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Abstract
We study differential privacy (DP) in a multi-party setting where each party only trusts a (known)
subset of the other parties with its data. Specifically, given a trust graph where vertices correspond
to parties and neighbors are mutually trusting, we give a DP algorithm for aggregation with a much
better privacy-utility trade-off than in the well-studied local model of DP (where each party trusts
no other party). We further study a robust variant where each party trusts all but an unknown
subset of at most t of its neighbors (where t is a given parameter), and give an algorithm for this
setting. We complement our algorithms with lower bounds, and discuss implications of our work to
other tasks in private learning and analytics.
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1 Introduction

Differential privacy (DP) [22, 21] is a rigorous privacy notion that has seen extensive study
(e.g., [23, 52]) and widespread adoption in analytics and learning (e.g., [20, 2, 46, 51]). It
dictates that the output of a randomized algorithm remains statistically indistinguishable if
the data of a single user changes. The most widely studied models of DP are the central
model where a trusted curator is given access to the raw data and required to output a DP
estimate of the function of interest, and the local model [26, 37] where every message leaving
each user’s device is required to be DP. While the latter is compelling in that each user needs
to place minimal trust in other users, it is known to suffer from a significantly higher utility
degradation compared to the former (e.g., [15]).

In practice, data sharing settings often include situations where a user is willing to
place more trust in a subset of other users. For example, many people have different
privacy sensitivities depending on their relationships with others: Alice might be willing to
share her location data with family and close friends, but unwilling to have her location
data be recoverable by strangers from a public channel. This relates to philosophical
conceptualizations of privacy as control over personal information, in that individuals may
specify with whom they are willing share their information [49].
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Trust Graph DP Models

In this work, we model such relationships as a trust graph where vertices correspond to
different users and neighboring vertices are mutually trusting (see Figure 1 for a simple
example). We define and study DP over such trust graphs, whereby the DP guarantee is
enforced on the messages exchanged by each vertex or its trusted neighbors on one hand,
and the other non-trusted vertices on the other hand.

A

B
C D E

Figure 1 Simple example trust graph. User A is only willing to share their data with users
B and C, and user C is additionally willing to share their data with D. We introduce a privacy
model (TGDP) in which users D and E cannot identify user A’s data based on any communication
exchanged.

Specifically, we define notions of Trust Graph DP (TGDP) that generalize existing defini-
tions of local DP [37] and central DP, and effectively interpolate between them. Informally,
TGDP requires that the distribution of all messages exchanged by each vertex v or one
of its neighbors with any vertices that are not trusted by v should remain statistically
indistinguishable if the input data held by v changes; we formalize this in Definition 7.

We further extend TGDP to capture robustness to potentially compromised neighbors.
Namely, the above privacy guarantee can break if a single neighbor of a vertex turns out
to be untrustworthy. Thus, we introduce the notion of Robust Trust Graph DP (RTGDP),
which maintains the privacy guarantee even if some unknown subset of neighbors of a given
size is compromised; see Definition 14.

Our Results

Having defined these trust graph-based models of DP, we give algorithms for the basic
aggregation primitive that satisfy both TGDP and RTGDP notions. Notably, we propose
algorithms that depend on linear programming formulations that can be computed in
polynomial time (Theorems 9 and 15). We complement our algorithms with lower bounds
on the error that depend on combinatorial properties of the graph (Theorems 10 and 16).
Although closing the gap between our upper and lower bounds is still open, we obtain a
bi-criteria result showing that the upper bound is not much larger than the lower bound
when we slightly increase the robustness parameter t (Theorem 17).

The aggregation primitive we study in this work is a basic building block. Indeed, our
work implies new DP algorithms over trust graphs for other problems in learning and analytics
(see Appendix 5).

We supplement the theory with evaluation on nine real network datasets including email
communication networks, social networks, and cryptocurrency trust networks. Our results
show that the utility degradation when satisfying TGDP and RTGDP can be significantly
lower than that of local DP. Thus, when trust relationships exist, accounting for these
relationships when incorporating DP into a system can considerably improve overall utility.
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1.1 Technical Overview
We first give a TGDP mechanism for the integer aggregation problem with a mean-squared
error (MSE) that scales linearly in the size of any dominating set1 of the trust graph. The
idea of the protocol is the following: Each user identifies one user in the dominating set that
they trust and to whom they send their input. Then, each user in the dominating set simply
runs the central (discrete) Laplace mechanism to privatize the data. The final estimate is the
sum of all these sub-estimates in the dominating set. The MSE grows with the dominating
set size, as formalized in Theorem 8.

A disadvantage of the protocol described above is that, in order to minimize the error,
it requires the knowledge of a minimum dominating set. However, computing a minimum
dominating set is NP-hard and even hard to approximate [27]. So we give (in Theorem 9)
a protocol that not only is efficient but can also reduce the error by up to O(log n) factor.
This protocol only requires a solution to a linear program (LP), which, unlike the minimum
dominating set, can be computed in polynomial time. At a high-level, there are two key
ideas in this protocol:

(i) Input Splitting: Instead of sending the input to a single vertex as in the previous section,
each user will split their input into (random) additive shares and send it to all its
neighbors. The input splitting idea originated in cryptography [36] and has recently
found applications in the shuffle model of DP [6, 32], although the nature of how we
use it here is quite different from those previous works.

(ii) Distributed Noise Addition: Similar to the previous protocol, each user again broadcasts
the sum of all messages they receive with some noise added. The main difference here
is that, instead of using the discrete Laplace noise, we use the negative binomial noise
designed in such a way that, when sufficiently many of them are summed up, they
guarantee DP. This helps reduce the amount of noise required in the protocol. (The
idea of distributed noise generation dates back to the early works on DP [21], but the
distributions we use here are from [6].)

What we gain by applying the input splitting is that, due to the properties of random
additive shares, the only way the adversary learns anything about xv is to sum up all
the messages broadcast from its neighbors. By a careful design of the distributed noise
distribution, we can ensure that this sum contains sufficient noise to provide DP guarantees.

Our lower bound on integer aggregation with TGDP (Theorem 10) shows that the MSE
grows with the packing number of the trust graph. The main idea is to transform any TGDP
protocol to a local DP (LDP) protocol with the same privacy and utility, but with a number
of users equal to the packing number. The “packing” property ensures that the users are
“isolated” from each other in the reduction step.

For our results in the RTGDP model, we consider the same LP but impose a stricter
constraint to ensure DP guarantees even when some neighbors of each vertex are compromised.
To prove our bi-criteria tightness (Theorem 17), we study the dual of the LP and apply
randomized rounding to convert the fractional solution into an integral one.

1.2 Related Work
Secure multiparty computation (SMPC) [55, 56, 34] can be leveraged to allow users to
achieve central DP utility without relying on a trusted curator; this is done via cryptographic
protocols whose security relies on computational hardness assumptions [21, 8, 11, 9]. An

1 See Section 3 for the formal definitions of a dominating set and a packing.
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important distinction between our model and SMPC is that while the privacy of SMPC
protocols relies on computational hardness assumptions, the privacy guaranteed in our
proposed TGDP model is information-theoretic (and thus stronger). Still, our proposed
TGDP model can also be thought of as relaxing the SMPC threat model to assume that a
subset of at least a certain number of users is trustworthy (or would execute the algorithm
faithfully). Specifically, the proposed TGDP notion could enable higher-utility protocols
than the state-of-the-art in SMPC, by making a stronger (but realistic) assumption that
different users fully trust some subset of other users (namely, their neighbors in the trust
graph).

