
Nearest Neighbor Complexity and Boolean Circuits
Mason DiCicco #Ñ

Worcester Polytechnic Institute, MA, USA

Vladimir Podolskii #Ñ

Tufts University, Medford, MA, USA

Daniel Reichman # Ñ

Worcester Polytechnic Institute, MA, USA

Abstract
A nearest neighbor representation of a Boolean function f is a set of vectors (anchors) labeled by
0 or 1 such that f(x) = 1 if and only if the closest anchor to x is labeled by 1. This model was
introduced by Hajnal, Liu and Turán [2022], who studied bounds on the minimum number of anchors
required to represent Boolean functions under different choices of anchors (real vs. Boolean vectors)
as well as the analogous model of k-nearest neighbors representations.

We initiate a systematic study of the representational power of nearest and k-nearest neighbors
through Boolean circuit complexity. To this end, we establish a close connection between Boolean
functions with polynomial nearest neighbor complexity and those that can be efficiently represented
by classes based on linear inequalities – min-plus polynomial threshold functions – previously studied
in relation to threshold circuits. This extends an observation of Hajnal et al. [2022]. Next, we
further extend the connection between nearest neighbor representations and circuits to the k-nearest
neighbors case.

As an outcome of these connections we obtain exponential lower bounds on the k-nearest
neighbors complexity of explicit n-variate functions, assuming k ≤ n1−ϵ. Previously, no superlinear
lower bound was known for any k > 1. At the same time, we show that proving superpolynomial
lower bounds for the k-nearest neighbors complexity of an explicit function for arbitrary k would
require a breakthrough in circuit complexity. In addition, we prove an exponential separation
between the nearest neighbor and k-nearest neighbors complexity (for unrestricted k) of an explicit
function. These results address questions raised by [17] of proving strong lower bounds for k-nearest
neighbors and understanding the role of the parameter k. Finally, we devise new bounds on the
nearest neighbor complexity for several families of Boolean functions.

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases Complexity, Nearest Neighbors, Circuits

Digital Object Identifier 10.4230/LIPIcs.ITCS.2025.42

Related Version Previous Version: https://arxiv.org/pdf/2402.06740

Acknowledgements We would like to thank Bill Martin for several insightful comments. The second
and third author thank the Simons Institute for the Theory of Computing where collaboration on
this project has began.

1 Introduction

A nearest-neighbor representation of a function f : {0, 1}n → {0, 1} is a set of vectors, called
“anchors,” say S = P ∪ N such that f(x) = 1 if and only if the nearest anchor to x (under
the Euclidean distance metric) belongs to P . The set of anchors can be seen as a (disjoint)
union of “positive” and “negative” examples. If S ⊆ {0, 1}n, we refer to the representation
as Boolean, and if S ⊆ Rn we call it real. This model was pioneered by [17], who advocated
the study of Boolean functions admitting efficient representations, focusing on the number
of anchors as a measure of the complexity of the representation. They also consider the
k-nearest neighbors variation, where the value of f on input x is computed as a majority
vote of the k nearest anchors to x.

© Mason DiCicco, Vladimir Podolskii, and Daniel Reichman;
licensed under Creative Commons License CC-BY 4.0

16th Innovations in Theoretical Computer Science Conference (ITCS 2025).
Editor: Raghu Meka; Article No. 42; pp. 42:1–42:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mtdicicco@wpi.edu
https://masinister.github.io/
https://orcid.org/0000-0002-9311-4036
mailto:vladimir.podolskii@tufts.edu
https://engineering.tufts.edu/cs/people/faculty/vladimir-podolskii
https://orcid.org/0000-0001-7154-138X
mailto:dreichman@wpi.edu
https://www.wpi.edu/people/faculty/dreichman
https://orcid.org/0000-0003-0566-7528
https://doi.org/10.4230/LIPIcs.ITCS.2025.42
https://arxiv.org/pdf/2402.06740
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Nearest Neighbor Complexity and Boolean Circuits

In particular, [17] observed a relationship between nearest-neighbor representations and
threshold circuits. Motivated by their work, we initiate a systematic study of the connections
to circuit complexity. Some of our results are related to the weight complexity (number of
bits) needed when representing Boolean functions by real anchors: A topic receiving recent
attention by [24].

There are numerous extensions and variations of nearest neighbor complexity. While
studying all of these here is infeasible, one goal of ours is to encourage further exploration of
this broad topic. We discuss some future directions in the conclusion section.

1.1 Motivation

We believe that nearest neighbor representations are a natural and interesting model of
computation worthy of study. Furthermore, nearest neighbor complexity is relevant to several
central research topics listed next.

1.1.1 Boolean function complexity

Nearest neighbor representations are related to depth-two threshold circuits and decision
trees: [17] establish that lower bounds for these models are useful for establishing lower
bounds for nearest neighbors. Polynomial threshold functions and their relation to geometric
representations of Boolean functions also bear a strong connection to nearest neighbor
representations. In fact, we will show that the expressivity of nearest neighbors is essentially
equivalent to that of polynomial threshold functions over the tropical semiring – An interesting
model of computation due to [18].

Our approach to understanding nearest neighbor complexity in terms of Boolean circuit
complexity follows a long tradition in computational learning theory and computational
complexity (e.g., [29, 22, 26, 27, 41, 39]). Uncovering new connections between nearest
neighbors and well-studied computational models (such as linear decision lists and depth-two
circuits) enables us to prove new unconditional lower bounds and upper bounds on the
nearest neighbor complexity of explicit1 functions. It also allows us to phrase some open
problems in circuit complexity in terms of nearest neighbor complexity. For instance, the
difficulty of proving super-polynomial lower bounds for k-nearest neighbors representations –
for appropriate values of k – follows from representations (that we construct) of circuits with
the same difficulty.

1.1.2 Machine learning and pattern recognition

Learning algorithms based on nearest neighbors have been the subject of extensive research
for more than 50 years [8, 11]. For example, there is evidence that increasing k in the
k-nearest neighbors rule can decrease its estimation error [10]. However, much less seems to
be known about the capacity of the nearest and k-nearest neighbor rules to represent certain
functions, while the capacity of other machine learning models such as Boolean circuits and
neural networks has received considerable interest [16, 19, 30, 12, 38].

1 By “explicit,” we mean a function that can be computed in polynomial time by a Turing machine.

M. DiCicco, V. Podolskii, and D. Reichman 42:3

1.1.3 Algorithms for nearest neighbors classification and search

Efficient implementation of the nearest neighbor rule in high dimension has received consid-
erable interest, leading to efficient algorithms and sophisticated data structures [7, 2, 1]. The
study of nearest neighbor complexity leads naturally to the study of nonuniform algorithms
(Boolean circuits) for this rule. Our work (along with previous findings) yields upper and
lower bounds on the size of a circuit needed to implement nearest neighbor classification.
We focus on exact representations, leaving the study of circuit complexity for approximate
nearest neighbor search (e.g., [20, 28]) for future work.

1.2 Our results

The objects of our study are the classes of Boolean functions admitting real and Boolean
nearest neighbor representation of polynomial complexity, NN and HNN respectively. Stand-
ard complexity classes based on circuit-like models of computation are closed under two
natural “rewiring” operations: Substitution of variables by constants and duplication of vari-
ables (See Definition 11). However, it is not clear how to efficiently perform these operations
in the nearest neighbor model. Thus, if we would like to give a precise characterization of NN
and HNN in terms of circuits, we have to consider the closure of these classes under the same
operations. As a result, we obtain classes of subfunctions of polynomial-size nearest neighbor
representations, NN and HNN (see Defintion 12). We then give a precise characterization
(equality) of NN and HNN in terms of the class of min-plus polynomial threshold functions
of polynomial complexity (mpPTF)2. This adds to previous results of [17] showing the
containment of NN and HNN in mpPTF. As a consequence, we prove (among other results)
that HNN contains functions that cannot be computed by depth-two threshold circuits with
polynomial size and weight. We also observe that the closure of HNN is closely connected to
the class of functions with NN representations of logarithmic bit-complexity.

We study the k-nearest neighbors complexity of Boolean functions for k > 1. First, we
extend the aforementioned characterization – the closure of NN in terms of mpPTF – to the
closure of kNN. We use this characterization to prove that kNN for constant k is closely related
to NN and that there exists an explicit function that requires exponential kNN complexity
when k ≤ n1−ϵ (for an n-variate function). Next, we generalize the characterization of kNN
to arbitrary k by introducing a new class, kSTAT – functions realizable by an inequality of
the k-statistics of two sets of linear forms – which generalizes mpPTF. Consequently, we
show that proving lower bounds for kNN for arbitrary k would result in lower bounds for the
circuit class SYM ◦ MAJ, which would be a major breakthrough in Boolean circuit complexity.

Finally, we present new bounds for nearest neighbor complexity of specific Boolean
functions such as disjointness, CNFs, and majority. For example, we show that CNFs with
polynomially many clauses have NN representations with polynomially-many anchors which
also exhibit constant bit-complexity. In contrast, there exist CNFs of polynomial size with
exponential HNN complexity. We also establish a new lower bound of n/2 + 2 on the HNN
complexity of the majority function with an even number of inputs (n). This lower bound is
tight, as it matches the upper bound proved in [17].

2 An mpPTF is an expression of the form min{L1(x), · · · , Lℓ(x)} ≤ min{R1(x), · · · , Rr(x)} where Li, Ri

are linear forms.

