
Edge-Minimum Walk of Modular Length in
Polynomial Time
Antoine Amarilli #

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
LTCI, Télécom Paris, Institut polytechnique de Paris, France

Benoît Groz #

Paris-Saclay University, CNRS, LISN, France

Nicole Wein #

University of Michigan, Ann Arbor, MI, USA

Abstract
We study the problem of finding, in a directed graph, an st-walk of length r mod q which is edge-
minimum, i.e., uses the smallest number of distinct edges. Despite the vast literature on paths
and cycles with modularity constraints, to the best of our knowledge we are the first to study this
problem. Our main result is a polynomial-time algorithm that solves this task when r and q are
constants.

We also show how our proof technique gives an algorithm to solve a generalization of the
well-known Directed Steiner Network problem, in which connections between endpoint pairs are
required to satisfy modularity constraints on their length. Our algorithm is polynomial when the
number of endpoint pairs and the modularity constraints on the pairs are constants.

In this version of the article, proofs and examples are omitted because of space constraints.
Detailed proofs are available in the full version [3].

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Shortest paths

Keywords and phrases Directed Steiner Network, Modularity

Digital Object Identifier 10.4230/LIPIcs.ITCS.2025.5

Related Version Full Version: https://arxiv.org/abs/2412.01614 [3]

Funding Antoine Amarilli: Amarilli was partially supported by the ANR project EQUUS ANR-
19-CE48-0019, by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
431183758, and by the ANR project ANR-18-CE23-0003-02 (“CQFD”).

Acknowledgements We are grateful to the reviewers of the conference version for their helpful
feedback. We also would like to thank the Simons Institute Fall 2023 programs “Logic and Algorithms
in Database Theory and AI” and “Data Structures and Optimization for Fast Algorithms” for the
initiation of this work. Last, we are grateful to Xiao Hu and Mikaël Monet for early discussions.

1 Introduction

We begin with a simple question: Given an n-vertex, m-edge directed graph G and terminals
s,t, can we efficiently find an odd-length st-walk that is “edge-minimum”, i.e., has the
minimum number of distinct edges? This question may appear similar to classical problems
from the vast literature on paths and cycles with parity constraints. For instance, one may
think of the classical “shortest odd st-path” problem, which is well-known to be NP-hard
(this is via a simple reduction from the 2-disjoint paths problem of [19], and can be proved in
the same way as [37, Proposition 2.1]). However, this hardness result only applies to simple
paths, whereas the edge-minimum odd st-walk may not be a simple path. One may also think
of the “shortest odd st-walk” problem (i.e., minimizing the length), which is well-known to

© Antoine Amarilli, Benoît Groz, and Nicole Wein;
licensed under Creative Commons License CC-BY 4.0

16th Innovations in Theoretical Computer Science Conference (ITCS 2025).
Editor: Raghu Meka; Article No. 5; pp. 5:1–5:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoine.amarilli@inria.fr
https://orcid.org/0000-0002-7977-4441
mailto:benoit.groz@lisn.upsaclay.fr
https://orcid.org/0000-0001-7292-6409
mailto:nswein@umich.edu
https://orcid.org/0000-0003-2792-2374
https://doi.org/10.4230/LIPIcs.ITCS.2025.5
https://arxiv.org/abs/2412.01614
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Edge-Minimum Walk of Modular Length in Polynomial Time

s

a

b

c

d

e

t

f g h

i

j

k

Figure 1 An example of a graph with different answers to the problems of finding the edge-
minimum odd st-walk, the shortest odd st-walk, and the shortest odd simple st-path. First, every
simple path from s to t is of even length, so there is no shortest odd st-path. Second, the shortest
odd st-walk uses the bottom cycle s, f, g, h, i, j, k, g, h, t: it has length 9 and uses 8 distinct edges.
Third, the edge-minimum odd st-walk uses the top cycle: s, a, b, c, d, e, a, b, c, d, e, t. It has length 11
but uses only 7 distinct edges.

be in polynomial time1. However, the edge-minimum odd st-walk may be longer than the
shortest odd st-walk while using fewer distinct edges. See Figure 1 for an example of a graph
in which the solutions to all three of these problems is different.

The focus of this paper is the Edge-Minimum Walk of Modular Length problem, which is
the above problem generalized to an arbitrary modularity q and remainder r. Let us define
it formally:

Edge-Minimum Walk of Modular Length (EWM):
Input: An unweighted directed2 graph G, terminals s,t, and non-negative integers
r < q.
Output: An st-walk of length r mod q which is edge-minimum, i.e., uses the minimum
number of distinct edges (or ∅ if no such walk exists).

We stress that the modularity constraint does not apply to the number of distinct edges,
but only to the length of the walk. We are most interested in the regime where q, and hence
r, are constants; our algorithms will work without this assumption, but they achieve worse
complexities.

Despite the vast literature on paths and cycles of given modularities [31, 26, 37, 36, 39,
27, 4, 38, 10, 41, 34, 32, 29, 40, 24, 1, 35, 6, 25, 14, 16, 7, 23] (see [2] for a survey), to the
best of our knowledge we are the first to study the EWM problem.

EWM can also be viewed as a problem in the field of network design. Network design
problems ask questions of the form “find an edge-minimum subgraph with a certain property”.
Famous network design problems include, for instance, Minimum Spanning Tree, Traveling
Salesperson, and st-Shortest Path. We can give an equivalent rephrasing of EWM in this
way: find an edge-minimum subgraph that contains an st-walk of length r mod q. The
network design problem most related to EWM is the Directed Steiner Network problem
(DSN) [17, 18, 8, 20, 15, 9, 33, 21, 13]. In DSN, the input is a directed graph G and a set
of k terminal pairs (s1,t1),. . . ,(sk,tk); the goal is to find an edge-minimum subgraph that

1 Make two copies of the vertex set, and for every edge u → v in the original graph, add the edges u1 → v2
and u2 → v1. Then find the shortest walk from s1 to t2. This also trivially generalizes to modularities
which are polynomial in n.

2 One could also ask this question on an undirected graph. However, in this case, one unnatural aspect of
the problem is that one can always traverse the same edge back and forth over and over to add any
multiple of 2 to the path length. We use this observation to show in the full version [3] that EWM on
undirected graphs reduces to EWM on directed graphs.

A. Amarilli, B. Groz, and N. Wein 5:3

contains a path si → ti for all terminal pairs. When k is arbitrary, DSN generalizes Directed
Steiner Tree and is therefore NP-hard. When k is constant, Feldman and Ruhl [17] showed
that DSN can be solved in polynomial time. In fact, we show in Section 8 that, in the special
case where the set of terminal pairs is strongly connected, the DSN problem with constant k

can be directly expressed as a special case of EWM with constant q. As a consequence, our
main result will imply, as a byproduct, the known result that this special case of DSN is in
polynomial time for constant k [17] (albeit with a larger exponent). We also study a problem
generalizing both EWM and DSN and give an algorithm that subsumes the tractability of
both problems, as we will explain later in the introduction.

EWM is also related to problems from database theory, in particular the evaluation of
regular path queries (RPQs) on graph databases. More precisely, a graph database is a
graph whose edges are labeled with symbols from a fixed alphabet, and an RPQ is a regular
expression e over the alphabet. The results of the RPQ are vertex pairs (s, t) such that there
is a walk from s to t (or sometimes a simple path or a trail, depending on the variant) whose
edge labels from a word that matches e (see e.g. [12, 11, 5, 28]). In particular, RPQs of the
form ar(aq)∗ express walks of length r mod q for constant r and q. The EWM problem then
corresponds to the smallest witness problem [30, 22] for such queries, which is the problem
of finding a sub-database of minimum size that satisfies the query. However, to the best of
our knowledge there is no prior work on the smallest witness problem for RPQs enforcing
modularity conditions, or indeed for RPQs in general: our work can be seen as a first step
towards addressing this problem.

Our results. What is the complexity of EWM for constant q? It is unclear a priori; EWM is
related to both polynomial-time solvable problems such as Shortest Modular-Length st-Walk
and Directed Steiner Network, as well as NP-hard problems such as Shortest Modular-Length
st-Path. Our main result is that EWM is in polynomial time for constant q:

▶ Theorem 1.1. There is an algorithm solving EWM in time: nO(log q) · 2O(q log2 q).

Specifically, the exponent of n in Theorem 1.1 has reasonable constants: 7 + 3 log2 q,
though we did not focus on optimizing them.

Generalizations. A natural generalization of EWM is to consider weighted graphs. EWM
admits two natural notions of weights: (1) each edge has a length, and the length of a walk
is the sum of the lengths of the edges, and (2) each edge (or vertex) has a cost and the
edge-minimum walk is measured in terms of the sum of the costs of the edges (or vertices)
that it traverses. We show in Section 7 that our algorithm extends to accommodate costs,
and that it can also accommodate lengths provided that their values are polynomial. In
the case where lengths and the value q are super-polynomial, we show that the problem is
NP-complete by reduction from Subset Sum.

Inspired by Directed Steiner Network, we also extend our results in Section 8 from
one walk to multiple walks. The input is a directed graph G, and k endpoint pairs along
with modularity constraints: (s1, t1, q1, r1), . . . , (sk, tk, qk, rk), and the goal is to find an
edge-minimum subgraph that contains a walk from si to ti of length ri mod qi, for all i.
Generalizing our main result, we show (Theorem 8.4) that this problem, which subsumes the
DSN and EWM problems, also admits a polynomial-time algorithm for constant qi values
and a constant number k of endpoint pairs. Our approach to show the result focuses on the
case of strongly connected solutions (in line with the connection to DSN mentioned earlier),
before extending the proof to arbitrary solutions by re-using lemmas from [18].