We also point out that the multi-central (a.k.a. multi-server) model of DP [50, 17] is a
special case of our RTGDP model. Another intermediate model between local and central
DP is the shuffle model [10, 25, 16], where aggregation has been extensively studied (e.g.,
[5, 30, 31]); but this model does not capture mutually trusting relationships between different
pairs of users. Finally, the network DP model [18] is a different relaxation of local DP where
the (DP) communication between users is restricted to the edges of a given graph; this is in
contrast to our proposed TGDP model where a given graph encodes trust relationships.

Organization

We start with some background in Section 2. In Section 3, we formally define the notion
of DP on trust graphs, and give algorithms and a lower bound for solving the aggregation
task under this privacy guarantee. The RTGDP notion is defined in Section 4 where we also
give an algorithm and lower bounds for aggregation under this robust notion. We conclude
with some interesting future directions in Section 6. Missing proofs are in Appendix B. In
Appendix C, we include experiments in which we report our given upper and lower bounds
on real network datasets.

2 Preliminaries

Let n users be represented as vertices V = {1, ..., n} of a graph G = (V, E), where E ⊆ V 2

corresponds to the set of pairs (i, j) of users, where i and j are willing to share their data
with each other.2 Let X be any domain and suppose each user i ∈ V has data xi ∈ X , and
the (full) input dataset is given by (x1, . . . , xn) = x ∈ Xn. Let N(v) be the neighborhood of
v in G = (V, E), i.e., N(v) = {u | (u, v) ∈ E} and let N [v] be the closed neighborhood of v,
i.e., N [v] = N(v) ∪ {v}.

2.1 Differential Privacy Definitions and Tools
▶ Definition 1 (DP; [22, 21]). A randomized mechanism M : Xn → O is (ε, δ)-differentially
private ((ϵ, δ)-DP) if for all pairs x, x′ ∈ Xn of datasets that differ only in the data of a
single user, and for all subsets S ⊆ O, Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ.

For brevity, we write (ε, 0)-DP as ε-DP (a.k.a., pure-DP).
In non-interactive local DP, each user has to randomize their own input and send it to the

server (or, alternatively, publish it). In this case, each user’s randomized output is required
to be DP:

2 For simplicity, we focus only on the “symmetric” notion of sharing. It is relatively simple to extend all
of our algorithms to the “asymmetric” version as well.
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▶ Definition 2 (Non-Interactive Local DP; [37]). A randomized mechanism M : X → O is
a non-interactive (ε, δ)-local DP randomizer if for any pair x, x′ ∈ X , and for all subsets
S ⊆ O, Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ.

To define DP properties of possibly interactive protocols, we follow the approach of [8].
First, we define the notion of a protocol view.

▶ Definition 3 (View). The view of a protocol P at vertex u for an input dataset x ∈ Xn,
denoted viewu

P (x), consists of the input xu and all messages received and sent (together with
the corresponding source/destination) by the vertex u.

The view of the protocol P for a subset S ⊆ V of vertices is defined as viewS
P (x) :=

(viewu
P (x))u∈S . Let O be the set of all possible views. For any T ⊆ V , we write x−T as a

shorthand for xV ∖T and, for any v ∈ V , x−v as a shorthand for x−{v}. When the protocol
is interactive, local DP can be defined as follows [8]:

▶ Definition 4 (Interactive Local DP). A protocol P satisfies (ϵ, δ)-local DP ((ϵ, δ)-LDP) if
for each vertex v ∈ V , viewV ∖{v}

P (x) satisfies (ε, δ)-DP with respect to the input xv for all
values of x−v. I.e., for all pairs xv, x′

v ∈ X , all values of x−v, and all subsets S ⊆ O,

Pr[viewV ∖{v}
P (xv, x−v) ∈ S] ≤ eε Pr[viewV ∖{v}

P (x′
v, x−v) ∈ S] + δ.

For pure-DP, it is useful to define D∞(P ∥ P ′) := maxo∈supp(P) ln
(

PrX∼P [X=o]
PrX′∼P [X′=o]

)
for dis-

tributions P,P ′. We will sometimes use random variables and distributions interchangeably.
It is well-known that DP is robust to post-processing. This fact will be useful in our

privacy analysis.

▶ Lemma 5 (Post-Processing). For any random variables X, X ′ and a (possibly randomized)
function f , we have D∞(f(X) ∥ f(X ′)) ≤ D∞(X ∥ X ′).

We will use the following distributions for the noise:
The negative binomial distribution NB(r, p) with parameters r > 0, p ∈ (0, 1) is supported
on Z≥0 with density Pr[X = k] =

(
k+r−1

k

)
(1− p)kpr, where X ∼ NB(r, p). Its variance is

r(1− p)/p2.
Let sNB(r, p) be the distribution of X −X ′ where X, X ′ ∼ NB(r, p) are i.i.d.
The discrete Laplace distribution DLap(b) with parameter b > 0 is supported on Z and
its density is given by Pr[X = k] ∝ exp(−|k|/b) for X ∼ DLap(b).

We will use the following facts in our analysis:
If X1 ∼ sNB(r1, p) and X2 ∼ sNB(r2, p), then X1 + X2 ∼ sNB(r1 + r2, p).
DLap(b) is the same distribution as sNB(1, 1− e−1/b).

The discrete Laplace mechanism is well-known to guarantee DP in the central setting [33].
Below, we state a slightly more general version of this for sNB that will be convenient for
our analysis.

▶ Lemma 6. For any x, x′ ∈ {0, . . . , ∆}, let Z ∼ sNB(r, 1− e−ε/∆) where r ≥ 1. Then, we
have D∞(Z + x ∥ Z + x′) ≤ ε.

In the privacy analysis, we often consider viewS
P (xv, x−v) and viewS

P (x′
v, x−v) for xv, x′

v ∈
X . For convenience, we will write viewS

P (x) for x ∈ X as a shorthand for viewS
P (xv, x−v)

when xv = x. Similarly, for a quantity y that depends on xv, we will write y(x) to denote y

when x = xv.

ITCS 2025
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3 Trust Graph Differential Privacy

We model trust relationships across users as a network where vertices correspond to users, and
undirected edges connect users who are mutually willing to share their data (see Figure 1).
We focus on undirected trust graphs, though extensions of our results to directed graphs are
possible. For a given trust graph, we define a general notion of Trust Graph DP, provide
algorithms for achieving it, and analyze upper and lower bounds on the error for the integer
aggregation problem.

▶ Definition 7. (Trust Graph DP) Let G = (V, E). A protocol P satisfies (ϵ, δ, G)-Trust
Graph DP ((ϵ, δ, G)-TGDP) if for each vertex v ∈ V , viewV ∖N [v]

P (x) satisfies (ε, δ)-DP with
respect to the input xv for all values of x−v. I.e., for all pairs xv, x′

v ∈ X , all values of x−v,
and all subsets S ⊆ O,

Pr[viewV ∖N [v]
P (xv, x−v) ∈ S] ≤ eε Pr[viewV ∖N [v]

P (x′
v, x−v) ∈ S] + δ.

Referring back to Figure 1 as an example, Definition 7 says that even if users D and E pooled
their messages together, their collective view would still be DP with respect to the data for
user A.

Notably, the proposed TGDP model generalizes both the central DP model and the local
DP model. The central DP model is captured when G is a star graph in which all vertices
(the users) entrust their data a single central vertex (the analyst): each user’s data is private
relative to the view of all other users, but all users trust the same central analyst. The local
DP model, on the other hand, is captured when G simply has no edges between any vertices.
Our TGDP model thus introduces a flexibility to capture intermediate trust relationships,
perhaps involving several local analysts, or more general trust graphs arising from social
networks.