ITCS 2025

42:4 Nearest Neighbor Complexity and Boolean Circuits

1.3 Related work
Nearest neighbor complexity (under Euclidean distance) was formalized by [17]. They prove
that the functions3 THR⌊n/3⌋ and XOR both require an exponential number of Boolean
anchors but only 2 and n + 1 real anchors, respectively. In fact, the same argument proves
that THRt requires at least

(
n
t

)
/
(2t

t

)
anchors for any t, which gives exponential lower bound

for t bounded away from n/2, but is vacuous for THRn/2. It was subsequently shown in [24]
that any symmetric Boolean function f has an NN representation with I(f) anchors, where
I(f) denotes the number of intervals of f – the minimal number of contiguous intervals [a, b]
partitioning [0, n] where f(x) is constant for a ≤

∑
i xi ≤ b – and this bound is optimal

when all intervals have the same length. This extends the result of [17] that every symmetric
function has nearest neighbor complexity at most n + 1.

1.3.1 Connections to circuits
It was observed in [17] that functions with polynomial nearest neighbor complexity can be
simulated by min-plus polynomial threshold functions, but it is an open question of whether
or not the inclusion NN ⊆ mpPTF is proper. Relations to the class mpPTF are of interest
because it deepens the connection between nearest neighbors and circuit complexity. For
instance, [18] establish that systems of mpPTFs compute exactly the class of AND◦OR◦THR
circuits.

The expressive power of k-nearest neighbors rule was also studied by [17]. In particular,
they prove that kNN can simulate linear decision trees, which yields a linear (in n) lower bound
for the number of anchors in kNN representations of the IP mod 2 function. They also state
the open problem of proving stronger lower bounds for the k-nearest neighbors complexity of
an explicit function. In [25], it is shown that, under some regularity assumptions, polynomial-
size nearest neighbor representations can simulate convex polytopes (i.e., AND ◦ THR) as
well as logarithmic fan-in SYM ◦ THR circuits and linear decision lists (LDL).

Constructions of Boolean circuits computing nearest neighbor classification are known.
[31] constructs an OR ◦ AND ◦ THR circuit computing any function with an m-anchor NN
representation in size O(m2). (See Appendix B). A very similar depth-three construction for
kNN, also with size O(m2), was found by [6]. Note that the weights of the above circuits are
bounded by a polynomial in n.

1.3.2 Bit complexity
It was shown in [24] that (the aforementioned) NN representations for symmetric functions
have logarithmic bit-complexity, and that this is tight for some functions. It is left as an open
problem to characterize NN representations of threshold functions in terms of bit-complexity.
To this end, the same authors (in [25]) show that logarithmic bit complexity suffices to
represent the comparison, equality, and odd-max bit Boolean functions, and conjecture that
a logarithmic upper bound holds for any threshold function.

Other works have studied the role of bit-complexity in approximate nearest neighbor
search; where we wish to find an anchor whose distance is minimal to a query point, up to a
factor of (1 + ϵ). For example, [21] provide tight bounds (in terms of bit-complexity) on the
size of data structures performing approximate nearest neighbor search. This setting is quite
different from our focus on exact classification of Boolean vectors.

3 THRt(x) = 1 ⇐⇒
∑

i
xi ≥ t

M. DiCicco, V. Podolskii, and D. Reichman 42:5

The bit-complexity of the weights in polynomial-size threshold circuits has been studied
extensively (see, e.g., surveys [34, 37]). For example, it was proved by [14, 15] that arbitrarily
large weights can be reduced to have logarithmic bit-complexity by slightly increasing the
depth of the circuit (along with a polynomial blow-up in size).

1.4 Organization
Section 2 outlines basic definitions required in subsequent sections. Section 3 establishes the
equivalence between HNN, NN and min-plus polynomial threshold functions, then discusses
some of the consequences. Section 4 generalizes mpPTF to a new class, kSTAT, and proves
that a similar equivalence holds with kNN. Here, we also derive several connections to circuit
classes such as SYM ◦ MAJ. Section 5 contains new results (upper and lower bounds) for
the nearest neighbor complexity of explicit Boolean functions. Many proofs are relegated
to Appendix A due to space constraints. Appendix B contains some direct constructions of
threshold circuits computing HNN, one of which has depth two.

2 Preliminaries

We use the following notation throughout the paper:

Vectors are written in bold (i.e. x = (x1, · · · , xn)).
The k’th statistic of x, denoted x(k), is the k’th smallest element of x.
– In particular, x(k) = xσ(k) ⇐⇒ xσ(1) ≤ · · · ≤ xσ(n) for some σ ∈ Sn

∆(x, y) := ||x − y||22 denotes the squared Euclidean distance between x, y.
⟨x, y⟩ denotes the real inner product (dot product), x1y1 + · · · + xnyn.
poly(n) refers to an arbitrary polynomial in the variable n.
1[P] denotes the Boolean function whose value is 1 if and only if P holds.

Note that the (squared) Euclidean distance between two Boolean vectors is equal to their
Hamming distance, ∆(x, y) =

∑
i≤n 1[xi ̸= yi], so the Hamming weight of a Boolean vector

p is denoted ∆(p) := ∆(p, 0) = ||p||22.

2.1 Boolean functions
▶ Definition 1. A threshold gate is a Boolean function f : {0, 1}n → {0, 1} defined by a
weight vector w ∈ Rn and a threshold θ ∈ R such that

f(x) = 1 ⇐⇒ ⟨w, x⟩ ≥ θ. (1)

A threshold circuit is a sequence (f1, · · · , fs) of s ≥ n gates such that the first n gates
are equal to the input variables (i.e., fi = xi for i ≤ n) and subsequent gates are threshold
gates whose inputs are some subset of the previous gates. The output of the circuit is equal
to the output of the final gate. The size of the circuit is equal to s − n.

A threshold circuit can be viewed as a directed acyclic graph. Nodes with fan-in 0
correspond to inputs, and other nodes correspond to threshold gates applied to the values of
the preceding nodes. The node with fan-out 0 correspond to the output node. The depth of
the circuit is the length of the longest path from an input node to the output node.
▶ Remark 2. It is well known that we may assume that the weights (and the threshold) are
integers without loss of generality: Since the domain of a threshold gate is finite, we may
approximate each weight by a rational number and multiply by a common denominator. See
[23] for a comprehensive introduction to circuit complexity.

ITCS 2025

42:6 Nearest Neighbor Complexity and Boolean Circuits

▶ Definition 3. A Nearest Neighbor (NN) representation of a Boolean function f : {0, 1}n →
{0, 1} is defined by two disjoint sets of positive and negative anchors P, N ⊆ Rn such that

f(x) = 1 if there exists a p ∈ P with ∆(x, p) < ∆(x, q) for all q ∈ N .
f(x) = 0 if there exists a q ∈ N with ∆(x, q) < ∆(x, p) for all p ∈ P .

A Hamming Nearest Neighbor (HNN) representation is defined identically for Boolean
anchors in {0, 1}n.

▶ Definition 4. A k-Nearest Neighbors (kNN) representation of a function f : {0, 1}n →
{0, 1} is defined by two disjoint sets of positive and negative anchors P, N ⊆ Rn and an
integer k such that

f(x) = 1 ⇐⇒ there exists an A ⊆ P ∪ N with the following properties:
1. |A| = k

2. |A ∩ P | ≥ |A ∩ N |
3. ∆(x, a) < ∆(x, b) for all a ∈ A, b ̸∈ A.
A kHNN representation is defined identically for Boolean anchors.

▶ Definition 5 ([18]). A min-plus polynomial threshold function (mpPTF) is a Boolean
function f : {0, 1}n → {0, 1} defined by two sets of linear forms with integer coefficients4

{L1, · · · , Lℓ1} ∪ {R1, · · · , Rℓ2} satisfying

f(x) = 1 ⇐⇒ min
i≤ℓ1

Li(x) ≤ min
j≤ℓ2

Rj(x) (2)

The number of terms in an mpPTF is equal to ℓ1 + ℓ2, and the maximum weight is equal
to the largest absolute value of the coefficients of any form.

▶ Definition 6 ([36]). A linear decision list (LDL) representation of a Boolean function f is
a sequence of instructions “if fi(x) = 1, then output ci (and halt)” for 1 ≤ i ≤ m, followed
by “output 0.” Here, f1, · · · , fm are threshold gates and c1, · · · , cm ∈ {0, 1}. Exact linear
decision lists (ELDL) are defined similarly using exact threshold functions – threshold gates
where the inequality in (1) is replaced with equality. The length of an LDL or ELDL is the
number of gates, m, and its maximum weight is equal to the largest coefficient of any fi.

▶ Definition 7. We consider the following well-known Boolean functions.
The majority function, MAJ(x1, · · · , xn) = 1[x1 + · · · + xn ≥ n/2]
The disjointness function, DISJ(x, y) = 1[⟨x, y⟩ = 0]
The inner product mod 2 function, IP(x, y) = ⟨x, y⟩ mod 2
The odd-max-bit function, OMB(x1, · · · , xn) = max{i : xi = 1} mod 2

2.2 Function classes
First, we define classes of Boolean circuits whose inputs may be variables, their negations,
or the constants 0 and 1. AND, OR, THR, and SYM are the classes of polynomial-size5

depth-one circuits composed of AND, OR, threshold gates, and symmetric functions (i.e.,
Boolean functions which depend only on the Hamming weight of the input) respectively.
MAJ ⊂ THR is the set of threshold gates with polynomial weights6. AC0 is the class of
constant-depth circuits consisting of a polynomial number of AND, OR, and NOT gates.