ITCS 2025

5:4 Edge-Minimum Walk of Modular Length in Polynomial Time

2 Technical Overview

Our work is related to the Directed Steiner Network (DSN) problem studied by Feldman and
Ruhl [17], where we must find an edge-minimum subgraph of the input directed graph which
satisfies connectivity requirements. Their work shows that the DSN problem is tractable
when the number of endpoint pairs in the connectivity requirements is constant. Following
their work, Feldmann and Marx [18] have investigated the parameterized complexity of the
DSN problem. One key idea of their approach is to show bounds on the cutwidth of solutions
to the DSN problem. Informally, cutwidth is a parameter that limits how many edges are
“cut” when arranging vertices in a well-chosen order <. Bounding the cutwidth of a graph
ensures that we can go over vertices in the order of < and that, at any cut along <, all edges
except a constant number will be entirely to one side of the cut. (See Section 3 for the formal
definition of cutwidth.)

Feldmann and Marx show that when the number of endpoint pairs is bounded by a
constant k, then DSN instances always have a solution of constant undirected cutwidth
(depending only on k). They further show that bounded-cutwidth solutions can be computed
in polynomial time by dynamic programming. We follow the same framework and show
that solutions to EWM also have bounded cutwidth. Then we can find the solution by an
approach similar to the dynamic programming algorithm of [18], or to the token game of [17].

Thus, our main goal is to solve the purely structural problem of bounding the cutwidth
of edge-minimum st-walks of length r mod q in arbitrary directed graphs. We only focus
on this goal in the rest of the technical overview. To provide intuition, we will begin by
considering the case of q = 2, r = 1 (i.e. odd walks), and then outline the obstacles that
arise when generalizing to arbitrary q, r.

Odd walks. Let w denote an edge-minimum odd-length st-walk, and let Gw be the subgraph
of G consisting of the union of edges in the walk w. We first observe that, without loss of
generality, w does not contain any even cycles: If w contained an even cycle, we could simply
delete it, and w would still be of odd length, and still be edge-minimum. (To clarify, we are
not referring to even cycles in Gw, but rather even cycles in the walk w itself. After deleting
a cycle C from w, edges from C can still appear in Gw if they are traversed at another point
of the walk w.)

Now suppose w contains two odd cycles in succession. Again, we could simply delete both
cycles, and w would still be of odd length, and still be edge-minimum. So, we can suppose
without loss of generality that w has either no cycles (and trivially has small cutwidth),
or consists of a simple path P1, followed by an odd cycle C, followed by a simple path P2.
We assume this latter case in the rest of the discussion, and we define C by looking at first
time that the walk re-visits a previously visited vertex: this ensures that, by construction,
P1 is vertex-disjoint from C. However, the graph does not necessarily have small cutwidth,
because P2 could intersect P1 and C in intricate ways forming an unbounded number of
nested cycles. It is a priori conceivable that, e.g., a grid-like structure with high cutwidth
could emerge. However, we can show that this does not happen.

First, we can observe that once P2 leaves C, without loss of generality it does not return.
This is because if P2 leaves C at vertex a and then returns at vertex b, we can delete the
subpath of P2 from a to b, and instead traverse only the edges of C to get from a to b. This
way, we can still ensure that w is of odd length since every traversal of C changes the parity
of w, and we can traverse C for “free” without adding any extra edges.

A. Amarilli, B. Groz, and N. Wein 5:5

s · · · C

· · ·

· · ·

t

P1 P2 P1 ∩ P2

Figure 2 Specific shape of solutions to EWM for q = 2. Each “edge” in the figure represents a
subpath, not necessarily a single edge. The cycle C is of odd length.

Finally, we consider how P1 and P2 can interact. We can observe that without loss of
generality P2 cannot hit a vertex a on P1, then leave P1, then return to a later vertex b

on P1. In this case we could delete the subpath of P2 from a to b, and instead traverse P1
to get from a to b. Again, we can still ensure that w is of odd length since we can always
traverse C for free to change the parity of w. We stress that this argument only holds when
P2 re-enters P1 at a later vertex, and in fact, P2 can re-enter P1 at an earlier vertex an
unbounded number of times.

With all of these observations in mind, we conclude that if w has a cycle, then w must
have the very specific structure depicted in Figure 2. Then, it is visually clear that any
vertical cut only has a constant number of crossing edges, and thus w has constant cutwidth.

This concludes the outline for the case of odd walks. The same argument holds for even
walks, and more generally an argument for a particular choice of constants q, r is easily
extendable by reduction to other constant values r′ with the same q, simply by adding a
new source connected to the original source by a path of constant length r′ − r mod q.
The challenging part is extending to arbitrary q. Our approach is to define a segment
decomposition of the walk and prove that each successive segment allows us to expand the
reachable set of remainder values, so that the number of segments is bounded as a function
of q (Lemma 4.3). We then show that the cutwidth of a walk can be bounded linearly in
its number of segments (Proposition 5.1): we do this by defining a suitable ordering of the
vertices following the chunks of the walk, which refine the segments in the decomposition.
These two results imply that solutions to EWM have bounded cutwidth and hence that they
can be found in polynomial time.

3 Preliminaries

In this section, we present preliminary notions used throughout the proof of our main result
(Theorem 1.1).

Basic definitions. All graphs in the paper are finite and directed. Graphs are not necessarily
simple; they may contain self-loops, but they do not contain multi-edges. Given a directed
graph G = (V, E), a walk w in G is a sequence of edges w[1], . . . , w[ℓ] such that the target
vertex of w[i] is equal to the source vertex of w[i + 1] for each 1 ≤ i < ℓ. Note that an edge
e of G may occur at several positions in G: considering a position i for which w[i] = e, we
write w[i] to refer to that occurrence of e at the i-th position of w. However, when convenient
we abuse notation and identify w[i] with e itself; e.g., we talk about the source and target
vertices of w[i] to mean those of e. For 1 ≤ i ≤ ℓ we call w[i] a first-visited edge occurrence
if it is the first occurrence of some edge e, i.e., if there is no j < i such that w[j] = w[i].
Otherwise, w[i] is a revisited edge. Of course, each edge that occurs in w is first-visited at
exactly one position.

ITCS 2025

5:6 Edge-Minimum Walk of Modular Length in Polynomial Time

The source vertex s of w is that of w[1], and its target vertex t is that of w[ℓ]: we then call
w an st-walk. The length |w| of w is ℓ. The set of vertices used by w, denoted Vw, is simply
the set of vertices that occur in w, i.e., occur in some edge of w; in particular the source
and target vertices of w are in Vw. The set of edges used by w is Ew := {w[i] | 1 ≤ i < ℓ}.
The subgraph spanned by w is Gw = (Vw, Ew). Note that Gw is not the subgraph induced
by Vw, as it only contains the edges that actually occur on the walk. A subwalk of w is a
contiguous subsequence of w. We denote subwalks of w with the slicing convention, i.e.,
w[: i] = w[1] . . . w[i] and w[i : j] = w[i] . . . w[j]. Note that the right endpoint is included so
that, e.g., w[i : j] is empty precisely when j < i, and w[: i] is empty precisely when i ≤ 0.
When u and v are walks and when the target vertex of u is the source vertex of v, we write
uv to mean the walk obtained by concatenating u and v: it admits u and v as subwalks, and
of course |uv| = |u| + |v|.

For convenience, throughout the paper we denote by Gw,i the graph Gw[:i] spanned by
the subwalk w[: i] (up to i included); by convention Gw,0 is always the graph with the single
vertex s and no edges.

Strongly connected components. A strongly connected component (SCC) of a graph G is
a maximal set of vertices C of G such that, for any two distinct vertices u, v ∈ C, there is
a directed path from u to v in G. As usual, belonging to the same SCC is an equivalence
relation, so that SCCs form a partition of the vertices of G. We say that an SCC C of G is
non-trivial if the subgraph of G induced by C contains at least one edge. This is the case if
and only if C contains more than one vertex, or contains a single vertex on which there is a
self-loop.

EWM and solutions. We study the Edge-Minimum Walk of Modular Length problem
(EWM), as defined in the introduction: given a directed graph G = (V, E), terminals s,t,
and non-negative integers r < q, we wish to compute a subset E′ of E such that (V, E′)
has an st-walk of r mod q and E′ is edge-minimum (i.e., the number of edges of G′ is
minimum). This phrasing is somewhat different from the one given in the introduction, in
which we wanted to compute an edge-minimum walk. However, we can easily compute an
edge-minimum walk from E′ by a product construction, in time O(|E′| × q).

In the sequel, we only consider the computation of edge-minimum subsets of edges (rather
than walks). When fixing inputs G = (V, E), s, t, q, and r, we talk about a candidate solution
to mean a subset E′ of E such that (V, E′) has an st-walk of length r mod q but E′ is not
necessarily edge-minimum, and of an optimal solution to mean a candidate solution which is
additionally edge-minimum.

Cutwidth. The cutwidth is a structural parameter of graphs. We show that there always
exists an optimal solution to EWM with bounded cutwidth, which suffices to ensure that
such solutions can be found with an efficient algorithm. We first recall the definition of
cutwidth for undirected graphs. Let G = (V, E) be an undirected graph. An ordering of G is
a total order over the vertex set V of G. A cut (V−, V+) of G that respects the ordering < is
a partition V− ⊎ V+ = V such that v− < v+ for all (v−, v+) ∈ V− × V+. We say that an edge
e of G crosses the cut if it has one endpoint in V− and one in V+, i.e., e ∩ V− and e ∩ V+ are
both nonempty. Note that self-loops never cross cuts. The cutwidth of a cut (V−, V+) that
respects < is the number of edges that cross this cut, and the cutwidth of < is the maximum
cutwidth of a cut that respects <. The cutwidth of G is then the minimum cutwidth of an
ordering of V .

A. Amarilli, B. Groz, and N. Wein 5:7

We now define cutwidth for directed graphs. Let G = (V, E) be a directed graph. Its
underlying undirected graph is G′ = (V, E′) where E′ = {{u, v} | (u, v) ∈ E, u ̸= v}: note
that self-loops are not reflected in G′. We then define the cutwidth of G to be that of G′.
We underscore that our definition of cutwidth for directed graphs is always the undirected
cutwidth: we do not consider the directed cutwidth in this paper. We then define the cutwidth
of a walk w of G as the cutwidth of the directed graph Gw.

