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Abstract
We consider the problem of finding a minimum cut of a weighted graph presented as a single-pass
stream. While graph sparsification in streams has been intensively studied, the specific application
of finding minimum cuts in streams is less well-studied. To this end, we show upper and lower
bounds on minimum cut problems in insertion-only streams for a variety of settings, including for
both randomized and deterministic algorithms, for both arbitrary and random order streams, and
for both approximate and exact algorithms. One of our main results is an Õ(n/ε) space algorithm
with fast update time for approximating a spectral cut query with high probability on a stream
given in an arbitrary order. Our result breaks the Ω(n/ε2) space lower bound required of a sparsifier
that approximates all cuts simultaneously. Using this result, we provide streaming algorithms with
near optimal space of Õ(n/ε) for minimum cut and approximate all-pairs effective resistances, with
matching space lower-bounds. The amortized update time of our algorithms is Õ(1), provided
that the number of edges in the input graph is at least (n/ε2)1+o(1). We also give a generic way
of incorporating sketching into a recursive contraction algorithm to improve the post-processing
time of our algorithms. In addition to these results, we give a random-order streaming algorithm
that computes the exact minimum cut on a simple, unweighted graph using Õ(n) space. Finally, we
give an Ω(n/ε2) space lower bound for deterministic minimum cut algorithms which matches the
best-known upper bound up to polylogarithmic factors.
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1 Introduction

We consider the graph streaming model, which is a key model for computations on massive
graph datasets that has been extensively studied over the past couple of decades (see, e.g.,
[36] for a survey). We specifically study the problem of finding minimum cuts in adversarial
and random-order streams, which has been less studied than the problem of general cut
sparsification of graphs. Besides being theoretically interesting, finding minimum cuts is also
a problem of practical interest. For example, they allow for the calculation of social network
metrics such as influence [50] and are used to quantify the robustness of power networks [23]
and road networks [48] to failures.

1.1 Adversarial Streams
The key method so far for solving minimum cut with low-memory is the usage of cut
sparsifiers. The notion of cut sparsifiers was introduced by Benczur and Karger [7] and has
been extremely influential. Given a weighted graph G = (V, E, w) with n = |V | vertices
and m = |E| edges, and polynomially bounded edge weights w : E → R+, together with an
accuracy parameter ε > 0, a cut sparsifier of G is a sparse subgraph H on the same vertex
set V but with (possibly) different edge weights such that the weight of every cut in G is
(1 + ε)-approximated by the weight of the corresponding cut in H. For two sets S, T ⊆ V ,
we use E(S, T ) = {(u, v) ∈ E : u ∈ S, v ∈ T} to denote the set of edges between S and T in
graph G and wG(S, T ) =

∑
e∈E(S,T ) we to denote the total weight of edges between S and T

in graph G. Formally, we have the following definition,

▶ Definition 1 (For-All Cut Sparsifier). H is a (1 + ε) for-all cut sparsifier of G if and only
if the following holds for all ∅ ⊂ S ⊂ V :

wH(S, V \ S) ≈ε wG(S, V \ S)

where a ≈ε b is defined as (1− ε) · b ≤ a ≤ (1 + ε) · b.

Specifically, [7] shows that a cut sparsifier always exists with O(n log n/ε2) edges. This
bound was improved to O(n/ε2) edges by [6] and [1, 2, 11] proved a lower bound of
Ω(n(log n)/ε2) bits (even in the case when the cut-sparsifier H is a not necessarily a subgraph
of G). The existence bound was also extended to the stronger notion of spectral sparsifiers
[46, 47, 45, 6], where the quadratic form associated with the Laplacian of graph H provides
a (1 + ε)-approximation to that of G. Let LG denote the Laplacian matrix of graph G. For
every subset S ⊆ V , let xS be the binary indicator vector of S such that xi = 1 if i ∈ S

and xi = 0 if i /∈ S. Then we have x⊤
S LGxS = wG(S, V \ S). The definition of the spectral

sparsifier extends the assumption that x is a binary vector to an arbitrary vector.
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▶ Definition 2 (For-All Spectral Sparsifier). Let G and H be two weighted undirected graphs.
Fix 0 < ε < 1. We say H is a (1 + ε) for-all spectral sparsifier of G iff the following holds:

(1− ε) · LG ⪯ LH ⪯ (1 + ε) · LG

where we use A ⪯ B to denote ∀x ∈ Rn, x⊤Ax ≤ x⊤Bx.

This construction has had a tremendous impact on cut problems in graphs, see, e.g., [7,
8, 30, 44, 35]. However, for very small values of ε, the 1/ε2 dependence in cut sparsifiers
may be prohibitive on large-scale graphs. Motivated by this, the work of [2] relaxed the
cut sparsification problem to that of outputting a data structure skG such that given any
fixed cut S ⊆ V , the value of skG(S) is within a (1 + ε) factor of the cut value of S in G,
with probability at least 2/31. This relaxed notion of the problem is called the “for-each”
model, which should be contrasted with the previous “for-all” model of cut and spectral
sparsification.

Surprisingly, [2] showed that such a data structure exists for cut sparsification with
poly(n)-bounded integer edge weights of size Õ(n/ε)2, which is optimal up to polylogarithmic
factors. In a follow-up work of [24], the authors extended the Õ(n/ε) upper bound to the
for-each model for spectral sparsifiers. Another very interesting work is [14], which shows
that such a sketch can be chosen as a reweighted subgraph of G. We specifically deal with
these graphical for-each sparsifiers:

▶ Definition 3 (Graphical For-Each Spectral Sparsifier). Let G and H be two weighted undirected
graphs. Fix 0 < ε < 1. We say H is a (1 + ε) graphical for-each spectral sparsifier of G if
and only if for each x ∈ Rn, with probability at least 2/3:

x⊤LHx ≈ε x⊤LGx

In a line of work, see, e.g., [36, 27, 28], efficient algorithms for sparsifiers in the for-all
model in a graph stream were constructed. The state-of-the-art work [28] gives a single-pass
algorithm for spectral sparsification in dynamic streams which uses space Õ(n/ε2).

▶ Lemma 4 ([28]). Given an input graph G in a stream, there exists a one-pass streaming
algorithm that outputs a subgraph H of G such that with high probability H is a (1+ε)-spectral
sparsifier of G. Moreover, the algorithm uses Õ(n/ε2) space and Õ(m + n/ε2) time.

However, it was not known how to construct a for-each sketch for cut sparsification in
a stream in better than Õ(n/ε2) space, which follows from computing a for-all sparsifier.
A natural question is whether we can implement a streaming algorithm that computes a
for-each sparsifier with space matching the Ω(n/ε) offline lower bound that holds for for-each
sparsification [2].

If we can answer this question in the affirmative, we can also get a better space bound
for the approximate minimum cut problem. It is well-known that there are only poly(n)
O(1)-approximate minimum cuts3 in a graph. So we can run a for-all cut sparsification
algorithm in a stream with ε = Θ(1) in Õ(n) space and obtain a candidate set of poly(n)

1 This can be amplified to high probability, which we define to mean with probability at least 1−1/poly(n).
This is done by independently repeating the data structure O(log n) times and outputting the median
estimate. This also lets us estimate the cut value for poly(n) cuts simultaneously.