4 As for threshold gates, there is no loss of generality in the assumption that weights of mpPTFs are
integers.

5 “polynomial” in this context is always with respect to the input size, n.
6 We abuse the notation denoting by MAJ both specific function and a class of function. The meaning of

our notation will be also clear from the context.

M. DiCicco, V. Podolskii, and D. Reichman 42:7

For two circuit classes C1, C2, the class of circuits consisting of a circuit from C1 whose
inputs are (the outputs of) a polynomial number of circuits from C2 is denoted by C1 ◦ C2.
(e.g., THR ◦ THR refers to depth two threshold circuits of polynomial size.)

▶ Definition 8. NN is the class of Boolean functions that have nearest neighbor representations
with polynomially-many anchors. HNN is the same class where anchors are Boolean. kNN
and kHNN are defined in the same manner for a positive integer k.

▶ Definition 9. mpPTF(∞) is the class of min-plus polynomial threshold functions with a
polynomial number (in terms of the number of inputs) of terms and unbounded maximum
weight. mpPTF(poly(n)) is the same class with polynomially-bounded maximum weight.

▶ Definition 10. LDL is the class of Boolean functions representable by linear decision lists
with polynomial length. L̂DL is the same class with polynomially-bounded maximum weight.
ELDL and ÊLDL are defined similarly for exact linear decision lists.

3 Min-plus PTFs vs. nearest neighbors

In this section, we introduce the closure operation and derive an equivalence between (the
closure of) NN, HNN and mpPTF.

▶ Definition 11. Define a substitution of variables as a function v : {0, 1}n ⇝ {0, 1}ñ

where ⇝ duplicates variables or adds constant variables (e.g., x1x2 ⇝ x1x1x2x2x20). Then,
a Boolean function f : {0, 1}n → {0, 1} is a subfunction of g : {0, 1}ñ → {0, 1} when
ñ = poly(n) and there exists a substitution of variables v such that f(x) = g(v(x)) for all
x ∈ {0, 1}n.

Subfunctions may equivalently be obtained from g : {0, 1}ñ → {0, 1} by identifying
variables (e.g., x1 = x2) and assigning variables to constants (e.g., x1 = 0).

▶ Definition 12. For any function class C, let C denote the closure of C: The set of
subfunctions derived from the elements of C. In particular, we say that a Boolean function f

has an “NN representation” if it is a subfunction of some g ∈ NN.

▶ Note 13. Circuit classes are already closed under this operation. For example, MAJ = MAJ:
Subfunctions of the majority function simply add (polynomially-bounded) coefficients and
constant terms.

▶ Theorem 14.

NN = mpPTF(∞), HNN = mpPTF(poly(n))

Theorem 14 and some consequences are proved in Appendix A.1. Namely, we observe that
any n-variate function in NN is a sub-function of an (n + 1)-variate NN representation, and
that mpPTF(poly(n)) captures precisely the power of NN representations with bit-complexity
O(log n). Then, using the results of [17] and [18], we immediately establish the following two
corollaries.

▶ Corollary 15. HNN ⊊ HNN

▶ Corollary 16. NN representations of IP and fn(x, y) :=
∧n

i=1
∨n2

j=1(xi,j ∧yi,j) require 2Ω(n)

anchors.

ITCS 2025

42:8 Nearest Neighbor Complexity and Boolean Circuits

(Proofs in A.2 and A.3.) Theorem 14 also yields lower bounds for the circuit complexity
of functions belonging to HNN. (A direct construction in Appendix B shows that HNN ⊆
THR ◦ MAJ.)

▶ Theorem 17.

HNN ̸⊆ MAJ ◦ MAJ

More precisely, there is a Boolean function with an HNN representation with n + 1 anchors
which cannot be computed by a depth-two majority circuit with poly(n) gates.

Proof. First, we claim that OMB ◦ AND2 ∈ HNN. Indeed, f is computed by an mpPTF with
n + 1 terms:

min{L1(x, y), L3(x, y), · · · } ≤ min{−1, L2(x, y), L4(x, y), · · · }

where Lk(x, y) = (k + 1) · (1 − xi − yi). Note that if xi = yi = 1, then Li(x, y) = −(i + 1)
and otherwise Li(x, y) ≥ 0. Hence, the minimum is obtained at the maximum index j where
xj = yj = 1. The claim follows from Theorem 14.

Second, it is known that OMB ◦ AND2 ̸∈ MAJ ◦ MAJ by [4, 16]. Thus, if HNN was in
MAJ ◦ MAJ, then we could use the HNN representation described above to get a MAJ ◦ MAJ
circuit computing OMB ◦ AND2, which is a contradiction. ◀

Finally, we observe a connection between mpPTFs and linear decision lists. This provides
additional proof techniques for HNN and helps to relate a question of separation of HNN
and NN to the similar question for linear decision lists. The following lemma is proved in
Appendix A.4.

▶ Lemma 18.

mpPTF(poly(n)) ⊆ L̂DL.

More precisely, any mpPTF with m terms and maximum weight W is equivalent to a linear
decision list with length and maximum weight O(m2W).

▶ Remark 19. This lemma enables another technique to prove lower bounds for HNN apart
from sign-rank. More specifically, it is known that any function without large monochromatic
rectangles must have a large linear decision list by [5].

▶ Lemma 20. LDL ⊆ mpPTF(∞).

Proof. It was shown in [18, Lemma 22] that OMB ◦ THR ⊆ mpPTF(∞). Our lemma follows
since OMB is complete for the class of decision lists – See [18, Lemma 22]. ◀

It is open whether L̂DL and LDL are equal by [5]. Lemmas 18 and 20 immediately allow
us to relate this problem to the problem of separating HNN and NN.

▶ Corollary 21. If L̂DL ̸= LDL, then HNN ̸= NN.

Proof. From Theorem 14 and Lemmas 18, 20, we have the following sequence of inclusions.

HNN = mpPTF(poly) ⊆ L̂DL ⊆ LDL ⊆ mpPTF(∞) = NN,

If HNN = NN, then the whole sequence of inclusions collapses and, in particular, L̂DL =
LDL. ◀

M. DiCicco, V. Podolskii, and D. Reichman 42:9

4 kNN vs. Circuits

In this section, we give a circuit-style characterization of kNN and provide connections to
known circuit classes. From these results, we obtain a separation between kNN and NN.
Additionally, our results imply complexity theoretic barriers for proving superpolynomial
lower bounds for kNN representations of explicit functions.

4.1 Characterization for small k

Here, we use the connection to mpPTF representations to get our first results on k-nearest
neighbors complexity. In particular, we relate k-nearest neighbors representations for constant
k to NN and prove a lower bound on k-nearest neighbors complexity for sublinear k.

▶ Theorem 22. Any Boolean function with an m-anchor kNN representation is computed by
an mpPTF with

(
m
k

)
terms.

Proof. We prove only the first statement as both arguments are identical. As noted in
the proof of Theorem 14, the distances from anchors to a query point x are linear forms
L1(x), · · · , Lm(x). Assign each linear form a label ℓ1, · · · , ℓm ∈ {1, −1} where a positive
label indicates placement on the left-hand side of the mpPTF and vice versa.

Then, consider the collection A+(x) = {Li1(x) + · · · + Lik
(x) | ℓi1 + · · · + ℓik

≥ 0} and
the compliment A−(x) = {Li1(x) + · · · + Lik

(x) | ℓi1 + · · · + ℓik
< 0}. The resulting mpPTF

with
(

m
k

)
terms, 1[min A+(x) ≤ min A−(x)], realizes the original kNN representation: The

minimum is attained by groups of k-nearest neighbors and if any such group has a positive
majority then the inequality holds. ◀

It follows that Boolean functions with m-anchor kNN representations can be represented
in NN with

(
m
k

)
anchors. These results generalize to both weighted kNN and to non-Boolean

inputs. See Appendix A.5 for a discussion.
As a consequence of Theorem 22, sign-rank lower bounds (e.g., Corollary 16) also apply

to kNN. In particular, we get an exponential lower bound for kNN with k = O(n1−ϵ) for
constant ϵ > 0. This addresses an open question posed in [17] regarding k-nearest neighbors
complexity.

▶ Corollary 23. Any kNN representation of IP or fn(x, y) :=
∧n

i=1
∨n2

j=1(xi,j ∧ yi,j) requires
2Ω(n/k) anchors.

Proof. Assume that IP (or fn) has a kNN representation with m anchors. By Theorems 14
and 22 , IP has an NN representation with

(
m
k

)
≤ mk anchors. By Corollary 16, we have

mk ≥ 2Ω(n) and thus m ≥ 2Ω(n/k). ◀

4.2 Characterization for arbitrary k

In this section, we generalize the ideas of Theorem 14 to the closure of kNN, yielding further
connections between nearest neighbors and circuit complexity.

▶ Definition 24. Define by kSTAT the class of functions f : {0, 1}n → {0, 1} representable
by an inequality between k-statistics of two sets consisting of a polynomial number of linear
forms: Given {L1, · · · , Lℓ1} ∪ {R1, · · · , Rℓ2} and integers kl and kr,

f(x) = 1 ⇐⇒ (L1(x), · · · , Lℓ1(x))(kl) < (R1(x), · · · , Rℓ2(x))(kr) (3)

and ℓ1 + ℓ2 is bounded by a polynomial in n.