4 Segment Decomposition of a Walk

Our proof of our main theorem (Theorem 1.1) consists of three steps, spanning this section
and the next two sections. First, in this section we introduce the notion of the segment
decomposition of a walk, and we show that any walk w can be transformed into a walk
w′ that satisfies the same modularity conditions (i.e., has the same remainder modulo q),
uses a subset of the edges (i.e., Ew′ ⊆ Ew), and has a segment decomposition with O(log q)
segments. Second, in the next section, we will show how the cutwidth of the graph Gw′

spanned by w′ can be bounded linearly in this number of segments, implying that optimal
solutions to EWM have bounded cutwidth. Third, in Section 6, we show that this cutwidth
bound makes it possible to solve EWM in polynomial time.

Segment decomposition. Let w be a walk. Its segment decomposition is a sequence of
walks s1, . . . , sξ such that w = s1 · · · sξ; the number ξ is the number of segments of w. The
segment decomposition is defined by processing the walk w from left to right as follows.
Initially, the segment decomposition is the empty sequence, and the entire walk w remains
to be decomposed. At any point of the decomposition, we have already computed the first σ

segments s1, . . . , sσ for some number σ ≥ 0 of segments, and can write w = s1 · · · sσw′. If w′

is non-empty, we compute the next segment as a prefix of w′.
Informally, we read w′ and terminate the segment whenever we have a first-visited edge

w′[j] = (u, v) followed (not necessarily immediately) by an edge w′[k] = (x, y) where y can
be reached by a path from u using only edges of w up to w′[j] excluded. The intuition of
segments is that they capture a moment where the walk revisits a vertex y from a vertex u

via a path that starts with an edge e = (u, v) which had not been previously visited in w,
even while there was already a path from u to y in the graph spanned by the walk before e

was visited. Formally, we will look for the segment end inside the suffix w′ of w, according
to the following definition:

▶ Definition 4.1 (Segment end, Segment detour). Having fixed w = s1 · · · sσw′, let λσ =
|s1 · · · sσ| = |w|− |w′| be the total length of the already-computed segments. For λσ < k ≤ |w|,
we say that segment sσ+1 ends at k if k is minimum such that the following hold:

There is λσ < j ≤ k such that w[j] is first-visited in w; we write w[j] as (u, v);
Writing the edge w[k] as (x, y), then there is a path from u to y in the graph Gw,j−1 which
contains the edges of the walk w up to w[j] excluded. Note that, in particular, if u = y

then this requirement is always satisfied using the empty path from u to y.

We stress that the path from u to y required by the second item of the definition is a path
in the graph spanned by a certain prefix of w; it may be the case that the path does not occur
as a subwalk of w. As for the subwalk w[j : k] from u to y in w, which is a subwalk of w′, we
call it the segment detour of sσ+1, denoted detσ+1. Note that, having chosen the minimal k,
there could be multiple valid choices for j, and we pick one arbitrarily.

ITCS 2025

5:8 Edge-Minimum Walk of Modular Length in Polynomial Time

Given the definition of a segment end above, the next segment of the decomposition after
sσ is simply sσ+1 := w[λσ + 1 : k]. This means that we terminate the (σ + 1)-th segment
right after the edge w[k], and continue the decomposition if s1 · · · sσ+1 does not yet cover the
entire walk w. If there is no segment end at any k, then we take all the rest of the walk w′

to be the last segment of the decomposition and we finish. Note that for this reason, unlike
other segments, the last segment of the decomposition may not feature a segment detour.

Let us formalize which paths are known to exist at the moment when a segment ends:

▶ Lemma 4.2. Let w be a walk and let w[i : k] = sσ be the σ-th segment of the walk. Let y

be the ending vertex of w[i : k], and assume that k < |w|, i.e., the segment finishes before
the end of the walk. Let w[j] = (u, v) in w[i : k] be the first edge of the segment detour detσ.
There is:

the segment detour detσ from u to y in Gw,k

a path pσ from u to y in Gw,j−1.
a path pσ from y to u in Gw,j−1.

Notice that we may have y = u, and then pσ and pσ may be empty; but detσ is never
empty because it contains at least w[j].

In the sequel for each 1 ≤ σ < ξ we denote by pσ and pσ a pair of paths obtained by
applying Lemma 4.2 (if there are multiple valid choices for pσ and pσ, we choose arbitrarily).

Achievable differences. For a walk w and segment σ, we denote by ∆q(w, σ) the value
(| detσ |−|pσ|) mod q and call this the3 difference achievable by σ. We often drop the subscript
q when clear from context. Intuitively, we know that we can modify the walk w to replace
the subwalk detσ from u to y by the existing path pσ that goes from u to y, and this change
subtracts ∆q(w, σ) from the length of the walk modulo q; we will make this formal in the
sequel. It should also be intuitively clear that achievable differences can be assumed to be
non-zero in an edge-minimum walk: intuitively, an achievable difference of 0 means that we
can replace the detour detσ by the existing path pσ that has the same endpoints, without
changing the length of the walk modulo q. We know that this change does not harm the
edge-minimality of w because pσ consists of already visited edges. What is more, having too
many segments with the same achievable difference is useless, because we can intuitively
replace detσ by pσ and compensate the effect of this change by doing similar substitutions
in earlier segments. Then, thanks to Lagrange’s theorem on the additive group Z/qZ, the
number of segments can in fact be bounded by 1 + log2 q. We formalize this in the following
lemma, which is the main result of this section:

▶ Lemma 4.3 (Segment Decomposition Lemma). For every st-walk w with length r mod q,
there is another st-walk of length r mod q using only edges from w whose number of segments
is at most 1 + log2 q.

The rest of this section is devoted to proving the Segment Decomposition Lemma; we
will then use it in the next section to bound the cutwidth of some edge-minimum solution.

Recall that a preorder over a set is a binary relation that is both reflexive and transitive
(this is a weaker requirement than non-strict partial orders which are additionally required
to be antisymmetric). To prove the Segment Decomposition Lemma (Lemma 4.3), we define

3 Note that there could be several choices for the difference achievable by σ depending on the arbitrary
choices made earlier, e.g., depending on the first edge j for the segment detour, and on the choice of
paths pσ and pσ; nevertheless, we fix one single value ∆q(w, σ) according to the choices made.

A. Amarilli, B. Groz, and N. Wein 5:9

a preorder over the edge-minimum walks that are using a specific set of edges. Intuitively,
the preorder favors walks which do their first visit of edges as late as possible relative to
the end of the walk. More precisely, the preorder criterion asks us to minimize the number
of remaining steps of the walk at the moment where the last first-visited edge is visited;
then break ties by minimizing the number of remaining edges at the moment where the
second-to-last first-visited edge is visited; and so on. This is designed to ensure that replacing
a detour detσ by pσ improves the walk according to the preorder.

Let us fix from now on the graph G = (V, E), the source s and target t, and the integers
r and q. For any subset of edges E′ ⊆ E, we define an E′-walk to mean an st-walk of length
r mod q in G which uses precisely the edges of E′. Let us then define the order:

▶ Definition 4.4. Let E′ ⊆ E be a subset of edges and let m := |E′|. Let w be an E′-walk, and
let i1, . . . , im be the indexes of the first-visited edges in ascending order, i.e., w[i1], . . . , w[im]
are the first-visited edges of w and i1 < · · · < im. The first-visited timestamp of w is then
the m-tuple (|w| − im, . . . , |w| − i1).

We define as follows a preorder relationship ⊴ called the timestamp preorder on E′-walks.
Let w and w′ be two E′-walks, and let tw and t′

w be their first-visited timestamps, respectively.
Then we have w ⊴ w′ if we have tw ≤ t′

w in lexicographic ordering.

In other words, the timestamp preorder compares two walks by the number of remaining
edges to traverse when visiting the last first-visited edge, then the second-to-last, and so
on. Note that the timestamp preorder is not antisymmetric because two different walks on
the same set of edges may happen to have the same first-visited timestamp (i.e., they visit
first-visited edges at the same positions from the end, even though the identity of these edges
and the revisits may be different). We then define:

▶ Definition 4.5. If w is an E′-walk, we say w is timestamp-minimum if, for every E′-walk
w′, we have w ⊴ w′.

Note that, whenever there is an E′-walk, then there is a timestamp-minimum E′-walk, but
it is not necessarily unique because the timestamp preorder is not antisymmetric. We are now
ready to conclude the section by proving the Segment Decomposition Lemma (Lemma 4.3):

Proof sketch. We show that a timestamp-minimal walk has at most 1 + log2 q segments.
We consider the successive subgroups of Z/qZ generated by the achievable differences of the
successive segments, and show that these must be a strictly increasing subsequence, so that
the bound follows by Lagrange’s theorem. To do this, we show as an intermediate claim that
walks can be modified to augment their length by any combination of achievable differences
of previous segments, while still using the same edges. Thanks to this claim, assuming by
contradiction that there is a segment sσ whose achievable difference is already achievable
using the preceding segments, then we rewrite the segment to replace its detour detσ by
the path pσ from Lemma 4.2, and use the claim to modify the walk and fix its length. We
then show that this modification yields a walk which is smaller in the timestamp preorder,
contradicting the minimality of w. See the full version [3] for the full proof. ◀

5 Number of Segments and Cutwidth Bounds

In this section, we continue our proof of Theorem 1.1 by showing that, for any walk w,
the number of segments in the decomposition of the previous section gives a bound on the
cutwidth of Gw up to a constant factor. This result is completely independent from the
definition of the EWM problem. Formally, we show:

ITCS 2025

5:10 Edge-Minimum Walk of Modular Length in Polynomial Time

▶ Proposition 5.1 (Segment Cutwidth Bound). For any walk w, letting ξ be the number of
segments in its segment decomposition, the cutwidth of Gw is at most 3ξ.