2 Throughout we use Õ(·) to hide polylog (n) factors.
3 When we say a cut is an α-approximate minimum cut, we mean that its cut value is at most α times

the minimum cut value.
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cuts containing the minimum cut. In parallel, we estimate the value of each cut using a
for-each sparsifier with failure probability 1/poly(n). The smallest cut out of the candidate
cuts will be a (1 + ε)-approximate minimum cut. Thus, the space complexity is just Õ(n)
plus that of maintaining a for-each sparsifier in a stream. However, the existing algorithms
for computing for-each sparsifiers are not streaming algorithms. Motivated by the existence
of a for-each sketch in Õ(n/ε) bits of space, one may wonder if it is possible to obtain a
(1 + ε)-approximation to the minimum cut in Õ(n/ε) space in a single-pass stream.

▶ Question 5. What is the space and time complexity of obtaining a (1 + ε)-approximate
minimum cut in a single-pass insertion-only stream?

We also note that an exact global minimum cut streaming algorithm exists in Õ(n) space
with two passes for simple graphs [5] (see also [43]) and log n passes for weighted graphs [38].

1.2 Random-order streams

We know that finding the minimum cut exactly in single-pass adversarial streams needs Ω(n2)
space [52]. We need an additional pass to get the exact minimum cut in Õ(n) space. However,
many streaming applications require solving the problem in exactly one pass because the
stream cannot be stored.

Thus, to surpass the Ω(n2) barrier of adversarial streams in one pass, we consider a
relaxation known as random-order streams and ask whether we can find the minimum cut
exactly in o(n2) space in this setting. In this model, the graph can still be chosen adversarially,
but its edges arrive in the stream in a random order.

The motivation for studying this model stems from the fact that real-world data is
typically not adversarial. Adversarial streams are adversarial in both their input and arrival
order, while random-order streams relax the arrival order, making them more representative
of real-world data. Additionally, the random-order streaming model may help explain the
empirical performance of certain heuristics.

This model was first studied by [39] for sorting in limited space. Many subsequent works
have studied problems in random-order streams [21, 26, 12, 37, 42, 16, 13], some of which
show a clear separation between the adversarial and random-order models.

One notable line of work focuses on maximum matching within this model [33, 19, 32,
3, 18, 9, 4, 22]. The best-known upper bound in the random order model [4] gets a slightly
better than 2/3-approximation in semi-streaming space, which is better than the best possible

1
1+ln 2 ≈ 0.59-approximation in the adversarial model due to the lower bound of [25], showing
another separation between adversarial and random-order streams.

Motivated by this, we study the minimum cut problem in the random-order model and
ask the following question:

▶ Question 6. What is the space complexity of obtaining the exact minimum cut in a
single-pass random-order stream?

This work resolves the above questions with matching algorithms and lower bounds. We
also carefully optimize the running time and update time of our algorithms. We also obtain
several additional results, which we outline in Section 3.
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2 Preliminaries

2.1 All-Pairs Effective Resistances
Given G(V, E, w) as an electrical network on n nodes in which each edge e corresponds to a
link of conductance we (i.e., a resistor of resistance 1/we), the effective resistance of an edge
e is the potential difference induced across it when a unit current is injected at one end of e

and extracted at the other end of e. Equivalently it is equal to RG
eff = χ⊤

u,vL†
Gχu,v, where L†

G

denotes the pseudoinverse of the Laplacian of graph G and χu,v := 1u − 1v.
In the all-pairs effective resistance problem, we are required to output a data structure,

which with high probability can generate effective resistance values for each of the n2 pairs of
vertices, or a (1+ε)-approximation of each of the n2 pairs of values in the (1+ε)-approximate
version of the problem. Note that the data structure implicitly represents these n2 values
and responds with one such value on a given query pair.

2.2 Short-Cycle Decomposition
Short cycle decompositions are a recent algorithmic tool for graph sketching problems
introduced by Chu et al. [14].

▶ Definition 7 (Short-Cycle Decomposition). An (m̂, L) short-cycle decomposition of a graph
G is a decomposition of the graph into edge-disjoint cycles of at most length L and an
additional m̂ edges outside of these cycles.

The main contribution of [14] to spectral sparsification is in proving the following claim:

▷ Claim 8. Given an undirected weighted graph G and an (m̂, L) short-cycle decomposition
routine CycleDecomp, there exists an algorithm which returns with high probability a
(1 + ε)-spectral sparsifier graph with Õ(m̂ + nLε−1) edges and run-time

Õ(m) + TCycleDecomp(O(m log n), n)

where TCycleDecomp(m, n) is the running time of CycleDecomp on a graph with m edges
and n vertices.

As a high-level overview, the short-cycle decomposition is key as a degree-preserving
sparsification method. Given each cycle, we can label them numerically in order and sample
either all the odd or all the even labeled edges, each with 1/2 probability. Previous works
on “for-each” sparsifiers [2, 24] used a recursive expander decomposition and subsampling at
each level, with the main issue being that the degrees were not well-preserved. This issue
was solved by explicitly storing the degrees of the graph, causing their spectral sparsifier
data structure to no longer be a graph. The work of [14] circumvents this issue with the
short-cycle decomposition by constructing subsampled graphs that exactly preserve their
vertex degree.

Note that [14] already gives a graphical spectral sparsifier with Õ(n/ε) edges and bits
of working memory using a basic brute-force search for cycle decomposition. However, its
runtime for construction is O(mn), which is prohibitively slow as a subroutine. On the
other hand, later work by Parter and Yogev [41] shows a deterministic algorithm to compute
(O(n log n), O(log2 n)) short-cycle decompositions. This combined with Claim 8 will allow
us to design an algorithm in m1+o(1) time which returns a (1 + ε)-spectral sparsifier which
is a reweighted graph with Õ(n/ε) edges. This gives near-optimal parameters except for
a required m1+o(1) bits of working memory. However, in Section 4.1, we show that we
can implement this subroutine so that it is guaranteed to use only Õ(m) working memory,
achieving near-optimal results in both working memory usage and running time.

ITCS 2025
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Table 1 Minimum Cut Space Complexity in the Single-Pass Insertion-Only Streaming Setting.

Stream Type Exact/Approx (1 + ε) Upper Bound Lower Bound

Adversarial Exact O(n2) (full graph) Ω(n2) [52]

Adversarial Approx, Deterministic Õ(n/ε2) [6] Ω(n/ε2)∗ (Theorem 12)

Adversarial Approx, Randomized Õ(n/ε) (Theorem 9) Ω(n/ε) (Theorem 12)

Random-Order Exact Õ(n) (Theorem 14) Ω(n) [12]

3 Overview of Results

We list the current state-of-the-art results for single-pass minimum cut streaming algorithms
in Table 1. Our main result is an Õ(n/ε) space streaming algorithm that finds a (1 + ε)-
approximate minimum cut in a single-pass stream.

▶ Theorem 9. There is a one-pass insertion-only streaming algorithm that, with high
probability, computes an (1 + ε)-approximation of the minimum cut on weighted graphs using
Õ(n/ε) bits of space. Moreover, our algorithm takes Õ(m) + (n/ε2)1+o(1) total update time
and Õ(n2/ε2) post-processing time.

This shows, somewhat surprisingly, that estimating the minimum cut is easier than
computing a for-all cut sparsifier in a data stream. Our algorithm is mainly based on the
following new for-each spectral sparsifier in a graph stream.

▶ Lemma 10. A one-pass insertion-only streaming algorithm exists that, with high probability,
constructs a (1 + ε) for-each spectral sparsifier of weighted graphs with Õ(n/ε) edges using
Õ(n/ε) bits of space. This algorithm also has total runtime Õ(m) + (n/ε2)1+o(1).

Our algorithm’s total runtime is Õ(m)+(n/ε2)1+o(1), which notably implies its amortized
update time is Õ(1) when m ≥ (n/ε2)1+o(1). With the Ω(n/ε) data structure lower bound
in [2], our algorithm is tight in space complexity up to polylogarithmic factors. Based on our
Lemma 10, we can obtain an Õ(n/ε) space streaming algorithm that can (1± ε)-estimate
all-pairs effective resistances.