As before, we write (ε, 0, G)-TGDP as (ε, G)-TGDP. Note that the (ε, G)-DP condition
in Definition 7 can be written as D∞

(
viewV ∖N [v]

P (xv)
∥∥∥ viewV ∖N [v]

P (x′
v)

)
≤ ε.

Recall that for a graph G = (V, E), a dominating set is a subset U ⊆ V such that for
every v ∈ V ∖ U , there is a u ∈ U such that (u, v) ∈ E; the size of a minimum dominating
set is the domination number γ(G). A packing of G is a subset U ⊆ V such that for any
distinct u, u′ ∈ U , N [u] and N [u′] are disjoint; the size of a maximum packing is the packing
number ρ(G).

Aggregation

We consider the integer aggregation problem. Let each individual have a value xi ∈ {0, . . . , ∆}.
The goal is to compute an estimate ã of a =

∑n
i=1 xi. We measure the mean-square error

(MSE), which is defined as E[(ã− a)2], where the expectation is over the randomness of the
protocol. In central DP, the standard Laplace mechanism [22] achieves an error of 2∆2/ε2.
In local DP, the local version of the Laplace mechanism achieves an error of 2∆2n/ε2. Both
of these are known to be asymptotically optimal.

3.1 Algorithm via Dominating Set
We start by giving a protocol for the integer aggregation problem using the graph’s dominating
set.

▶ Theorem 8. There is an (ε, G)-TGDP mechanism for the aggregation problem with MSE
at most 2∆2|T |/ε2, where T is any dominating set of G.
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Proof. The protocol works as follows:
First, each user v ∈ V picks an arbitrary vertex uv ∈ T ∩N [v]. (The intersection is not
empty since T is a dominating set.) Then, the user sends xv to uv.
Each user u ∈ T broadcasts the sum of all numbers it receives together with a noise
drawn from DLap(∆/ε). More formally, the user broadcasts au =

∑
v∈V

uv=u
xv + zu, where

zu ∼ DLap(∆/ε).
Finally, the estimate is ã =

∑
u∈T au.

Privacy Analysis. Consider any v ∈ V and x−v ∈ {0, . . . , ∆}V ∖{v}. We write a as a
shorthand for (au)u∈T . Let Sv := {w ∈ N [v] | uw ∈ N [v]} denote the nodes in N [v] whose
message in the first step is sent to a node in N [v]. Notice that viewV ∖N [v]

P (x) is exactly
(x−Sv , a(x)). We claim that this is a post-processing of zuv + x. This is simply because
x−Sv

, (au)u∈T∖{uv} do not depend on xv = x at all and are independent of zuv
+ x; finally,

note that auv
(x) is a post-processing of zuv

+ x since auv
(x) = (zuv

+ x) +
∑

v′∈V ∖{v}
u

v′ =uv

xv′ .

Consider any xv, x′
v ∈ {0, . . . , ∆}. By Lemma 5 and Lemma 6, we have

D∞

(
viewV ∖N [v]

P (xv)
∥∥∥ viewV ∖N [v]

P (x′
v)

)
≤ D∞(zuv

+ xv ∥ zuv
+ x′

v) ≤ ε,

where the second inequality is due to Lemma 6. Thus, the protocol satisfies (ε, G)-TGDP as
desired.

Utility Analysis. The MSE is E
[
(ã− a)2

]
=

∑
u∈T E[z2

u] ≤ |T | · 2∆2

ε2 . ◀

3.2 Improved Algorithm via Linear Programming
A disadvantage of the protocol from Section 3.1 is that to minimize the error, it requires the
knowledge of a minimum dominating set. Computing minimum dominating set is NP-hard
and even hard to approximate [27]. In this section, we give a protocol that is efficient to
compute and furthermore can reduce the error by up to O(log n) factor in certain graphs.
To describe our protocol, recall the linear programming (LP) relaxation of the dominating
set problem:

min
∑
u∈V

yu s.t.
∑

u∈N [v]

yu ≥ 1 ∀v ∈ V ; 0 ≤ yu ≤ 1 ∀u ∈ V. (1)

To see that this is a relaxation of the dominating set problem, note that any dominating set
T ⊆ V gives a solution by setting yv = 1[v ∈ T ]. Due to this, the optimum of this LP is no
more than the size of the dominating set. In fact, the LP optimum can be smaller than the
minimum dominating set size by an O(log n) factor [45].

The main result is a protocol whose MSE scales with the LP optimum instead of
dominating set:

▶ Theorem 9. There is an (ε, G)-TGDP mechanism for the aggregation problem with MSE
at most 2∆2 ·OPTLP/ε2, where OPTLP denotes the value of the optimal solution to the LP
in (1).

Proof. Let y = (yu)u∈V denote any solution to the LP in (1). The protocol works as follows:
Let q = 2n∆.

ITCS 2025
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For every user v ∈ V , pick {su
v}u∈N [v] ⊆ Zq uniformly at random among those that satisfy∑

u∈N [v] su
v ≡ xv mod q. Then, for every u ∈ N [v], user v sends su

v to u.
For every u ∈ V , sample zu ∼ sNB(yu, 1 − e−ε/∆); broadcast au ≡ zu +

∑
v∈N [u] su

v

mod q.

Compute a′ ≡
∑

u au mod q. Then, output ã =
{

a′ if a′ ≤ q/2,

a′ − q otherwise.

Privacy Analysis. Throughout the analysis, we assume that the addition is modulo q unless
stated otherwise. Consider any v ∈ V and x−v ∈ {0, . . . , ∆}V ∖{v}. We write a as a short-
hand for (au)u∈V . Notice that viewV ∖N [v]

P (x) is exactly (x−N [v], a(x), (su
v′)u∈V ∖N [v],v′∈V ).

We claim that this is a post-processing of (zu + su
v )u∈N [v]. This is simply because

x−N [v], (au)u∈V ∖N [v], (su
v′)u∈V ∖N [v],v′∈V do not depend on xv = x at all and are independent

of (zu + su
v )u∈N [v]; finally, note that (au(x))u∈N [v] is a post-processing of (zu + su

v )u∈N [v]
since au(x) = (zu + su

v ) +
∑

v′∈N[v]∖{v}
u

v′ =u

su
v′ for all u ∈ N [v].

For any xv, x′
v ∈ {0, . . . , ∆}, Lemma 5 implies that

D∞

(
viewV ∖N [v]

P (xv)
∥∥∥ viewV ∖N [v]

P (x′
v)

)
≤ D∞((zu+su

v (xv))u∈N [v] ∥ (zu+su
v (x′

v))u∈N [v]).

Now, since (su
v (x))u∈N [v] are random elements of Zq that sum to x, we also have that

(zu + su
v (x))u∈N [v] are random elements of Zq that sum to x +

∑
u∈N [v] zu. In other words,

(zu + su
v (xv))u∈N [v] is a post-processing of x +

∑
u∈N [v] zu. Again, Lemma 5 implies that

D∞((zu + su
v (xv))u∈N [v] ∥ (zu + su

v (x′
v))u∈N [v]) ≤ D∞

xv +
∑

u∈N [v]

zu

∥∥∥∥∥∥ x′
v +

∑
u∈N [v]

zu

 .

Finally, Z :=
∑

u∈N [v] zu is distributed as sNB
(∑

u∈N [v] yu, 1− e−ε/∆
)

. Since y is feasible
in (1), we have

∑
u∈N [v] yu ≥ 1. Thus, we can apply Lemma 6 to conclude that the RHS

above is ≤ ε.