ITCS 2025

42:10 Nearest Neighbor Complexity and Boolean Circuits

As usual, we can assume that all coefficients in the linear forms are integers. Define the
subclass k̂STAT where all coefficients are bounded by a polynomial in n7.

Note that we can reduce Definition 24 to the case of kl = kr with only a linear increase
in the size. This can be done by adding “dummy” linear forms that are always smaller than
all others.

▶ Theorem 25.

kNN = kSTAT, kHNN = k̂STAT.

See Appendix A.6 for the proof. Next, we provide another equivalent form of kSTAT that
is sometimes more convenient.

▶ Theorem 26. The class kSTAT consists exactly of functions f : {0, 1}n → {0, 1} for which
there exist linear forms {L1, · · · , Lp} with p = poly(n), a positive integer k, and a labelling
function label : {1, · · · , p} → {0, 1}, such that for all x,

f(x) = 1 ⇐⇒ (L1(x), · · · , Lp(x))(k) = Li(x) for some i with label(i) = 1. (4)

The class k̂STAT consists exactly of functions with the same representation with polynomial-
size coefficients in the linear forms.

See Appendix A.7 for the proof. Now we show that some well-known circuit classes, for
which we do not have any known lower bounds, are computable by kHNN.

▶ Theorem 27.

SYM ◦ MAJ ⊆ k̂STAT.

Any symmetric function of s threshold functions has a k̂STAT representation with k = s + 1.

See Appendix A.8 for the proof. Using the same strategy, we can embed a large complexity
class into kNN directly:

▶ Theorem 28.

SYM ◦ AND ⊆ kNN.

Any symmetric function of s conjunctions has a kNN representation with k = 2s + 1.

See Appendix A.9 for the proof.
▶ Remark 29. Note that SYM ◦ AND ⊆ SYM ◦ MAJ and SYM ◦ AND is known to simulate the
whole class of ACC0 within quasi-polynomial size [3]. Related classes are of interest in the
context of obtaining lower bounds through circuit satisfiability algorithms [40, Conjecture 1].

As a result of Theorem 28, if we prove for some explicit function f that f /∈ kNN,
it will follow that f /∈ SYM ◦ AND, and this would be a major breakthrough in circuit
complexity. Also note that IP ∈ SYM ◦ AND and thus, by Theorem 28, IP ∈ kNN. Together
with Corollary 16, this gives a separation between NN and kNN. This also shows that in
Corollary 23 we cannot get rid of k in the lower bound.

▶ Theorem 30. ELDL ⊆ kSTAT, ÊLDL ⊆ k̂STAT.

See Appendix A.10 for the proof.
▶ Remark 31. The class ELDL is known to be contained in THR ◦ THR and proving super-
polynomial lower bounds for ELDL is an open problem (See [9]).

7 mpPTF can be viewed as a special case of kSTAT in which kl = kr = 1.

M. DiCicco, V. Podolskii, and D. Reichman 42:11

5 New bounds for the nearest neighbor complexity of Boolean
functions

In this section, we derive several bounds on the nearest neighbor complexity of Boolean
functions.

5.1 Nearest neighbor complexity of CNFs
We first show that any CNF admits an efficient NN representation.

▶ Theorem 32. Any CNF or DNF with m clauses has an NN representation with m + 1
anchors and constant bit-complexity.

Proof. It suffices to prove the statement for DNFs as any CNF can be converted to a DNF
by negation.

Let N = {q := (1
2 , · · · , 1

2)} and note that d(x, q) = n/4 for every input x ∈ {0, 1}n

(where d is the squared Euclidean distance). For each clause, say C(x) = (x1 ∧ · · · ∧ xk),
introduce a positive anchor

pC =
(

1,
3
2 , · · · ,

3
2︸ ︷︷ ︸

k

,
1
2 , · · · ,

1
2︸ ︷︷ ︸

n−k

)

If any variable is negated, replace the corresponding 3
2 (or 1) with − 1

2 (or 0).

If C(x) = 1, then d(x, pC) = (n− 1)/4 < d(x, q). Otherwise, some literal in C is equal to
zero, hence d(x, pC) ≥ 1 + (n − 1)/4 > d(x, q). Therefore, the entire DNF, say C1 ∨ · · · ∨ Cm,
is satisfied if and only if some pCi is a nearest neighbor of x. ◀

The polynomial-size representation above does not generalize to deeper AC0 circuits
of depth larger than 2. For instance, Corollary 16 exhibits a function computable by a
depth-three De Morgan circuit of polynomial size which does not belong to NN. For the well
studied disjointness function (that admits a compact CNF representation) we can get an
efficient HNN representation:

▶ Theorem 33.

DISJ ∈ HNN

The disjointness function (in 2n dimensions) has an HNN representation with 3n anchors.

Proof. Consider anchors P = {(e1, e1), · · · , (en, en)} and N = {e1, · · · , e2n} where ei

denotes the i’th standard basis vector and (ei, ei) their concatenation.
Let x, y ∈ {0, 1}n and suppose xi = yi = 1 for some i. Then, for all j it

holds that ∆((x, y), (ei, ei)) ≤ ∆((x, y), ej) − 1 with equality when i = j. Otherwise,
∆((x, y), (ei, ei)) ≥ ∆((x, y), ej) + 1 for all i, j. ◀

▶ Remark 34. It can be shown that the number of anchors in Theorem 33 is nearly tight; based
on the Ω(n) lower bound for DISJ of [33], a simple argument proves that NN representations
of disjointness require Ω(n/ log n) anchors. We omit the details.

Proceeding, we show that some CNFs with polynomially many clauses have exponential
Boolean nearest neighbor complexity.

ITCS 2025

42:12 Nearest Neighbor Complexity and Boolean Circuits

▶ Definition 35. The Hamming cube graph is an undirected graph with vertices V = {0, 1}n

and edges E = {(u, v) ∈ V : ∆(u, v) = 1}. The components of a Boolean function f are the
connected components of the subgraph of the Hamming cube graph induced by the vertex set
f−1(1).

▶ Lemma 36. If a Boolean function f has m components then any HNN representation of f

has at least m anchors.

Proof. Consider some component C of f and let δ(C) denote the vertex boundary of C:
Vertices in {0, 1}n \ C with a neighbor in C. Note that δ(C) ⊆ f−1(0).

Suppose f has HNN representation P ∪ N and let p ∈ P be the nearest anchor to some
x ∈ C. Assume for contradiction that p ̸∈ C. Note that ∆(x, p) is equal to the length of the
shortest path from x to p in the Hamming cube graph, which by assumption must contain
some y ∈ δ(C). (In particular, ∆(x, p) = ∆(x, y) + ∆(y, p).) Thus, there must exist some
negative anchor q ∈ N with ∆(y, q) < ∆(y, p). By the triangle inequality,

∆(x, q) ≤ ∆(x, y) + ∆(y, q) < ∆(x, y) + ∆(y, p) = ∆(x, p)

which contradicts the minimality of p. Thus, each component contains an anchor. ◀

Using the previous results, another separation between HNN and NN follows from the
existence of a CNF (over n-variables) with poly(n) clauses and exponentially (in n) many
components. (See Appendix A.)

▶ Theorem 37. For any k > 0, there exists a k-CNF over n variables with poly(n) clauses
for which any HNN representation has 2Ω(n) anchors.

5.2 A new lower bound for majority
We now discuss the disparity between the HNN complexity of the majority function in [17,
Theorem 4]: In particular, when n is even, the best upper bound is n

2 + 2 anchors, whereas 2
anchors suffices when n is odd. Note that if ties were allowed (won by positive anchors) in
Definition 3, then P = {1n} and N = {0n} would suffice as an HNN representation for MAJ
for all n.

▶ Theorem 38. For even n, any HNN representation of MAJ requires n
2 + 2 anchors.

Proof. Suppose P ∪ N is an HNN representation of MAJ for even n. We claim that for
each x ∈ {0, 1}n satisfying ∆(x) = n/2, there is a positive anchor p ̸= 1 with x ≤ p in
coordinate-wise order:

It follows from [17] that the nearest anchor p to x satisfies x ≤ p. Indeed, for some i

it holds that xi = 1, so suppose for contradiction that pi = 0. Then, construct y = x − ei

and let q ∈ N be the nearest anchor to y. This yields ∆(x, p) = ∆(y, p) + 1 > ∆(y, q) + 1,
contradicting the fact that

∆(x, p) < ∆(x, q) ≤ ∆(y, q) + 1. (5)

A similar argument shows that q ≤ y. Hence, ∆(y, q) ≤ n
2 −1, and (5) becomes ∆(x, p) < n

2
which implies that ∆(p) ≤ n − 1, proving the claim.