▶ Corollary 11. There exists a one-pass insertion-only streaming algorithm that constructs
a data structure that calculates (1 + ε)-approximations to the effective resistances between
every pair of vertices on weighted graphs using Õ(n/ε) bits of space. Our algorithm has
Õ(m) + (n/ε2)1+o(1) total time during the stream and Õ(n2/ε) post-processing time.

Notice that we are able to match the sketching bounds of [24] up to polylogarithmic
factors in the space and time required.

We also show an Ω(n/ε) lower bound for minimum cut and all-pairs effective resistances
in Section 4.4 and Section 4.6 respectively, showing that our results of Theorem 9 and
Corollary 11 are space-optimal up to polylogarithmic factors.

▶ Theorem 12. Fix ε > 1/n. Any randomized algorithm that outputs a (1+ε)-approximation
to the minimum cut of a simple, undirected graph in a single pass over a stream with probability
at least 2/3 requires Ω(n/ε) bits of space. If the algorithm is deterministic and ε ≥ 1/n1/4,
then the algorithm requires Ω(n/ε2) bits of space.4

4 This latter assumption on ε is the same as used in [11].
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▶ Theorem 13. Fix ε > 1/n. Suppose sk(·) is a sketching algorithm that outputs at most
s = s(n, ε) bits, and f is an estimation algorithm such that,

∀a, b ∈ V, Pr[f(a, b, sk(G)) ∈ (1± ε)ra,b] ≥ 2
3 ,

where ra,b is the effective resistance of nodes a, b. Then we have s ≥ Ω(n/ε).

We also study the minimum cut problem in the random-order streaming model, where
edges arrive in a random order instead of an arbitrary worst-case order. We prove the
following result for simple unweighted graphs, which are graphs with at most one edge
between any two vertices.

▶ Theorem 14. There exists a one-pass insertion-only streaming algorithm in the random-
order model that outputs all minimum cuts (S, V \ S), along with their corresponding edges
E(S, V \ S), for a simple, unweighted graph and with high probability using Õ(n) space. The
algorithm has Õ(n) update time and Õ(n2k) post-processing time, where k is the value of the
minimum cut.

We note that Theorem 14 provides the exact minimum cut, which we find surprisingly
possible in a single pass. This further adds to the surprises regarding minimum cut in the
streaming model, as a 2-pass exact algorithm in arbitrary order streams was known [5] while
computing the exact minimum cut in a single pass in an arbitrary order stream is known to
require Ω(n2) memory [52].

Given that determining whether a graph is connected from a random order stream requires
Ω(n) space [12], our Õ(n) space algorithm for finding the exact minimum cut in random-order
streams is optimal up to polylogarithmic space factors, even for just outputting the value.
Note that we compute the minimum cut and all edges crossing the cut in addition to the
value.

3.1 Our Techniques
Approximate Minimum Cut

Suppose that H is a (1 + ε)-for-all sparsifier of G. Then the minimum cut of H is a (1 + ε)-
approximation to that of G. However, such a conclusion will not hold if H is instead a
(1 + ε) for-each sparsifier, as the total number of cuts is exponential. As discussed earlier,
fortunately the number of 1.1-approximate minimum cuts is O(n2) [29]. Hence, if we run a
for-all sparsifier algorithm in parallel with accuracy ε′ = O(1), we can obtain a list of O(n2)
candidate minimum cuts in G. Using the the (1 + ε) for-each sparsifier, we can then find a
(1 + ε)-approximation to the minimum cut by union bounding over the O(n2) candidates.

For the lower bound, we consider the k-edge-connectivity problem. The edge-connectivity
of a graph is the minimum number of edges that need to be deleted to disconnect the graph.
The k-edge-connectivity problem asks whether the edge connectivity of a graph is < k or ≥ k.
Suppose that there is an algorithm that solves the (1 + ε)-approximate minimum cut value
problem. Then, we can use it to solve the k-edge-connectivity problem with k = O(1/ε).
Combining with the Ω(kn) bit space lower bound in the work of [49], it follows that there is
an Ω(n/ε) bit space lower bound.

For-Each Spectral Sparsifier

The main difficulty in implementing the algorithms of [2] and [24] in the streaming setting
is that both algorithms require careful graph decomposition. Take the algorithm in [2]
as an example: it partitions the graph into several components, where each component is

ITCS 2025
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well-connected and does not have a sparse cut smaller than 1/ε. In the worst case, such a
procedure may take log n levels recursively, which seems unachievable in a single-pass stream.
Besides, since the for-each sketch of both algorithms is not a graph, it is unclear how to
merge two sketches directly. Indeed, natural ways of merging such sketches may destroy
the decomposition into sparse cuts. To address these issues, we instead consider the work
of [14] in which the authors show how to construct a for-each sparsifier which is, in fact,
a re-weighted subgraph of the input graph, with n1+o(1)/ε edges. Combining this and the
merge-and-reduce framework gives a for-each spectral sparsifier with n1+o(1)/ε edges in a
single-pass stream. The extra no(1) factor in the space is an issue here. We notice that the
extra no(1) factor in the work of [14] is due to their near-linear time short cycle decomposition
algorithm. Leveraging ideas from [41], we give a new short-cycle decomposition algorithm
that trades off running time for space, namely, it achieves m1+o(1) time and Õ(m) space.
While this translates to Õ(n/ε) space, it unfortunately gives no(1) update time per edge. To
fix this, we use online leverage score sampling to produce a virtual stream of only Õ(n/ε2)
edges that we instead run our algorithm on. By doing this, we reduce the time to Õ(1) per
edge provided the number m of edges in the input satisfies m ≥ (n/ε2)1+o(1).

Approximate All-Pairs Effective Resistance

In [24], the authors show if we can get a for-each sparsifier, then we can use it to generate a
data structure in near-linear time, and such a data structure can approximate all pairs of
the effective resistance in Õ(n2/ε) time. Combining this and our Lemma 10 yields our upper
bound.

For the lower bound, we use communication complexity and consider a similar graph
construction in [2], though we use new arguments based on random walks. Specifically, given
a random binary string s ∈ {0, 1}n/ε, we encode it into a graph G where G is divided into
O(εn) disjoint bipartite graphs Gi, and in each Gi, the existence of an edge between each
pair corresponds to one random bit in s. We show that for every such pair (a, b), with high
probability there is a (1 + ε)-separation between the two cases (there is an edge between
a, b or not), which yields an Ω(n/ε) lower bound. To prove this, in particular, we use the
connection between the effective resistance and the hitting time on a graph and a recent
concentration result about the hitting time on a random graph G(n, p) (each possible edge
on n vertices is included independently with probability p).

