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Abstract
The parameterized analysis of graph modification problems represents the most extensively studied
area within Parameterized Complexity. Given a graph G and an integer k ∈ N as input, the goal
is to determine whether we can perform at most k operations on G to transform it into a graph
belonging to a specified graph class F . Typical operations are combinatorial and include vertex
deletions and edge deletions, insertions, and contractions. However, in many real-world scenarios,
when the input graph is constrained to be a geometric intersection graph, the modification of the
graph is influenced by changes in the geometric properties of the underlying objects themselves,
rather than by combinatorial modifications. It raises the question of whether vertex deletions or
adjacency modifications are necessarily the most appropriate modification operations for studying
modifications of geometric graphs.

We propose the study of the disk intersection graph modification through the scaling of disks.
This operation is typical in the realm of topology control but has not yet been explored in the context
of Parameterized Complexity. We design parameterized algorithms and kernels for modifying to the
most basic graph classes: edgeless, connected, and acyclic. Our technical contributions encompass a
novel combination of linear programming, branching, and kernelization techniques, along with a
fresh application of bidimensionality theory to analyze the area covered by disks, which may have
broader applicability.
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1 Introduction

In a graph modification problem, the input consists of an n-vertex graph G and an integer k.
The objective is to determine whether k modification operations – such as vertex deletions, or
edge deletions, insertions or contractions, or combinations thereof – are sufficient to obtain a
graph with prescribed structural properties such as being planar, bipartite, chordal, interval,
acyclic or edgeless. Graph modification problems encompass some of the fundamental
challenges in graph theory and graph algorithms. They represent the most intensively studied
area of research within Parameterized Complexity [23, 20, 32, 47, 8, 13, 14, 9, 2, 36, 3, 27,
11, 38, 37] (this list is illustrative rather than comprehensive; see [19, 23, 20, 32] for more
information). Here, the number of allowed modifications, k, is considered a parameter. With
respect to k, we seek a fixed parameter tractable (FPT) algorithm, namely, an algorithm
whose running time has the form f(k)nO(1) for some computable function f . It would not be
an exaggeration to state that the design of FPT algorithms for graph modification problems
has played one of the most central roles in the development of Parameterized Complexity as
a field.

In recent years, parametrized analysis of classic graph problems restricted to geometric
intersection graphs – that is, where the input graph G belongs to a prespecified class of
geometric intersection graphs – has gained a lot of interest. Naturally, particular attention
has been given to graph modification problems restricted to geometric intersection graphs.
For example, we refer to [4, 41, 42, 33, 35, 31, 21, 29, 45, 28, 22, 10, 30]. While most classic
NP-hard graph problems become polynomial-time solvable on proper interval, interval and
circular arc graphs, they remain NP-hard on most other geometric intersection graph classes
of interest, which gives rise to their parameterized analysis (see the aforementioned papers).
Geometric intersection graph classes studied in this context include, for example, unit disk
and disk graphs, unit square and square graphs, convex polygon and polygon graphs, map
graphs, string graphs, and the generalization of these classes to higher dimensions. However,
one central question arises:

Are vertex deletion and edge deletion/insertion/contraction the right modification
operations to use when dealing with graph modification problems on geometric
intersection graphs?

Geometric intersection graphs naturally give rise to modification operations that are
geometric – specifically, we modify the graph by modifying its geometric structure! Arguably,
the most fundamental operations in this regard are scaling and shifting (i.e., moving) the
input geometric objects.

In this paper, our primary objective is to launch a systematic investigation into
parameterized graph modification problems concerning geometric intersection graphs,
utilizing the operation of scaling the input geometric structure. We regard a significant
aspect of our contribution as both conceptual and foundational, with the goal of
paving the way for this emerging research direction.
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1.1 Topology Control and Disk Scaling as a Modification Operation

Topology Control is a fundamental technique used in wireless ad hoc network and sensor
networks to reduce energy consumption and radio interference [46]. This technique is used
to control the topology of the graph representing the communication links between network
nodes. The usual goal is to maintain or achieve some global graph property (like being
connected), or reduce interference (i.e., obtain an edgeless graph) while reducing energy
consumption. The geometric operation of scaling – i.e., shrinking or expanding radii – of disks
has received significant attention within research of wireless network design due to its relevance
to power consumption and interference in the networks. From a theoretical perspective, there
is also a large body of literature on algorithmic methods for range assignment in wireless
sensor and ad-hoc networks, see [39, 17, 12, 15, 48] for a (very incomplete) sample of various
approaches, and it is also of interest for other purposes (see, e.g., [1, 24, 7]). Due to this
significance, we consider problems that use disk scaling (i.e., shrinking or expanding a subset
of disks) in order to achieve certain topological properties in graph. Our work in fact fits in
the larger framework of geometric graph modification, which has been a growing trend in
recent years.