For contradiction, assume that |P ∪ N | ≤ n
2 + 1. Since there must be at least one negative

anchor, we have |P | ≤ n
2 . Then, we can construct x ∈ {0, 1}n with ∆(x) = n

2 for which
there is no positive anchor p ̸= 1 with x ≤ p, leading to a contradiction: For each p ∈ P \ 1,
arbitrarily select some i where pi = 0 and set xi = 1, ensuring x ̸≤ p. After this process,
∆(x) ≤ |P | ≤ n

2 . Arbitrarily fixing more coordinates of x to 1 so that ∆(x) = n
2 completes

the construction. ◀

M. DiCicco, V. Podolskii, and D. Reichman 42:13

6 Conclusion

We have studied nearest neighbor representations of Boolean functions, proving new lower
and upper bounds and devising connections to circuit complexity. There are many future
questions and research directions:

Studying representations of Boolean functions using ideas from approximate nearest
neighbor search [20, 28] could be of interest. Such a study could potentially lead to new
insights and more compact representations avoiding the curse of dimensionality.
Studying nearest neighbor complexity with respect to additional discrete domains such
as grids as well as more than two labels is an interesting future direction.
Circuit complexity has been used to derive new algorithms for nearest neighbor prob-
lems [1]. Can ideas about nearest neighbor complexity such as connections to mpPTFs
be used to obtain new algorithms for nearest neighbor classification and search?
Finally, it remains open whether NN = HNN.

References
1 Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.

In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 136–150.
IEEE, 2015. doi:10.1109/FOCS.2015.18.

2 Alexandr Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD thesis,
Massachusetts Institute of Technology, 2009.

3 Richard Beigel and Jun Tarui. On ACC. Comput. Complex., 4:350–366, 1994. doi:10.1007/
BF01263423.

4 Harry Buhrman, Nikolay Vereshchagin, and Ronald de Wolf. On computation and com-
munication with small bias. In Twenty-Second Annual IEEE Conference on Computational
Complexity (CCC’07), pages 24–32. IEEE, 2007. doi:10.1109/CCC.2007.18.

5 Arkadev Chattopadhyay, Meena Mahajan, Nikhil S. Mande, and Nitin Saurabh. Lower
bounds for linear decision lists. Chic. J. Theor. Comput. Sci., 2020, 2020. URL: http:
//cjtcs.cs.uchicago.edu/articles/2020/1/contents.html.

6 Yan Qiu Chen, Mark S Nixon, and Robert I Damper. Implementing the k-nearest neighbour
rule via a neural network. In Proceedings of ICNN’95-International Conference on Neural
Networks, volume 1, pages 136–140. IEEE, 1995. doi:10.1109/ICNN.1995.488081.

7 Kenneth L Clarkson. Nearest neighbor queries in metric spaces. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 609–617, 1997. doi:
10.1145/258533.258655.

8 Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967. doi:10.1109/TIT.1967.1053964.

9 Yogesh Dahiya, K. Vignesh, Meena Mahajan, and Karteek Sreenivasaiah. Linear threshold
functions in decision lists, decision trees, and depth-2 circuits. Inf. Process. Lett., 183:106418,
2024. doi:10.1016/J.IPL.2023.106418.

10 Luc Devroye. On the asymptotic probability of error in nonparametric discrimination. The
Annals of Statistics, 9(6):1320–1327, 1981.

11 Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition,
volume 31. Springer Science & Business Media, 2013.

12 Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In
Conference on learning theory, pages 907–940. PMLR, 2016. URL: http://proceedings.mlr.
press/v49/eldan16.html.

13 Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication
complexity. Journal of Computer and System Sciences, 65(4):612–625, 2002. doi:10.1016/
S0022-0000(02)00019-3.

ITCS 2025

https://doi.org/10.1109/FOCS.2015.18
https://doi.org/10.1007/BF01263423
https://doi.org/10.1007/BF01263423
https://doi.org/10.1109/CCC.2007.18
http://cjtcs.cs.uchicago.edu/articles/2020/1/contents.html
http://cjtcs.cs.uchicago.edu/articles/2020/1/contents.html
https://doi.org/10.1109/ICNN.1995.488081
https://doi.org/10.1145/258533.258655
https://doi.org/10.1145/258533.258655
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1016/J.IPL.2023.106418
http://proceedings.mlr.press/v49/eldan16.html
http://proceedings.mlr.press/v49/eldan16.html
https://doi.org/10.1016/S0022-0000(02)00019-3
https://doi.org/10.1016/S0022-0000(02)00019-3

42:14 Nearest Neighbor Complexity and Boolean Circuits

14 Mikael Goldmann, Johan Håstad, and Alexander Razborov. Majority gates vs. general weighted
threshold gates. Computational Complexity, 2:277–300, 1992. doi:10.1007/BF01200426.

15 Mikael Goldmann and Marek Karpinski. Simulating threshold circuits by majority circuits.
SIAM Journal on Computing, 27(1):230–246, 1998. doi:10.1137/S0097539794274519.

16 András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold
circuits of bounded depth. Journal of Computer and System Sciences, 46(2):129–154, 1993.
doi:10.1016/0022-0000(93)90001-D.

17 Péter Hajnal, Zhihao Liu, and György Turán. Nearest neighbor representations of boolean
functions. Information and Computation, 285:104879, 2022. doi:10.1016/J.IC.2022.104879.

18 Kristoffer Arnsfelt Hansen and Vladimir V Podolskii. Polynomial threshold functions and
boolean threshold circuits. Information and Computation, 240:56–73, 2015. doi:10.1016/J.
IC.2014.09.008.

19 Lisa Hellerstein and Rocco A Servedio. On PAC learning algorithms for rich boolean function
classes. Theoretical Computer Science, 384(1):66–76, 2007. doi:10.1016/J.TCS.2007.05.018.

20 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 604–613, 1998. doi:10.1145/276698.276876.

21 Piotr Indyk and Tal Wagner. Approximate nearest neighbors in limited space. In Conference
On Learning Theory, pages 2012–2036. PMLR, 2018. URL: http://proceedings.mlr.press/
v75/indyk18a.html.

22 Jeffrey C Jackson, Adam R Klivans, and Rocco A Servedio. Learnability beyond AC0. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 776–784,
2002.

23 Stasys Jukna. Boolean function complexity: advances and frontiers, volume 5. Springer, 2012.
doi:10.1007/978-3-642-24508-4.

24 Kordag Mehmet Kilic, Jin Sima, and Jehoshua Bruck. On the information capacity of nearest
neighbor representations. In 2023 IEEE International Symposium on Information Theory
(ISIT), pages 1663–1668, 2023. doi:10.1109/ISIT54713.2023.10206832.

25 Kordag Mehmet Kilic, Jin Sima, and Jehoshua Bruck. Nearest neighbor representations of
neurons. In 2024 IEEE International Symposium on Information Theory (ISIT), 2024.

26 Adam R Klivans and Rocco A Servedio. Learning DNF in time 2O(n1/3). Journal of Computer
and System Sciences, 2(68):303–318, 2004.

27 Adam R Klivans and Rocco A Servedio. Toward attribute efficient learning of decision lists
and parities. Journal of Machine Learning Research, 7(4), 2006. URL: https://jmlr.org/
papers/v7/klivans06a.html.

28 Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 614–623, 1998. doi:10.1145/276698.276877.

29 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform,
and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993. doi:10.1145/174130.
174138.

30 James Martens, Arkadev Chattopadhya, Toni Pitassi, and Richard Zemel. On the representa-
tional efficiency of restricted boltzmann machines. Advances in Neural Information Processing
Systems, 26, 2013.

31 O Murphy. Nearest neighbor pattern classification perceptrons. Neural Networks: Theoretical
Foundations and Analysis, pages 263–266, 1992.

32 Edward A Patrick and Frederic P Fischer III. A generalized k-nearest neighbor rule. Information
and control, 16(2):128–152, 1970. doi:10.1016/S0019-9958(70)90081-1.

33 Alexander A Razborov. On the distributional complexity of disjointness. In International
Colloquium on Automata, Languages, and Programming, pages 249–253. Springer, 1990.
doi:10.1007/BFB0032036.

https://doi.org/10.1007/BF01200426
https://doi.org/10.1137/S0097539794274519
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1016/J.IC.2022.104879
https://doi.org/10.1016/J.IC.2014.09.008
https://doi.org/10.1016/J.IC.2014.09.008
https://doi.org/10.1016/J.TCS.2007.05.018
https://doi.org/10.1145/276698.276876
http://proceedings.mlr.press/v75/indyk18a.html
http://proceedings.mlr.press/v75/indyk18a.html
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1109/ISIT54713.2023.10206832
https://jmlr.org/papers/v7/klivans06a.html
https://jmlr.org/papers/v7/klivans06a.html
https://doi.org/10.1145/276698.276877
https://doi.org/10.1145/174130.174138
https://doi.org/10.1145/174130.174138
https://doi.org/10.1016/S0019-9958(70)90081-1
https://doi.org/10.1007/BFB0032036

M. DiCicco, V. Podolskii, and D. Reichman 42:15

34 Alexander A Razborov. On small depth threshold circuits. In Scandinavian Workshop on
Algorithm Theory, pages 42–52. Springer, 1992. doi:10.1007/3-540-55706-7_4.

35 Alexander A Razborov and Alexander A Sherstov. The sign-rank of AC0. SIAM Journal on
Computing, 39(5):1833–1855, 2010.

36 Ronald L Rivest. Learning decision lists. Machine learning, 2:229–246, 1987. doi:10.1007/
BF00058680.

37 Michael E. Saks. Slicing the hypercube, pages 211–256. London Mathematical Society Lecture
Note Series. Cambridge University Press, 1993.

38 Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory, pages
1517–1539. PMLR, 2016. URL: http://proceedings.mlr.press/v49/telgarsky16.html.

39 Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth separation
in approximating benign functions with neural networks. In Conference on Learning Theory,
pages 4195–4223. PMLR, 2021. URL: http://proceedings.mlr.press/v134/vardi21a.html.