Exact Minimum Cut in Random-order Streams

Recall that we assume that the graph is simple and unweighted, and each edge arrives in
a random order stream. We also assume the minimum cut size is Ω(log n). If the size is
smaller, a for-all cut sparsifier with accuracy parameter ε′ = 1/ log2 n gives the exact value
of the minimum cut. The main idea here is that by looking at the prefix of edges in a stream,
which we will call the graph H, we roughly learn the sizes of all the cuts up to a small
constant factor. Using this information, we learn all 1.1-approximate minimum cuts in G.
The next question is how to get the exact value of all these cuts (so we can find the minimum
one). For the cut edges in H, note that at this time, the cut values of all these cuts in H is
Θ(log n), and hence a for-all sparsifier of H with accuracy parameter ε′ = 1/ log2 n gives the
exact value of these cuts in H. We note that the total number of edges that participate in at
least one of the 1.1-approximate non-singleton cuts is O(n) [43], which is interesting because
there could be as many as O(n2) such cuts. Hence, we can store all these O(n) edges to get
the exact cut values of the approximate minimum cuts in G \H. Putting the two things
together, we obtain the exact value of all 1.1-approximate minimum cuts and thus obtain
the exact minimum cut value in G (along with all the minimum cuts).
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Faster Runtime

In the above discussion, our algorithm for (1 + ε) min-cut in worst-case streams has an Õ(n3)
post-processing time, and the algorithm for exact min-cut in a random-order stream has an
Õ(n3) update time. The difficulty here is related: when enumerating all the O(1)-approximate
minimum cuts, we need O(n) time to evaluate the cost for each specific cut. We thus propose
a general algorithmic framework to overcome this, which is based on the recursive contraction
algorithm in [31] (Section 4.4). Namely, when enumerating all the approximate minimum
cuts in the recursion tree, we simultaneously maintain a low-space sketch of the columns
of the edge-vertex incidence matrix of the corresponding graph. Specifically, we apply a
Johnson-Lindenstrauss sketch in our first case and a sparse recovery sketch in our second
case, which reduces the evaluation time O(n) to O(log n/ε2) and polylog(n), respectively.

3.2 Open Problems
While we resolve several gaps between the upper and lower bounds, we discuss a remaining
open problem. There exist fully dynamic streaming algorithms for approximate minimum
cut using Õ(n/ε2) space where the stream is allowed to both add or delete edges. From
Theorem 12, we know that algorithms solving approximate minimum cut in insertion-only
streams must use Ω(n/ε) space. Therefore, the space complexity of approximate minimum
cut in a dynamic stream lies somewhere within these two values, and we believe resolving
this gap is a problem of theoretical interest.

▶ Open Question 15. What is the exact space complexity of calculating a (1 + ε) approxi-
mation to the minimum cut of simple weighted graphs in a one-pass dynamic stream?

We do not have an exact conjecture about this, but we provide an alternative and fully self-
contained proof to Theorem 12 in the full version of the paper [17], for which the techniques
could help prove a lower bound for the fully dynamic case.

4 Spectral Sparsification and Minimum Cut in Worst-Case Streams

A key result of the section is our construction of Lemma 10, a single-pass insertion-only
streaming algorithm for a (1 + ε)-for-each cut sparsifier in undirected weighted graphs in
Õ(n/ε) space and no(1) update time. In Section 4.1 and 4.2, we first give our description of
graphical spectral sketches (i.e., spectral sparsifiers that are reweighted subgraphs) and online
leverage score sampling, which we use as subroutines in our final algorithm. In Section 4.3,
we give our full algorithm and prove the correctness of our algorithm. In Section 4.4 and 4.6,
we prove the two applications of our algorithm: streaming approximate minimum cut and
all-pairs effective resistances.

4.1 Graphical Spectral Sketches
Our algorithm uses the following result in [14] as a subroutine.

▶ Lemma 16 ([14]). For ε ∈ (0, 1], there is an algorithm, which given G, runs in time
m1+o(1), and with high probability returns a (1 + ε)-for-each spectral sparsifier with n1+o(1)/ε

edges.

As pointed out by the work of [41], in the above algorithm, the extra no(1) factor in the
number of edges is due to the nearly-linear time short cycle decomposition used in the whole
algorithm. We use the simpler and improved short-cycle decomposition algorithm of [41],
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which outputs in m1+o(1) time a collection of edge-disjoint cycles of length O(log2 n) that
cover all but O(n log n) edges of the graph. Naïvely, the algorithm is also implemented in
m1+o(1) space, but we show that a simple modification achieves near-linear space, as follows:

▶ Lemma 17. There is an m1+o(1) time, Õ(m) space algorithm that outputs a collection of
edge-disjoint cycles of length O(log2 n) that cover all but O(n log n) edges of the graph.

Proof. The algorithm in Section 3 of [41] first computes a low-congestion cycle cover, which
is a collection of short cycles that cover most of the edges such that each edge belongs to a
small number of cycles. The precise parameters are specified in the statement of Lemma 2
of the full version of [41]: compute a collection of cycles of length d = O(21/ε log n) that
cover all but O(n log n) edges such that each edge appears on at most c = 1/ε · nO(ε) cycles.
For ε = 1/ log log n, we obtain d = O(log2 n) and c = no(1). To obtain the short cycle
decomposition, the proof of Lemma 2 describes a simple procedure of greedily selecting a
subset of edge-disjoint cycles that cover an Ω(1/(dc)) fraction of the edges in the cycle cover
and then iterating on the uncovered edges.

Note that the low-congestion cycle cover consists of up to cm edges since each edge
can appear in c cycles. Since c = no(1), storing the entire cycle cover takes up too much
space. Our key insight is to terminate the collection of cycles in each iteration of algorithm
ImprovedShortCycleDecomp (see Figure 3 in the full version of [41]) once the cycle
cover has a total of O(m) edges. Terminating this subroutine early cannot increase the
congestion compared to not terminating, thus we maintain the guarantee that the total set
of cycles has congestion c. Using the above greedy selection of edge-disjoint cycles, we cover
an Ω(1/(dc)) fraction of the edges in our cycle cover, which is Ω(1/(dc)) of all uncovered
edges in the graph. Iterating on the uncovered edges gives the same iterations as before up
to logarithmic factors. ◀

With our improved short-cycle decomposition, we get the following lemma:

▶ Lemma 18. Given ε ∈ (0, 1], there is an algorithm we denote SpectralSketch(G, ε),
which given G, runs in time m1+o(1) and space Õ(m), and with high probability returns a
(1 + ε)-for-each spectral sparsifier of G with Õ(n/ε) edges.

4.2 Online Leverage Score Sampling
For the purposes of a faster runtime, we consider only sampling (and reweighting) a fraction
of edges during the stream. Existing online leverage score sampling methods allow us to
choose edges in an online stream without retracting our choices such that our final graph has
Õ(n/ε2) edges and is a spectral-sparsifier of the original graph. Indeed, let Bn ∈ R(n

2)×n be
the vertex edge incidence matrix of an undirected, unweighted complete graph on n vertices,
where the e-th row be for edge e = (u, v) has a 1 in column u, a (−1) in column v, and
zeroes elsewhere. Then for an arbitrary undirected graph G, we can write its vertex edge
incidence matrix B = SBn where S ∈ R(n

2)×(n
2) is a diagonal matrix with entry √we in the

e-th diagonal entry where we is the weight of edge e. It is well-known that the Laplacian
matrix L of graph G can be written as L = B⊤B. Hence, if we can sample a subset of the
rows of B to form a new matrix C (which corresponds to a subset of the edges in G) such
that for every x, ∥Bx∥2 ≈ε ∥Cx∥2, we then have x⊤Lx ≈ε x⊤C⊤Cx so that the subgraph
H corresponding to C is a (1 + ε)-spectral sparsifier of G. For more details, we refer the
reader to [27, 15]. Formally, we have the following lemma.
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▶ Lemma 19 (Corollary 2.4 from [15]). Let G be an undirected simple graph with n vertices
and poly(n) bounded edge weights, and ε ∈ (0, 1). We can construct a (1 + ε)-spectral
sparsifier of G as a reweighted subgraph with O(n log2 n/ε2) edges, using only O(n log2 n) bits
of working memory in the online model. Additionally, the total running time is near-linear
in the number of edges of G.