We remark that there is no converse of this result: a walk formed of a succession of cycles
connected by single edges will have an unbounded number of segments but has cutwidth 2.
Combining Proposition 5.1 with Lemma 4.3 establishes the following:

▶ Corollary 5.2. For every st-walk w′ with length r mod q, there is another st-walk w of
length r mod q using only edges from w′ such that the cutwidth of Gw is at most 3 + 3 log2 q.

This implies the following bound on the cutwidth of optimal solutions to the EWM
problem, on which our algorithm relies:

▶ Corollary 5.3. For any graph G = (V, E), terminals s,t, and non-negative integers r < q,
every optimal solution to the EWM problem on G, s, t, r, and q has cutwidth at most
3 + 3 log2 q.

To prove Proposition 5.1, we need several intermediate steps. First, we define the notion
of chunk of a walk, which is a contiguous sequence of first-visited edges whose intermediate
vertices are also first-visited. Second, we define the ordering ≺ on the vertices of Gw along
which the cutwidth bound will be shown: this order is defined using the notion of chunks,
intuitively because all vertices of a chunk will be ordered relative to the already-visited
vertices that are the endpoints of the chunk (also distinguishing special cases like cycle chunks
and tadpole chunks). Third, we show that the cutwidth along the order ≺ is bounded by 3ξ,
by showing for each segment that the number of times its first-visited edges can cross the
cut is at most 3. Throughout this section, we fix an arbitrary walk w in a graph G, and call
s and t its source and target vertices.

Chunks. We define first-visited vertices similarly to first-visited edges: for every vertex
v ∈ Vw occurring in w, we say v is first-visited at w[i] if w[i] is the first edge in which v

occurs. Note that a vertex v which is first-visited at w[i] always occurs as the target vertex
of w[i], except in the specific case of the first edge w[1] where both the source s and the
target vertex are first-visited at w[1]. Of course, every vertex of Vw is first-visited at exactly
one position. Further, if a vertex v is the target vertex of an edge w[i] and is first-visited
at w[i], then both w[i] and w[i + 1] (if it exists) must be first-visited edges.

We can now define chunks:

▶ Definition 5.4. A chunk of w is a maximal subwalk w[i : j] of w where all edges are
first-visited, and where, for every i ≤ k < j (if any), the target vertex of w[k] is first-visited
at w[k].

In other words, a chunk is a maximal sequence of one or more consecutive first-visited
edges such that the first and last vertex are not first-visited (unless they are extremities
of the whole walk) but all intermediate vertices are first-visited. A chunk may consist of a
single first-visited edge w[i] between two already-visited vertices, in which case there are no
intermediate vertices.

The first and last vertices of chunk w[i : j] are the source vertex of w[i], and the target
vertex of w[j], respectively. Note that two successive chunks in the walk need not be separated
by revisited edges and can simply be separated by a revisited vertex: for instance, for the
length-2 walk (s, s), (s, t), all edges are first-visited, but there are two chunks of length 1
which are separated by the revisit of the vertex s.

It will be useful to distinguish two special kinds of chunks. First, tadpole chunks, which
loop back on an intermediate vertex of the chunk:

A. Amarilli, B. Groz, and N. Wein 5:11

▶ Definition 5.5. A chunk is a tadpole if it consists of at least two edges and if, letting
u1, . . . , uℓ be the successive vertices that it visits, with u1 its first vertex and uℓ its last vertex,
we have uℓ = uℓ′ for some 1 < ℓ′ < ℓ.

In other words, a tadpole is a chunk that consists of a path (containing at least one edge),
followed by a cycle (possibly a self-loop).

Second, cycle chunks, which loop back on the vertex from which they started:

▶ Definition 5.6. A chunk is a cycle if its first vertex and last vertex are identical.

Note that these two cases are mutually exclusive. A chunk which is neither a tadpole nor
a cycle, and thus is a simple path, is a normal chunk.

The notion of chunk must be distinguished from the notion of segments used in the
segment decomposition of the previous section, but we can notice the following connections
between the two notions:

Segment ends never happen within a chunk: indeed, the intermediate vertices y reached
within a chunk are first-visited by definition, so there is no way to reach them except by
the edge that precedes them, and thus no earlier path can reach y in the walk.
At the end of a tadpole chunk or cycle chunk, the current segment always ends. Indeed,
the last edge e′ = (x, y) of the chunk reaches a vertex y which already has an outgoing
edge in the chunk: this edge is a first-visited edge e = (y, v), and the empty path from y

to itself allows us to finish the segment at the end of the chunk, i.e., just after e′.

In summary, chunks are contiguous subsequences of the walk that never straddle segment
boundaries, and the end of a tadpole chunk or cycle chunk always triggers the end of a
segment. Also note that, by definition, chunks form a partition of the first-visited edges.
This implies that, except possibly for the last segment, every segment must contain at least
one chunk, because they contain at least one first-visited edge.

Defining the ordering. Having defined the notion of chunks of the walk w, we now define
the ordering ≺ along which we will show that the cutwidth is bounded. This definition only
depends on chunks; it does not depend on the segment decomposition. We see the total order
≺ as a sequence of vertices. Initially, the order is the empty order on the single vertex s.
Then, for every chunk w[i : j] successively, we consider the (possibly empty) sequence σ of
the intermediate vertices of w[i : j]. Recall that the first vertex of w[i : j] is already in the
domain of ≺: either it is s (for the first chunk), or it is a vertex which is already visited.
Then there are four cases:

Tadpole: If w[i : j] is a tadpole, then we insert all its intermediate vertices at the end of
the current ordering ≺, in the order in which they were first-visited.
Cycle: Otherwise, if w[i : j] is a cycle, then, letting v be its first and last vertex, we
know that v already occurs in ≺, and we insert all its intermediate vertices right after
the vertex v, in the order in which they were visited.
Normal: We consider two subcases:

First, suppose that the last vertex t of w[i : j] is first-visited at w[j]. This is only
possible with j = |w|, so that w[i : j] is the last chunk. Then we do the same as
in the tadpole case: insert the intermediate vertices and t at the end of the current
ordering ≺, in the order in which they were first-visited.
Otherwise, w[i : j] is a chunk whose last vertex v is first-visited at w[k] with k < i so
v already occurs in ≺, and as we explained the first vertex u of the chunk also already
occurs in ≺. Further, we have v ̸= u because the chunk is not a cycle. Then, we insert

ITCS 2025

5:12 Edge-Minimum Walk of Modular Length in Polynomial Time

the intermediate vertices so that the vertices along the chunk are ordered in a monotone
fashion in the ordering. In other words, let x1, . . . , xℓ be the successive intermediate
vertices of the chunk, so that its edges are (u, x1), (x1, x2), . . . , (xℓ−1, xℓ), (xℓ, v). If
u ≺ v then we insert x1, . . . , xℓ in order between u and v, and if v ≺ u we insert
xℓ, . . . , x1 in order between v and u. The order ≺ between the newly inserted elements
and the existing elements between u and v is arbitrary, for instance we can arbitrarily
say that we insert the new vertices just after the smallest of u and v in ≺.

Note that, in all cases above, the (intermediate) vertices of a chunk are always ordered as
a monotone sequence.

SCCs of the segment decomposition. We have defined, from our walk w, the order ≺
along which we will bound the cutwidth. To show the cutwidth bound, we establish two
results describing the SCCs of the graph generated by the walk and its close relationship
with our ordering ≺:

▶ Lemma 5.7. At each step 0 ≤ i ≤ |w|, the successive SCCs Ci
1, . . . , Ci

κi
of Gw,i are linearly

ordered by the reachability relationship (i.e., every vertex in Ci
b is reachable from every vertex

in Ci
a iff a < b), and the target vertex of the last edge w[i] is in the last SCC Ci

κi
of Gw,i.

▶ Lemma 5.8. For every prefix w[: i] of the walk such that a chunk of w ends at w[i], the
ordering ≺ induced by w[: i] is consistent with the topological order of the SCCs of w[: i].

Bounding the cutwidth from the number of segments. We can now turn back to the
segment decomposition introduced in the previous section for the walk w, and show how the
number of segments of w can be used as a bound on the cutwidth of the graph Gw spanned
by w, following the order ≺ that we defined. For this, we will consider an arbitrary cut
V− ⊎ V+ of Vw following ≺, and count how many edges of w cross the cut. As each edge is
first-visited once, and first-visited in exactly one segment, it suffices to bound how many
edges each segment contributes to the cut, and to count only the first-visited edges of each
segment. We want to show:

▶ Lemma 5.9. For each segment w[i : j] of the walk w, the number of first-visited edges in
w[i : j] that cross the cut is at most 3.

This immediately implies the Segment Cutwidth Bound (Proposition 5.1) stated at the
beginning of the section. This bound of 3 edges crossing the cut can be proved by a case
analysis summarized in the following lemmas:

▶ Lemma 5.10. Let w[i : j] be a segment of w and assume that the last chunk of w[i : j]
is a cycle w[k : j]. Then w[k : j] crosses the cut at most twice. Further, if it does cross the
cut twice then it must be the case that the first and last vertex of w[k : j] is in V− and that
w[k : j] contains some intermediate vertex in V+.

▶ Lemma 5.11. Let w[i : j] be a segment of w and assume that the last chunk of w[i : j] is
a tadpole w[k : j]. Then w[k : j] crosses the cut at most twice. Further, if it crosses the cut
twice then it has an intermediate vertex in V− and an intermediate vertex in V+.

▶ Lemma 5.12. Let w[i : j] be a normal chunk of w, then it crosses the cut at most once.

▶ Lemma 5.13. Let w[i : j] be a normal chunk of w which crosses the cut forwards, i.e.,
the starting vertex of the chunk is in V− and its ending vertex is in V+. Then the segment
containing w[i : j] ends at j.