40 Nikhil Vyas and R. Ryan Williams. Lower bounds against sparse symmetric functions of ACC
circuits: Expanding the reach of #SAT algorithms. Theory Comput. Syst., 67(1):149–177,
2023. doi:10.1007/S00224-022-10106-8.

41 R. Ryan Williams. Limits on representing boolean functions by linear combinations of simple
functions: Thresholds, relus, and low-degree polynomials. In 33rd Computational Complexity
Conference (CCC 2018). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

A Omitted proofs

A.1 Proof of Theorem 14
We break the proof of this theorem into two separate lemmas.

▶ Lemma 39.

NN ⊆ mpPTF(∞), HNN ⊆ mpPTF(poly(n))

More precisely, any NN representation with m anchors is equivalent to an mpPTF with m

terms, and any HNN representation with m anchors in ñ dimensions is equivalent to an
mpPTF with m terms and maximum weight ñ.

Proof. The distance from x ∈ {0, 1}n to an anchor p ∈ Rn is a linear form in variables x:∑
i

(xi − pi)2 =
∑

i

[
x2

i − 2pixi + p2
i

]
=
∑

i

[
(1 − 2pi)xi + p2

i

]
= ⟨1 − 2p, x⟩ + ||p||22.

We can observe that NN representations essentially compute 1[minp∈P ∆(x, p) ≤
minq∈N ∆(x, q)], which is an mpPTF. Subfunctions merely multiply coefficients and add
constants to each linear form – For example, d(x1x10, p1p2p3) = 2 · (1 − 2p1)x1 + (p2

3 + 2p2
1).

In the case of HNN, we have for all anchors that p ∈ {0, 1}n and ∆(x, p) is a linear form
with ±1 coefficients and positive constants bounded (in absolute value) by n. As a result,
the weights in mpPTF are bounded by n as well. ◀

▶ Lemma 40.

mpPTF(∞) ⊆ NN, mpPTF(poly(n)) ⊆ HNN

More precisely, any mpPTF with m terms has an NN representation with m anchors in n + 1
dimensions. Any mpPTF with m terms and maximum weight W has an HNN representation
with m anchors in ñ = O(nW) dimensions.

ITCS 2025

https://doi.org/10.1007/3-540-55706-7_4
https://doi.org/10.1007/BF00058680
https://doi.org/10.1007/BF00058680
http://proceedings.mlr.press/v49/telgarsky16.html
http://proceedings.mlr.press/v134/vardi21a.html
https://doi.org/10.1007/S00224-022-10106-8

42:16 Nearest Neighbor Complexity and Boolean Circuits

Proof. We start with the mpPTF(poly(n)) case. Let 1[mini≤ℓ1 L1i(x) ≤ minj≤ℓ2 L2j(x)] be
an arbitrary mpPTF(poly(n)). First make some pre-processing steps. First, multiply each
linear form by 2 and add one to the right-hand side, so that ties are won by the left-hand
side. Second, we would like to make all coefficients positive. For this, while there exists a
negative term −aijkxk (or constant −θij), just add xk (or 1) to every linear form until all
negative terms are eliminated. No coefficient (or constant) will increase by more than W .
Third, we make all coefficients even by multiplying all linear forms by two. Finally, we add
the same constant Θ (to be decided later) to all linear forms. Then, every linear form is
equal to Lij(x) = aij1x1 + · · · + aijnxn + θij + Θ, for positive, even constants aijk, θij ≤ 8W .

Define n block sizes t1, · · · , tn by tk := maxi,j aijk (i.e., the maximum coefficient of xk

in any linear form). Also define C = Θ + maxi,j θij and let ñ := t1 + · · · + tn + C. Inputs
x ∈ {0, 1}n are mapped (⇝) to query points x̃ ∈ {0, 1}ñ and linear forms Lij are mapped to
anchors p̃ij ∈ {0, 1}ñ such that ∆(x̃, p̃ij) = Lij(x). In particular,

x̃ := x1 · · · · · · x1︸ ︷︷ ︸
t1 many

· · · xn · · · · · · xn︸ ︷︷ ︸
tn many

· 1 · · · 1︸ ︷︷ ︸
C many

and

p̃ij = 0 · · · · · · 0︸ ︷︷ ︸
(t1+aij1)/2

1 · · · · · · 1︸ ︷︷ ︸
(t1−aij1)/2

· · · 0 · · · · · · 0︸ ︷︷ ︸
(tn+aijn)/2

1 · · · · · · 1︸ ︷︷ ︸
(tn−aijn)/2

· 0 · · · · · · 0︸ ︷︷ ︸
zij

1 · · · · · · 1︸ ︷︷ ︸
C−zij

where zi will be chosen momentarily. (Let P = {p̃1j}j≤ℓ1 and N = {p̃2j}j≤ℓ2 .) The distance
between x̃ and p̃ij is equal to

∆(x̃, p̃ij) = zij +
∑

k

(
tk + aijk

2

)
xk +

(
tk − aijk

2

)
(1 − xk)

= zij + ⟨aij , x⟩ +
∑

k

(
tk − aijk

2

)
Now let zij = Θ + θij −

∑
k

(
tk−aijk

2

)
so that ∆(x̃, p̃ij) = ⟨aij , x⟩ + Θ + θij . This is valid

(i.e., zij is a non-negative integer) if we choose a large enough value for Θ: The minimal
value of Θ such that zij ≥ 0 for all i, j is

Θ = max
i,j

(∑
k

(
tk − aijk

2

)
− θij

)
≤
∑

k

tk

2 ≤ 4nW.

Thus, for Θ = 4nW , we may always choose 0 ≤ zij ≤ Θ + θij ≤ C. Observe that x⇝ x̃

by duplicating each xi at most 8W times and introducing at most 4nW + 8W constant
variables. Thus, the original mpPTF is equivalent to a subfunction of an HNN representation
with m anchors at most 4nW + 8W dimensions.

For the mpPTF(∞) case, the same method applies, only now we do not need to increase
the dimension that much. All coefficients can be realized by choosing anchors pij = (1−aij)/2
and all constants θij can be corrected using one additional dimension. ◀

From this we can also deduce the following:
▶ Theorem 41. Any function with an m-anchor NN representation with bit-complexity
O(log n) is equivalent to an mpPTF(poly(n)) with m terms. Any function of n inputs with
an mpPTF(poly(n)) representation with m terms is equivalent to a subfunction of a function
of n + 1 inputs with an m-anchor NN representation with bit-complexity O(log n).
Proof. Observe that in Lemmas 39 and 40 – for NN and mpPTF(∞) – the bit-complexity of
NN and the logarithms of weights of mpPTF are linearly related. ◀

M. DiCicco, V. Podolskii, and D. Reichman 42:17

A.2 Proof of Corollary 15
Proof. It is shown in [17] that XOR has a unique HNN representation with 2n anchors.
Furthermore, it is established in [18] that XOR ∈ mpPTF(poly(n)): In particular, XOR(x) = 1
if and only if min {L0(x), L2(x), · · · } ≤ min {L1(x), L3(x), · · · } where Li(x) = i2 − 2i · (x1 +
· · · + xn). ◀

A.3 Proof of Corollary 16
Proof. It was shown by [17] that the NN complexity of a Boolean function f is bounded
below by the sign-rank of f , and this can be easily extended to NN through Theorem 14:
The number of terms in an mpPTF computing f is also bounded below by the sign-rank of
f , by [18].

[13] and [35] respectively establish that the sign rank of IP is equal to 2n/2 and the sign
rank of fn is 2Ω(n). ◀

A.4 Proof of Lemma 18
Proof. Consider a function f ∈ mpPTF(poly(n)) and let 1[mini≤ℓ1 L1i(x) ≤ minj≤ℓ2 L2j(x)]
be its representation. We can assume that all possible values of all linear forms are distinct.
For this it is enough to multiply all forms by ℓ1 + ℓ2 and to add to each form it’s own unique
remainder modulo ℓ1 + ℓ2.

Observe that all linear forms obtain only polynomially many variables (since there output
is polynomially bounded in absolute value). Denote possible values of the form Lij by
aij1, · · · , aijt for some t polynomially bounded in n. Note that, for different linear forms, the
number of the values obtained might be not the same. To simplify the notation we assume
that we add several equal values to the list to make them all of equal size t.

Now we are ready to produce the decision list. Let c1 = 1 and c2 = 0. We consider each
aijk in increasing order and query if Lij(x) ≤ aijk. If so, we output ci. If not, we proceed to
the next aijk.

This decision list computes f since we are just looking for the minimal value of a linear
form among all possible values of the forms. ◀

A.5 Consequences of Theorem 22
▶ Corollary 42. Any Boolean function with a kNN representation with m anchors has an NN
representation with

(
m
k

)
anchors. (Similarly, Boolean function with a kHNN representation

with m anchors has an HNN representation with
(

m
k

)
anchors.)

▶ Remark 43. Theorem 22 and Corollary 42 can be extended to non-Boolean inputs. More
precisely, the same statements are true over any finite domain D ⊆ Rn. For this we can
express (squared) distances to anchors as quadratic forms, for each subset of distances of size
k consider the average of these distances and represent them as a distance to a new anchor.
We still need to add an extra dimension to absorb constant terms.
▶ Remark 44. Theorem 22 and Corollaries 42 and 23 can be extended to the case of weighted
kNN. Indeed, in Theorem 22, instead of sums of linear forms we will have weighted sums.
This will require

(
m
k

)
· k! = m!