Utility Analysis. Note ã ≡ a +
(∑

u∈V zu

)
mod q. Since a ∈ [0, q/2] and ã ∈ (−q/2, q/2],

we have |a− ã| ≤
∣∣∑

u∈V zu

∣∣. Thus, the MSE is ≤
∑

u∈T E[z2
u] ≤

∑
u∈T

2yu

(ε/∆)2 = 2∆2OPTLP
ε2 ,

where the last equality is from our assumption that (yu)u∈V is an optimal solution to the
LP in (1). ◀

We remark that, in the proof above, the privacy guarantee holds even for non-optimal LP
solution y, as long as it satisfies the constraints. Similarly, the error guarantee holds where
OPTLP is replaced with the objective value of the solution. This is helpful for practical
applications where we may only have an approximately optimal LP solution.

3.3 Lower Bound
We now give a lower bound for integer aggregation, where the MSE grows with the packing
number.

▶ Theorem 10. For any ε ≤ O(1), any (ε, G)-TGDP protocol for integer aggregation incurs
MSE Ω(∆2 · ρ(G)), where ρ(G) denotes the packing number of the trust graph G.
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In fact, we give the following reduction that transforms any TGDP protocol to an LDP
protocol with the same privacy parameter and MSE, but only on ρ(G) users (instead of
n users). Applying the known Ω(∆2n) lower bound for integer aggregation in LDP [15]3
immediately yields Theorem 10.

▶ Lemma 11. Suppose that there is an (ε, G)-TGDP protocol for integer aggregation. Then,
there exists an ε-local DP protocol for integer aggregation for ρ(G) users with the same MSE
as the (ε, G)-TGDP protocol, where ρ(G) denotes the packing number of G.

Proof. Let U = {u1, . . . , um} ⊆ V be the largest packing in G where m = ρ(G). To avoid
ambiguity, let x̃ = (x̃1, . . . , x̃m) be the input to the LDP protocol (that we construct below).

To construct the LDP protocol, let Q1 ∪ · · · ∪ Qm be any partition of V such that
N [ui] ⊆ Qi for all i ∈ [m]. Such a partition exists because N [u1], . . . , N [um] are disjoint by
the definition of packing. Let P be any (ε, G)-TGDP protocol for integer aggregation. Our
LDP protocol P̃ runs the protocol P where each P̃ ’s user i ∈ [m] assumes the role of all P ’s

users in Qi, where the input to P is defined as xu =
{

x̃i if u = ui

0 otherwise,
∀u ∈ Qi. We then

output the estimate as produced by P . The MSE of P̃ is obviously the same as that of P .
To see that P̃ satisfies ε-LDP, consider any i ∈ [m], x̃−i ∈ X [m]∖{i}, we have

view[m]∖{i}
P̃

(x̃) = viewV ∖Qi

P (x(x̃)), where x(x̃) is the input to P as defined above. Since
V ∖ Qi ⊆ V ∖ N [ui], viewV ∖Qi

P (x(x̃)) is a post-processing of viewV ∖N [ui]
P (x(x̃)), Lemma 5

implies that

D∞

(
view[m]∖{i}

P̃
(x̃i)

∥∥∥ view[m]∖{i}
P̃

(x̃′
i)

)
≤ D∞

(
viewV ∖N [ui]

P (x̃i)
∥∥∥ viewV ∖N [ui]

P (x̃′
i)

)
≤ ε,

where the last inequality is due to P being an (ε, G)-TGDP protocol. Hence, P̃ is ε-LDP. ◀

Unfortunately, the lower bound in Theorem 10 is not tight with respect to the upper bounds
in Theorems 8 and 9. Indeed, the following is a example of a graph that has a large gap
between the domination number and the packing number [14]. Let V = [k]× [k] for k ∈ N.
There is an edge between any (x, y) ∈ V, (x′, y′) ∈ V iff x = x′ or y = y′. For this graph,
OPTLP isΩ(

√
|V |) since every vertex has degree O(k) = O(

√
|V |) whereas the maximal

packing has size exactly one (see Figure 2 for k = 4). We can also show that this instance
exhibits an asymptotically optimal gap:

▶ Theorem 12. For any graph G, OPTLP ≤ ρ(G) ·
√

n where OPTLP denote the value of
the optimal solution to the LP in (1).

In other words, our upper bound based on the LP (Theorem 9) and our lower bound
(Theorem 10) on the MSE has a gap of at most O(

√
n). To the best of our knowledge, the

bound in Theorem 12 was not known before; we give the full proof in Section D.
Note that the above instance also gives a gap of Ω(

√
|V |) between the domination number

and the packing number. Since it is known [45] that γ(G) ≤ O(log n) ·OPTLP, Theorem 12
implies the following corollary:

▶ Corollary 13. For any graph G, γ(G) ≤ ρ(G) ·O(
√

n · log n).

That is, the above gap instance is tight up to a logarithmic factor. Furthermore, this also
means that our upper bound based on the dominating set (Theorem 8) and our lower bound
(Theorem 10) on the MSE has a gap of at most O(

√
n).

3 Note that [15] state their lower bound for ∆ = 1 but the case ∆ > 1 follows by scaling up the input.
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4 Robust Trust Graph Differential Privacy

In the previous section, we assumed that each user u trusts all of their neighbors N(u).
Although this is certainly a reasonable assumption, it might pose a security risk. For example,
if one of the neighbors of u is compromised, then u’s data might be leaked as the model
offers no protection with respect to the view of u’s neighbors. Indeed, in the dominating set
protocol (Theorem 8), the user sends their raw data to one of their neighbors; if this neighbor
is compromised, then the user’s data is leaked in the clear. To mitigate this, we propose a
revised trust graph DP model that is more robust to such leakage. In particular, for each
user u, the DP protection remains as long as at most tu of their neighbors are compromised,
where tu is some predefined number. This is formalized below.

▶ Definition 14. (Robust Trust Graph DP) Let G = (V, E) and t = (tv)v∈V ∈ ZV
≥0. A

protocol P satisfies (ϵ, δ, G, t)-Robust Trust Graph DP ((ϵ, δ, G, t)-RTGDP) if for each vertex
v ∈ V and every set T ⊆ N(v) of size at most tv, viewV ∖(N [v]∖T )

P (x) satisfies (ε, δ)-DP with
respect to the input xv for all values of x−v. I.e., for all pairs xv, x′

v ∈ X , all values of x−v,
and all subsets S ⊆ O,

Pr[viewV ∖(N [v]∖T )
P (xv, x−v) ∈ S] ≤ eε Pr[viewV ∖(N [v]∖T )

P (x′
v, x−v) ∈ S] + δ.

4.1 Integer Aggregation Protocol
We start by giving an integer aggregation protocol that is again based on an LP. We adapt
the LP in (1) by imposing a stricter constraint to ensure DP guarantees even when up to tv

of v’s neighbor are compromised. This results in the following LP where the only difference
compared to (1) is the stricter first constraint.4 Note that when t = 0, the two LPs coincide.

min
∑
u∈V

yu s.t.
∑

u∈(N [v]∖T )

yu ≥ 1 ∀v ∈ V, T ∈
(

N(v)
≤ tv

)
; 0 ≤ yu ≤ 1 ∀u ∈ V. (2)

While (2) can have exponential size due to the presence of “∀T ∈
(

N(v)
≤tv

)
” in the constraint,

it can still be solved in polynomial time because an efficient separation oracle exists for the
first constraint. Specifically, for each v ∈ V , we can check the first constraint by letting T be
the tv maximum values and check the inequality for just that T (instead of enumerating over
all T ∈

(
N(v)
≤tv

)
). From the above LP, we can derive an algorithm that uses exactly the same

protocol as in Theorem 9.

▶ Theorem 15. There is an (ε, G, t)-RTGDP protocol for the aggregation problem with MSE
at most 2∆2 ·OPTt

LP/ε2, where OPTt
LP denotes the value of the optimal solution to the LP

in (2).