Recent work on geometric graph modification. Recently, Fomin et al. [26, 25] have studied
some problems related to (re)packing of unit disks and point spreading from the perspective
of parameterized complexity. Taking a broader perspective, these problems can also be
seen as working in the model of geometric graph modification via geometric operations,
also studied in [17, 5, 16]. Indeed, these papers consider movement of points or disks as
an operation to achieve intersection graph that is edgeless. In this paper, we focus on
scaling (i.e., shrinking or expanding) as the operation, and in addition to edgelessness, we
also consider acyclicity and connectivity. Another common theme with the work of [25]
is that they also combine enumeration of partial solutions from the (partial) kernel, and
then reduce the problem to checking a system of polynomial inequalities. This high level
scheme is similar to the one described for designing FPT algorithms for Min k-Shrinking
to Independence/Acyclicity, where we use an LP. But this similarity is only superficial,
and seems unavoidable due to the inherently continuous nature of the problems. The specific
context, and in particular, the kind of arguments used to arrive at a point where we can
use LP, are quite involved, and different from that in [25], as we will explain this further
in the following section. Nevertheless, we hope that using geometric operations for graph
modification opens up a new research direction, and we return to this topic in the conclusion.
Next, we formally introduce our model and problem definitions, and subsequently delve into
the overview of our results.

1.2 Problem Definitions

We fix some notation. Let P be a finite family of points in the plane, and r : P → R≥0 be
an assignment of points to radii. Then, the disk graph associated with P and R is defined as
follows. Let D(P, r) be a set that contains the disk centered at p with radius r(p) for each
p ∈ P , and let G(P, r) denote the disk graph corresponding to D(P, r), i.e., a graph where
we have a vertex for each point in P , and we have an edge between two points if and only if
their corresponding disks intersect. Let 1 : P → {1} denote the unit radius assignment, and
let G(P, 1) denote the unit disk graph corresponding to a set of points P .

ITCS 2025
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Figure 1 Left: Original intersection graph G = G(P, 1) denoting an instance (P, 1/2, 3) of k-
Shrinking to Independence. Right: Edgeless graph G(P, r) that shrinks three disks to radius 1/2

(shown in red).

1.2.1 Shrinking to Achieve Edgelessness and Acyclicity
The first set of problems is related to shrinking a subset of disks in order to achieve two
fundamental graph properties, namely, that of being edgeless and acyclic. The general setting
is as follows. We are given a unit disk graph G(P, 1) corresponding to a set of n points
P ⊂ R2. We want to shrink the disks corresponding to a subset S ⊆ P (i.e., change the radii
of disks of each point in S to a value smaller than 1), such that the resulting intersection
graph induces an independent set (i.e., is edgeless). We consider two variants of this setting.
First, we have a cardinality constrained problem, called k-Shrinking to Independence
(see Figure 1).

k-Shrinking to Independence
Input: A finite set of points P ⊂ R2, a constant 0 ≤ α ≤ 1, and an integer k ≥ 0.
Task: Decide whether there exists a solution (S, r) such that

1. S ⊆ P is a set of size at most k corresponding to shrunken disks,

2. corresponding radii r : P → R≥0 such that r(p) =
{

1 if p ̸∈ S

α if p ∈ S

3. G(P, r) is edgeless

We also consider a cost-minimization version of the problem, called Min k-Shrinking
to Independence, where the cost of a solution is the total change in the radii, or the sum
of shrinking factors.

Min k-Shrinking to Independence
Input: A finite set of points P ⊂ R2, a constant 0 ≤ α ≤ 1, an integer k ≥ 0, and

budget µ ≥ 0.
Task: Decide whether there exists a solution (S, r) such that

1. S ⊆ P is a set of size at most k corresponding to shrunken disks,

2. corresponding radii r : P → R≥0 where
{

r(p) = 1 if p ̸∈ S

α ≤ r(p) ≤ 1 if p ∈ S

3. G(P, r) is edgeless, and
4. cost(S, r) :=

∑
p∈S

(1 − r(p)) ≤ µ.

Analogous to k-Shrinking to Independence, we define k-Shrinking to Acyclicity,
where the goal is to achieve G(P, r) that is acyclic instead of edgeless (as in item 3 in
the definition) (see Figure 2 for an example). Min k-Shrinking to Acyclicity is the
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Figure 2 Left: Original intersection graph G = G(P, 1) corresponding to an instance (P, 1/2, 3) of
k-Shrinking to Acyclicity. Note that {u, v} is a minimum feedback vertex set for G. However,
even after shrinking the corresponding disks to 1/2 (shown in blue), the edges {uw1, uw2, vx1, v2}
(shown in red) are present in the resulting intersection graph, showing that shrinking disks is not
equivalent to vertex deletion. Right: A solution that shrinks three disks (shown in red) to radius 1/2

corresponding to u, x2, y, resulting in an acyclic graph G(P, r).

