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Abstract
In this paper, we consider a new problem of portfolio optimization using stochastic information. In
a setting where there is some uncertainty, we ask how to best select k potential solutions, with the
goal of optimizing the value of the best solution. More formally, given a combinatorial problem Π, a
set of value functions V over the solutions of Π, and a distribution D over V, our goal is to select
k solutions of Π that maximize or minimize the expected value of the best of those solutions. For
a simple example, consider the classic knapsack problem: given a universe of elements each with
unit weight and a positive value, the task is to select r elements maximizing the total value. Now
suppose that each element’s weight comes from a (known) distribution. How should we select k

different solutions so that one of them is likely to yield a high value?
In this work, we tackle this basic problem, and generalize it to the setting where the underlying

set system forms a matroid. On the technical side, it is clear that the candidate solutions we select
must be diverse and anti-correlated; however, it is not clear how to do so efficiently. Our main result
is a polynomial-time algorithm that constructs a portfolio within a constant factor of the optimal.
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1 Introduction

Worst-case analysis has long been the prevailing standard for assessing an algorithm’s
performance. However, this approach often falls short in capturing the real-world performance
of algorithms, as instances encountered in practice often differ significantly from those that
define worst-case scenarios. To address this discrepancy, the field of Data-Driven Algorithm
Design has sought to create algorithms that utilize past data about a problem, either implicitly
or explicitly, and provably achieve superior performance on the typical instances that arise
in practical applications. For surveys of this area see [12, 1].
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46:2 Data-Driven Solution Portfolios

Building on this line of research, we study the portfolio optimization problem as a simple
framework for speeding up algorithms using historical data; a method with potential applica-
tions across various combinatorial problems. Specifically, given a combinatorial problem Π, a
solution set I, and a distribution D over value functions (which map solutions to values, with
each function representing a different scenario), our objective is to compute a portfolio of k

solutions that maximizes (or minimizes) the expected value (or cost) of the best among the k

solutions. Starting from a different perspective, Kleinberg, Papadimitriou and Raghavan [9]
have defined a very similar family of optimization problems, called “Segmentation Problems”.
The Portfolio Optimization problem can be seen as a stochastic version of the afore-
mentioned family of problems; actually the two definitions are effectively equivalent when
the distribution over value functions has a polynomial-sized support (for more details see
Related Work, Section 1.2).

The Portfolio Optimization problem captures many natural questions. The problem
mentioned in the abstract–how to select k bundles of r items each so that the expected
value of the best bundle is maximized–is only one of them. Another practical application is
finding the shortest path between two points (e.g., home and work) in a city, under varying
daily traffic conditions. Here, the solution set consists of all possible source-destination
paths and the value functions assign weights to each path based on specific traffic scenarios.
The distribution over value functions models the stochastic nature of traffic. Rather than
rerunning a shortest-path algorithm for each new instance, one could leverage the statistical
knowledge about traffic patterns to precompute a few paths that cover different likely
scenarios (e.g., peak morning traffic, light nighttime traffic, etc.). This approach, then, allows
us to quickly evaluate the precomputed paths under new traffic conditions and select the
best option without the need to resolve the problem from scratch each time.

Interestingly, this stochastic formulation also captures problems outside the area of
speeding up algorithms. In particular, our objective captures any stochastic problem where
one needs to select a set of dependent objects with the goal of maximizing the expectation
of their maximum. A practical example of this is sports betting pools, which was recently
explored in [6]. The authors examine the scenario of participating in a betting pool for
a basketball tournament, where individuals can pay a fee to submit a prediction for the
outcome of all tournament matches, with the potential to win a substantial monetary prize
if their predictions are accurate. Given a budget constraint on the number of entries that
a person can submit, the technical problem essentially reduces to computing a portfolio of
entries that maximizes the probability that one of the selected entries succeeds.

From a technical standpoint, in the maximization variant of our problem, the value of
a portfolio is a submodular function. Therefore, one can find an approximately optimal
portfolio by running the Greedy algorithm, with a running time that is polynomial in the size
of the solution set I. However, for most interesting problems, e.g., spanning trees, entries in
betting pools, etc., the solution set is given implicitly and is usually exponentially large in
the size of the input, making Greedy inefficient. This raises the natural question of whether
one can compute approximately optimal portfolios, for interesting problems, with a running
time that is polynomial in the size of the input.