A. Amarilli, B. Groz, and N. Wein 5:13

All that remains is to bound the contribution to the cut of the normal chunks that cross
the cut backwards. To this end, let us distinguish the last chunk of a segment which we call
the final chunk, and the remaining chunks in that segment which we call non-final chunks.
Non-final chunks must be normal (because the segment ends right after cycle chunks or
tadpole chunks), and they cannot cross the cut forward by the previous lemma.

We are ready to conclude the proof of Lemma 5.9:

Proof sketch. We consider a segment and consider the SCC decomposition of the graph of
the walk when the segment starts, using Lemma 5.7. By Lemma 5.8 the segment begins in
the rightmost SCC according to the order. Now the intuition is the following: if all chunks
but the final one stay on the same side of the cut, then only the final chunk can cross the
cut and the preceding lemmas (Lemma 5.10, Lemma 5.11 and Lemma 5.12) show that the
bound is satisfied.

Otherwise, there is a first non-final chunk which ends on some SCC Cϕ that contains
nodes to the left of the cut and this chunk thus potentially crosses the cut (backwards, by
Lemma 5.13). If the next chunk is final, the bound is satisfied, so we may assume the next
chunk is not final. This next chunk may also cross the cut, but in any case it has for target
an SCC Cψ which is further left than Cϕ, a property we exploit to show that the walk cannot
return to the right of the cut without terminating the segment. This implies that the cut is
crossed at most 4 times in total: once for each of the two non-final chunks considered, and
potentially twice for the final chunk. We lower the bound to 3 by showing that in fact the
final chunk can only cross the cut once if it is preceded by two chunks that already crossed
the cut. See the full version [3] for the full proof. ◀

6 Computing an Edge-Minimum Walk of Bounded Cutwidth

Up to now, we have shown Corollary 5.3: optimal solutions to the EWM problem have
cutwidth at most 3 + 3 log2 q. In this section, we conclude the proof of Theorem 1.1 by
showing that optimal solutions of bounded cutwidth can be efficiently found.

At a high level, our algorithm proceeds by searching for a shortest path in a graph of
configurations. The approach is similar to the approaches in [17] and [18]. The intuitive
principle of our algorithm is the following. As we follow a path in the graph of configurations
and move from one configuration to another, we choose which edges of the original graph
to keep in the solution. To be more precise, the path will start on the empty configuration
which denotes that no edges have been selected, and will iteratively add vertices and some of
their incident edges to the solution.

To make sure that the selected edges do form a solution, we could try to record in the
configurations the exact set of edges kept in the solution so far. However, the space of
configurations would then be exponential. To avoid this, a configuration does not really store
the entire set of chosen edges: instead it concisely represents the possible lengths modulo q

of walks between a small subset of vertices of G, whose size is bounded as a function of the
cutwidth.

The distance in the configuration graph from the initial configuration to any configuration
Ξ will reflect the smallest cardinality of a set of edges that achieve the set of walks witnessed
by Ξ. The algorithm therefore looks for a shortest path in the configuration graph from
the initial configuration to any configuration which witnesses the st-walk of length r mod q

required by the EWM problem.

ITCS 2025

5:14 Edge-Minimum Walk of Modular Length in Polynomial Time

Formally, fix the input graph G = (V, E), the source s ∈ V and the target t ∈ V , and
the modularity requirement r mod q. Let ω ∈ N be a domain size bound, which is related to
the cutwidth, but will be precisely defined later. Let us define the notion of configurations
formally:

▶ Definition 6.1 (Configuration). A V, ω, q-configuration Ξ = (D, ρ) is a subset D of at most
ω vertices of V , called the domain of the configuration, together with a function ρ mapping
each ordered pair (u, v) for u, v ∈ D to a subset of {0, . . . , q − 1}. Having fixed the vertex set
V of the input graph G, we denote by Φω,q the set of all possible V, ω, q-configurations, and
omit the subscript when clear from context.

To compute transitions in the configuration graph, our algorithm will need to compute
the closure of a configuration (D, ρ). The point of the closure is to ensure that, whenever we
can achieve a walk from u ∈ D to v ∈ D via intermediate vertices of D and using remainders
given by ρ, then that walk can be witnessed directly by a value in ρ(u, v). Formally:

▶ Definition 6.2 (Closure). Given a configuration Ξ = (D, ρ), an internal walk of Ξ is a
sequence of vertices of D together with a choice of remainder for each step. Formally, it is a
sequence v1, . . . , vℓ ∈ D and a choice of remainders 0 ≤ r1, . . . , rℓ−1 < q such that we have
ri ∈ ρ(vi, vi+1) for each 1 ≤ i < ℓ. The total length of the internal walk is the sum of the
remainders modulo q, namely,

∑
1≤i<ℓ ri mod q.

The closure of (D, ρ) is the configuration (D, ρ′) where, for each u, v ∈ D, for each
r′ ∈ {0, . . . , q − 1}, we have r′ ∈ ρ′(u, v) iff there is an internal walk of total length r′ from u

to v in (D, ρ). Note that we always have ρ′(u, v) ⊇ ρ(u, v) because for each r′ ∈ ρ(u, v) we
can take the single-edge internal walk u, v with remainder r′.

We can easily compute the closure of a configuration in polynomial time in q and ω, for instance
using a product construction. Specifically, create a graph on vertices D × {0, . . . , q − 1}, then
add the following edges: for each u, v ∈ D and each r′ ∈ ρ(u, v), for each i ∈ {0, . . . , q − 1}
create an edge from (u, i) to (v, i + r′ mod q). Then compute the transitive closure and define
ρ′(u, v) to be the set of r′ such that (u, 0) has a path to (v, r′).

We now define the graph over configurations, which we call Γω,q and which also depends
on the directed graph G given as input to EWM. We omit the subscripts when clear from
context.

▶ Definition 6.3. The graph of configurations Γω,q is a weighted and labeled directed graph:
each edge carries an integer cost and is labeled by a subset of edges of the original graph G.
The vertex set of Γ is the set Φ of all V, ω, q-configurations. To define the edges, let us choose
any configuration Ξ ∈ Φ and define the outgoing edges of Ξ. These edges are of two kinds:

Forget: from Ξ = (D, ρ) with D nonempty, for each v ∈ D, letting D′ := D \ {v} be the
new domain, we have an edge leaving Ξ which has cost 0, is labeled with the empty set of
edges, and leads to (D′, ρ|D′) where ρ|D′ is the restriction of ρ to D′

Introduce: from Ξ = (D, ρ) with |D| < ω, for each v ∈ V \ D, let D′ := D ⊎ {v} be the
new domain, and let Ev,D′ be the set of edges of G which are of the form (v, v′) or (v′, v)
with v′ ∈ D′; we also add to Ev,D′ the self-loop edge on v if it exists. Then for each
E′ ⊆ Ev,D′ , we have an edge leaving Ξ which has cost |E′|, is labeled by E′, and leads to
the closure of the configuration (D′, ρ′) with ρ′ intuitively defined from ρ by adding the
edges of E′, formally:

For all u, u′ ∈ D ∪ {v}, we initialize ρ′(u, u′) := ∅.
For each (u, u′) ∈ D × D, we set ρ′(u, u′) := ρ(u, u′).
For each edge e ∈ Ev,D′ , we set ρ′(e) := {1}. Note that by definition of Ev,D′ this case
is disjoint from the previous one.

A. Amarilli, B. Groz, and N. Wein 5:15

Note that we may have several Introduce edges with the same source and target configurations
but labeled with different sets of edges and with different costs; in this case all of these edges
exist in Γ as defined above, although we could equivalently have decided to keep only one of
these edges among those with minimum cost.

We have now defined the graph Γ of configurations. We will look for shortest paths in
this graph from the initial configuration to a final configuration, namely:

▶ Definition 6.4. The initial configuration is simply the configuration with empty domain.
A configuration is final if it contains s and t and features a walk with the requisite

remainder, i.e., the configuration (D, ρ) is final if s, t ∈ D and r ∈ ρ(s, t).

We can now define our algorithm to solve the EWM problem, which we call the EWM
algorithm. We first set the value ω, following the cutwidth bound, to be: ω := 6 + 3 log2 q,
i.e., three more than the cutwidth bound that follows from Corollary 5.3. (Intuitively, we add
2 to make sure that the sources s and t can always be part of the domain of configurations,
and we add 1 extra to make sure that we can always perform Introduce steps before Forget
steps.) The EWM algorithm then builds explicitly the graph Γω,q and computes a shortest
path π in Γ from the initial configuration to a final configuration. Once such a shortest path
π is found4, then the algorithm returns the subgraph of G formed of the edges of G obtained
as the union of all edge labels in π.

Proving that the EWM algorithm correctly solves the EWM problem is relatively straight-
forward: we show that whenever the algorithm return a subgraph, this subgraph is indeed a
candidate solution. Conversely, we show that for every optimal solution E′ there is a path
from in the configuration graph from some initial configuration to some final configuration,
such that the union of labels along the path is E′ without duplicates (hence the path has cost
|E′|), which guarantees that the algorithm returns the optimal solution. Those properties
can be proved by establishing the following invariant:

▷ Claim 6.5. Let π = Ξ1, . . . , Ξℓ be a path in Γ from the initial configuration Ξ1. Let
G1 = (V, E1), . . ., Gℓ = (V, Eℓ) be the sequence of subgraphs of G defined in the following
way: we have E1 = ∅, and for each 1 < i ≤ ℓ we set Ei = Ei−1 ∪ E′

i where E′
i is the edge set

that labels the edge of Γ used to go from Ξi−1 to Ξi in Γ. Then the following is true: for
any 1 ≤ i ≤ ℓ, writing Ξi = (Di, ρi), for any u1, u2 ∈ Di, for any r′ ∈ {0, . . . , q − 1}, we have
r′ ∈ ρi(u1, u2) iff there is a u1u2-walk in Gi whose length modulo q is r′.