“cost-minimization” version (similar to Min k-Shrinking to Independence), where we
want to determine whether we can shrink at most k disks to radii in [α, 1] in order to achieve
an acyclic subgraph, such that cost(S, r) ≤ µ.

Note that the operation of shrinking a disk to radius 0 is not necessarily equivalent to
deleting the corresponding vertex. Thus, even when α = 0, k-Shrinking to Acyclicity
(resp. k-Shrinking to Independence) is not exactly equivalent to finding a feedback
vertex set (resp. vertex cover) of size k in the original unit disk graph. Nevertheless, we will
make use of this connection between the two problems. Now, we turn to the second class of
problems considered in this paper.

1.2.2 Shrinking/Expanding to Connectivity

Connectedness is another fundamental graph property in topology control. We consider two
variants: shrinking at least k disks while retaining connectivity, and expanding at most k

disks to achieve connectivity.1 Next, we define the two problems.
In the first problem, called k-Shrinking to Connectivity2, we are given a connected

unit disk graph G(P, 1) corresponding to a set of n points P ⊂ R2. We want to shrink
the disks corresponding to a subset S ⊆ P of size at least k (i.e., change the radii of disks
corresponding to S to a value smaller than 1), such that the resulting intersection graph
remains connected.

1 Observe that expansion versions do not make sense for the problems considered in the earlier section,
where we want to obtain an edgeless/acyclic graph – if the graph is not already edgeless/acyclic, one
cannot achieve the desired property by expanding a disk.

2 Ideally, the problem should be named k-Shrinking While Retaining Connectivity. However, for
the sake of brevity, we stick with k-Shrinking to Connectivity.

ITCS 2025
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k-Shrinking to Connectivity
Input: A finite set of points P ⊂ R2, a constant 0 ≤ α ≤ 1, and a parameter k ≥ 0.
Task: Decide whether there exists a solution (S, r) such that

S ⊆ P is a set of size at least k corresponding to shrunken disks,

corresponding radii r : P → R≥0 such that r(p) =
{

1 if p ̸∈ S

α if p ∈ S

G(P, r) is connected.

Figure 3 Left: Original intersection graph G = G(P, 1) corresponding to an instance (P, 1/2, 4)
of k-Shrinking to Connectivity. Right: A solution that shrinks 4 disks to radius 1/2 while
maintaining connectivity in the resulting intersection graph G(P, r).

The next problem, which we call k-Expanding to Connectivity, is in a sense, the
“complement version” of k-Shrinking to Independence. Here, we are given a unit disk
graph G(P, 1) corresponding to a set of n points P ⊆ R2. We want to expand the disks
corresponding to a subset S ⊆ P of size at most k (i.e., change the radii of the disks
corresponding to S to a value larger than 1), such that the resulting intersection graph
becomes connected. Formally, the problem is defined as follows.

k-Expanding to Connectivity
Input: A finite set of points P ⊂ R2, a constant α ≥ 1, and a parameter k ≥ 0.
Task: Decide whether there exists a solution (S, r) such that

S ⊆ P is a set of size at most k corresponding to expanded disks,

corresponding radii r : P → R≥0 such that r(p) =
{

1 if p ̸∈ S

α if p ∈ S

G(P, r) is connected.

2 Overview of the Technical Results

Our algorithmic technical contribution is, mainly, twofold:
The first contribution is a novel combination of linear programming, kernelization and
branching/exhaustive search: we observe that linear programming can handle continuous
domains, kernelization can reduce the search space within these domains, and, when
combined with exhaustive search/branching, these can yield the desired solution. While
several of our results are based on this approach, we would like to highlight, in particular,
the FPT algorithm for k-Shrinking to Acyclicity (see Theorem 8), which exhibits a
more intricate combination.
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Table 1 A summary of the results in the paper. Additionally, we also show that all of the
problems to be NP-hard, which is not mentioned in the table.