(m−k)! terms in the mpPTF representation. If the weights in
the weighted kNN representation are small and the bit-complexity of anchors is small, this
results in a HNN representation and if there are no restrictions of weights and bit-complexity,
we get NN representation. The proof of Corollary 23 still works despite the increase of the
number of anchors to m!

(m−k)! .

ITCS 2025

42:18 Nearest Neighbor Complexity and Boolean Circuits

A.6 Proof of Theorem 25
We first make the following general observation: [32] show that finding the k’th nearest
positive anchor and k’th nearest negative anchor and classifying based on which is closest
is equivalent to computing a (2k − 1)-nearest neighbors representation. This fact can be
generalized, considering the closure of kNN.

▶ Lemma 45. Let A and B be two sets of numbers and let S be the k smallest elements of
A ∪ B. Then,

|A ∩ S| ≥ |B ∩ S| ⇐⇒ A(t) < B(t)

where t =
⌊

k+1
2
⌋
. (As in kNN, we assume S exists and is unique).

Proof. A contains a majority of the elements in S if and only if |A ∩ S| ≥ t. This happens if
and only if the t’th smallest element in A is smaller than the t’th smallest element in B. ◀

We now proceed with the proof of Theorem 25.

Proof. For the inclusion kNN ⊆ kSTAT, consider any function f in kNN. It is a subfunction
of some function g with a kNN representation P ∪ N . As in Lemma 39, the distances between
x and each anchor are linear forms A = {L1(x), · · · , L|P |(x)} and B = {R1(x), · · · , R|N |(x)}
which we assume have integer coefficients by the usual finite precision argument. By definition
g(x) = 1 if and only if the set S of k-nearest neighbors satisfies |P ∩ S| ≥ |N ∩ S|. By
Lemma 45, this happens if and only if A(t) < B(t), taking t =

⌊
k+1

2
⌋
. Hence, g ∈ kSTAT. As

kSTAT is closed under taking subfunctions, f ∈ kSTAT as well.
For the inclusion kSTAT ⊆ kNN, assume that f has a kSTAT representation. By adding

dummy linear forms we can have kl = kr. By Lemma 45, the inequality (3) holds if and only
if the 2kl − 1 smallest linear forms consist of more linear forms from the left-hand side than
the right. Representing each inequality by an anchor, we obtain a representation of the same
function in kNN.

The case of kHNN and k̂STAT is analogous. ◀

A.7 Proof of Theorem 26
Proof. Suppose a Boolean function f has a representation {L1, · · · , Lp} satisfying (4) for
some function label and integer k. We will show that f ∈ kSTAT. First, we assume that all
coefficients in all linear form are integers and ensure that all values of all linear forms are
distinct and even. For this, multiply all forms by 2p and shift each form by its own even
remainder modulo 2p.

For each i ≤ p, we add one linear form to each side of (3). If label(i) = 1, then place the
form Li(x) on the left-hand side and Li(x) + 1 on the right. If label(i) = 0, put the Li(x)
on right-hand side and Li(x) + 1 on the left. It is easy to see that the k’th statistics in the
left and right-hand sides of the resulting kSTAT representation are Li(x) and Li(x) + 1 (not
necessarily in that order), where Li(x) is the k’th statistic of the original representation.
Hence, the inequality in (3) holds if and only if label(i) = 1.

For the other direction, assume we have a function f ∈ kSTAT given by (3). We again
assume that all coefficients are integers and all values of all linear forms are distinct. Now we
construct the required representation of f . For each form Li we add to the representation
the forms Lij(x) := Li(x) + j

kl+kr
for all j ∈ {0, 1, · · · , kl + kr − 1}, and for each form Ri we

add to the representation the forms Rij(x) := Ri(x) + j
kl+kr+1 for all j = {0, 1, · · · , kl + kr}.

M. DiCicco, V. Podolskii, and D. Reichman 42:19

(That is, we have kl + kr copies of each form Li and kl + kr + 1 copies of each form
Ri). To each Lij , Rij we assign the label 0 if j < kl, and 1 if j ≥ kl. Finally, we set
k = (kl + kr − 1)(kl + kr + 1) + 1.

Now, observe that the inequality (3) holds if and only if, among the kl + kr − 1 smallest
forms, there are at least kl forms Li. Assume that there are precisely a forms Li and b forms
Ri. In particular, a + b = kl + kr − 1. Then, in the new representation, these linear forms
give us

a(kl + kr) + b(kl + kr + 1) = (a + b)(kl + kr + 1) − a = (kl + kr − 1)(kl + kr + 1) − a

smallest forms. By construction, the next smallest forms are either Li0 ≤ · · · ≤ Li(kl+kr) or
Ri0 ≤ · · · ≤ Ri(kl+kr+1) for some i. Thus, the k’th smallest form is either Lia or Ria and its
label is 1 if and only if a ≥ kl as desired. ◀

A.8 Proof of Theorem 27
Proof. Suppose we are given a function f ∈ SYM ◦ MAJ and a circuit computing it. We are
going to construct a k̂STAT representation of f in the form given by Theorem 26.

We can assume that all MAJ gates in the circuit have the same threshold t = 0. For this
we can just add dummy variables and fix them to constants. Denote the linear forms for
MAJ gates by L1, · · · , Ls (all weights are integers) and denote by g : {0, 1}s → {0, 1} the
symmetric function at the top of the circuit. Here, s is the size of the circuit. Now, construct
a k̂STAT representation with the following linear forms:

(s + 2)L1(x), · · · , (s + 2)Ls(x), 1, 2, · · · , s + 1. (6)

That is, we multiply each linear form by (s + 2) and add (s + 1) constant linear forms with
values 1, · · · , s + 1. We let k = s + 1.

It is easy to see that the k’th statistic of (6) is always one of the constant linear forms.
It is the form i if and only if i − 1 of the linear forms among L1, · · · , Ls are positive. We
assign label 1 to the form i if and only if g(x) = 1 for inputs of weight i − 1. As a result, we
get the desired representation for f and show that f ∈ k̂STAT. ◀

▶ Remark 46. The well-known argument that shows MAJ◦THR = MAJ◦MAJ (see [14]) can be
straightforwardly adapted to show that SYM◦THR = SYM◦MAJ. Thus, SYM◦THR ⊆ k̂STAT
follows from Theorem 27 as well.

A.9 Proof of Theorem 28
Proof. First, as a warm-up, we show that IP ∈ kNN. Recall that IP(x, y) =

⊕n
i=1(xi ∧ yi).

Denote by a = (1
2 , · · · , 1

2) an 2n-dimensional vector with 1
2 in each coordinate. Note that

∆(a, (x, y)) = n
2 for all (x, y) ∈ {0, 1}2n.

For each i = 1, . . . , n introduce two anchors pi0 = a + 1
2 (ei + ei+n) and pi1 = a + 1

4 (ei +
ei+n). If for some (x, y) we have xi = yi = 1, then

∆((x, y), pij) ≤ n

2 − 2
(

1
4 − 1

16

)
= n

2 − 3
8 .

If, on the other hand, xi = 0 or yi = 0, then

∆((x, y), pij) ≥ n

2 −
(

1
4 − 1

16

)
−
(

1
4 − 9

16

)
= n

2 + 1
8 >

n

2 .

ITCS 2025

42:20 Nearest Neighbor Complexity and Boolean Circuits

For each i = 1, · · · , n+1 and j = 0, 1 and l = 0, 1 introduce an anchor qi,j,l = a+(−1)l 2i+j
8n e1.

For (x, y) with x1 = 1 it is not hard to see that

n

2 − 3
8 <∆((x, y), qn+1,1,0) < ∆((x, y), qn+1,0,0) < · · · <

<∆((x, y), q1,1,0) < ∆((x, y), q1,0,0) <
n

2

and ∆((x, y), qi,j,1) > n
2 for all i, j. The situation is symmetric for x1 = 0. We assign label

j to the anchor pij . We assign label 1 to the anchor qijl iff i + j is odd. We let k = 2n + 1.
It is easy to see that for a given (x, y) among the k closest anchors we have all pairs

of anchors pi0, pi1 for all i such that xi = yi = 1. Denote the number of such i by t. Also
among the k closest anchors we will have pairs of anchors qi,0,l, qi,1,l for an appropriate l

and for i = n + 1, . . . , t + 2. In each of these pairs the labels of anchors are opposite and
they cancel out when we compute the majority. Finally, one last anchor we will have among
the k closest anchors is qt+1,1,l. The label of this anchor determines the majority among
the k closest anchors and it is 1 iff t is odd. As a result, we get the desired representation for
IP with 6n + 4 anchors.

Now we extend this argument to SYM ◦ AND. Consider a function f(x) =
g(f1(x), · · · , fs(x)), where each fi has the form fi(x) =

(∧
i∈Si

xi

)
∧
(∧

i∈Ti
¬xi

)
for some

disjoint Si, Ti ⊆ [n]. For each fi we let 1
2 > ϵi1 > ϵi0 > 0 be a couple of parameters to

be fixed later. We introduce a pair of anchors pi1, pi0 in the following way: Set the kth
coordinate of pij to

pij
(k) =


1/2 k /∈ Si ∪ Ti

3/2 − ϵij k ∈ Si

ϵij − 1/2 k ∈ Ti

It is easy to see that for x such that fi(x) = 1 we have ∆(pij , x) = n
4 −|Si ∪Ti|(ϵij − ϵ2

ij) and
for x such that fi(x) = 0 we have ∆(pij , x) ≥ n

4 − (|Si ∪ Ti| − 1) (ϵij − ϵ2
ij) + 1. We fix ϵij in

such a way that n
4 − |Si ∪ Ti|(ϵij − ϵ2

ij) < n
4 − 1

2 and n
4 − (|Si ∪ Ti| − 1) (ϵij − ϵ2

ij) + 1 > n
4 + 1

2 .
We set label(pij) = j.