4.3 Main Algorithm
Our algorithm is presented in Algorithm 1, which is based on the merge-and-reduce paradigm
(see, for example, [10]) and uses an additional factor of polylog(n) space. At a high level,
our algorithm maintains a number of blocks of edges B0, B1, . . . Blog(n/ε), each with size
mspace = Õ(n/ε). The most recent edges are stored in B0; whenever B0 is full, the successive
non-empty blocks B0, . . . , Bi are merged and reduced to a new graph with mspace edges,
which will be stored in Bi+1. Next, we show the correctness of our algorithm. Following a
similar argument in [10], we first show the following lemma.

Algorithm 1 StreamingSpectralSparsifier(G, ε).

1 Input: Undirected graph G(V, E) in a stream with n vertices and m edges, accuracy
parameter ε ∈ ( 1

n , 1), offline spectral-sparsifier subroutine SpectralSketch
2 Output: A graph H with weights w.
3 Initialize mspace = n logc(n)/ε for some constant c, Bi ← ∅
4 foreach sampled edge et (Lemma 19) with rescaled weight ut do
5 if B0 does not contain mspace edges then
6 B0 ← et ∪B0;
7 else
8 Let i > 0 be the minimal index such that Bi = ∅;
9 Bi, wi ← SpectralSketch

(
M, ε

log(n/ε)

)
, where M = B0 ∪ · · · ∪Bi−1;

10 for j = 0 to j = i− 1 do
11 Bj ← ∅ ;
12 B0 ← et;

13 B← SpectralSketch(Blog(n/ε) ∪ · · · ∪B0, ε)
14 return B.

▶ Lemma 20 (see Lemma 5.2 in [10]). Suppose that B0, . . . , Bi−1 are all empty while Bi is
non-empty. Then Bi is a (1 + ε

log(n/ε) )i-for-each spectral sparsifier for the last 2i−1mspace
edges.

Proof. We prove this by induction on i ≥ 0. Recall that Bi can only be non-empty if
at some point B0 contains mspace and B0, B1, . . . , Bi−1 are all non-empty. By induction,
suppose that for every 1 ≤ j < i, Bj is a (1 + ε

log(n/ε) )j-for-each spectral sparsifier for
2j−1mspace edges. Then we have that Bi is a (1 + ε

log(n/ε) )-for-each spectral sparsifier for
B0 ∪B1 ∪ . . . ∪Bi−1. From the mergeability property of spectral sparsifier graphs, we get
that Bi is a (1 + ε

log(n/ε) )(1 + ε
log(n/ε) )i−1 = (1 + ε

log(n/ε) )i-for-each spectral sparsifier for the
mspace +

∑i−2
j=0 2jmspace = 2i−1mspace edges, as needed. ◀

Proof of Lemma 10. The success probability of each call to subroutine SpectralSketch
is at least 1−1/poly(n), hence we can assume that each call to this subroutine and the online
leverage score sampling procedure is successful with high probability after taking a union
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bound. It then follows from Lemma 20 that Blog(n/ε) ∪ · · · ∪B0 is a (1 + ε
log(n/ε) )log(n/ε) ≤

(1 + ε)-for-each spectral sparsifier of the original graph G. Thus B is a (1 + O(ε))(1 + ε) =
(1 + O(ε))-for-each spectral sparsifier of the original graph G.

Space Complexity. Next, we analyze the space complexity of our algorithm. As stated in
Lemma 19, the online leverage score sampling procedure can be implemented in O(n log2 n)
bits of working memory. We maintain log(n/ε) blocks Bi, each taking at most O(mspace)
words of space. From Lemma 16 we have that each call to the subroutine SpectralSketch
takes at most Õ(mspace · log(n/ε)) words of space, as the total number of edges never exceeds
mspace · log(n/ε). Hence, the total space of the algorithm is Õ(n log2 n + mspace log(n/ε)) =
Õ(n/ε).

Time Complexity. We finally analyze the time complexity of our algorithm. As stated in
Lemma 19, the online leverage score sampling procedure can be done in time Õ(m), and after
the sampling procedure, there are at most O(n log2 n/ε2) edges. For the merge-and-reduce
procedure, each edge participates in at most log(n/ε) different spectral sparsifiers, one in
block Bi. Additionally, from Lemma 16 we have that SpectralSketch runs in m1+o(1)

time where m = Õ(n/ε). We deduce that our total runtime is Õ(m + (n log2 n/ε2)1+o(1)) =
Õ(m) + (n/ε2)1+o(1). ◀

4.4 Approximate Minimum Cut Streaming Algorithm
Our main application of Lemma 10 is the one-pass streaming algorithm for a (1 + ε)-
approximation to the minimum cut. To achieve this, first recall that we can get a (1 + ε)
for-all sparsifier of G in a one-pass stream in nearly-linear time, using Õ(n/ε2) bits of space
(Lemma 4).

The next lemma bounds the number of approximate minimum cuts.

▶ Lemma 21 ([29]). For constant α > 0, the number of α-approximate minimum cuts is
O(n⌊2α⌋).

Motivated by [2], we run our algorithm in Lemma 10 along with the streaming for-all
sparsifier algorithm ALG in Lemma 4 with accuracy parameter ε′ = O(1). Suppose that the
output of ALG is H. We then use H to find the cuts that have a size less than 1.5 times that
of the minimum cut value (which can be done in poly(n) time, see, e.g., [29]). Then, since the
number of these approximate minimum cuts is O(n3), using our (1 + ε) for-each sparsifier, we
can get a (1 + ε)-approximation to each of these cut values with high probability after taking
a union bound. Picking the cut with the minimum value gives us a (1 + ε)-approximate
minimum cut.

Faster Post-processing Time

The above algorithm is simple but, unfortunately, takes O(n3) post-processing time. To
achieve a faster post-processing time, we consider the recursive contraction algorithm intro-
duced by [31], which enumerates all α-approximate minimum cuts in time O(n2α log2 n). We
combine this with a Johnson-Lindenstrauss sketch to achieve Õ(n2/ε2) post-processing time,
proving Theorem 9.

First, we state the lemma from [31]:

▶ Lemma 22. There is an algorithm that can find all the α-approximate minimum cuts with
high probability in O(n2α log2 n) time and Õ(m) space.
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Below, we first give a brief explanation of the algorithm. At a high level, in each step, the
algorithm randomly samples an edge proportional to its weights and then contracts the two
nodes of the edge. When there are only two remaining nodes, we get a partition of the nodes
corresponding to a specific cut of the graph. The work of [31] shows that if we repeat the
algorithm poly(n) times, we can finally enumerate all approximate minimum cuts with high
probability. The above process is simple but needs poly(n) runtime. To make the algorithm
faster, [31] then proposes a recursive implementation of the contraction process. Basically, at
each level of the recursion, the algorithm reduces the number of nodes by contraction by
a constant factor and repeats the algorithm twice in each recursion level if the number of
remaining nodes is Ω(1). Then, each leaf node of the recursion tree corresponds to a specific
cut of the graph.

The technical difficulty in our case is evaluating the value of the corresponding cut in a
short time when we enter a leaf node in the above process. To achieve this, recall that for a
given vertex set S ⊆ V , the cut value between S and V \S is x⊤

S LxS = x⊤
S BT BxS = ∥BxS∥2

2
where xS is the binary indicator vector of S and B is the edge-vertex matrix of the graph
(see Section 4.2 for more details). The key observation here is since we only care about a
(1 + ε)-approximate value, we can apply a JL matrix T to BxS , where the matrix T has only
O(log(n/ε)/ε2) rows where for every x ∈ RO(n/ε), ∥Tx∥2

2 ≈ε ∥x∥2
2 with high probability.