Note that, in the definition of the graphs Gi, we may add the same edge of G multiple
times because it occurs in the label of several edges of π; this can happen even if π is a
simple path in Γ. As it turns out, this never happens when π is a shortest path (because we
are then, in effect, paying twice for the same edge); but the invariant of Claim 6.5 applies to
paths π even if they do traverse edges labeled with non-disjoint edge sets.

Altogether, we have explained why the algorithm correctly solves the EWM problem, and
the algorithm can be shown to have complexity nω+1 · 2O(ω2q). Instantiated with our choice
of ω = 3 + 3 log2 q, we get a final complexity of nO(log q) · 2O(q log2 q) for the algorithm. See
the full version ([3]) for details. This concludes the proof of our main result (Theorem 1.1).

4 If there is no path in Γ from an initial configuration to a final configuration, then we return ∅ to indicate
that there is no subgraph of G with an st-walk of length r mod q. Note that this case can be excluded
from the outset, simply by checking whether G contains an st-walk of length r mod q: this can be done,
e.g., with the product construction.

ITCS 2025

5:16 Edge-Minimum Walk of Modular Length in Polynomial Time

7 Extension to Weighted Graphs

Having shown our main result (Theorem 1.1), in this section we start exploring variants
and extensions of the EWM problem. We first study two extensions of EWM in this section.
First, we study the addition of costs on edges, meaning that we look for a walk where the
total cost is minimum (instead of the number of edges). Second, we study the addition of
integer lengths on edges.

In this section and the next, the problems that we define and study are always posed
on a directed graph G and ask about the existence of a subgraph of G satisfying certain
properties and which is optimal according to some criterion (usually, being edge-minimum).
We use the same terminology as before: a candidate solution is a subgraph which satisfies
the properties but is not necessarily edge-minimum, and an optimal solution is a candidate
solution which is additionally edge-minimum.

Costs on edges and vertices. We first study the extension of the EWM problem with costs
on edges. Specifically, the EWM problem with costs on edges takes as input a directed graph
G = (V, E), a cost function γ giving to each edge e ∈ E a cost γ(e), a pair of a source s ∈ V

and target t ∈ V , and a modularity requirement r mod q for integers q and r. The output to
the EWM problem with costs on edges is an st-walk of length r mod q such that the cost
γ(Ew) :=

∑
e∈Ew

γ(e) is minimum. We assume that all costs given by γ are nonnegative.
Indeed, in the presence of negative weights, we lose the correspondence explained in Section 3:
computing a minimum-weight subgraph that contains a walk reduces to the case of positive
weights (all negative-weight edges will always be included in the optimal solution subgraph);
but computing a minimum-weight walk is NP-hard even without modularity constraints:

▶ Proposition 7.1. The following problem is NP-complete: given a directed graph G = (V, E),
a cost function γ : E 7→ Z, and source and target s, t ∈ V , compute a minimum-weight subset
of edges E′ ⊆ E such that there is an st-walk using precisely the edges in E′.

Our tractability result for EWM (Theorem 1.1) can be easily extended to solve the EWM
problem with costs on edges. Specifically, the Segment Decomposition Lemma (Lemma 4.3)
shows that there must be an optimal solution to EWM with costs on edges that obeys the
bound on the number of segments, because the γ function on subset of edges is monotone.
Then the Segment Cutwidth Bound (Proposition 5.1) applies as is, and the algorithm to find
an optimal solution of bounded cutwidth from the previous section can be easily extended:
simply modify the definition of the graph of configurations (Definition 6.3) so that the cost
of an edge labeled with a set E′ of edges of G is no longer the cardinality |E′| of E but the
total cost γ(E′). Other than that, the algorithm proceeds in the same way, and computes a
shortest path which now reflects the subgraph of G satisfying the requirements which has
minimum cost instead of minimum cardinality.

We also mention that the EWM problem can be defined to have costs (unit costs or not)
on vertices instead of edges. In this case, the cost of a candidate solution is the number of
different vertices traversed by the walk (or more generally their total cost). However, this
problem is interreducible to the EWM problem with costs on edges:

▶ Lemma 7.2. The EWM problem (with unit costs on edges) reduces to the EWM problem
with unit costs on vertices, and the EWM problem with costs on edges reduces to the EWM
problem with costs on vertices. Conversely, the EWM problem with unit costs on vertices
reduces to the EWM problem with unit costs on edges, and the EWM problem with costs on
vertices reduces to the EWM problem with costs on edges.

A. Amarilli, B. Groz, and N. Wein 5:17

Lengths on edges. Having studied the use of costs on edges to change the optimization
criterion, we turn to a different problem variant where we annotate edges with integer lengths.
Specifically, the EWM problem with lengths takes as input a directed graph G = (V, E), a
length function δ : E → N, and a pair of a source s ∈ V and target t ∈ V and a modularity
requirement r mod q for integers q and r. The answer to the EWM problem with lengths
is an st-walk w that traverses a minimum number of distinct edges and whose total length
is r mod q, i.e., δ(w) :=

∑
1≤i≤|w| δ(w[i]) is r mod q. (Note that the length of an edge is

summed as many times as the edge is traversed.)
The impact of allowing lengths is different depending on the regime. In the case where

r and q are constant, or given in unary, then we can rewrite the graph in polynomial time
to eliminate edge lengths. Specifically, letting m be the number of edges in the graph, we
replace each edge e of length δ(e) by a path on (m + 1)q + (δ(e) mod q) edges (where m

is the number of edges in the graph). This ensures that a walk in the new graph has the
same modularity as the corresponding walk in the original graph, and the cost of a candidate
solution in the rewritten graph is (m + 1)qM + ϵ, where M is the number of original edges
traversed and ϵ ≤ mq. This ensures that an optimal solution in the original graph indeed
minimizes the number of edges taken from the original graph.

One different regime is when r and q are written in binary and do not necessarily have
polynomial value. In this case, the EWM problem with lengths written in binary can be
shown to be NP-hard by an easy reduction from Subset Sum. In fact, just the problem of
deciding the existence of a walk of length q mod r is NP-hard:

▶ Proposition 7.3. The problem of deciding whether an st-walk of length q mod r exists,
where q, r and the lengths of δ are written in binary, is NP-hard.

We do not know whether an analogous hardness result holds for the original EWM problem
(without edge lengths) in the setting where q and r can be written in binary and do not
necessarily have polynomial value. Indeed, in the proof above, we crucially use the edge
lengths to concisely write the numbers given in the Subset Sum instance; writing them in
unary as paths of the corresponding length will not give a polynomial-time reduction and
indeed the Subset Sum problem can be solved in pseudo-polynomial time.

We last address the question of showing an upper bound on the complexity of EWM with
lengths, by showing an NP upper bound. Of course the bound is phrased on the decision
version of EWM with lengths, i.e., given an instance of EWM with lengths and a threshold k,
we wish to decide whether there exists a candidate solution having at most k different edges.
We have:

▶ Proposition 7.4. The following problem is in NP: given a directed graph G = (V, E), a
function γ : E → N that assigns lengths (written in unary) to each edge, integers q, r and k

(written in binary), source and target s, t ∈ V , decide if there is a subset E′ ⊆ E of at most
k edges that contains an st-walk of length r mod q according to γ.

8 Connections to DSN and SCSS

We conclude the paper by exploring how EWM relates to the Directed Steiner Network (DSN)
problem mentioned in the introduction, and more specifically the Strongly Connected Steiner
Subgraph (SCSS) problem. We first define the SCSS problem and show that it is subsumed
by EWM, in the sense that a polynomial algorithm for EWM (with fixed q and r) gives a
polynomial algorithm for SCSS with a constant number of terminals. Then, we introduce a
problem generalizing both SCSS and DSN on the one hand, and EWM in the other: we study

ITCS 2025

5:18 Edge-Minimum Walk of Modular Length in Polynomial Time

how to find the smallest subgraph satisfying connectivity requirements on specified endpoint
pairs with specified modularities. We show that we can generalize our results to this problem,
and provide a polynomial algorithm for the setting when the number of endpoint pairs and
the modularity requirements are constants.

Reducing SCSS to EWM. Let us recall the definition of the SCSS problem [17, 18] before
explaining how it can be reduced to EWM. In the SCSS problem, the input simply consists
of a directed graph G = (V, E) with an input set T ⊆ V of terminals, and we want to find
the smallest subgraph E′ ⊆ E that is strongly connected and contains edges incident to
each terminal in T . In other words, SCSS is a special case of DSN where the connectivity
requirements on the vertices of T require that they are strongly connected. The SCSS
problem is NP-hard in general (by an easy reduction from the directed Steiner tree problem)
but it can be solved in polynomial time provided that the size of T is bounded by a constant,
as shown in [17]. Thus, for k ∈ N, we write k-SCSS to refer to the SCSS problem where
the set T of terminals is required to contain at most k vertices. Following our previous
terminology in the paper, when we talk of candidate solutions we mean a subgraph satisfying
the requirements of a problem (e.g., for k-SCSS, a strongly connected subgraph containing
the requisite terminals), and by optimal solution we mean a candidate solution which is also
edge-minimum.

Let us show that the SCSS problem can be reduced to EWM, which implies that Theo-
rem 1.1 gives an alternative proof of the results of [17] (with worse bounds). More precisely,
we show:

▶ Lemma 8.1. For any constant k > 0, we can compute constants q and r in 2O(k log k) such
that there is a linear-time reduction from k-SCSS to EWM with the constant values q and r.

The previous reduction shows that our EWM problem is intuitively at least as complicated
as SCSS, given that the tractability of EWM for constant q implies that of SCSS for constant
k. (This being said, we do not claim that the polynomial algorithm given by our results is as
efficient as that of earlier works [17, 18].) Alternatively, instead of this black-box reduction,
we can also adapt our techniques to recapture the tractability of SCSS by showing a bound
on the cutwidth of optimal solutions, using the segment decomposition. We exemplify below
how this is done, and will revisit this afterwards when extending EWM to support multiple
paths. Recall the notion of timestamp-minimum walks (Definition 4.5), and let us show the
following result; note that it applies to edge-minimal solutions (not just optimal solutions).