1.1 Our contributions
The first important contribution of our paper is conceptual: we formulate the Portfolio
Optimization problem from a new, stochastic, viewpoint and show that it captures many
interesting scenarios.
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On the technical side, we focus on constructing solution portfolios for the fundamental
problem of optimization under matroid contraints. We examine the simplified case where
each element of the matroid’s ground set takes a 0-1 value, independently, with some known
probability, and the value of a set is the sum of the values of its elements. Despite its
simplicity, this case captures many core challenges of constructing solution portfolios and
proves to be technically challenging. As we discuss in Section 3, this problem differs funda-
mentally from classical problems in the area of randomized algorithms, because constructing
effective portfolios requires leveraging the “anti-concentration” properties of various solutions.
Additionally, employing standard tools from the literature, such as contention resolution
schemes, presents challenges due to the nature of our objective function. In particular, the
value of a portfolio depends heavily on “abnormal” events, such as significant deviations
from the expected value, occurring in one of its k solutions. However, contention resolution
schemes do not offer per-instance guarantees but rather only work on expectation. Therefore,
we need to take extra care to apply these results while conditioning on those events.

The main technical contribution of our work is to design an algorithm with polynomial
running time in the size of the matroid’s ground set which constructs a portfolio that is a
Θ(1)-approximation of the optimal portfolio.

We give a high-level description of our techniques in Section 3 and present a simpler
algorithm for the case of uniform matroids in Section 4. In the full version of the paper we
show how this algorithm can be extended to work for all matroids.

1.2 Related work
The related work can be broadly categorized into three main directions. The first is the study
of Segmentation Problems, initially introduced by Kleinberg, Papadimitriou and Raghavan [9].
This work, inspired by data mining techniques for market segmentation, defines a new class
of optimization problems named Segmentation Problems. For any combinatorial optimization
problem and a set S of different cost vectors for this problem, the corresponding segmentation
problem asks to partition the set S into several segments and pick a separate solution for each
segment, so that the total cost is minimized. The Portfolio Optimization problem can be
seen as a stochastic variant of the aforementioned family of problems, where instead of a fixed
set of cost vectors, one has access to a distribution over cost vectors and aims to optimize
the expected value of the constructed portfolio. In fact, the two formulations are effectively
equivalent when the distribution over cost vectors has a polynomial-sized support. This new,
stochastic, viewpoint can accommodate a wider variety of applications where randomness is
inherent in the problem at hand (e.g., sports betting, as introduced earlier). Besides that,
it also enables the formulation of elegant and technically challenging theoretical questions,
like the case where every element of a groundset takes a value independently of the other
elements. Another adaptation of the family of “Segmentation Problems” is due to Gupta,
Moondra and Singh [8] who examined a “robust” version of the problem. In this variant,
the objective is to identify a small set of solutions that guarantees a good approximation for
each one of the cost vectors of interest. This approach was motivated by fairness concerns,
aiming to guarantee a good approximation across various cost vectors that may arise due to
different fairness constraints.

On the technical side, Kleinberg et al. [9] study the Catalogue Segmentation problem, i.e.
constructing portfolios for linear maximization with cardinality constraints. For the case
where elements take values in {0, 1}, they design an algorithm that runs in time O(nk log k/δ)
and produces a portfolio that is a (1 − δ)-approximation, under the assumption that on
every instance a large fraction of the items have value 1. Our result is a O(1) approximation

ITCS 2025



46:4 Data-Driven Solution Portfolios

with a running time that is polynomial in both n and k, without the need of a density
assumption, but for the case where the value of each element is independent of the values of
other elements. Furthermore, our results extend to more general settings, accommodating
any matroid constraints on the ground set.

The second related line of work is the area of Data-Driven Algorithm Design and specifically
speeding up an algorithms’ execution by utilizing data. Some of these attempts include
speeding up: the Greedy algorithm for submodular maximization [2, 15], the Hungarian
algorithm for calculating maximum matchings [7], primal-dual algorithms for various graph
problems [3], algorithms for flow problems [4, 5] and the Bellman-Ford algorithm [11]. The
key distinction of our work lies in defining a new set of problems and providing general
techniques for solving them.

A third relevant area of research is stochastic probing and online decision-making (for a
detailed survey, see [14]). These problems typically involve a ground set of elements, each
with an unknown stochastic weight sampled from a known distribution. The algorithm can
probe certain elements – often incurring a cost – in order to reveal their weights. Based
on these observations, it then selects a feasible subset and is rewarded with the weight of
the selected items. A key distinction between this area and the Portfolio Optimization
problem is that, in our setting, the solutions are chosen entirely offline, without observing
any weights, and remain fixed across all possible realizations.

Our problem is more closely aligned with a non-adaptive strategy for stochastic probing.
However, the variants of non-adaptive strategies studied in the literature typically impose
only partial restrictions on the algorithm’s flexibility – for instance, requiring the algorithm
to preselect which elements to probe but still allowing it to form its solution after observing
the probed weights. In contrast, in the Portfolio Optimization problem, the selection is
entirely offline, with no adjustments allowed after weights are realized. For this reasons, the
benchmarks of the two problems are also different: non-adaptive strategies are evaluated
against the optimal value achievable in hindsight, whereas our benchmark is the best offline
strategy with the same constraints as the algorithm.