4.2 Lower Bound
We define a (2, t)-robust packing of G = (V, E) as a pair U ⊆ V and (Tu)u∈U such that (i)
N [u]∖ Tu are disjoint for all u ∈ U and (ii) Tu ∈

(
N(u)
≤tu

)
for all u ∈ U . The size of the robust

packing is |U |. Let ρ(G)t denote the largest size of a (2, t)-robust packing of G.

4
(

S
≤t

)
denotes the collection of all subsets of S of size ≤ t.
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Note that, when t = 0, (2, t)-robust packing coincides with the standard notion of packing
we used in the previous section. We prove a lower bound for integer aggregation in the
(ε, G, t)-RTGDP model that grows with the size of the maximum (2, t)-robust packing:

▶ Theorem 16. For any ε ≤ O(1) and t ∈ NV , any (ε, G, t)-RTGDP protocol for integer
aggregation must incur MSE at least Ω(∆2 · ρ(G)t).5

4.3 Bi-criteria Tightness of the Bounds
Although we are not aware in general how large the gap between our upper (Theorem 15)
and lower bounds (Theorem 16) are, we can show the following bi-criteria result, that the
upper bound is not much larger than the lower bound when we increase t slightly. This is
stated and proved below.

We write ⌈α · t⌉ for some α > 0 as a shorthand for the vector (⌈α · tu⌉)u∈U . Furthermore,
let degU denote the vector of degrees of the vertices, i.e., (deg(u))u∈U .

▶ Theorem 17. For any α ∈ (0, 1), ρ(G)t+⌈α·degU ⌉ ≥ α
8 ·OPTt

LP, where ρ(G)t, OPTt
LP are

as defined in Theorems 15 and 16.

To show this, we consider the dual of LP in (2), which turns out to be a relaxation
for (2, t)-robust packing where there is a variable wv,T ∈ [0, 1] for all v ∈ V, T ⊆

(
N(v)
≤tv

)
representing whether (v, T ) should be included in the robust packing. To turn such a
fractional solution to an integral one, we employ randomized rounding – a standard technique
in approximation algorithms (e.g., [54, Chapter 5]). More precisely, we include (v, T ) in our
solution with probability proportional to wv,T . Unfortunately, this does not work yet as the
produced solution may not be a (2, t)-robust packing, i.e., it might contain wv,T and wv′,T ′

such that (N [v] ∖ T ) and (N [v′] ∖ T ′) are not disjoint. Due to this, we need to apply a
correction procedure on top of this randomized solution. Roughly speaking, we try to enlarge
T until we are sure that such an intersection is avoided. This is indeed the reason why we
need the slight increase in t. However, even with this increase, we still have to be careful as
sometimes T might become too large, i.e., larger than tv + ⌈α · deg(v)⌉. We deal with this
by simply removing such a pair (v, T ) from the solution. A careful analysis shows that (in
expectation) only a small fraction of the solution will get removed this way; see Section B.

5 Machine Learning with Trust Graph DP

While the main body of our work focuses on integer aggregation, it is a primitive on which
we can build many more complex algorithms. First of all, we can easily use it to perform
real number aggregation by re-scaling and discretization [6]. In particular, suppose that
each user now has xi ∈ [0, 1]. They can pick ∆ ∈ N and perform integer aggregation on
yi = round(∆xi) where round(x) randomly round x to either ⌊x⌋ or 1+⌊x⌋ with probabilities
1− (x− ⌊x⌋) and x− ⌊x⌋ respectively. Once we have run the integer aggregation protocol,
the answer is scaled by a factor of 1

∆ . If our integer aggregation protocol has MSE ∆2ξ2,
then this results in a real aggregation protocol with error ξ2 + n

4∆2 [6]. Picking ∆ to be
sufficiently large (e.g., ω(

√
n)), the second term becomes negligible.

Real number aggregation allows us to perform statistical queries (SQ) [38]. While a
simple family, statistical queries have wide variety of applications in learning theory. One
specific work we wish to highlight is that of [29], who showed that convex optimization
problems can be solved using statistical queries. As a result, we can apply their algorithm

5 Again, this theorem is shown via a reduction to the LDP model; see Section B for the proof.
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to our setting and obtain convex optimization algorithms with Trust Graph DP. We also
remark that statistical queries are also useful for (non-ML) data analytic tasks; e.g., [29]
provides SQ-based (vector) mean estimation, and other statistics such as quantiles are also
known to be computable via SQs [28].

5.1 Vector Summation with Trust Graph DP
Although SQ-based algorithms can be used in our model, we will sketch a more direct
algorithm for the task of vector summation with Trust Graph DP. This is not only more
efficient but also provide better error guarantees for subsequent tasks such as convex empirical
risk minimization (ERM).

In the vector summation (with ℓ2-norm bound) problem, each user input xi is a vector in
Rd such that ∥xi∥2 ≤ ∆, where ∆ is a norm bound known to the algorithm. The goal is again
to compute an estimate ã to the sum a =

∑
i∈[n] xi. The ℓ2

2-error is defined as E[∥ã− a∥2
2].

Furthermore, we say that the estimator is unbiased if E[ã] = a.
It will be easiest to state the algorithms in terms of zero-concentrated differential privacy

(zCDP) [13, 24]. To do so, we first define α-Renyi divergence for α > 1 between distributions

P,P ′ for two distributions P,P ′ to be Dα(P ∥ P ′) := 1
α−1 ln

(
Ex∼P

[(
P(x)
P′(x)

)α−1
])

. We

note that limα→∞ Dα(P ∥ P ′) is indeed equal to D∞(P ∥ P ′) that we defined in Section 2.
zCDP can now be defined as follows.

▶ Definition 18 (zCDP; [13]). A randomized mechanism M : Xn → O is ρ-zero concentrated
DP (ρ-zCDP) if for all pairs x, x′ ∈ Xn of datasets that differ only in the data of a single
user and all α > 1,

Dα (M(x) ∥ M(x′)) ≤ αρ. (3)

ZCDP can be easily converted to DP:

▶ Lemma 19 ([13]). For any ρ > 0, δ ∈ (0, 1/2), any ρ-zCDP algorithm is (ρ +
2
√

ρ · ln(1/δ), δ)-DP.

It also has a simple composition theorem:

▶ Lemma 20 ([13]). Let M be a mechanism that just runs subroutines that are ρ1-zCDP,
. . . , ρm-zCDP. Then, M is (ρ1 + · · ·+ ρm)-zCDP.

Trust Graph zCDP is simply zCDP on the view of the non-neighbors:

▶ Definition 21 (Trust Graph zCDP). Let G = (V, E). A protocol P satisfies (ρ, G)-Trust
Graph zCDP ((ρ, G)-TGzCDP) if for each vertex v ∈ V , viewV ∖N [v]

P (x) satisfies ρ-zCDP
with respect to the input xv for all values of x−v. I.e., for all pairs xv, x′

v ∈ X , all values of
x−v and all α > 1,

Dα

(
viewV ∖N [v]

P (xv, x−v)
∥∥∥ viewV ∖N [v]

P (x′
v, x−v)

)
≤ αρ.

We can now state the algorithm for vector summation, which is similar to the algorithm
in Theorem 8.

▶ Theorem 22. There is an (ρ, G)-TGzCDP mechanism for the aggregation problem with
ℓ2

2-error 2d∆2|T |/ρ, where T is any dominating set of G. Furthermore, the estimate is
unbiased.
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Proof. Let σ = ∆
√

1
2ρ . The protocol works as follows:

First, each user v ∈ V picks an arbitrary vertex uv ∈ T ∩N [v].
Each user u ∈ T broadcasts the sum of all vectors it receives together with a noise
drawn from N (0, σ2Id). More formally, the user broadcasts au =

∑
v∈V

uv=u
xv + zu, where

zu ∼ N (0, σ2Id).
Finally, the estimate is ã =

∑
u∈T au.