Objective Type of Result Cardinality version Cardinality and
cost-minimization version

k-Shrinking to Independence

Kernelization O(k) partial kernel
(Thm. 4), true polynomial

kernel (Thm. 5)

O(k) partial kernel
(Thm. 4)

Parameterized
complexity

Subexponential FPT
(Thm. 1)

FPT (Thm. 6)

Approximation EPTAS (Thm. 10) Bicriteria EPTAS
(Thm. 10)

k-Shrinking to Acyclicity

Kernelization &
Compression

True polynomial kernel
(Thm. 9)

Partial polynomial
compression (Thm. 7)

Parameterized
complexity

Subexponential FPT
(Thm. 2)

FPT (Thm. 8)

k-Shrinking to Connectivity Parameterized
complexity

Subexponential FPT
(Thm. 3)

–

A generalization of
k-Expanding to Connectivity

Parameterized
complexity

W[1]-hard (Full version) –

The second contribution is, in a sense, the first “geometric” use of bidimensionality theory.
Here, the application is tied up with the analysis of the different areas covered by disks.
We employ this approach to design a subexponential FPT algorithm for k-Shrinking
to Connectivity (see Theorem 3).

We believe that our two approaches are quite general in nature, and will be applicable to
other parameterized problems that involve placement of geometric objects in the Euclidean
space, particularly when dealing with continuous domains. We summarize our results in
Table 1. In this extended abstract, we give an in-depth overview of our algorithmic results,
and the technical details are deferred to the full version. One remark is that, all of these
problems are shown to be NP-hard, and these NP-hardness results are shown via reduction
from well-known planar problems, namely, Independent Set, Feedback Vertex Set in
planar graphs, and Planar 3-SAT, respectively. Now we turn to the technical overview of
the rest of the results.

2.1 Subexponential FPT Algorithms
In this section, we discuss the first technical contribution of our paper, namely, to design
subexponential FPT algorithms for k-Shrinking to Independence, k-Shrinking to
Acyclicity and k-Shrinking to Connectivity (specifically the last problem).

Independence and Acyclicity. Recall that in these problems, the goal is to shrink at most
k disks to radius α such that the resulting intersection graph is edgeless (resp. acyclic). For
the sake of ease of exposition, let us suppose that α, the radius of the shrunken disks, is a
constant. We will start by eliminating large cliques, i.e., we show using packing arguments
that, if the largest clique in the original intersection graph G = G(P, 1) has size Ωα(1) 3, then
no solution can shrink any subset of disks to radius α and remove all the edges. This bounds

3 For the sake of simplicity, we use α in the subscript of O(·) and Ω(·) notation to suppress the dependence
on α in the current overview.

ITCS 2025
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the maximum clique-size. Now, we use bidimensionality arguments to show that, either the
graph has Ω(

√
k) × Ω(

√
k) grid as a minor, or the treewidth of the graph is bounded by

Oα(
√

k). In the former case, we can conclude that it is a no-instance, whereas in the latter
case we can perform dynamic programming on the tree decomposition of width Oα(

√
k) to

solve the problem. This leads to the following results.

▶ Theorem 1. There exists an algorithm that solves an instance I = (P, k, α) of k-Shrinking
to Independence in time 2O(( 1

α )2√
k) · nO(1).

▶ Theorem 2. There exists an algorithm that solves an instance I = (P, k, α) of k-Shrinking
to Acyclicity in time ( 1

α k)O(( 1
α )2√

k) · nO(1).

Connectivity. Now we turn to the subexponential FPT algorithm for k-Shrinking to
Connectivity, which is one of the main results of the paper. This algorithm also begins
with the elimination of large cliques. However, already for this step, our arguments are
substantially more involved compared to all previously known subexponential-time algorithms
for problems on geometric intersection graphs that also eliminate large cliques (see, e.g.,
[31, 29, 28, 30, 40]). Specifically, for all of these problems, the existence of a large clique
trivially implies that we have a yes-instance (or a no-instance) at hand. However, for k-
Shrinking to Connectivity, the proof is more complicated. Further, and perhaps more
importantly, even once we have proved that every optimal solution contains “most” vertices
of a clique, and we have “guessed” (by branching) which these vertices are, we can neither
shrink their corresponding disks (since then, we might be left with a clique just as large
as it was before) nor delete them. In particular, deletion is incorrect since it might turn a
no-instance into a yes-instance, and vice versa (see Figure 4a). Fortunately, we are able to
prove that it is possible to delete all of the guessed set except for a carefully chosen subset of
a few representatives from it.

(a) There is a solution that shrinks some of the
disks in the clique; however, shrinking all the
disks in the clique results in the disconnected
graph (due to the red disks).

(b) Each disk corresponding to the vertices of
the grid minor is “touching” its neighbors, and
shrinking any of the disks results in a discon-
nected graph.

Figure 4 Illustrative figures for k-Shrinking to Connectivity.