2 Problem statement and preliminaries

2.1 Portfolio Optimization
In this section we define the Portfolio Optimization problem in its general form, for any
classical combinatorial problem. In the next section, we define the Matroid Portfolio
Optimization problem, which is the portfolio problem for a special case of maximization
with matroid constraints.

We present the maximization variant of our problem, with the minimization version defined
in a similar manner. For any combinatorial problem Π, the Portfolio Optimization
problem is described by a tuple J = (I,V,D, k) where I is the set of feasible solutions of
problem Π, V is a set of value functions from I to R≥0, D is a distribution over V and k is a
natural number that describes the desired size of the portfolio.

Our goal is to select k solutions from I so as to maximize the expected value of the
best of those solutions. That is, for a collection of k sets S = {S1, . . . , Sk} such that
Si ∈ I,∀i ∈ {1, . . . , k} we define its value as:

value(S) = E
v∼D

[
max
Si∈S

v(Si)
]

.
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Formally, we want to solve the following optimization problem.

maximize value(S)
s.t. S = {S1, ..., Sk} and Si ∈ I,∀i ∈ [k].

We remark that the solutions S1, . . . , Sk are chosen offline, without observing the realized
value function, but rather only by using our knowledge about the distribution D.

For any input tuple J , we denote by O(J ) = {O1(J ), . . . , Ok(J )} the optimal portfolio,
that is the maximizer of the above optimization problem. To ease notation, whenever the
input and the algorithm are clear from the context we use O = {O1, . . . , Ok} and OPT to
denote the optimum solution and its value respectively.

For an algorithm ALG we denote by SALG(J ) its output on input J . We say that ALG
is a c-approximation if it always outputs a collection of feasible solutions and:

E
ALG

[
value

(
SALG(J )

)]
≥ c · value (O(J )) , ∀J

where the expectation is taken over the internal randomness of ALG.

In the maximization variant of the problem, the value of a set of solutions, defined as the
expected maximum of their values, is a monotone submodular function, as demonstrated
by Kleinberg and Raghu [10]. Consequently, the celebrated Greedy algorithm of [13] is a
(1−1/e) approximation that runs in polynomial time in the size of the solution set I. Without
imposing any further restrictions to the problem, this is the best approximation ratio one
can achieve, as the Max-k-Cover problem can be reduced to the Portfolio Optimization
problem. The details of the reduction are deferred to the full version of the paper.

Although Greedy achieves the optimal approximation ratio for this problem, its running
time is impractical for most interesting applications like max-k-cover, knapsack, shortest
paths, spanning trees, etc. In all of the aforementioned applications, the set of feasible
solutions is given implicitly and is exponentially large in the size of the input. Therefore, one
needs to have a running time that is polynomial in the description of the solution set, rather
than its size. This raises the natural question of whether one can compute approximately
optimal portfolios, for interesting problems, with a running time that is polynomial in the
description of the solution set I.

In this work, we focus on the fundamental case of optimization over matroid contraints
and answer the latter question affirmatively for a natural distribution over value functions.
We formulate this problem in the following section.

2.2 Matroid Portfolio Optimization

The Matroid Portfolio Optimization problem is a special case of the Portfolio
Optimization problem, where the set of feasible solutions, I, is the family of independent
sets of an underlying matroid M = (E, I) (see Definition 1). The set V of value functions
is the set of all additive set functions that map the elements of E to {0, 1}. Formally, for
any value function u ∈ V, element e ∈ E and subset S ⊆ E we have: u({e}) ∈ {0, 1} and
u(S) =

∑
e′∈S u({e′}). Throughout the paper we use the term “active” to denote an element

e ∈ E that takes value one, under a specific value function, and the term “inactive” to
describe an element with value zero.

ITCS 2025



46:6 Data-Driven Solution Portfolios

We assume that D is such that each element e ∈ E is active with probability pe,
independently of the values of the rest of the elements of E. Formally,

∀S ⊆ E : Pr
u∼D

[ ∧
e∈S

{u({e}) = 1}
]

=
∏
e∈S

pe

To simplify the notation we define an equivalent distribution D′ over subsets of E, that
represent the set of active elements, such that

∀e ∈ E : Pr
u∼D

[u({e}) = 1] = Pr
A∼D′

[e ∈ A] .

and

∀S ⊆ E : Pr
A∼D′

[ ∧
e∈S

{e ∈ A}

]
=

∏
e∈S

pe

In other words, instead of sampling a value function that assigns {0, 1} values to the elements,
we can equivalently sample the set of active elements and, thus, switch to distributions over
subsets of E. Also, the value of any set S ⊆ E will now be equal to the random variable
|S ∩A|, where A is the random set denoting the active elements.