Privacy Analysis Consider any v ∈ V and x−v ∈ X V ∖{v}. Similar to the proof of Theorem 8,
the view is a post-processing of zu + x. Thus, for any xv, x′

v ∈ X , we have

Dα

(
viewV ∖N [v]

P (xv)
∥∥∥ viewV ∖N [v]

P (x′
v)

)
≤ Dα(zuv

+ xv ∥ zuv
+ x′

v) ≤ α · ρ,

where the second inequality follows from the zCDP guarantee of the Gaussian mechanism
(e.g., Proposition 16 of [13]). Thus, the protocol satisfies (ρ, G)-TGzCDP as desired.

Utility Analysis It is clear that the estimate is unbiased. The ℓ2
2-error is

E
[
(ã− a)2

]
=

∑
u∈T

E[∥zu∥2] = |T | · (σ2d) = 2d∆2|T |/ρ. ◀

Using Lemma 19, we immediately get the following corollary. For |T | = Θ(1), this
guarantee (asymptotically) matches the known lower bound in central DP (see, e.g., [7]),
while for |T | = Θ(n) , this guarantee nearly matches the known lower bound in local DP [4].

▶ Corollary 23. For any ε < O(log(1/δ)), there is an (ε, δ, G)-TGDP mechanism for the
aggregation problem with ℓ2

2-error O
(

d∆2|T | log(1/δ)
ε2

)
, where T is any dominating set of G.

Furthermore, the estimate is unbiased.

5.2 From Vector Summation to Convex Optimizaiton
Using the above vector summation protocol, we can immediately implement several DP
ML algorithms in the literature, such as the DP-SGD algorithm [1]. We can also obtain
formal guarantee for convex optimization problems from these algorithms. For instance, let
us consider the convex ERM problem [7]. Here there is a loss function ℓ :W ×X → R which
is L-Lipschitz on the first parameter and suppose that the diameter of W is at most R. The
goal is to minimize the empirical loss L(w, x) := 1

n

∑
v∈V ℓ(w, xv). Using the above vector

summation algorithm, we can arrive at the following:

▶ Theorem 24. For 0 < ρ ≤ O(1), there is an (ρ, G)-TGzCDP mechanism for the convex

ERM problem with expected excess risk O

(
RL
√

d|T |/ρ

n

)
, where T is any dominating set of G.

Proof Sketch. The algorithm uses the (stochastic) mirror descent (see, e.g., [12, Section
6.1]) over n2 steps. In each step, the gradient is computed by running our (ρ′, G)-TGzCDP
vector summation protocol with ρ′ = ρ/n2, ∆ = G and scale the answer by a factor of
1
n . The composition theorem (Lemma 20) implies that the algorithm is ρ-TGzCDP. The
excess risk guarantee follows from standard analysis of stochastic mirror descent (e.g., [12,
Theorem 6.1]). ◀

Again, using Lemma 19, we immediately get the following corollary for (ε, δ)-DP. For
|T | = Θ(1), this guarantee (asymptotically) matches the known lower bound in central DP [7].
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▶ Corollary 25. For any ε < O(log(1/δ)), there is an (ε, δ, G)-TGDP mechanism for

the convex ERM problem with expected excess risk O

(
RL
√

d|T | log(1/δ)
εn

)
, where T is any

dominating set of G.

6 Conclusion and Future Directions

We have proposed a new model of privacy given a graph of trust relationships between
users. Our model generalizes central and local DP, and further captures intermediate trust
structures such as social networks or multiple curators. A significant open theoretical problem
is to close the gap between the upper and lower bounds for TGDP, though our experiments
suggest that this gap may be small in practice.
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A Example Graph

Figure 2 gives an example of a graph with a significant gap between the domination number
and the packing number, which importantly illustrates the gap between the upper and lower
bounds on MSE under TGDP in Theorems 8, 9, and 10.

Figure 2 A graph with a gap between the domination number (4) and the packing number (1).
The relaxed LP solution OPTLP = 16/7 ≈ 2.285.

B Missing Proofs

Proof of Lemma 6. We may write Z = Z1 + Z2 where Z1 ∼
sNB

(
1, 1− e−ε/∆) = DLap(∆/ε

)
and Z2 ∼ sNB

(
r − 1, 1− e−ε/∆)

are independent.
We again can think of x + Z and x′ + Z as a post-processing of x + Z1 and x′ + Z1,
respectively. This implies that

D∞ (x + Z ∥ x + Z)
≤ D∞ (x + Z1 ∥ x′ + Z1)

= max
o∈N

ln
( PrZ1∼DLap(∆/ε)[x + Z1 = o]

PrZ1∼DLap(∆/ε)[x′ + Z1 = o]

)
= ε

∆ · (|o− x| − |o− x′|)

≤ ε

∆ · |x
′ − x| ≤ ε,

where the last two inequalities follow from the triangle inequality and since 0 ≤ x, x′ ≤ ∆
respectively. ◀

Proof of Theorem 15. Let y = (yu)u∈V denote any solution to LP in (2). We use exactly
the same protocol as in Theorem 9. The utility analysis is also similar to before. Thus, we
only provide the privacy analysis below.

Privacy Analysis

Consider any v ∈ V, T ∈
(

N(v)
≤tv

)
and x−v ∈ {0, . . . , ∆}V ∖{v}. We write

a as a shorthand for (au)u∈V . Notice that viewV ∖(N [v]∖T )
P (x) is exactly

(x−(N [v]∖T ), a(x), (su
v′)u∈V ∖(N [v]∖T ),v′∈V ). We claim that this is a post-processing

of (zu + su
v )u∈(N [v]∖T ) ∪ (su

v )u∈T . This is simply because x−(N [v]∖T ), (au)u∈V ∖N [v],

ITCS 2025



53:18 Differential Privacy on Trust Graphs

(su
v′)u∈V ∖N [v],v′∈V , (su

v′)u∈T,v′∈V ∖{v} do not depend on xv = x at all and are independ-
ent of (zu + su

v )u∈(N [v]∖T ) ∪ (su
v )u∈T ; finally, note that (au(x))u∈N [v] is a post-processing of

(zu + su
v )u∈N [v] since au(x) = (zu + su

v ) +
∑

v′∈N[V ]∖{v}
u

v′ =u

su
v′ .

Now, since (su
v (x))u∈N [v] are random elements of Zq that sums to x, we also have that

(zu + su
v )u∈(N [v]∖T ) ∪ (su

v )u∈T are random elements of Zq that sums to x +
∑

u∈N [v] zu. In
other words, (zu + su

v )u∈(N [v]∖T ) ∪ (su
v )u∈T is a post-processing of x +

∑
u∈(N [v]∖T ) zu. The

remainder of the privacy proof then proceed similarly to that in Theorem 9, where we now
use the fact that

∑
u∈(N [v]∖T ) zu is distributed as sNB

(∑
u∈(N [v]∖T ) yu, 1− e−ε/∆

)
and∑

u∈(N [v]∖T ) yu ≥ 1 from (2). ◀

Theorem 16 is an immediate consequence of the following reduction to the LDP model,
similar to Theorem 10 and the corresponding reduction (Lemma 11).

▶ Lemma 26. Suppose that there is an (ε, G, t)-RTGDP protocol for integer aggregation.
Then, there exists an ε-local DP protocol for integer aggregation with the same MSE for ρ(G)t

users, where ρ(G)t denotes the size of the largest (2, t)-robust packing G.