The next step of our proof handles cycles (or, more precisely, closed walks) that we term
non-empty. Specifically, we denote some disks as unshrinkable; at the beginning, these are
simply the disks that cannot be shrunk without violating connectivity. Then, for a cycle,
we consider the “area that it encloses”, and identify two sets of disks of interest: the disks
intersecting this area (the relevant set), and the disks strictly in the interior of this area (the
interior set). If all the disks in the relevant set are unshrinkable, then the cycle is termed
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unshrinkable, and if the interior set is non-empty, then the cycle is termed non-empty. Then,
we prove that, given an unshrinkable cycle, it is safe to delete its entire interior set (which,
in case of a non-empty cycle, yields progress). Additionally, if the interior set of a cycle is
non-empty and contains a shrinkable disk, then the cycle is called reducible; we note that a
shrinkable non-empty cycle might not be reducible. We prove that if we have a large enough
collection of reducible cycles whose relevant sets are disjoint, then we have a yes-instance at
hand.

Thirdly, we turn to deal with the case where we have a large grid as minor – here, it will
also become clear why we had to analyze non-empty cycles. Again, let us remark that all
previously known subexponential-time algorithms for problems on geometric intersection
graphs, when encountering the case of a large grid as a minor, can simply say Yes or No. For
us, having a large grid minor does not imply that we have a yes-instance (or a no-instance),
although it may seem so at first glance – indeed, we might even be dealing with an “extreme”
case where all of the disks that compose the grid minor are unshrinkable (see Figure 4b). To
overcome this difficulty, first of all, we do not consider just any grid minor, but a grid minor
such that the closed walks corresponding (according to the minor model) to its 4-cycles have
some particular embedding on the plane. Then, we are able to show that within such a grid
minor, one can identify either an unshrinkable non-empty closed walk (and, then, apply a
reduction rule) or a large enough collection of reducible cycles whose relevant sets are disjoint
(and, then, output Yes and terminate). Putting everything together, our algorithm works as
follows. As long as we have a large clique, we branch to eliminate most of it. Then, based on
a known result, we know that either we have a large grid minor of a particular form (and,
then, proceed as described in the previous paragraph) or that the treewidth of the graph
is small. In this latter case, we can simply use dynamic programming to directly solve the
problem. Thus, we obtain the following result.

▶ Theorem 3. There exists an algorithm that solves an instance I = (P, k, α) of k-Shrinking
to Connectivity in time ( k

α )O(( 1
α )2·k3/4) · nO(1).

Expanding to achieve Connectivity. Surprisingly, it turns out that, unlike its shrinking
counterpart, a generalization of k-Expanding to Connectivity is W[1]-hard. In this
generalization, we may only expand the disks centered at a specified subset of points; whereas
the disks centered at the rest of the points are fixed to be unit disks. We show this using a
reduction from Covering Points by Unit Disks, which is known to be W[1]-hard [43].
This result shows that not all natural problems of interest in this geometric graph modification
model are fixed-parameter tractable. 4

2.2 Polynomial Kernels and Compressions and their Consequences
Now we discuss our results regarding polynomial kernels and compressions for k-Shrinking
to Independence/Acyclicity and their minimization variants. We also discuss how
these results also enable us to design FPT algorithms for the minimization variants, us-
ing a combination of partial enumeration of the solution space of the kernels, and linear

4 We remark that our algorithmic results (FPT algorithms, kernels, etc.) for the other problems – namely,
k-Shrinking to Independence/Acyclicity/Connectivityand their variants – also hold for such
a generalization, where a subset of disks cannot be shrunk. In fact, our algorithm for k-Shrinking
to Independence supposes the presence of unshrinkable disks, as there, specifically, it simplifies the
write-up. Thus, the preceding remark remains valid. However, for the sake of simplicity of presentation
of the other results, we decided to stick with the special cases where any disks can be shrunk.

ITCS 2025
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programming. Note that the subexponential FPT algorithms for k-Shrinking to Indepen-
dence/Acyclicity discussed in the previous section work directly on the original instances
and do not rely on the kernels.

2.2.1 (Min) k-Shrinking to Independence
We show the following result.

▶ Theorem 4. [Informal] There exists a partial kernel for k-Shrinking to Independence
(resp. for Min k-Shrinking to Independence), where the number of points in the resulting
instance is O(k).

Note that in this result, we are only able to bound the number of points in the resulting
instance by O(k). However, the number of bits required to encode the coordinates of each
point may still be unbounded. Therefore, we only obtain a partial kernel for these two
problems.

Since k-Shrinking to Independence is a “discrete” problem, we can in fact extend
this argument to obtain a (fully) polynomial kernel. Here, we need to additionally show that
the geometric information that is relevant for solving k-Shrinking to Independence can
be encoded using polynomially many bits in k. Thus, we obtain the following result.