For the remainder of the paper, the input to the Matroid Portfolio Optimization
problem will be described by a triplet J = (M, k,D), where M = (E, I) is a matroid
over the ground set E, k a natural number describing the desired size of the portfolio
and D is a distribution over subsets of E such that each element e ∈ E is included in a
sample, independently, with probability pe. For a collection S = {S1, . . . , Sk} such that
Si ∈ I,∀i ∈ {1, . . . , k}, we define its value as

value(S) = E
A∼D

[
max
Si∈S

|Si ∩A|
]

.

2.3 Preliminaries
In this subsection we introduce notation and give some preliminary definitions. First, for
any positive integer ℓ we use the shorthand [ℓ] to denote the set {1, . . . , ℓ}. In addition, we
give the definition of matroids below.

▶ Definition 1. A pair M = (E, I) is called a matroid if E is a finite ground set and I is a
non-empty collection of subsets of E such that
1. If I ∈ I and J ⊆ I, then J ∈ I,
2. If I, J ∈ I and |I| < |J |, then I + e ∈ I for some e ∈ J \ I.
For a matroid M = (E, I) the elements of I are called the independent sets of M . The
rank function of a matroid M , rM : 2E → N, maps each set U ⊆ E to the size of the largest
independent set contained in U . We use the term “rank of a matroid M” to denote the
rank r of the ground set, i.e. r = rM (E). A set B ⊆ E is called a base if and only if
it’s a maximum size independent set. In addition, the span of a set S ⊆ E is defined as
spanM (S) = {e ∈ E : rank(S ∪ {e}) = rank(S)}.

The matroid polytope P(M), of a matroid M , is a subset of R|E| that is defined by the
following sets of inequalities, where rM is the rank function of M .

P(M) =


∑
e∈U

xe ≤ rM (U), ∀U ⊆ E

xe ≥ 0, ∀e ∈ E


It is well known that one can check whether some x ∈ R|E| lies in the matroid polytope,

that is x ∈ P(M), in polynomial time in the size of E.
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3 Overview of our Techniques

The core difficulty of the Matroid Portfolio Optimization problem stems from its
objective function. Indeed, calculating or bounding, the expectation of the maximum of k

random variables is a difficult task, especially when the random variables are dependent.
Apart from that, optimizing under this objective requires to look at the problem from a
perspective that differs with what we are used to in the analysis of randomized algorithms.
Usually, we argue that our solutions have a good enough expectation and that they reach this
expectation with a reasonable probability. However, in order to construct a good portfolio we
are interested in the “anti-concentration” properties of the solutions that we pick, meaning
that we want each solution to be able to greatly surpass its expected value with a reasonable
probability. Intuitively, if the values of our solutions were i.i.d. random variables, we would
want them to be somewhat “heavy-tailed” so that after k independent samples there would
be a good probability that we observe a high outlier. On the other hand, if the solutions
that we pick were highly concentrated around their expected value, then we would observe
almost no benefit by taking the maximum of several random variables.

In this section, we first highlight our ideas for the simpler case of Matroid Portfolio
Optimization for uniform matroids and then explain how they can properly be generalized
to work for all matroids. As a reminder, in the Matroid Portfolio Optimization
problem on uniform matroids, we are given a ground set of n elements and we want to
construct a portfolio P consisting of k subsets of the elements, each of size r. The value of
the i-th element is an independent Bernoulli random variable with probability pi and we are
interested in maximizing the value of the portfolio that we construct.

Even in this simple case, understanding the core trade-off of using a higher probability
element multiple times across solutions versus replacing it with independent elements of lower
probability is a challenging task. In order to build some intuition, in the next subsection, we
discuss some natural approaches for this simple case and show why they fail to produce a
portfolio that is a constant-factor approximation of the optimal portfolio.

3.1 Natural approaches that fail
The first approach for this problem is simply to pick the k independent sets with the highest
expected value. Of course, it makes sense to enforce that these independent sets are disjoint,
since we want them to “complement” each other. If these sets had large pairwise intersections,
we would observe no benefit from selecting k of them instead of one. In other words, a
natural strategy is to pick the highest expectation subset, remove it from the ground set,
continue by picking the highest expectation subset of the remaining elements and so on.
However, this approach will fail to construct a good portfolio.

