic polynomial of H.

Note that when the Cauchy transform of a polynomial p(t) is restricted to the domain to
the right of its rightmost pole, (λ1,∞), its range is (0,∞). Additionally, Gp(x) is monotonically
decreasing within this domain. With this in mind, one can define Kp : (0,∞) → (λ1,∞)
to be the inverse of Gp(x) when restricted to the latter domain. In other words, Kp is the
max-inverse of Gp. Particularly, for every y ∈ (0,∞), Kp(y) provides an upper bound on
the largest root, λ1, of p(t). The key feature of the K-transform is that it behaves very-well
under additive convolution.
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▶ Theorem 9 (Theorem 1.12 in [23]). For all d × d real symmetric matrices A,B with
characteristic polynomials a(x), b(x), respectively, and for every y > 0, it holds that

Ka⊞b(y) ≤ Ka(y) + Kb(y) − 1
y
.

It is worth noting that in free probability, the analog statement to Theorem 9 in the
infinite dimensional case holds with equality.

3.2.2 Proof sketch of Theorem 3
The main idea in proving Theorem 3 is to randomly construct an H-local graph in a very
intuitive way: since we want each vertex v to appear in d instances of H, we place v in d

such instances, choosing the neighbors uniformly at random. Formally, we define a matrix
H consisting of disjoint copies of H, and sum d random permutations of this matrix. This
results in the matrix

XP(H) =
d∑

i=1
PiHPT

i ,

where P = P1, . . . ,Pd are permutation matrices. The proof for the existence of an H-local
graph whose second largest eigenvalue meet our lower bound incorporates two parts:
1. Bounding the second largest root of the expected characteristic polynomial,

EP χx (XP(H)), where the permutations are sampled uniformly and independently at
random.

2. Relating the roots of EP χx (XP(H)) to roots of a particular choice for P, resulting in
finding a good permutation, which induces a graph.

On first sight, it is not clear how to relate the expectation polynomial from Part 1 with the
aforementioned tools of finite free probability. Definition 8 uses an expectation over the Haar
measure, and together with Theorem 9 (applied d− 1 times) enables us to establish an upper
bound on the largest root of the expected characteristic polynomial, derived as the “free
sum” of d of identical matrices. More precisely, a corollary from Theorem 9, together with
the above discussion, yields

maxroot
(
χx(A)⊞d

)
≤ min

x>λ1

(
d · x− d− 1

GA(x)

)
, (3.6)

where λ1 is the largest eigenvalue of A. When taking A to be the matrix H, the RHS of
Equation (3.6) resembles Equation (2.6) from Theorem 2. However, the relevance of the
LHS of the above equation remains unclear, as the expectation hidden in the ⊞ operation
is over the Haar measure and not over permutations. For bridging this gap, as well as for
establishing Part 2, we follow MSS and proceed in two steps: quadrature and interlacing.
While our proof makes a black-box use of these techniques we believe that the unfamiliar
reader will benefit from this short account.

3.2.2.1 Quadrature

Quadrature refers to a general technique by which an integral is written as a finite sum. In
our context, we make use of the result showing that finite free additive convolution can be
expressed using the finite subgroup of permutation matrices of the unitary group. Specifically,
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▶ Theorem 10 (Theorem 4.1 in [22]). Let A,B be symmetric d× d matrices with A1 = a1
and B1 = b1. Let χx(A) = (x− a)a(x) and χx(B) = (x− b)b(x). Then,

E
P
χx

(
A + PBPT) = (x− (a+ b)) · a(x) ⊞d−1 b(x),

where P is a uniformly random permutation matrix.

Assume that A is the adjacency matrix of a c-regular graph, and let p(x) = χx(A)
x−c . As a

direct corollary of Theorem 10, we get that

E
P1,...,Pd

χx

(
d∑

i=1
PiAPT

i

)
= (x− dc) · p⊞d(x).

Consequently, by taking A = H, the upper bound on the max-root of the convolution
polynomial, derived using Equation (3.6), directly establishes a bound on the max-root of
the expected characteristic polynomial appearing on the LHS. The advantage is that we
are now considering an expectation over a finite distribution, and more importantly, each
element in the support of the distribution is an H-local graph. The final step of interlacing
permits us to conclude that an element exists within this distribution for which the same
upper bound holds.