▶ Theorem 5. There exists a (true) polynomial kernel for k-Shrinking to Independence,
paramterized by k.

FPT Algorithm for Min k-Shrinking to Independence. Note that usually the existence
of (partial) kernels is sufficient to immediately conclude that the problem is FPT by enumer-
ating all possible solutions. However, for the case of Min k-Shrinking to Independence,
even if one fixes a subset of disks of size k to be shrunk (i.e., a partial solution), the new
radius of each disk is a real number in the range [α, 1]. Thus, the number of possible solutions
is infinite. Here, we enumerate all partial solutions, and use linear programming 5 to check
whether there exists a radius assignment of cost at most µ, resulting in an edgeless graph.
Thus, we obtain the following result.

▶ Theorem 6. There exists an algorithm that decides an instance I = (P, k, α, µ) of Min
k-Shrinking to Independence in time kO(k) · nO(1). Additionally, if I is a yes-instance,
the algorithm can return an optimal solution for I.

2.2.2 (Min) k-Shrinking to Acyclicity
We first give an overview of our result regarding the (partial) polynomial compressibility of
Min k-Shrinking to Acyclicity, which, along with the FPT algorithm for the problem
(as stated subsequently) is the second main result of the paper.

▶ Theorem 7 (Informal). There exists a partial polynomial compression for Min k-Shrinking
to Acyclicity into an annotated graph problem, where the size of the resulting instance is
bounded by a polynomial in k, assuming each real number in the instance can be stored using
O(1) bits.

5 Since our LP involves real numbers, we cannot use standard LP solvers that run in (weakly) polynomial
time. However, since we work in Real RAM model, we can use an algebraic LP solver such as [18, 44] to
find an optimum solution, resulting in the algorithm with the claimed running time bound. We thank a
reviewer for pointing this out. More details on this can be found in the full version.
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Figure 5 (a) Given intersection graph after removing the vertices of degree at most 1. Vertices
of degree at least 3 are shown in red. (b) Resulting multigraph H on vertices of degree at least
3, obtained after replacing degree-2 paths with reducible edges (shown in green) and one of the
two edges ce is an original edge (blue). Annotations of green edges include, for example, distance
between farthest pairs of disks in the corresponding path (shown in blue in figure (a)). (c) A
particular guess for the edges of R (dashed purple), such that H − R (graph induced on black edges)
is acyclic. For each edge of R, we guess the number of disks that will be shrunk to remove this edge.
Then, an optimal values of the shrunk radii that is compatible with this guess is found using linear
programming. For example, such a solution may shrink the disk centered at c (removing bc, ac), e

(removing ae and together with c, the edge ce), and the two blue disks in the path corresponding to
ad.

We first state relatively straightforward reduction rules. First, we argue that, if any
vertex in the initial intersection graph has a “large” degree (i.e., larger than some ck), then it
implies the existence of a clique of size at least k + 3 – note that no solution that is allowed to
shrink at most k disks can remove all the edges of such a clique, which implies that we have
a no-instance. Thus, either the maximum degree in the given intersection graph is bounded
by O(k), or we can say No. Further, we can safely delete all vertices of degree at most one
as well as acyclic components from the graph. So far, these arguments bear resemblance
to those used to obtain a polynomial kernel for Feedback Vertex Set. From this point
onward, however, we deviate significantly from the standard arguments, and need to rely on
the inherent geometric nature of the problem.

We now handle each connected component of the graph separately. If a connected
component is a simple cycle, then observe that an optimal solution shrinks either one or
two disks, depending on the distances between the consecutive vertices in the cycle. We can
compute the optimal choice and get rid of all such isolated cycles. Next, we aim to handle
“long” degree-2 paths in a component. Note that an optimal solution shrinks ℓ ≤ 2 disks
from such a path. We replace such a path in the intersection graph with a single edge, called
a reducible edge, that is annotated with an optimal choice for shrinking 0 ≤ ℓ ≤ 2 disks from
the original path. The remaining edges in the graph are original edges, and we annotate
each edge with the Euclidean distance between its two endpoints.
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Thus, we obtain a graph H (in fact, in the actual construction it will be a multigraph).
Further, the minimum degree of H is 3, and the maximum degree of H is O(k). At this
point, we can argue that, if the given instance is a yes-instance, then |V (H)| = O(k2) and
|E(H)| = O(k3). The task of determining whether the original instance is a yes-instance
of Min k-Shrinking to Acyclicity is equivalent to determining whether H is a yes-
instance of an appropriately defined graph problem, say Π. Note that although the size
of H is bounded by O(k3), the edges of H are annotated with relevant distances denoting
optimal choices, and thus can be real numbers in general. Thus, we can only infer a (partial)
polynomial compression from Min k-Shrinking to Acyclicity into Π.