Intuitively, in some cases it is better to restrict ourselves to considerably less disjoint
subsets and complete our portfolio by combining those subsets in a clever way, instead of using
new subsets that might have lower expectation. For example, consider the instance where
we need to pick k subsets of size r = k and we have n = r2 elements available. Let the first
k log k elements have activation probability 1/k, and the rest to have activation probability
1/k2. The approach described above will form k disjoint subsets, out of which log k will behave
as independent binomials with expectation 1 and the rest will be independent binomials
with expectation 1/k. The value of this portfolio will be dominated by the expectation of the
maximum of the first log k binomials, which is O(log log k). Surprisingly, instead of using
the lower probability elements, one can pick k solutions by uniformly combining parts of
the first log k subsets and construct a portfolio that has value Θ(log k/ log log k), which is

ITCS 2025



46:8 Data-Driven Solution Portfolios

asymptotically optimal (we describe this construction in the full version of the paper). This
example showcases the power of having a clever “mixing” strategy as this can boost the
portfolio to achieve an exponentially better value than a portfolio that only uses disjoint
solutions. In fact, in this example, a strategy that picks only disjoint solutions would need k

disjoint subsets of expectation 1 in order to achieve the same value as the one achieved by
uniformly mixing log k subsets of expectation 1.

3.2 Main ideas
Filtering out elements

From the previous example, it becomes evident that a candidate algorithm should have a
filtering procedure that discards some elements of the ground set, and a mixing strategy, which
combines the remaining elements to form the desired subsets. It is natural to wonder if one
can commit to the simplest possible mixing strategy (i.e. sampling elements uniformly) and
try to find a filtering rule that would make this strategy work. Note that the nearly-optimal
solution constructed for the previous example actually fits into this framework.

In the simpler case of uniform matroids, designing the filtering procedure can be reduced
to first sorting the elements in decreasing order of their probabilities and then selecting a
prefix of this order. A key observation in our work is that there always exists a prefix of
the elements that admits a good portfolio under the simplest mixing strategy, i.e. forming
subsets by uniform sampling. This observation directly gives us a polynomial-time constant-
approximation algorithm, as one can try all possible n prefixes, generate the corresponding
portfolios through uniform sampling and keep the best one of them after estimating their
values. We formally present this algorithm in Section 4 and build up to our algorithm for
general matroids in the full version of our paper.

Analyzing the value of the produced portfolio

The simplicity of our mixing strategy allows us to bypass dealing with the dependencies of
the solutions we form when we want to lower bound the expectation of their maximum. On
a high level, to analyze the value of our portfolio, we first fix the randomness of the instance,
by conditioning on an outcome for the active elements, and then analyze the expected value
of a sampled solution over the internal randomness of the algorithm. Once we have fixed
the outcome of the active elements, the values of the sampled solutions are simply binomial
random variables that only depend on the internal randomness of the sampling procedure.
Critically, this makes the values of the sampled solutions independent random variables which
makes them much easier to work with. On the other hand, if we had first fixed the portfolio
produced by the algorithm and then tried to analyze its value over the randomness of the
instance, we would have to analyze the dependencies of the picked solutions and how these
influence the value of the portfolio, which is a much harder task. This analysis technique, of
course, comes with its own challenges as selecting the appropriate event to condition on is
not a trivial task.

Generalizing to all matroids

The filtering procedure described above fails to work beyond uniform matroids, simply
because it ignores the underlying matroid structure of the elements. For example, consider
the case of the graphic matroid of a graph G that consists of a clique on

√
n vertices and a

simple path of n−
√

n vertices. Let the activation probabilities of the edges of the clique
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to be 1/
√

n and the activation probabilities of the edges of the path to be 1/
√

n− ϵ for some
small ϵ > 0. Ordering the elements by their activation probabilities and selecting a prefix of
this ordering goes towards the wrong direction as one should prioritize taking edges from the
path over taking edges from the clique. Indeed, taking the path as our only solution would
give us an expected value of Θ(

√
n), whereas any portfolio of k = O(n) spanning trees of the

clique has value at most O(log n/ log log n).
In order to overcome this issue, we change our filtering procedure to select a certain

number of disjoint, high-expectation, independent sets of the matroid. In other words, we
create an ordering of disjoint independent sets of decreasing expectation and we take a prefix
of this ordering. Constructing this ordering can simply be achieved by finding the biggest
expectation base of the matroid through the Greedy algorithm, then restricting the matroid
to the remaining elements and repeating. As in the case of uniform matroids, we prove
that there always exists a prefix of this ordering that admits a nearly-optimal portfolio after
sampling elements uniformly and then passing them through a contention resolution scheme.

Finally, the biggest technical challenge of this problem is analyzing the value of the
produced portfolios in the case of general matroids. To be more precise, the value of a
portfolio heavily relies on “abnormal” events happening in one of its k solutions. For example,
if we fix a set of active elements, and analyze the expected value of the sampled solutions
over the internal randomness of the algorithm, the expected value of each solution will be
the number of active elements we expect to sample in one trial. Crucially, one of the k trials
will sample much more active elements than its expectation, and this trial will be responsible
for the value of the portfolio. At this point, this solution will be passed through a contention
resolution scheme to be trimmed down to an independent set. However, contention resolution
schemes do not have per-instance guarantees but only work in expectation. Therefore, there
is no guarantee that, when this abnormal event happens, the active elements are not going
to be discarded by the contention resolution scheme. We overcome this issue by conditioning
on appropriate events that do not entirely fix the randomness of either the instance or the
algorithm, but still allow us to use the guarantees of a contention resolution scheme and
argue that one of the sampled solutions reaches a near-optimal value. This is the main result
of our work which is formally stated below.