▶ Lemma 8.2. Let G = (V, E) and T = {v1, . . . , vk} be an SCSS instance. Every edge-
minimal solution H to the instance has cutwidth at most 3k.

What is more, for any terminal vi, considering all H-walks that start and conclude in vi
and visit all terminals from T , then any timestamp-minimum H-walk among those H-walks
has at most k segments.

We remark that the cutwidth bound of 3k given by this result is slightly better than the
bound of 6k shown in [18].

Defining Directed Steiner Network with Modularity constraints. The reduction from
SCSS to EWM leads to the natural question of whether there could be a problem which
subsumes SCSS and EWM, or even DSN and EWM; and a polynomial-time algorithm that
subsumes the tractability of all these problems. We now introduce such a problem, dubbed
Directed Steiner Network with Modularity (DSNM), and show a polynomial-time algorithm
to solve it.

A. Amarilli, B. Groz, and N. Wein 5:19

▶ Definition 8.3. For k > 0, the k-Directed Steiner Network with Modularity problem
(k-DSNM) takes as input a graph (V, E) and a k-requirement specification R consisting of
k tuples (si, ti, ri, qi) for 1 ≤ i ≤ k such that si, ti ∈ V and qi > 0 and 0 ≤ ri < qi. Our
goal is to compute an optimal solution, i.e., an edge-minimum subgraph H of G such that H

contains a walk from si to ti of length ri mod qi for every i ≤ k.

Our last result in this paper is to show that the k-DSNM problem is in PTIME when k and
the modulo values qi are constants. This result subsumes Theorem 1.1 and the tractability
of k-DSN for constant k shown in [17, 18].

▶ Theorem 8.4. We can compute in nO(k+log q) · 2O(q(k+log q)2) time an optimal solution
to k-DSNM, where q denotes the least common multiple (LCM) of the qi in the input k-
requirement specification.

Note that our exponents are given up to constant factors, so we do not claim to recover
the same exponents as earlier works on k-DSN without modularity constraints (i.e., for
q = 1).

The overall strategy to prove Theorem 8.4 is to follow the methodology used for EWM,
adjusting the constructions presented so far in the paper. Deviating somewhat from EWM,
but following prior work about DSN [17, 18], in our study of DSNM we will focus on the SCCs
of an optimal solution and study them separately, instead of studying the entire solution
graph. Our main objective is to bound the cutwidth of SCCs in an optimal solution as a
function of q and of the number k of endpoint pairs. We can then easily deduce like in [18]
that the cutwidth of optimal solutions is bounded as a function of q and k. To compute the
solutions of bounded cutwidth, we then modify slightly the algorithm of Section 6.

To study the SCCs of optimal solutions, it will be useful to introduce an analogue of the
SCSS problem featuring modularities. Specifically, we call k-SCSSM the problem that takes
the same input as k-DSNM and returns a smallest strongly connected subgraph H of G such
that H contains a walk from si to ti of length ri mod qi for every i ≤ k. Note that, unlike
the SCSS problem which was simply defined by a set of terminals, in k-SCSSM we specify
a set of tuples connecting pairs of vertices, because we need to specify which remainder
must be achieved by which endpoint pair. The difference with k-DSNM is only that the
solution graph is required to be strongly connected. Our study of k-SCSSM is motivated by
the fact that the SCCs of optimal solutions to k-DSNM are optimal solutions to instances of
k-SCSSM, as was already known in the setting without modularities [17]. Namely:

▷ Claim 8.5. Let G = (V, E) be a directed graph, and R be a k-requirement specification.
In any optimal solution H = (V, E′) to k-DSNM on G for R, for any SCC C of H, there
exists a k-requirement specification R′ such that C (as a set of edges) is an optimal solution
to k-SCSSM on G for R′.

We next bound the cutwidth of optimal solutions to the k-SCSSM problem specifically.
Then we will deduce a cutwidth bound on optimal solutions to k-DSNM using a result of [18].
Finally, we explain how to design an algorithm to compute these solutions.

Bounding the cutwidth of solutions to k-SCSSM Let us start by showing that solutions
to k-SCSSM have a small segment number and hence a small cutwidth:

▶ Lemma 8.6. Let G be a graph and R be a k-requirement specification, denote by q1, . . . , qk
the respective modularities of its tuples, and denote by q the least common multiple (LCM) of
q1, . . . , qk. Then every optimal solution of the k-SCSSM problem on G and R can be covered
with a walk of at most O(k + log q) segments and therefore has cutwidth at most O(k + log q).

ITCS 2025

5:20 Edge-Minimum Walk of Modular Length in Polynomial Time

Note that this claim only works for the k-SCSSM problem, not the k-DSNM problem, because
it assumes the solution can be covered by a single walk which is not true in general for
k-DSNM. Let us show the result:

Proof sketch. The proof of this result can be decomposed into three steps. In step 1, we
define the notion of a legal covering walk, which is a walk that covers the edges of a solution
in a prescribed order: first visit all terminals to witness that they are strongly connected in
a subwalk w0 (similarly to Lemma 8.2), then visit all paths with the prescribed modularities
in a subwalk w′. In step 2, we carefully impose a variant of timestamp-minimality on legal
covering walks towards bounding their number of segments. In step 3, we use Lemma 8.2
(on the first part of the legal covering walk) and an argument adapted from Lemma 4.3 (for
the second part) to show that the number of segments is bounded. The point of splitting the
walk in two is that w0 visits enough edges to allow us to move to arbitrary endpoints and
ensure strong connectedness: this allows us to replay arbitrary detours in any subwalk no
matter where they occur, intuitively “pooling” the achievable differences ∆(w, . . .) between
all the subwalks. See the full version [3] for the full proof. ◀

From k-SCSSM to k-DSNM. We have shown that optimal solutions to the k-SCSSM
problem can be assumed to have bounded cutwidth. We now wish to show that the same is
true for optimal solutions to the k-DSNM problem. This is simple, using Lemma 8.6 above
along with two lemmas from [18]:

▶ Lemma 8.7. Fix a graph G and a k-requirement specification R, and let q be the LCM of
the qi in R. Let H be an optimal solution to k-DSNM on G and R. Then H has cutwidth at
most O(k + log q).

Computing optimal solutions. We have shown in Lemma 8.7 that optimal solutions to the
k-DSNM problem have cutwidth O(k+log q). The only remaining thing to prove Theorem 8.4
is to adapt the dynamic algorithm from Section 6 to compute solutions to that problem
instead of EWM. We explain in the full version [3] how this is done.

9 Future work

We now outline possible directions for future work in light of our results:

Improving our bounds. One natural direction for further research would be to improve the
complexity bounds that we show. Our algorithm for EWM runs in time nO(log q) · 2O(q log2 q).
Can the factor of q in the exponent be improved, e.g., by getting an algorithm in time
nO(log q)? Or, on the other hand, is the problem NP-hard? (We have only shown that the
variant of EWM with edge lengths is NP-hard, in Proposition 7.1.)

Intermediate problems between shortest walk and edge-minimum walk. It could be
interesting to search for walks that are minimized according to some criterion that is
“intermediate” between shortest walk and edge-minimum walk, e.g., if the cost of each edge
is expressed as a function of how many times it is traversed by the walk. Such a general
framework would capture the two problem variants that we contrast in the introduction:
shortest walks are the case where we are charged ℓ when traversing an edge ℓ times, and
edge-minimum walks are the case where we are charged 1 when traversing an edge ℓ > 0
times and charged 0 when we do not traverse it.

A. Amarilli, B. Groz, and N. Wein 5:21

Edge-minimum walks satisfying other constraints. Last, one other problem of interest
would be to investigate the complexity of finding edge-minimum subgraphs guaranteeing the
existence of st-walks satisfying other properties. One very natural example is the following:
Given a number ℓ, and a directed graph G with specified vertices s, t, find an edge-minimum
st-walk of length exactly ℓ. (This is the same as EWM except the length is exactly ℓ, instead
of r mod q.) The trivial algorithm for this problem is in time O(nℓ), but can we do better?
To our knowledge, this problem has not been studied.

Another example is looking for edge-minimum walks that achieve constraints expressed
by a finite semigroup. For instance, assume that each edge of the graph is labeled by a
semigroup element, and that we want a walk whose evaluation in the semigroup achieves
a specific target element of the semigroup, where evaluating the walk means multiplying
the labels of its edges in the order that they are traversed. This problem generalizes the
EWM problem (with lengths on edges), which uses the semigroup Z/qZ. An alternative way
to phrase this problem is in the language of regular path queries (RPQs) mentioned in the
introduction: fixing a regular language L on an alphabet Σ, and given a directed graph
G with terminals s and t and with edges labeled by letters of Σ, find an edge-minimum
subgraph G with an st-walk which evaluates to a word that belongs to L. For which fixed
regular languages L can this problem be solved in polynomial time in G?

References
1 Noga Alon and Michael Krivelevich. Divisible subdivisions. J. Graph Theory, 98(4), 2021.

doi:10.1002/jgt.22716.
2 Antoine Amarilli. Survey of results on the ModPath and ModCycle problems, 2024. doi:

10.48550/arXiv.2409.00770.
3 Antoine Amarilli, Benoît Groz, and Nicole Wein. Edge-minimum walk of modular length in

polynomial time, 2024. arXiv:2412.01614.
4 Esther M. Arkin, Christos H. Papadimitriou, and Mihalis Yannakakis. Modularity of cycles

and paths in graphs. J. ACM, 38(2), 1991. doi:10.1145/103516.103517.
5 Guillaume Bagan, Angela Bonifati, and Benoît Groz. A trichotomy for regular simple path

queries on graphs. J. Comput. Syst. Sci., 108, 2020. doi:10.1016/J.JCSS.2019.08.006.
6 Andreas Björklund, Thore Husfeldt, and Petteri Kaski. The shortest even cycle problem is

tractable. In STOC, 2022. doi:10.1145/3519935.3520030.
7 Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma. The even-path problem

in directed single-crossing-minor-free graphs, 2024. doi:10.48550/arXiv.2407.00237.
8 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems

in undirected graphs and the directed Steiner network problem. ACM Trans. Algorithms, 7(2),
2011. doi:10.1145/1921659.1921664.