Our algorithm procedure is described as follows. As before, after the stream, we first get
a for-all sparsifier K with the accuracy parameter ε′ = 1/ log n (Lemma 4) and a (1 + ε)
for-each sparsifier H of the original graph G (Lemma 10). We then use the algorithm in
Lemma 22 to enumerate all the approximate minimum cuts of K with α = 1 + c/ log n.
When maintaining the recursion process of the contraction algorithm, we also maintain a
sketch of the columns of the edge-vertex matrix B of H. Specifically, we initially compute
a sketch of TB where T is a JL matrix with O(log n/ε2) rows. Then, in the contraction
process, when we contract a node pair (u, v), we also merge the u, v-th columns of the sketch
with their sums. Note that in this procedure, when we enter a leaf node, there will only
remain two columns of our sketch, and the two vectors are exactly TBxS and TBxV \S , for
which we can directly compute the cut value in O(log n/ε2) time.

Next, we analyze the time and space complexity in the above procedure. Since the sketch
has O(log n/ε2) rows at each recursion level, we need Õ(N log n/ε2) words of space to save
the sketch, where N is the number of the remaining nodes in the current recursion level.
Combining two rows also takes Õ(log n/ε2) time. Recall that we need O(n) space in each
level and O(N) time to contract two nodes in the original recursive contraction algorithm.
This implies after the modification, the space complexity of the above algorithm procedure
remains the same of Õ(m) = Õ(n/ε), and the time complexity becomes Õ(n2/ε2). Putting
everything together, we get the correctness of our Theorem 9.

4.5 Approximate Minimum Cut Streaming Lower Bound
To prove this lower bound, we consider the k-edge-connectivity problem as follows. The
edge-connectivity of a graph is the minimum number of edges that need to be deleted to
disconnect the graph. The k-edge-connectivity problem asks whether the edge connectivity
of a graph is < k or ≥ k. The work of [49] shows that any deterministic algorithm that solves
the k-edge-connectivity problem in insertion-only streams needs Ω(kn log n) bits of space.
We note that the proof in [49] also works for randomized algorithms with success probability
at least 1 − 1/n, which implies a lower bound of Ω(kn) bits of space for any randomized
algorithm with constant probability of success.
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▷ Claim 23 ([49]). Any randomized algorithm solving the k-edge-connectivity problem in an
insertion-only stream with probability at least 2/3 requires Ω(kn) bits of space. Moreover,
any deterministic algorithm solving the k-edge-connectivity problem in an insertion-only
stream requires Ω(kn log n) bits.

We now prove the randomized and deterministic lower bounds of Theorem 12.

Randomized Lower Bound

▶ Lemma 24. Fix ε > 1/n. Any randomized algorithm that outputs a (1 + ε)-approximation
to the minimum cut of a simple, undirected graph in a single pass over a stream with probability
at least 2/3 requires Ω(n/ε) bits of space

Proof. Consider the lower bound for k-edge-connectivity in [49] with k = 1
10ε (Claim 23).

Distinguishing between whether the graph is < k-connected or ≥ k-connected needs Ω(kn) =
Ω(n/ε) space. This implies that deciding whether the min-cut has value < k or ≥ k also
requires Ω(kn) = Ω(n/ε) space. Suppose that there is a (1 + ε)-approximation algorithm for
the minimum cut value, in the case where the edge connectivity λ < k, the approximate value
is at most (1 + ε)λ ≤ (1 + 1/10k) · (k − 1) < k − 9/10. In the case where the connectivity
λ ≥ k, the approximate value is at least (1 − ε)λ ≥ (1 − 1/10k) · k > k − 1/10. This
implies that an algorithm that gives a (1 + ε)-approximation to minimum cut value, solves
k-edge-connectivity for k = 1

10ε . Thus, we obtain a lower bound of Ω(n/ε) bits of space for
(1 + ε)-approximating the value of the minimum cut. ◀

In addition to the proof above that considers the k-edge-connectivity problem, we also
provide an alternative self-contained construction for the randomized result using the Index
communication problem in the full version of the paper [17].

Deterministic Lower Bound

If the minimum cut value algorithm is deterministic, then we deterministically solve k-edge-
connectivity for k = 1

10ε . This gives us a lower bound of Ω(kn log n) = Ω(n log n/ε) bits of
space for deterministic algorithms. We show how to improve this lower bound to Ω(n/ε2)
bits for ε ≥ n−1/4. Note that this assumption on ε is consistent with the previous work
of [11]. They also use this assumption on ε and prove a lower bound of Ω(n log n/ε2) bits for
cut sparsifiers.

▶ Lemma 25. Fix ε > 1/n1/4. Any deterministic algorithm that outputs a (1 + ε)-
approximation to the minimum cut value of a simple, undirected graph in a single pass over
a stream requires Ω(n/ε2) bits of space

Proof. A randomized insertion-only streaming algorithm for a for-all cut sparsifier needs
Ω(n/ε2) bits of space [2] (since any data structure that stores this information needs that
much space). If we carefully look at the proof of [2] in section 3.1, their hard instance is a
disjoint union of ε2n/2 bipartite graphs with 2/ε2 vertices each. They use the cut sparsifier
to query cuts that have vertices only in one of these disjoint graphs, which implies that the
cut sparsifier only needs to preserve the cut values for cuts that have at most 1/ε4 edges.
Thus, a (1 + ε) cut sparsifier that preserves the cut values of all cuts of size at most 1/ε4

edges needs Ω(n/ε2) bits of space.
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We will now show how to simulate a (1 + ε) cut sparsifier that preserves the cut values
of all cuts of size at most 1/ε4 using an algorithm for (1 + ε)-approximate minimum cut.
This will give us the desired lower bound. Let A be a deterministic insertion-only streaming
algorithm for (1 + ε)-approximate minimum cut value we run during the stream for input
graph G.

After the stream, consider any cut S whose value we want to approximate within a (1 + ε)
factor (note that the value is at most 1/ε4). We now add some extra edges to the stream for
A. We first construct two cliques C1 and C2 on 2n vertices each and add their edges to the
stream. We then add edges between all vertices of S and C1 and similarly for all vertices in
S̄ and C2. Call this new graph G′. We now end the stream and look at the output of A. We
claim this is the (1 + ε)-approximate value of cut S in the original graph.

To prove this, we must show that S is the minimum cut in the modified graph G′. We
know that the value of S is at most 1/ε4 ≤ n (since ε ≥ n−1/4). Consider any cut that
separates vertices in C1 ∪ S. Such a cut has a size of at least 2n. The same applies to any
cut separating vertices in C2 ∪ S̄. Thus, the minimum cut is C1 ∪ S. None of the new edges
we added cross this cut, so the size of this cut remains unchanged in G′, implying that we
get a (1 + ε)-approximation to the cut value in G. Note that the algorithm A has to be
deterministic for us to do this because we have to repeat this process for exponentially many
cuts (potentially 2n).

The space taken to build the sparsifier for insertion-only streams is the space taken for
A when run on 5n vertices. This implies that any deterministic insertion-only streaming
algorithm for (1 + ε)-approximate minimum cut value needs Ω(n/ε2) bits of space, proving
the lower bound for deterministic algorithms. ◀

Proof of Theorem 12. The proof of the theorem directly results from combining Lemma 24
and Lemma 25. Notably, this shows that the spectral sparsifier result in Lemma 10 is optimal
in space complexity up to polylogarithmic factors. ◀

4.6 Application: All-Pairs Effective Resistances

Another application of our streaming algorithm from Lemma 10 is calculating all-pairs
effective resistances in graph streams. Suppose we have a (1 + ε) for-each spectral sparsifier
H of the original graph G. Then, we may hope it will be helpful to approximate the
pseudoinverse of G. In fact, in the work of [24], it has been shown that if we have a (1 + ε)
for-each spectral sparsifier, we can use it to generate an effective resistance sketch in near-
linear time, which can compute the all-pairs effective resistances in Õ(n2/ε) additional time
(Algorithm 8 in [24]). From this, we immediately see the correctness of our Corollary 11.