We can use the compressed instance of Π to design an FPT algorithm for Min k-
Shrinking to Acyclicity, as follows. Recall that |V (H)| = O(k2) and |E(H)| = O(k3).
Thus, any acyclic subgraph of H with vertex set V (H) must contain at most |V (H)| − 1 =
O(k2) edges. We iterate over all such edge sets F ⊆ E(H) inducing an acyclic subgraph –
note that there are at most kO(k2) guesses. This implies that each edge in R = E(H) \ F

must be removed by the solution; note that |R| = O(k3). Further, an original edge of R

can be removed by shrinking either one or both of its endpoints (3 choices), whereas a
reducible edge can be removed by shrinking 1 or 2 disks in the corresponding path, and these
choices are encoded in the annotation. Thus, there are a constant number of choices for
removal of each edge of R, which results in 2O(k3) further guesses. For each set of guesses,
we can determine an optimal choice for each such guess using the annotated information,
and formulate a linear program (LP) that captures the best choices. By solving the LP, in
time 2O(k3 log k), we can find a minimum-cost solution that shrinks at most k disks that is
compatible with all the shrinking choices, if one exists. Finally, we return the best solution
found over all 2O(k3) guesses, which leads to the following result.

▶ Theorem 8. There exists an algorithm that takes as an input of Min k-Shrinking to
Acyclicity, and in time 2O(k3 log k) · nO(1) time, either correctly concludes that it is a
no-instance; or finds a solution of the smallest cost that shrinks at most k disks.

The aforementioned approach also yields a polynomial compression for k-Shrinking
to Acyclicity into an intermediate multigraph problem. However, since k-Shrinking
to Acyclicity is a “discrete” problem, one can, in fact, encode all the relevant geometric
information using polynomially bits in k, resulting in a polynomial kernel for the problem.

▶ Theorem 9. There exists a polynomial kernel for k-Shrinking to Acyclicity parame-
terized by the number of disks k that one is allowed to shrink.

2.3 Approximation Schemes for (Min) k-Shrinking to Independence
Finally, we design EPTASes, i.e., efficient polynomial-time approximation schemes for (Min)
k-Shrinking to Independence. For k-Shrinking to Independence, for a fixed ε > 0,
our algorithm either correctly concludes that the given instance is a no-instance, or returns
a solution that shrinks at most (1 + ε)k disks to radius α. For Min k-Shrinking to
Independence, our algorithm returns a bicriteria EPTAS. That is, it either correctly
concludes that the given instance is a no-instance, or returns a solution of cost at most
(1+ε)µ that shrinks at most (1+ε)k disks to a radius in [α, 1]. Thus, we obtain the following
theorem.

▶ Theorem 10. There exists a bicriteria EPTAS (resp. EPTAS) for Min k-Shrinking to
Independence (resp. k-Shrinking to Independence) running in time 2O( 1

ε log( 1
ε )) · nO(1).
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These results are obtained using the well-known shifting technique [6, 34] to reduce the
problem to bounded-size instances, at the expense of a small loss in the approximation factor.
Each bounded-size instance is then solved optimally. We give an overview for our bicriteria
EPTAS for Min k-Shrinking to Independence where the arguments are more involved;
those for k-Shrinking to Independence are relatively simpler. First, we subdivide the
instance into sub-instances induced by O(1/ε) × O(1/ε) squares, such that the number of
optimal disks intersecting the boundaries of the squares is at most εk, and the total sum
of changes in the radii of such disks is at most εµ. In order to solve each subproblem, we
further partition the square into smaller grid cells, such that each cell induces a clique in the
given UDG. If such a clique contains at most c/ε disks, then we guess the exact subset of
disks that are shrunk by an optimal solution. Otherwise, if the clique contains more than
c/ε disks, then we mark all disks as potentially shrinkable. Note that all except at most one
disk from each clique must be shrunk by any solution. Thus, we can argue that the total
number of disks that are shrunk in the latter case is at most εk. Now, for each guess of the
potentially shrinkable disks, we use linear programming to find an optimal solution that is
only allowed to shrink the potentially shrinkable disks, in order to result in an edgeless graph.
Finally, we need to combine the solutions of subproblems in a careful manner – since the
disks near the boundaries of the cell appear in multiple subproblems. We achieve this using
dynamic programming over the optimal solutions computed for the bounded-size instances.

As mentioned earlier, we defer the formal descriptions of algorithmic and hardness results
to the full version. We proceed directly to the conclusion and directions for future research.