Proof of Lemma 26. Let U = {u1, . . . , um} ⊆ V and (Tv)v∈U be the largest (2, t)-robust
packing in G where m = ρ(G). To avoid ambiguity, we use x̃ = (x̃1, . . . , x̃m) to denote the
input to the local DP protocol.

To construct the LDP protocol, let Q1, . . . , Qm ⊆ V be any partition of V such that
(N [ui]∖Tui

) ⊆ Qi for all i ∈ [m]. Such a partition exists because N [u1]∖Tu1 , . . . , N [um]∖Tum

are disjoint by definition of a packing. Let P be any (ε, G, t)-RTGDP protocol for integer
aggregation. Our LDP protocol P̃ works simply by running the protocol P where each user
i ∈ [m] assumes the role of all users in Qi where the input is defined as

xu =
{

xi if u = ui

0 otherwise.

for all u ∈ Qi. We then output the estimate as produced by P . The MSE of P̃ is obviously
the same as that of P .

To see that this satisfies ε-LDP, consider any i ∈ [m], x̃−i ∈ X [m]∖{i}, we have
view[m]∖{i}

P̃
(x̃) = viewV ∖Qi

P (x(x̃)) where x(x̃) is the input to P as defined above. Since
V ∖Qi ⊆ V ∖(N [ui]∖Tui

), viewV ∖Qi

P (x(x̃)) is a post-processing of viewV ∖(N [ui]∖Tui
)

P (x(x̃)).
Thus, for every x̃i, x̃′

i ∈ X , Lemma 5 implies that

D∞

(
view[m]∖{i}

P̃
(x̃i) ∥ view[m]∖{i}

P̃
(x̃′

i)
)

≤ D∞

(
viewV ∖(N [ui]∖Tui

)
P (x̃i) ∥ viewV ∖(N [ui]∖Tui

)
P (x̃′

i)
)

≤ ε,

where the last inequality is due to P being (ε, G, t)-RTGDP protocol.
As a result, P̃ is ε-LDP as desired. ◀

Proof of Theorem 17. We will write t′ as a shorthand for t + ⌈α · degU⌉.
We claim that OPTt′

pack ≥ γ · OPTt
LP for γ = α

8 . To prove this, first observe that LP
duality implies that OPTt

LP is also equal to the optimal of the following LP:

max
∑

v∈V,T ∈(N(v)
≤tv

)
wv,T (4)
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s.t.
∑

u∈V,T ∈(N(u)
≤tu

)
(N[u]∖T )∋v

wu,T ≤ 1 ∀v ∈ V (5)

0 ≤ wv,T ≤ 1 ∀v ∈ V, T ∈
(

N(v)
≤ tv

)
.

For T ′ ⊆ N [v′], we let T
′[v′] := N [v′] ∖ T ′.

Given an optimal solution (wv,T )
v∈V,T ∈(N(v)

≤tv
) to the dual LP (4), we construct a (2, t′)-

robust packing as follows:
Include each (v, T ) in the set R0 with probability 2γ · wv,T .
Filter elements in R0 to create R1 where R1 only includes (v, T ) such that

v /∈
⋃

(v′,T ′)∈(R0∖{(v,T )})

T
′[v′], (6)

and∣∣∣∣∣∣
⋃

(v′,T ′)∈(R0∖{(v,T )})

(N(v) ∩ T
′[v′])

∣∣∣∣∣∣ ≤ α · deg(v). (7)

Construct R2 by adding
(

v, T ∪
⋃

(v′,T ′)∈R1∖{(v,T )}(N(v′) ∩ T
′[v′])

)
, for each (v, T ) ∈ R1.

By the conditions imposed when constructing R1, it is simple to see that R2 is a valid
(2, t)-robust packing. Thus, we are only left to argue that it has a large size. To do so, first
observe that

E[ |R2| ]
= E[ |R1| ]

=
∑

v∈V,T ∈(N(v)
≤tv

)
Pr[(v, T ) ∈ R1]

=
∑

v∈V,T ∈(N(v)
≤tv

)
Pr[(v, T ) ∈ R0] · Pr[(v, T ) ∈ R1 | (v, T ) ∈ R0]

=
∑

v∈V,T ∈(N(v)
≤tv

)
(2γ · wv,T ) · Pr[(v, T ) ∈ R1 | (v, T ) ∈ R0], (8)

where the last equality is due to the randomized rounding in the first step.
Let us now fix v ∈ V and T ∈

(
N(v)
≤tv

)
. To bound Pr[(v, T ) ∈ R1 | (v, T ) ∈ R0], note that

from our procedure, we have

Pr[(v, T ) ∈ R1 | (v, T ) ∈ R0]
= Pr [(6) and (7) both hold]
≥ 1− Pr[(6) fails]− Pr[(7) fails]. (9)

We bound each of the two terms separately. For the first term, we have

Pr[(6) fails]

= Pr

v ∈
⋃

(v′,T ′)∈(R0∖{(v,T )})

T
′[v′]
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= Pr
[
∃

v′ ∈ V, T ′ ∈
(

N(v′)
≤tv′

)
(N [v′] ∖ T ′) ∋ v

, (v′, T ′) ∈ R0

]
≤

∑
v′∈V,T ′∈(N(v′)

≤t
v′ )

(N[v′]∖T ′)∋v

Pr[(v′, T ′) ∈ R0]

=
∑

v′∈V,T ′∈(N(v′)
≤t

v′ )
(N[v′]∖T ′)∋v

2γ · wv′,T ′

(5)
≤ 2γ

≤ 1
4 . (10)

Similarly, we have

Pr[(7) fails]

= Pr

∣∣∣∣∣∣
⋃

(v′,T ′)∈(R0∖{(v,T )})

(N(v) ∩ T
′[v′])

∣∣∣∣∣∣ > α · deg(v)


≤

E
[∣∣∣⋃(v′,T ′)∈(R0∖{(v,T )})(N(v) ∩ T

′[v′])
∣∣∣]

α · deg(v)

=

∑
u∈N(v) Pr

[
u ∈

⋃
(v′,T ′)∈(R0∖{(v,T )}) T

′[v′]
]

α · deg(v)

=

∑
u∈N(v) Pr

[
∃ v′∈V,T ′∈(N(v′)

≤t
v′ )

(N [v′]∖T ′)∋u
, (v′, T ′) ∈ R0]

]
α · deg(v)

≤

∑
u∈N(v)

∑
v′∈V,T ′∈(N(v′)

≤t
v′ )

(N[v′]∖T ′)∋u

Pr[(v′, T ′) ∈ R0]

α · deg(v)

=

∑
u∈N(v)

∑
v′∈V,T ′∈(N(v′)

≤t
v′ )

(N[v′]∖T ′)∋u

2γ · wv′,T ′

α · deg(v)
(5)
≤

∑
u∈N(v) 2γ

α · deg(v)

= 2γ

α
≤ 1

4 , (11)

where the first inequality is due to Markov and the last inequality is from our choice of γ.
Combining Equations (8)–(11), we get

E[ |R2| ] ≥
∑

v∈V,T ∈(N(v)
≤tv

)
γ · wv,T = γ ·OPTt

LP,

which concludes the proof. ◀

C Additional Experiment Details

We next provide additional experiment details. Optimization problems were solved using
cvxpy [19, 3].
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C.1 Additional Dataset Details
Table 1 lists additional details for each dataset. All datasets are publicly available through
SNAP [43]. We give additional dataset descriptions below.

Table 1 Integrality gap comparison of OPTLP to minimum dominating set size |T | for 9 network
datasets.