Lower Bound

We next consider lower bounds. In Theorem 13, we show that if a sketch can approximate
each effective resistance with constant probability, then such a sketch must have size at least
Ω(n/ε). We need the following lemmas about effective resistances and random graphs.

▶ Lemma 26 (see, e.g., [51]). For a graph G with unit weight for each edge, we have
C(s, t) = 2mreff(s, t), where C(s, t) is the commute time of s and t, which is defined as the
expected number of steps of a random walk to go from s to t and back.
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▶ Lemma 27 ([40]). Let G(n, p) be an Erdos-Renyi random graph. Then we have, with high
probability that for any pair w ̸= v,

h(w, v) = 2|E|
deg(v) +

{
− 1 if (w, v) ∈ E

− 1 + 1/p if (w, v) /∈ E

}
+ O

(
(log n)3/2
√

n

)
,

where h(s, t) is the hitting time of s, t, defined as the expected number of steps of a random
walk from s to t. Note that we have C(s, t) = h(s, t) + h(t, s).

Our reduction is based on the following Index problem.

▶ Lemma 28 (Index Lower Bound [34]). Suppose that Alice has a random string u ∈ {0, 1}n

and Bob has a random index i ∈ [n]. If Alice sends a single message to Bob from which Bob
can recover ui with probability at least 2/3, where the probability is over both the randomness
of the protocol and the input, then Alice must send Ω(n) bits to Bob.

At a high level, we will reduce the Index problem to the effective resistance problem.
Suppose Alice has a string s ∈ {0, 1}Θ(n/ε). We will construct a graph G to encode s such
that Bob can recover si with constant probability from a (1± ε) effective resistance sketch of
G. By the communication complexity lower bound of the Index problem (Lemma 28), the
cut sketch must use Ω(n/ε) bits.

Proof of Theorem 13. We first give our construction of the graph G.
Construction of G. We use a bipartite graph G to encode s. Let L and R be the left
and right nodes of G where |L| = |R| = n/2. We partition L into O(nε) disjoint blocks
L1, . . . , LO(nε) of the same size 1

ε , and similarly, we partition R into R1, . . . , RO(nε). We
divide s into nε disjoint strings si ∈ {0, 1}( 1

ε )2 of the same length. We will encode si using
the edges from Li to Ri, where we use Gi to denote the subgraph (Li, Ri). In particular, if
the si(j) = 1, we form an edge that connects the corresponding node pair in Li and Ri with
unit weight. Note that each Gi is disconnected from the other Gj in this construction.
Recovering a bit in s from an effective resistance sketch of G. Suppose Bob wants to
recover a specific bit of s, which belongs to the sub-string z = si and has an index t in z.
This coordinate corresponds to whether there is an edge between u ∈ Li and v ∈ Ri.

Next, we consider the effective resistance between u and v for these two cases. Note
that since Gi is disconnected from the other Gj , we just need to consider the sub-graph Gi.
By construction, Gi is a random graph with p = 1

2 . From Lemma 26 we get that we only
need to show both the hitting time h(u, v) and h(v, u) has a (1 + ε)-separation (then the
reff(u, v)) will also have a (1 + ε)-separation. Then, from Lemma 27, we get that both the
h(u, v) and h(v, u) will have a Θ(1) gap for the two cases, and with high probability, we have
that both of h(u, v) and h(v, u) are Θ(1/ε). From this, we can get that reff(u, v) will have a
(1 + ε)-separation for the two cases (note that Alice can also send the degree of each node
and the number of edges in each Gi to Bob, which only needs O(n log(1/ε)) bits), which
yields an Ω(n/ε) lower bound of the effective resistance sketch size. ◀

5 Exact Minimum Cut in Random-Order Streams

In this section, we give an Õ(n) algorithm that outputs the minimum cut in a simple,
unweighted graph in a single-pass random-order stream. Recall that in a simple graph, there
is at most one edge between any pair of vertices. For a clearer demonstration, we will present
an initial construction for an algorithm with an Õ(n2) update time when an edge arrives.
Then, we shall show how to improve the update time to Õ(n), proving Theorem 14.
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5.1 Initial Construction
We will use the algorithm in Lemma 4 (for-all sparsifier in a stream) as a subroutine. The
whole algorithm is given in Algorithm 2. Below, we first give a high-level explanation of our
algorithm. We first consider the case when the minimum cut size is s = Ω(log n). Since we
are now considering the random-order model, a prefix of the edges gives us partial information
about the cut sizes. Let H be the subgraph of G which is formed by a prefix of the edges
of the stream where |H| ≈ |G| log n

s and |G|, |H| are the number of the edges in G and H

respectively. By a Chernoff bound, one can show that with high probability, for every subset
S ⊂ V , wH(S, V \S) is a small constant approximation to wG(S, V \S). H might be too large
to store in memory, so we store H1, a (1+ε)-for-all sparsifier of H, during the stream (we will
decide ε later). Therefore, using the graph H1, we know all cuts in G whose cut size is within
a factor of 1.1 of the true minimum cut of G. After this step, when a new edge e ∈ G \H

arrives, we can use graph H1 to check whether e belongs to some 1.1-approximate minimum
cut in G, and if so, we save this edge (from Lemma 30 we know that the total number of
these edges saved is at most O(n)). The next question is how to estimate the exact value of
these 1.1-approximate cuts in H. The crucial observation is since the minimum cut size of H

is an integer and is at most Θ(log n), we can set the approximation parameter ε = 1/ log2 n

for H1. This gives the exact value of wH(S, V \ S) if S and V \ S is a constant-approximate
minimum cut in G (since the error is at most O(log n) · 1/ log2 n < 1). Putting these things
together, after the stream, we can enumerate all 1.1-approximate minimum cuts and obtain
their exact values, thus getting the exact minimum cut value.

The remaining case to handle is when the minimum cut size is O(log n). Similarly, in this
case, setting ε = 1/ log2 n will give us the exact value of the minimum cut. Finally, we do
not know the value of s, so we will try all powers of 2 for it. Note that we do not need the
exact value; a 2-approximation to s will suffice. The detailed description of the algorithm is
given in Algorithm 2.

To show the correctness of our algorithm, we first prove the following key lemma.

▶ Lemma 29. Suppose that H is a subgraph of G formed by a prefix of the edges in the
random order model. We have that for every S ⊂ V , if |H| = |G| · ℓ

wG(S,V \S) , then with
probability at least 1− 2e−c2·ℓ, |wH(S, V \ S)− ℓ| ≤ 0.1ℓ.

Proof. Consider each edge e that is a cut edge between S and V \ S (let T denote the set of
such edges). Let ye denote the indicator random variable where ye = 1 if e ∈ H and ye = 0
otherwise. Then we have that E[wH(S, V \ S)] = E[

∑
e∈T ye] = ℓ from the assumption in

the random-order model. By a standard Chernoff bound, we have that

Pr[|wH(S, V \ S)− ℓ| ≥ 0.1ℓ] ≤ 2e−c2·ℓ

for some constant c2. ◀

We also need the following structural result for the approximate minimum cuts of a graph.

▶ Lemma 30 ([43]). For any simple, unweighted graph and any constant ε > 0, the total
number of edges that participate in non-singleton (2− ε)-approximate minimum cuts is at
most O(n).