▶ Theorem 2. If D is a product distribution then there exists an algorithm that is achieves
Θ(1)-approximation for the k-portfolio solution problem and has a polynomial time complexity.

4 Warm-up: An O(1) approximation for Uniform Matroids

In this section we formally introduce some of the ideas described above by presenting our
algorithm for the case of uniform matroids. We remind the reader that the input is described
by a triplet J = (M, k,D) where M = (E, I) is a (uniform in this section) matroid with rank
r, k is the size of our portfolio and D is a product distribution where each element e ∈ E

is active with probability pe. For simplicity, we order elements in E in decreasing order of
their probabilities. We denote by ei the i-th element in this order and by pi its activation
probability. In addition, throughout this section we assume that OPT ≥ 200. In the full
version of the paper, we prove that lower bounding OPT by a large constant is without loss
of generality.

As mentioned in Section 3, our algorithm filters out some elements of the ground set and
then produces the k solutions of its portfolio by sampling elements uniformly at random.
We prove that for any instance of the problem, there exists a prefix of the elements (when
ordered by decreasing activation probability) that admits a near-optimal portfolio under
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uniform sampling. Therefore, the algorithm simply needs to try all n prefixes, estimate the
values of the constructed portfolios and output the best one of them. We give the pseudocode
of this strategy in Algorithm 1.

Algorithm 1 An algorithm for Uniform Matroids.

function Create-Portfolio(J = (M, k,D)) ▷ M : uniform matroid of rank r

Portfolios← []
for i = 1, . . . , n do

Prefix← {1, . . . , i} ▷ Elements are ordered with decreasing pi

Portfolios[i]← Portfolio-From-Prefix(Prefix, k, r)
end for
Estimate the values of the n portfolios
Return the portfolio with the biggest estimated value

end function

function Portfolio-From-Prefix(Prefix, k, r)
P ← {}
for i = 1, . . . , k do

Let Vi = {s1, . . . sr} be r uniformly random samples from Prefix
S ← non-duplicate elements of Vi

P ← P ∪ S

end for
return P

end function

In order to prove that Algorithm 1 is an O(1)-approximation, it suffices to show that
there exists a prefix on which sampling elements uniformly creates a portfolio with value
at least Θ(1) · OPT. Indeed, the value of each solution can be estimated using standard
techniques within a small factor with polynomially many samples with high probability.
Since there is only n solutions the estimate is close for all of them with good probability (by
union bound) and we output the best solution. The prefix on which we will focus, is the
largest prefix whose expected value is at most OPT/2. More formally, let M be the largest
index such that

M∑
i=1

pi < OPT/2.

By the definition of M , we know that
∑M+1

i=1 pi ≥ OPT/2, therefore we also get that

M∑
i=1

pi ≥ OPT/2− pM+1 ≥ OPT/2− 1 ≥ OPT/3,

where in the last inequality we used that OPT ≥ 6.
Our first observation is that there exists a portfolio which only uses elements outside of the

selected prefix, i.e. elements with lower activation probability than what our algorithm has
picked, and that achieves value at least OPT/2. This portfolio is the restriction of the optimal
one to the elements outside of the prefix. Let H = {e1, . . . , eM} and L = {eM+1, . . . , en}.
The aforementioned claim is stated formally in the following lemma:

▶ Lemma 3. EA∼D [maxOi∈O |Oi ∩ L ∩A|] ≥ OPT
2 .
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Proof of Lemma 3.

OPT = E
A∼D

[
max
Oi∈O

|Oi ∩A|
]

(1)

= E
A∼D

[
max
Oi∈O

|Oi ∩H ∩A|+ |Oi ∩ L ∩A|
]

(2)

≤ E
A∼D

[
|A ∩H|+ max

Oi∈O
|Oi ∩ L ∩A|

]
(3)

≤ OPT
2 + E

A∼D

[
max
Oi∈O

|Oi ∩ L ∩A|
]

(4)

⇒ E
A∼D

[
max
Oi∈O

|Oi ∩ L ∩A|
]
≥ OPT

2 , (5)

where from (2) to (3) we used that Oi ∩H ∩ A ⊆ H ∩ A for all i and from (3) to (4) that
EA∼D [|A ∩H|] =

∑M
i=1 pi ≤ OPT

2 . ◀

The next observation we make is that if someone had access to k · r independent copies
of the element eM+1, then by using these elements they could construct a portfolio that has
value at least OPT/2.