3.2.2.2 Interlacing

So far, we have discussed how to obtain a bound on the largest root of the expected
characteristic polynomial (excluding the trivial root), where the expectation is over the group
of permutation matrices. It is generally incorrect to assert that a bound on the largest root
of the expectation of polynomials can be utilized to infer a bound on the largest root of one
of the polynomials involved in the expectation. A key observation by MSS concerning this
issue is that such an result holds if the polynomials participating in the expectation form
an interlacing family. In fact, for any choice of k, this structure suffices to deduce a bound
on the k-th largest root of at least one polynomial in the family, given that we are able to
bound the k-th largest root of the expected characteristic polynomial.

4 Derandomized Squaring with Interesting Graphs

In this section we apply our results to some interesting graph families, starting with graphs
which demonstrate the tightness of our lower bound (see Section 4.1). Our general bound on
bounded-degree graphs is given in Section 4.2 and the stronger bound assuming good spectral
expansion is given in Section 4.3. The complete bipartite graph is studied in Section 4.4.
The remaining sections deal with Paley graphs (see Section 4.5) and, more generally, strongly
regular graphs (see Section 4.6), as well as some specific interesting graphs in Section 4.7.
Some of the proofs of the results are omitted and can be found in the full version of the
paper.

4.1 Three tight examples
In this short section we analyze some basic choices for the graph H, for which we know
what behavior to expect and compare against our bound. We prove that for these instances,
our lower bound given by Theorem 2 is tight, up to an additive vanishing term, for every
Ramanujan graph G.
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4.1.1 The true square
Let G be a d-regular graph, where d ≥ 3, and let Jd denote the complete graph on d vertices,
self-loops included. That is, Jd is the graph whose adjacency matrix is the all-ones d×d matrix,
typically denoted as J. Note that G s Jd = G2. Our lower bound on λ(G s Jd) obtained in
Theorem 2 holds for all graphs G in the sense that ΛJd

is independent of G. Therefore, it is
sensible to expect that if the lower bound is tight for this choice of H = Jd then it is matched
by taking G to be a d-regular Ramanujan graph. In such case, the spectral expansion
λ(G s Jd) = λ(G2) can be computed directly and is equal to λ(G)2 =

(
2
√
d− 1

)2 = 4(d− 1).
As we will now show, it is indeed the case that ΛJd

= 4(d− 1), establishing that our lower
bound is tight for this choice of H.

The Cauchy transform of Jd is given by

GJd
(x) = 1

d

(
d− 1
x

+ 1
x− d

)
= x− d+ 1

x(x− d) .

Substituting to Equation (2.5) and simplifying, we see that the derandomized squaring
polynomial associated with Jd is given by ∆Jd

(x) = x2 + (2 − 2d)x. The unique real positive
root of ∆Jd

(x) is, of course x0 = 2d− 2. Substituting to Equation (2.6) yields ΛJd
= 4(d− 1).

4.1.2 Non-backtracking random walks
A second example for the tightness of our bound is given by the clique, denoted as Kd,
namely the complete graph without self-loops. It is easily seen combinatorially that G s Kd

corresponds to the graph of non-backtracking length-2 walks in G, which we denote by G(2).
The corresponding adjacency matrix is given by A(2) = A2 − dI. Hence, for a Ramanujan
graph G, the best value we can hope for coming from the analysis is

λ(A(2)) = λ(A2) − d = 4(d− 1) − d = 3d− 4.

This bound is indeed what results from our analysis. To see this, note that the Cauchy
transform of Kd is

GKd
(x) = 1

d

(
d− 1
x+ 1 + 1

x− d+ 1

)
= x− d+ 2

(x+ 1)(x− d+ 1) .

Substituting to Equation (2.5) and simplifying, we see that the derandomized squaring
polynomial associated with Kd is given by

∆Kd
(x) = x2 + (4 − 2d)x+ 3 − 2d.

The unique real positive root of ∆Kd
(x) is x0 = 2d− 3. Substituting to Equation (2.6) yields

the desired bound, ΛKd
= 3d− 4.