We first consider the case when the minimum cut size s < c log n. In this case, the
minimum cut of H will never exceed c log n since H is a subgraph of G. Since the cut value
is an integer, setting ε = 1/ log2 n gives the exact value of the size of the minimum cut.
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Algorithm 2 MinCutRandomOrder.

Input : Undirected and unweighted graph G(V, E) in a random-order stream with n

vertices and m edges.
1 ALG1 is an instance of Lemma 4 with ε = 1/ log2 n.
2 Maintain the degree of each node di during the stream.
3 foreach edge e in the graph stream do
4 Feed e to ALG1 ;
5 if e is the 2i-th edge for some i ∈ N then
6 H1 ← output of ALG1 (Here H1 is a for-all sparsifier of the prefix graph H);
7 if the minimum cut size of H1 is larger than c log n then
8 Save H1 and break the for loop.

9 H1 ← output of ALG1 ;
10 if there is no new edge in the stream then
11 return the minimum cut value of H1.
12 T ← ∅.
13 foreach new edge e during the stream do
14 if e is the cut edge between some S and V \ S where S and V \ S is a

non-singleton 1.1-approximate minimum cut in H1 then
15 Add e to T

16 foreach S where S and V \ S is a non-singleton 1.1-approximate minimum cut in H1
do

17 vS ← wH1(S, V \ S) + |{e ∈ T : e is a cut edge between S and V \ S}|
18 return the minimum value of min vS and min di

We next consider the other case when s ≥ c log n. We will first show that, as the
number of edges in H increases, the minimum cut size of H will increase to Θ(log n) when
|H| = Θ

( |G| log n
s

)
. We next analyze the value of wH(S, V \ S). Let Si (1 ≤ i ≤ log n) denote

the set of nodes such that

Si = {S ⊂ V | s · 2i−1 ≤ wG(S, V \ S) ≤ s · 2i}

For each Si, from Lemma 21 we know that |Si| ≤ O(n2i+1) and for every S ∈ Si, from
Lemma 29 we know that with probability at least 1 − 2e−c2c·log n·2i−1 = 1 − 2n−c2c·2i−1 ,
wH(S, V \ S) · |G|

|H| is a 1.1-approximation of wG(S, V \ S). Note that the constant c here can
be sufficiently large, and after taking a union bound over all S ∈ Si and all log n Si we get
that with probability at least 9/10, for every S ⊂ V , wH(S, V \S) · |G|

|H| is a 1.1-approximation
of wG(S, V \ S). From the above analysis we immediately know that when |G|

|H| = Θ
(

s
log n

)
from the subgraph H, we can learn the set

S = {S ⊂ V | s ≤ wG(S, V \ S) ≤ 1.12s},

and the next step is choosing the true minimum cut among them. For every non-single node
set S ∈ S, as mentioned, since wH(S, V \ S) is Θ(log n), setting ε = 1/ log2 n we can get its
exact value. The remaining step is to estimate the value of wG\H(S, V \ S). As described
in Algorithm 2, after the previous step, we save every edge e ∈ G \H, where e belongs to
at least one of the non-singleton 1.12-approximate minimum cuts in S. We know the exact
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value of wG\H(S, V \ S) from this edge set. Putting the two things together, for every S ∈ S
and |S| ≥ 2, we know the value of wG(S, V \ S) after taking a sum of the two parts. For
every singleton cut, we simply maintain the degree of each node during the stream. Thus,
after taking the minimum value of the two parts (singleton and non-singleton cuts), we get
the exact value of the minimum cut.

Space Complexity

In the first phase of the algorithm, we use one instance of the algorithm in Lemma 4 with
ε = 1/ log2 n, which takes space Õ(n). In the second phase of the algorithm, we save all
the edges that belong to the approximate minimum cut in H. From Lemma 30, we know
that there are at most O(n) such edges, and hence this part takes O(n) words of space. We
also maintain the degree of each node during the stream, which takes O(n) words of space.
Putting everything together, the space usage of our algorithm is Õ(n).

Time Complexity

In the first phase of the algorithm, when one edge e comes, the update and query time of
ALG1 is polynomial, and we can also find the minimum cut in polynomial time. Hence,
the update time here is still polynomial. In the second phase, when one edge e comes, we
can enumerate all 1.1-approximate minimum cuts to check whether e belongs to one of the
approximate minimum cuts (we can use O(n2) time to enumerate all approximate minimum
cuts, see, e.g., [29]). Hence, we can do the update of this step in polynomial time. After all
edges come, we can similarly enumerate all minimum cuts, from which the overall algorithm
can be implemented in polynomial time.

5.2 Faster Update and Post-Processing Time

In the above algorithm, the runtime bottleneck is when a non-prefix edge e comes; we need to
enumerate all approximate minimum cuts in the prefix graph to check whether to keep this
edge. To get a faster runtime, we instead do a check when we collect n edges and consider
a similar procedure to what we did in Section 4.4 where we use the recursive contraction
algorithm with parameter α = 1+ 1

log n . The difference is when doing the recursive contraction
algorithm, we maintain the sketch SB where S is a k-sparse recovery matrix (see, e.g., [20])
with k log(n/k) rows where k = O(log n) and B is the edge-vertex matrix of the n edges we
currently collected. Particularly, during the recursive contraction process, when we contract
the nodes u, v, we merge the columns that u, v corresponds to in the sketch SB and replace
them with their sum. Next, we consider each leaf node in the recursion, corresponding to one
specific cut for the prefix graph. We can check whether it is a non-singleton and approximate
minimum cut in O(1) time from the information the algorithm keeps. Note that if without
the sketch matrix S, for each edge e we want to check, it belongs to this specific cut if and
only if the e-th coordinates of the remaining two columns of the edge-vertex matrix are 1
and −1, and otherwise these two coordinates are both 0. Since the minimum cut of the
prefix graph is Θ(log n), we can get that both of the remaining columns are O(log n)-sparse
before multiplying the sketch matrix S. This means that a k-sparse approximate recovery
algorithm with k = O(log n) is sufficient to recover the indices of the non-zero coordinates of
the remaining columns, which helps us to find the corresponding edges.
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Time and Space Complexity

We analyze the time and space complexity of the above procedure. At each level of the
recursion, since the sketch has k log(n/k) rows, we need Õ(Nk) words of space to save the
sketch, and it takes Õ(k) time to combine two rows, where N is the number of the remaining
nodes in the current level of the recursion. Recall that we need O(n) space in each level
and O(N) time to contract two nodes in the original recursive contraction algorithm. This
implies the modification only increases the time and space complexity by a factor of Õ(k).
Since the decoding time of the k-sparse recovery sketch is k · polylog(n) and k = O(log n),
we have that the procedure has time complexity Õ(n2) and space complexity Õ(n). Finally,
note that when we collect a set of n edges in the suffix graph, we can do our above checking
procedure while collecting the following n edges in the graph stream, which results in a
strictly O(n) update time of our algorithm. Similarly, suppose the minimum cut of the graph
is Θ(c). When we do the post-processing, we can use the c-sparse recovery sketch when
enumerating all the approximate minimum cuts, which results in a Õ(n2c) post-processing
time. Putting everything together, we have the correctness of Theorem 14.

Lastly, we note that our algorithm can not only return the exact min-cut value but also
collect all the edges that participate in any of the minimum cuts. When computing the
for-all sparsifier of the prefix graph, for an edge that participates in at least one approximate
min-cut, the probability that it will be sampled is Ω(1) as otherwise, the estimated cut value
in such a cut will have two different values each with a constant probability, contradicting the
guarantees of the for-all sparsifier. Hence, we can collect all of these edges from oversampling
by a constant factor, which results in finding all the minimum cuts of the input graph and
the edges crossing them.
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