▶ Lemma 4. Let B1, . . . , Bk be k i.i.d random variables following Bin(r, pM+1). Then,

E
[
max
i∈[k]

Bi

]
≥ OPT

2 .

Proof of Lemma 4. From Lemma 3, we know that there exist k dependent Poisson Binomials,
namely the solutions picked by the optimal portfolio restricted to L, each of which has at
most r trials, trial probabilities at most pM+1, and whose expected maximum is at least
OPT/2. The proof follows from the fact that one construct the desired Binomials, B1, . . . , Bk,
by starting from the Poisson Binomials and doing the following transformations:
1. Increase the number of trials of all Poisson Binomials to r by augmenting new independent

Bernoulli random variables each having probability pM+1.
2. Make the Poisson Binomials independent by introducing new independent copies for the

elements that are shared across many solutions.
3. Transform the Poisson Binomials into Binomials by increasing all probabilities to pM+1.
All of the above transformations do not decrease the expectation of the maximum of the
random variables, since (1) the augmented variables stochastically dominate the previous
ones, (2) making the random variables independent can only increase the expectation of their
maximum, because solutions with shared elements are positively correlated and “fail” together
and (3) increasing the probabilities of the trials can also only increase the expectation of
their maximum. ◀

The previous lemma gives us a “target” for analyzing the expected value of our portfolio.
After conditioning on an appropriate constant probability event for the activation of elements,
we argue that the values of the sampled solutions are independent Binomial random variables
with trial probability close to pM+1. We define such event as H having at least OPT/12
active elements and prove that the latter happens with probability at least 1/2. To that end,
let W =

{
Ẽ ⊆ E : |Ẽ ∩H| ≥ OPT/12

}
.

▶ Lemma 5. PrA∼D [A ∈W ] ≥ 1/2.
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Proof of Lemma 5. The left hand side of the desired inequality can be written as:

Pr
A∼D

[A ∈W ] = Pr
A∼D

[
|A ∩H| ≥ OPT

12

]
(1)

≥ Pr
A∼D

[
|A ∩H| ≥ E [|A ∩H|]

4

]
(2)

≥ Pr
A∼D

[
||A ∩H| −E [|A ∩H|]| ≤ 3

4 E [|A ∩H|]
]

(3)

≥ 1− 2e−( 3
4 )2· 1

3 ·E[|A∩H|] (4)

≥ 1
2 (5)

where for (1) and (4) we used that EA∼D [|A ∩H|] =
∑M

i=1 pi ≥ OPT
3 ≥ 10 and for (3) we

used a Chernoff Bound for the Binomial random variable |A ∩H|. ◀

We continue by proving Lemma 6 for the expected value of the sampled multisets Vi. For
simplicity, we slightly abuse notation and for any set Ẽ ⊆ E we use |Vi ∩ Ẽ| to denote the
sum

∑
x∈Vi

1{x ∈ Ẽ}.

▶ Lemma 6. For any Ẽ ∈W , it holds that

E
ALG

[
max
i∈[k]
|Vi ∩ Ẽ|

]
≥ OPT/24.

Proof of Lemma 6. When we have fixed an outcome Ẽ ∈ W for the active elements, the
values of the sampled multisets, Vi, depend only on the internal randomness of our sampling
procedure and are, thus, independent random variables. In addition, the algorithm samples
elements uniformly at random from H. Therefore the probability that a sampled element is
active is
|Ẽ ∩H|
|H|

≥ OPT
12 · |H| ≥

∑
i∈H pi

12 · |H| ≥
pM+1

12 ,

where for the first inequality we used that the definition of W , for the second inequality we
used that

∑
i∈H pi ≤ OPT/2 from the definition of the prefix H, and for the third inequality

we used that ∀i ∈ H : pi ≥ pM+1.
Therefore, the random variables |Vi ∩ Ẽ| are independent Binomials with trial probability

at least pM+1/12 for all i. Intuitively, this means that the expectation of their maximum
should be close to the expectation of the maximum of k independent binomials with trial
probability pM+1, which by Lemma 4 is at least Θ(1) ·OPT.
More formally, let B1, . . . , Bk be iid random variables following Bin(r, pM+1) and B′

1, . . . , B′
k

be iid random variables following Bin(r, pM+1/12). Then for any Ẽ ∈W , it holds that

E
ALG

[
max
i∈[k]
|Vi ∩ Ẽ|

]
≥ E

[
max
i∈[k]

B′
i

]
≥ 1

12 E
[
max
i∈[k]

Bi

]
≥ OPT

24 ,

where the first inequality holds because the values of the sampled multisets dominate the
random variables B′

i. For the second inequality, intuitively, one can view the process of
sampling the random variables B′

i as first sampling the Binomials B1, . . . , Bk and then
discarding every Bernoulli random variable that succeeded, independently, with probability
1/12. In this way, for every outcome of the Binomials B1, . . . Bk, the Binomials B′

1, . . . , B′
k

will retrieve, on expectation, a 1/12 factor of their corresponding random variables Bi.
Finally, for the third inequality we used Lemma 4. ◀
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We continue by proving that for any “good” outcome Ẽ ∈W , the expected value of the
maximum of the sets S1, . . . , Sk, that consist of the unique elements of the sampled multisets,
Vi, is still Θ(1) ·OPT.