We construct anchors qijl for i = 1, · · · , s + 1 and j = 0, 1 the same way as above and
assign label(qi1l) to be equal to g(y) for y of weight i − 1 and label(qi0l) to be the opposite.
We let k = 2s + 1. The same argument as for IP shows that we get the desired representation
of f with 6s + 4 anchors. ◀

A.10 Proof of Theorem 30
Proof. Consider a function f ∈ ELDL and suppose the linear forms in its representation are
L1, · · · , Ls. Here Li corresponds to the i’th query. As in the proof of Theorem 27, we can
assume that all thresholds in all linear forms are 0.

We are going to construct a representation for f of the form provided by Theorem 26.
We add to this representation the following linear forms:

(s+1)L1, −(s+1)L1, (s+1)L2 +1, −(s+1)L2 −1, · · · , (s+1)Ls +s−1, −(s+1)Ls −s+1.

That is, for each form Li in ELDL representation, we add the two forms (s + 1)Li + (i − 1)
and −(s + 1)Li − (i − 1). We set k = s.

M. DiCicco, V. Podolskii, and D. Reichman 42:21

Assume that for some x we have Li(x) = 0 and all previous linear forms are non-zero.
We than have that (s + 1)Li(x) + i − 1 = i − 1. It is not hard to see that for j < i we have
that among forms (s + 1)Lj(x) + j − 1 and −(s + 1)Lj(x) − j + 1 exactly one is greater than
i − 1: it is the first one if Lj(x) > 0 and the second one if Lj(x) < 0. For j > i in a similar
way we can see that among the forms (s + 1)Lj(x) + j − 1 and −(s + 1)Lj(x) − j + 1 exactly
one is greater than i − 1: it is the first one if Lj(x) ≥ 0 and the second one if Lj(x) < 0. As
a result there are exactly s − 1 forms that are greater than (s + 1)Li(x) + i − 1. We assign
to this form the same label Li(x) has in ELDL. From this it follows that the constructed
representation computes the same function.

Clearly, the coefficients in the constructed form are polynomially related to the coefficients
in the original forms. Thus, the same proof gives ÊLDL ⊆ k̂STAT. ◀

▶ Remark 47. Note that decision lists are computable in AC0 and thus can be computed by
quasi-polynomial-size SYM ◦ AND circuits. As a result, ELDL can be computed by quasi-
polynomial-size circuit in SYM ◦ AND ◦ ETHR = SYM ◦ ETHR = SYM ◦ MAJ, where the
second equality follows since ETHR is closed under AND operation. Still, Theorem 30 gives
a polynomial reduction that translates to the case of small coefficients.

A.11 Proof of Theorem 37
Such constructions are likely known; we outline a simple one for completeness.

▶ Lemma 48. For any even integer k > 0, there exists a CNF with n variables and
n2k−ok(k)/k clauses with 2(1−ok(1))n components.

Proof. Assume k divides n. Divide the set of variables to n/k disjoint sets S1, · · · , Sn/k of
size k. For each set Si, define a CNF Ci which evaluates to 1 if and only if exactly half of
the variables in S are equal to 1. This can be achieved with

(
k

k/2
)

= 2k−ok(k) clauses.

Then, the CNF C = C1 ∧ · · · ∧ Cn/k has exactly
(

k
k/2
)n/k = 2(1−ok(1))n satisfying

assignments, and the Hamming distance between any two of such assignments is at least 2.
Thus, each of them constitutes a component. ◀

Hence, Theorem 37 follows from Lemmas 36 and 48 by taking k to be a constant
independent of n. It is easy to extend the construction above to odd k. We omit the simple
details.

B Circuits computing nearest neighbors

In this section we describe a straightforward construction of a depth-three circuit computing
HNN and then compress it to depth-two at the cost of exponential weights. The folklore
result of [31] is that any NN representation with m anchors can be computed by a depth
three threshold circuit with size O(m2). A short proof can be found in [24].

▶ Theorem 49 ([31]).
NN ⊆ OR ◦ AND ◦ THR, AND ◦ OR ◦ THR
HNN ⊆ OR ◦ AND ◦ MAJ, AND ◦ OR ◦ MAJ

Namely, every NN (HNN) representation is computed by a depth-three AC0 ◦ THR (MAJ)
circuit with size |P ||N | + min{|P |, |N |} + 1.

Note that the only difference between the circuits for HNN and NN is that the first-level
threshold gates are guaranteed to have polynomial weights (in the case of HNN). It turns
out that the size of the HNN circuit can be improved (when n ≪ |P | + |N |).

ITCS 2025

42:22 Nearest Neighbor Complexity and Boolean Circuits

▶ Lemma 50.

HNN ⊆ OR ◦ AND ◦ MAJ

In particular, every HNN representation with m anchors is computed by an OR ◦ AND ◦ THR
circuit with size (n + 1)m + (n + 1)|P | + 1.

Proof. Note that 1[∆(x, p) ≤ i] is computed by a threshold gate fp
≤i(x) defined by w = p−p

and θ = ∆(p) − i. (And similarly 1[∆(x, p) ≥ i].) Suppose f has an HNN representation
P ∪ N . Then, f(x) =

∨
i≤n
p∈P

(
fp

≤i(x) ∧
∧

q∈N fq
≥i(x)

)
◀

Note that the threshold circuits from Theorem 49 and Lemma 50 have size O(m2) and
O(mn) respectively. In fact, the latter circuit can be compressed to a depth-two threshold
circuit with exponential weights.

▶ Theorem 51.

HNN ⊆ THR ◦ MAJ.

Namely, every HNN representation with m anchors is computed by a threshold of 2nm

majority gates.

Proof. The first level will consist of 2mn gates fp
≤i, fp

≥i which output 1 if and only if
∆(x, p) ≤ i and ∆(x, p) ≥ i, respectively, for 1 ≤ i ≤ n. Define the sum

gp
i (x) := fp

≤i(x) + fp
≥i(x) − 1

and note that gp
i (x) = 1[∆(x, p) = i]. We can then write the output gate as

h(x) = 1

 ∑
p∈P,i≤n

m3(n−i)+1gp
i (x) −

∑
q∈N,i≤n

m3(n−i)gq
i (x) ≥ 0

 .

If some positive anchor is at distance at most j and all negative anchors are at distance
at least j to x, then∑

p∈P,i≤n

m3(n−i)+1gp
i (x) ≥ m3(n−j)+1 ≥

∑
q∈N,i≤n

m3(n−i)gq
i (x).

Conversely, if some negative anchor is at distance at most j and all positive anchors are at
distance at least j + 1, then∑

p∈P,i≤n

m3(n−i)+1gp
i (x) ≤ m3(n−j)−1 < m3(n−j) ≤

∑
q∈N,i≤n

m3(n−i)gq
i (x). ◀

▶ Remark 52. Theorem 51 can be obtained through Theorem 14, as a consequence of the
following result derived from [18]. We include the direct construction to avoid the slight
increase in circuit size.

▶ Lemma 53.

mpPTF(poly(n)) ⊆ THR ◦ MAJ

Every mpPTF with ℓ terms and maximum weight W is computed by a linear threshold of at
most 4 · Wℓ log ℓ majority gates.

M. DiCicco, V. Podolskii, and D. Reichman 42:23

Proof. Let PTF1,2 refer to Boolean functions (over {1, 2}) equal to the sign of an n-variate
polynomial. [18] prove that any PTF1,2 with ℓ terms and degree at most d is computed by a
linear threshold (with exponential weights) of at most 2ℓd majority gates (replacing {1, 2}
with {0, 1}), and any mpPTF with ℓ terms and maximum weight W can be represented by a
PTF1,2 with ℓ terms and degree at most 2W log ℓ. ◀

▶ Remark 54. It is not hard to see that the circuits constructed in this section are polynomial-
time uniform; they can be generated by a Turing machine given the set of anchors in
polynomial time.

ITCS 2025

	1 Introduction
	1.1 Motivation
	1.1.1 Boolean function complexity
	1.1.2 Machine learning and pattern recognition
	1.1.3 Algorithms for nearest neighbors classification and search

	1.2 Our results
	1.3 Related work
	1.3.1 Connections to circuits
	1.3.2 Bit complexity

	1.4 Organization

	2 Preliminaries
	2.1 Boolean functions
	2.2 Function classes

	3
	4
	4.1
	4.2

	5 New bounds for the nearest neighbor complexity of Boolean functions
	5.1 Nearest neighbor complexity of CNFs
	5.2 A new lower bound for majority

	6 Conclusion
	A Omitted proofs
	A.1 Proof of Theorem 14
	A.2 Proof of Corollary 15
	A.3 Proof of Corollary 16
	A.4 Proof of Lemma 18
	A.5 Consequences of Theorem 22
	A.6 Proof of Theorem 25
	A.7 Proof of Theorem 26
	A.8 Proof of Theorem 27
	A.9 Proof of Theorem 28
	A.10 Proof of Theorem 30
	A.11 Proof of Theorem 37

	B Circuits computing nearest neighbors