3 Conclusion and Future Research

In this paper, we initiated the study of graph modification by scaling of disks from the
perspective of Parameterized Complexity. Specifically, we focused on modifying the connec-
tivity properties of the graph while shrinking or expanding a subset of disks. The (Min)
k-Shrinking to Independence/Acyclicity problems correspond to shrinking at most
k disks to achieve a completely disconnected (i.e., edgeless), and minimally connected (i.e.,
acyclic) intersection graph, respectively. Whereas k-Shrinking to Connectivity (resp.
k-Expanding to Connectivity) corresponds to shrinking at least (resp. at most) k disks
while retaining (resp. achieving) connectivity in the intersection graph.

Besides our NP/W[1]-hardness results for the above problems, we also gave several
algorithmic results. For (Min) k-Shrinking to Independence, we designed (partial)
polynomial kernels, FPT algorithms, and (bicriteria) approximation schemes. For Min
k-Shrinking to Independence, we use a novel combination of linear programming with
ideas from parameterized complexity and geometric approximation respectively. The FPT
algorithm is obtained by first using kernelization to derive a bounded-size instance, and then
using LP to solve this instance; whereas the approximation algorithm uses a combination of
the classical shifting technique along with LP. We also obtained similar results for (Min)k-
Shrinking to Acyclicity; however our arguments and techniques are more sophisticated
due to “non-local” nature of the problem. Finally, for k-Shrinking to Connectivity,
we introduced a novel decomposition theorem that returns a grid minor of the disk graph
along with a particular kind of embedding on the plane, and used this theorem to design a
subexponential FPT algorithm for the problem. Similar ideas also gave subexponential FPT
algorithms for k-Shrinking to Independence/Acyclicity.
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Analogous to the results obtained for k-Shrinking to Independence, it is natural
to ask whether k-Shrinking to Connectivity admits (partial) polynomial kernel, and
approximation schemes. Furthermore, it is also possible to define cost-optimization version
of k-Shrinking to Connectivity and study it from the perspective of fixed-parameter
and approximation algorithms.

At a broader level, we believe that a significant portion of our contribution lies in the
conceptual realm, with the goal of pioneering a new domain within the field of geometric
graph modification problems. Furthermore, it opens up a multitude of potential directions
for future research. In this context, we propose a few specific avenues to explore.

Modification to other graph Classes: In addition to graph modification to achieve
edgelessness or connectivity, it is intriguing to consider modifying the given geometric
graph to belong to other families of graphs, such as acyclic graphs (for minimal connectivity
assurance), cluster graphs (for clustering purposes), cliques (for direct communication
facilitation), and bounded-degree graphs (which generalize edgeless graphs).
Various geometric intersection graphs as input: Our study primarily focused on the
simplest geometric intersection graphs, specifically disk graphs, where graph modification
problems often become tractable within the realm of Parameterized Complexity despite
being NP-hard. Beyond disk graphs, various other geometric intersection graphs, such
as string graphs and map graphs, present substantial differences. Additionally, we can
extend our investigations to three-dimensional spaces (e.g., unit ball graphs and more
general ball graphs). Therefore, a natural research direction is to explore geometric
modifications for graph classes within these broader and distinct geometric intersection
graph categories.
New geometric modification operations: While we utilized scaling as a quintessential
example of a geometric modification operation, other geometric operations, like movement
(recently studied in [25, 26]) or rotation, may be more suitable depending on the context
and the nature of the geometric objects under consideration. Furthermore, one might
contemplate simultaneously shifting, scaling, and rotating objects (or applying any
combination of two out of these three operations). This parallels research on graph
modification problems where significant efforts have been made to concurrently address
edge deletions and insertions. Beyond these combinations, defining and researching other
geometric operations can be highly relevant based on the objectives and the class of
geometric intersection graphs at hand. This includes operations like smoothing and
dimension reduction.
Meta-theorems. While the study of research questions on a problem-to-problem basis
can be sometimes challenging, yet interesting in its own right, the ultimate goal is often
to prove meta-theorems that simultaneously assert or refute, say, membership in FPT
or the existence of a polynomial kernel, for a host of problems. For example, we may
claim, for a whole class of problems, that if a specific constraint X in the definition of
any problem in the class can be expressed in some logic (e.g., Monadic Second Order
Logic), then the problem is FPT, or that if and only if the input graph (or one of the
input graphs) has bounded treewidth, then the problem is FPT, or that if the problem
admits an OR-cross-composition from an NP-hard problem, then it has no polynomial
kernel unless the polynomial hierarchy collapses. We refer to the books [23, 20, 32] for
examples of such results. Clearly, after gaining a better understanding of the problem
class introduced in this paper, the pursuit of such meta-theorems represents an intriguing
avenue for further research.
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