▶ Lemma 7. For any Ẽ ∈W , it holds that

E
ALG

[
max
i∈[k]
|Si ∩ Ẽ|

]
≥ e

240(e− 1) ·OPT.

Proof of Lemma 7. In order to analyze the expected value of the portfolio for the events
Ẽ ∈W , we will condition on the value of the maximum of the multisets V1, . . . , Vk. By the
law of total expectation we get that

E
ALG

[
max
i∈[k]

|Si ∩ Ẽ|
]

=
∑

x

E
ALG

[
max
i∈[k]

|Si ∩ Ẽ|

∣∣∣∣∣ max
i∈[k]

|Vi ∩ Ẽ| = x

]
· Pr

ALG

[
max
i∈[k]

|Vi ∩ Ẽ| = x

]
. (‡)

Lower bounding the following expression,

E
ALG

[
max
i∈[k]
|Si ∩ Ẽ|

∣∣∣∣∣ max
i∈[k]
|Vi ∩ Ẽ| = x

]
,

can be seen as a balls and bins question. Specifically, we know that one of the k solutions
formed by the algorithm sampled x items from |Ẽ ∩H|. Since the algorithm is sampling
elements uniformly at random, those x items are also distributed uniformly at random inside
|Ẽ ∩H|. We are interested in calculating the expected number of distinct items that were
sampled. This question is equivalent to counting the non-empty bins after throwing x balls
uniformly into |Ẽ∩H| bins. Using a standard result about the expected number of non-empty
bins, we get that

E
ALG

[
max
i∈[k]
|Si ∩ Ẽ|

∣∣∣∣∣ max
i∈[k]
|Vi ∩ Ẽ| = x

]
≥ min

{
x

2 ,
3|Ẽ ∩H|

10

}
.

Eq. ‡ can now be re-written as

E
ALG

[
max
i∈[k]
|Si ∩ Ẽ|

]
≥

∑
x

min
{

x

2 ,
3|Ẽ ∩H|

10

}
· Pr

ALG

[
max
i∈[k]
|Vi ∩ Ẽ| = x

]
(1)

≥
∑

x

min
{

x

2 ,
OPT

40

}
· Pr

ALG

[
max
i∈[k]
|Vi ∩ Ẽ| = x

]
(2)

≥ min
{

OPT
300 ,

OPT
40

}
· Pr

ALG

[
max
i∈[k]
|Vi ∩ Ẽ| ≥ OPT

150

]
(3)

≥ OPT
300 · Pr

ALG

[
max
i∈[k]
|Vi ∩ Ẽ| ≥

EALG
[
maxi∈[k] |Vi ∩ Ẽ|

]
5

]
(4)

≥ e

300(e− 1) ·OPT, (5)

where for (2) we used the fact that |Ẽ∩H| ≥ OPT/12 for Ẽ ∈W , to get (3) we restricted the
sum to the terms x ≥ OPT/150, to get (4) we used that EALG

[
maxi∈[k] |Vi ∩ Ẽ|

]
≥ OPT/24

from Lemma 6 and to get (5) we used a concentration inequality for the maximum of
independent Binomial random variables and the assumption that OPT ≥ 800 to get that
EALG

[
maxi∈[k] |Vi ∩ Ẽ|

]
is at least some constant. ◀
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Finally, we are ready to prove the main theorem of the section.

▶ Theorem 8. Algorithm 1 is a Θ(1)-approximation algorithm for the k-solution portfolio
problem when the given matroid is uniform and D is a product distribution.

Proof of Theorem 8. The value of the constructed portfolio P can be written as:

value(P) = E
ALG,A∼D

[
max
i∈[k]
|Si ∩A|

]
(1)

≥
∑

Ẽ∈W

E
ALG

[
max
i∈[k]
|Si ∩ Ẽ|

]
· Pr

A∼D

[
A = Ẽ

]
(2)

≥ e

300(e− 1) ·OPT ·
∑

Ẽ∈W

Pr
A∼D

[
A = Ẽ

]
(3)

≥ e

300(e− 1) ·OPT · Pr
A∼D

[A ∈W ] (4)

≥ e

600(e− 1) ·OPT, (5)

where to get (3) we applied Lemma 7 and (5) follows from Lemma 5. ◀
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