9 Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized approximation
algorithms for bidirected Steiner network problems. ACM Trans. Algorithms, 17(2), 2021.
doi:10.1145/3447584.

10 Fan R. K. Chung, Wayne Goddard, and Daniel J. Kleitman. Even cycles in directed graphs.
SIAM J. Discret. Math., 7(3), 1994. doi:10.1137/S0895480192225433.

11 Mariano P. Consens and Alberto O. Mendelzon. Graphlog: a visual formalism for real life
recursion. In PODS, 1990. doi:10.1145/298514.298591.

12 Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query language
supporting recursion. In SIGMOD, 1987. doi:10.1145/38713.38749.

13 Gianlorenzo D’Angelo and Esmaeil Delfaraz. Approximation algorithms for node-weighted
directed Steiner problems. In IWOCA, 2024. doi:10.1007/978-3-031-63021-7_21.

14 Shagnik Das, Nemanja Draganić, and Raphael Steiner. Tight bounds for divisible subdivisions.
J. Combin. Theory Ser. B, 165, 2024. doi:10.1016/j.jctb.2023.10.011.

ITCS 2025

https://doi.org/10.1002/jgt.22716
https://doi.org/10.48550/arXiv.2409.00770
https://doi.org/10.48550/arXiv.2409.00770
https://arxiv.org/abs/2412.01614
https://doi.org/10.1145/103516.103517
https://doi.org/10.1016/J.JCSS.2019.08.006
https://doi.org/10.1145/3519935.3520030
https://doi.org/10.48550/arXiv.2407.00237
https://doi.org/10.1145/1921659.1921664
https://doi.org/10.1145/3447584
https://doi.org/10.1137/S0895480192225433
https://doi.org/10.1145/298514.298591
https://doi.org/10.1145/38713.38749
https://doi.org/10.1007/978-3-031-63021-7_21
https://doi.org/10.1016/j.jctb.2023.10.011

5:22 Edge-Minimum Walk of Modular Length in Polynomial Time

15 Irit Dinur and Pasin Manurangsi. ETH-hardness of approximating 2-CSPs and directed Steiner
network. In ITCS, 2018. doi:10.4230/LIPICS.ITCS.2018.36.

16 Ajit A Diwan. Cycles of weight divisible by k, 2024. doi:10.48550/arXiv.2407.01198.
17 Jon Feldman and Matthias Ruhl. The directed Steiner network problem is tractable for a con-

stant number of terminals. SIAM J. Comput., 36(2), 2006. doi:10.1137/S0097539704441241.
18 Andreas Emil Feldmann and Dániel Marx. The complexity landscape of fixed-parameter

directed Steiner network problems. ACM Trans. Comput. Theory, 15(3–4), 2023. doi:
10.1145/3580376.

19 Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theor. Comput. Sci., 10, 1980. doi:10.1016/0304-3975(80)90009-2.

20 Esther Galby, Sándor Kisfaludi-Bak, Dániel Marx, and Roohani Sharma. Subexponential
parameterized directed Steiner network problems on planar graphs: A complete classification.
In ICALP, 2024. doi:10.4230/LIPICS.ICALP.2024.67.

21 Jiong Guo, Rolf Niedermeier, and Ondrej Suchý. Parameterized complexity of arc-weighted
directed Steiner problems. SIAM J. Discret. Math., 25(2), 2011. doi:10.1137/100794560.

22 Xiao Hu and Stavros Sintos. Finding smallest witnesses for conjunctive queries. In ICDT,
2024. doi:10.4230/LIPICS.ICDT.2024.24.

23 Alpár Jüttner, Csaba Király, Lydia Mirabel Mendoza-Cadena, Gyula Pap, Ildikó Schlotter,
and Yutaro Yamaguchi. Shortest odd paths in undirected graphs with conservative weight
functions. Discrete Appl. Math., 357, 2024. doi:10.1016/j.dam.2024.05.044.

24 Naonori Kakimura and Ken-ichi Kawarabayashi. Packing cycles through prescribed vertices
under modularity constraints. Adv. in Appl. Math., 49(2), 2012. doi:10.1016/j.aam.2012.
03.002.

25 Ken-ichi Kawarabayashi, Stephan Kreutzer, O-joung Kwon, and Qiqin Xie. A half-integral
Erdos-Posa theorem for directed odd cycles. In SODA, 2023. doi:10.1137/1.9781611977554.
ch118.

26 Andrea S. LaPaugh and Christos H. Papadimitriou. The even-path problem for graphs and
digraphs. Networks, 14(4), 1984. doi:10.1002/NET.3230140403.

27 Anna Lubiw. A note on odd/even cycles. Discret. Appl. Math., 22(1), 1988. doi:10.1016/
0166-218X(88)90125-4.

28 Wim Martens, Matthias Niewerth, and Tina Popp. A trichotomy for regular trail queries. Log.
Methods Comput. Sci., 19(4), 2023. doi:10.46298/LMCS-19(4:20)2023.

29 William McCuaig. Pólya’s permanent problem. Electron. J. Comb., 11(1), 2004. doi:
10.37236/1832.

30 Zhengjie Miao, Sudeepa Roy, and Jun Yang. Explaining wrong queries using small examples.
In SIGMOD, 2019. doi:10.1145/3299869.3319866.

31 Burkhard Monien. The complexity of determining a shortest cycle of even length. Computing,
31(4), 1983. doi:10.1007/BF02251238.

32 Zhivko Prodanov Nedev. Finding an even simple path in a directed planar graph. SIAM J.
Comput., 29(2), 1999. doi:10.1137/S0097539797330343.

33 Mehdy Roayaei and Mohammadreza Razzazi. Parameterized complexity of directed Steiner
network with respect to shared vertices and arcs. Int. J. Found. Comput. Sci., 29(7), 2018.
doi:10.1142/S0129054118500302.

34 Neil Robertson, P. D. Seymour, and Robin Thomas. Permanents, Pfaffian orientations, and
even directed circuits. Ann. of Math. (2), 150(3), 1999. doi:10.2307/121059.

35 Ildikó Schlotter and András Sebő. Odd paths, cycles and t-joins: Connections and algorithms,
2022. arXiv:2211.12862.

36 Paul Seymour and Carsten Thomassen. Characterization of even directed graphs. J. Combin.
Theory Ser. B, 42(1), 1987. doi:10.1016/0095-8956(87)90061-X.

37 Carsten Thomassen. Even cycles in directed graphs. Eur. J. Comb., 6(1), 1985. doi:
10.1016/S0195-6698(85)80025-1.

https://doi.org/10.4230/LIPICS.ITCS.2018.36
https://doi.org/10.48550/arXiv.2407.01198
https://doi.org/10.1137/S0097539704441241
https://doi.org/10.1145/3580376
https://doi.org/10.1145/3580376
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.4230/LIPICS.ICALP.2024.67
https://doi.org/10.1137/100794560
https://doi.org/10.4230/LIPICS.ICDT.2024.24
https://doi.org/10.1016/j.dam.2024.05.044
https://doi.org/10.1016/j.aam.2012.03.002
https://doi.org/10.1016/j.aam.2012.03.002
https://doi.org/10.1137/1.9781611977554.ch118
https://doi.org/10.1137/1.9781611977554.ch118
https://doi.org/10.1002/NET.3230140403
https://doi.org/10.1016/0166-218X(88)90125-4
https://doi.org/10.1016/0166-218X(88)90125-4
https://doi.org/10.46298/LMCS-19(4:20)2023
https://doi.org/10.37236/1832
https://doi.org/10.37236/1832
https://doi.org/10.1145/3299869.3319866
https://doi.org/10.1007/BF02251238
https://doi.org/10.1137/S0097539797330343
https://doi.org/10.1142/S0129054118500302
https://doi.org/10.2307/121059
https://arxiv.org/abs/2211.12862
https://doi.org/10.1016/0095-8956(87)90061-X
https://doi.org/10.1016/S0195-6698(85)80025-1
https://doi.org/10.1016/S0195-6698(85)80025-1

A. Amarilli, B. Groz, and N. Wein 5:23

38 Carsten Thomassen. The even cycle problem for planar digraphs. J. Algorithms, 15(1), 1993.
doi:10.1006/jagm.1993.1030.

39 Vijay V. Vazirani and Mihalis Yannakakis. Pfaffian orientations, 0-1 permanents, and even
cycles in directed graphs. Discret. Appl. Math., 25(1-2), 1989. doi:10.1016/0166-218X(89)
90053-X.

40 Paul Wollan. Packing cycles with modularity constraints. Combinatorica, 31(1), 2011.
doi:10.1007/s00493-011-2551-5.

41 Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM J. Discrete Math.,
10(2), 1997. doi:10.1137/S0895480194274133.

ITCS 2025

https://doi.org/10.1006/jagm.1993.1030
https://doi.org/10.1016/0166-218X(89)90053-X
https://doi.org/10.1016/0166-218X(89)90053-X
https://doi.org/10.1007/s00493-011-2551-5
https://doi.org/10.1137/S0895480194274133

	1 Introduction
	2 Technical Overview
	3 Preliminaries
	4 Segment Decomposition of a Walk
	5 Number of Segments and Cutwidth Bounds
	6 Computing an Edge-Minimum Walk of Bounded Cutwidth
	7 Extension to Weighted Graphs
	8 Connections to DSN and SCSS
	9 Future work