Dataset Number of nodes n Number of edges |E| Maximum degree

EU Emails (Core) 1, 005 16, 706 347
Bitcoin (Alpha) 3, 783 12, 972 507
Facebook 4, 039 88, 234 1, 045
Bitcoin (OTC) 5, 881 18, 591 788
Enron Emails 36, 692 183, 831 1, 383
GitHub 37, 700 289, 003 9, 458
Epinions 75, 879 405, 740 3, 044
Twitter 81, 306 1, 342, 310 3, 383
EU Emails (All) 265, 214 365, 570 7, 636

EU Emails datasets. This data comes from an email network at a European research
institution collected by [42]. We include an undirected edge between sender and receiver who
have exchanged an email, though the original dataset contains directed edge information.
We consider two subgraphs: (i) a “core” subgraph consisting of email addresses within the
research institution (which we refer to as EU Emails (Core)), and (ii) the full graph of all
emails contained in the dataset (which we refer to as EU Emails (All)).

Enron Emails. This data comes from an email communication network within Enron [39].
The graph contains an undirected edge between a sender and receiver if at least one email
was exchanged between them. The original graph is undirected.

Bitcoin datasets. We include network data from two different Bitcoin trading platforms,
Bitcoin OTC and Bitcoin Alpha [41, 40]. In the original data, each user rater another user
with a value between −10 and 10, where a negative rating corresponds to mistrust and a
positive rating corresponds to trust. In our analysis, we include an undirected edge between
users if and only if one user rates another with a value greater than 0. We ignore mistrust
ratings. In general, further analysis that includes the mistrust ratings would be interesting
to conduct.

Facebook dataset. This data from Facebook was published by [44]. Each undirected edge
indicates a friend relationship between two users.

GitHub dataset. This data comes from a social network of GitHub developers collected
by [48]. Edges represent mutual follower relationships between two users.

Epinions dataset. This data comes from the consumer review site Epinions.com [47]. We
include an undirected edge if one user “trusts” another by giving a positive rating to the
other user (which indicates trusting their reviews). The original dataset is a directed graph.

Twitter dataset. This data encodes follower relationships from Twitter [44]. We include
an undirected edge if one user has follows another. The original dataset contains directed
edges for follower relationships.

C.2 Integrality Gap Between Linear Program Optimum and Minimum
Dominating Set

The proposed LP-based mechanism for achieving Trust Graph DP presented in Theorem 9
will always perform at least as well as the dominating set protocol in terms of error. Here
we consider whether in practice, the LP-based mechanism is better than the dominating
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set protocol. We observed an integrality gap between OPTLP and the size of the minimum
dominating set |T | on three out of nine datasets. Notably, we only observed the integrality
gap on the email communication datasets, and not on the Bitcoin or social network datasets.
Theoretically, it is known that the integrality gap between OPTLP and |T | can be up to a
factor of up to O(log(n)) [54]. Further study of the integrality gaps that might arise in other
real network settings remains an interesting open question. Table 2 lists the ratio OPTLP

|T | for
each dataset.

Whether any given graph exhibits an integrality gap or not, a prevailing advantage
of the proposed improved algorithm via linear programming for TGDP over a minimum
dominating set protocol lies in computational efficiency, as finding the minimum dominating
set is NP-hard.

Table 2 Integrality gap comparison of OPTLP to minimum dominating set size |T | for 9 network
datasets.

Dataset n OPTLP |T | OPTLP
|T |

EU Emails (Core) 1, 005 111.97 128 0.8748
Bitcoin (Alpha) 3, 783 686 686 1
Facebook 4, 039 10 10 1
Bitcoin (OTC) 5, 881 1, 126 1, 126 1
Enron Emails 36, 692 3, 060.66 3, 062 0.9996
GitHub 37, 700 4, 538 4, 538 1
Epinions 75, 879 15, 734 15, 734 1
Twitter 81, 306 961 961 1
EU Emails (All) 265, 214 18, 074.40 18, 181 0.9941

C.3 Other Local DP Mechanisms for Aggregation

Note that we focused our comparisons to the LDP version of the Laplace mechanism since
the ratio has a simple expression. Nevertheless, we point out that there are other LDP
mechanisms for aggregation. For example, one can apply randomized rounding to the input
(where we set it to ∆ with probability xi/∆ and set it to zero otherwise) before applying
the classic randomized response (RR) mechanism [53]. The MSE of this method is actually
input-dependent due to the randomized rounding, making it harder to compare against our
method. To give the benefit to this algorithm, let us assume for the moment that all inputs
are either 0 or ∆. In this case, there is no error due to the randomized rounding. A simple
calculation shows that the error from here is cϵ · 2∆2n/ϵ2 where cϵ = eϵ·ϵ2

2(eϵ−1)2 . For ϵ ≤ 1, this
constant cϵ is at least 0.46. Thus, in all cases, our mechanism still demonstrates a significant
improvement over this over-optimistic estimate of the error for randomized rounding + RR.

D Relating Packing Number and Minimum Dominating Set

In this section, we prove Theorem 12. Our proof follows that of Halldorsson et al. [35], who
gave a greedy algorithm that provides a

√
n-approximation for the packing number. At a

high level, the main difference between our proof and theirs is that we compare the greedy
solution with the (optimal) LP solution, whereas they compare it with the (optimal) integral
solution. The LP for the packing number turns out to be exactly the dual of the LP for the
minimum dominating set (i.e., LP (1)); this then gives us the desired claim.
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Proof of Theorem 12. Consider the dual of LP (1), which can be written as follows:

min
∑
u∈V

yu (12)

s.t.
∑

u∈N [v]

yu ≤ 1 ∀v ∈ V (13)

0 ≤ yu ≤ 1 ∀u ∈ V.

Let y∗ = (y∗
u)u∈V denote an optimal solution of the LP (12). Consider the following

greedy algorithm by Halldorsson et al. [35].
Set S ← ∅, i← 0, and Vi ← V .
While Vi ̸= ∅ do:

Let vi be the vertex in Vi with the smallest degree (ties broken arbitrarily).
Set S ← S ∪ {vi}.
Let Zi := {u ∈ Vi | N [u] ∩N [vi] ̸= ∅}.
Set Vi+1 ← Vi ∖ Zi.
Set i← i + 1.

Output S.

It is clear that the output S is indeed a packing; let q = |S|. We claim the following for
all i ∈ [q]:∑

u∈Zi

y∗
u ≤
√

n. (14)

Before we prove (14), let us argue that it implies ρ(G) ≥ OPTLP/
√

n. Notice that {Zi}i∈[q]
is a partition of V . Therefore, we have

OPTLP =
∑
u∈V

y∗
u =

∑
i∈[q]

∑
u∈Zi

y∗
u

(14)
≤

∑
i∈[q]

√
n ≤ ρ(G) ·

√
n,

as desired.
Finally, we prove (14). Consider two cases based on whether deg(vi) ≤

√
n− 1.

Case I: deg(vi) ≤
√

n− 1. In this case, we have∑
u∈Zi

y∗
u ≤

∑
w∈N [vi]

∑
u∈N [w]

y∗
u

(13)
≤

∑
w∈N [vi]

1 = deg(vi) + 1 ≤
√

n.

Case II: deg(vi) >
√

n − 1. Since we pick vi to be the vertex with the smallest degree
among those in Vi, we have deg(u) >

√
n− 1 for all u ∈ Zi. Therefore, we have∑

u∈Zi

y∗
u ≤

1√
n
·

∑
u∈Zi

(deg(u) + 1) · y∗
u

≤ 1√
n
·

∑
u∈V

(deg(u) + 1) · y∗
u

= 1√
n
·

∑
v∈V

∑
u∈N [v]

y∗
u

(13)
≤ 1√

n
· n

=
√

n.

Thus, in both cases (14) holds, which completes our proof. ◀
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