It is instructive to compare our bound with the upper bound obtained by the Rozenman-
Vadhan bound, Equation (1.1) for a Ramanujan graph G. The second largest (normalized)
eigenvalue of Kd in absolute value is 1

d−1 , leading to an overall bound of ≈ 5d compared to
the true behavior of ≈ 3d.

4.1.3 The graph achieving the Rozenman-Vadhan bound
In [35], Rozenman and Vadhan proved that the bound that is given in Equation (1.1) is tight
in a strong sense, namely, for every rational µ, there exists a graph RVµ with ω(RVµ) = µ,
such that for every graph G it holds that ω(G s RVµ) = (1 − µ)ω(G2) + µ. For ease of
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notation, we write RV instead of RVµ from hereon. The graph RV is constructed as follows:
assume µ = s

r for some integers r, s ≥ 1, then RV is a graph on d vertices which is rd-regular,
consisting of r−s copies of the complete graph Jd, and additional sd self-loops on each vertex.
The combinatorial analysis shows that a step in the rd2-regular graph G s RV amounts to
staying at the same vertex with probability µ or taking a step in G2 with probability 1 − µ,
leading directly to the tightness of the bound.

Assume once again that G is Ramanujan, hence λ(G) ≤ 2
√
d− 1. In this case, by

Equation (1.1), we get that

λ(G s RV) = ω(G s RV) · rd2

=
((

1 − s

r

) 4(d− 1)
d2 + s

r

)
· rd2

= 4(d− 1)r + (d− 2)2s.

As in the above two examples, we use the Cauchy transform of RV which is given by

GRV(x) = 1
d

(
d− 1
x− sd

+ 1
x− rd

)
= x− (d− 1)r − s

(x− dr)(x− ds) .

Expanding Equation (2.7) and solving, we get

ΛRV = ψRV(x0) = 4(d− 1)r + (d− 2)2s,

as in the Rozenman-Vadhan bound.

4.2 Bounded-degree graphs and a universal bound on κ

In this section we prove that derandomized squaring with a simple vertex-transitive graph of
bounded degree results with a graph that gravitates towards Ramanujan as the number of
vertices in H increases. Moreover, we establish a universal bound on κH which holds for all
simple vertex-transitive graphs.

▶ Theorem 11. Let H be a simple vertex-transitive c-regular graph on d vertices, where
d ≥ 3 and c ≥ 1. Then,

κH ≤ 2 +
√
c√

d−
√
c
.

Moreover, for every d ≥ 11 it holds that κH ≤ 3. Lastly, if H is triangle-free then

κH ≤ 2 + c

d
· 1

1 −
√

c
d

.

4.3 Spectral expanders
In this section we prove a stronger bound on κH than the one obtained in Theorem 11,
which recall holds for general bounded-degree graphs, assuming that H is a good spectral
expander. The proof follows the same argument as in the proof of Theorem 11 though takes
into account the bound on the spectral expansion.

▶ Proposition 12. Let H be a simple vertex-transitive c-regular graph on d vertices. Assume
that 10 ≤ c <

√
d. Then,

κH ≤ 2 + 3√
d

(
λ(H)√

c

)3
.
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Furthermore, if H is triangle-free then

κH ≤ 2 + 4
d

(
λ(H)√

c

)4
.

4.4 Complete bipartite graphs

In this section we consider the operation of derandomized squaring with the complete bipartite
graph on d vertices, for an even integer d ≥ 4. This is, of course, a c = d

2 regular graph which
we denote as Kc,c. It is easy to see that Kc,c has eigenvalues ±c, each with multiplicity 1,
and the remaining eigenvalues are all 0. Therefore, the corresponding Cauchy transform,
which for ease of notation we denote by Gc,c, is given by

Gc,c(x) = 4x2 − d(d− 2)
(4x2 − d2)x .

From here one can compute the derandomized squaring polynomial

∆c,c(x) = x4 − d(2d− 3)
2 x2 − (d− 2)d3

16

whose unique positive root x0 =
√

md
2 , where m = 2d− 3 +

√
(d− 1)(5d− 9). One can verify

that G(x0) = m−d+2
x0(m−d) . Substituting this to Equation (2.6), we get

ΛKc,c
= x0

(
m+ d

m− d+ 2

)
=

√
md

2

(
m+ d

m− d+ 2

)
.

The resulted graph is D = d2

2 -regular, and so we normalize by dividing by
√
D − 1 to get

κKc,c
=
√

md

2d2 − 4

(
m+ d

m− d+ 2

)
.

From here one can compute the first couple of values, κK2,2 ≈ 2.089 which, of course, matches
the bound we computed for the length-4 cycle, and κK3,3 ≈ 2.157. Considering the limit
behavior as d → ∞ we have that m ≈ γd where γ = 2 +

√
5, and so

κK∞,∞ ≜ lim
c→∞

κKc,c =
√
γ

2 · γ + 1
γ − 1 = 1

2

√
11 + 5

√
5 ≈ 2.355.

4.5 Paley graphs

Let q = 4r + 1 be a prime power. The Paley graph, denoted as Palq, has vertex set
corresponding to the finite field Fq with the vertices adjacent if and only if their difference is
a nonzero square in Fq. As q ≡ 1 modulo 4, we have that −1 is a square in Fq, and so Palq
is undirected.

▶ Theorem 13.

κPal∞ ≜ lim
q→∞

κPalq
= 1 +

√
13 + 16

√
2√

8
≈ 2.464.



G. Cohen, I. Cohen, G. Maor, and Y. Peled 40:21

4.6 Strongly regular graphs
A c-regular graph on d vertices with no self-loops is called strongly regular with parameters
λ, µ 4 if 0 < c < d (namely, the graph is neither complete nor edgeless) and the following
hold:
1. For each pair of adjacent vertices there are λ vertices adjacent to both.
2. For each pair of nonadjacent vertices there are µ vertices adjacent to both.

Strongly regular graphs include dozens of interesting graphs such as the Peterson graph,
the Hoffman-Singelton graph (see Section 4.7), and the symplectic graphs (see Section 4.6.1),
as well as all Paley graphs which we analyzed in Section 4.5. It is a well-known fact that
strongly regular graphs have two eigenvalues other than the trivial eigenvalue c, denoted
r, s, with the convention r > s. This is, in fact, a spectral characterization of strongly
regular graph among regular graphs. The multiplicity of these eigenvalues are denoted by
f, g, respectively. In the following we compute the derandomized squaring polynomial of a
strongly regular graph.

▶ Proposition 14. Let H be a c-regular strongly regular graph on d ≥ 3 vertices with
parameters λ, µ. Let α = λ − µ and e = c − d + 1. Then, the derandomized squaring
polynomial associated with H is given by

∆H(x) = x4 − 2(α+ c)x3 +Ax2 +Bx+ C,

where

A = 2µ+ 4αc+ α2 + ce,

B = −2αµ+ 2c
(
c− ce− α2 − µ

)
,

C = (µ− c) (µ+ 2αc+ c) + c3e.

4.6.1 The symplectic graphs
An interesting sub-family of strongly regular graphs are the so-called symplectic graphs. Let
r ≥ 1 be an integer. The symplectic graph Sp(2r) is the graph whose vertex set consists
of all nonzero vectors in F2r

2 . Two vertices x, y are adjacent whenever xTNy = 1, with all
calculations over F2, where N is the (2r) × (2r) block diagonal matrix with r blocks of the
form ( 0 1

1 0 ). It is well-known that Sp(2r) is a strongly regular graph with λ = µ = 22r−2.

▶ Theorem 15.

lim
r→∞

κ(Sp(2r)) = 1 +
√

13 + 16
√

2√
8

≈ 2.464.

Interestingly, though not unexpectedly, this limit behavior is also shared by Paley graphs (see
Section 4.5).

4.7 Some specific graphs
In this section we consider some specific interesting graphs.

4 It is customary to denote these parameters by λ and µ and so, despite our use of λ for denoting the
spectral expansion, we proceed with this standard notation.
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Table 1 Summary of specific graphs and their derandomized squaring constants.

H (Graph name) d (Number of vertices) c (degree) κH

Petersen graph 10 3 2.025
Heawood graph 14 3 2.004

Hoffman-Singelton graph 50 7 2.007
Biggs-Smith graph 102 3 2.000000016
Conway’s 99-graph 99 14 2.041
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