
The Computational Complexity of Factored Graphs
Shreya Gupta #

University of California San Diego, La Jolla, CA, USA

Boyang Huang # Ñ

University of California San Diego, La Jolla, CA, USA

Russell Impagliazzo #Ñ

University of California San Diego, La Jolla, CA, USA

Stanley Woo #

University of California San Diego, La Jolla, CA, USA

Christopher Ye #Ñ

University of California San Diego, La Jolla, CA, USA

Abstract
While graphs and abstract data structures can be large and complex, practical instances are often
regular or highly structured. If the instance has sufficient structure, we might hope to compress the
object into a more succinct representation. An efficient algorithm (with respect to the compressed
input size) could then lead to more efficient computations than algorithms taking the explicit,
uncompressed object as input. This leads to a natural question: when does knowing the input
instance has a more succinct representation make computation easier?

We initiate the study of the computational complexity of problems on factored graphs: graphs
that are given as a formula of products and unions on smaller graphs. For any graph problem, we
define a parameterized version that takes factored graphs as input, parameterized by the number of
(smaller) ordinary graphs used to construct the factored graph. In this setting, we characterize the
parameterized complexity of several natural graph problems, exhibiting a variety of complexities.
We show that a decision version of lexicographically first maximal independent set is XP-complete,
and therefore unconditionally not fixed-parameter tractable (FPT). On the other hand, we show
that clique counting is FPT. Finally, we show that reachability is XNL-complete. Moreover, XNL
is contained in FPT if and only if NL is contained in some fixed polynomial time.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory of
computation → Complexity classes; Theory of computation → Problems, reductions and completeness

Keywords and phrases Parameterized Complexity, Fine-grained complexity, Fixed-parameter tract-
ability, Graph algorithms

Digital Object Identifier 10.4230/LIPIcs.ITCS.2025.58

Related Version Full Version: https://arxiv.org/abs/2407.19102 [37]

Funding Russell Impagliazzo: Supported by NSF Award AF: Medium 2212136.
Christopher Ye: Supported by NSF Award AF: Medium 2212136, NSF grants 1652303, 1909046,
2112533, and HDR TRIPODS Phase II grant 2217058.

Acknowledgements We would like to thank Antonina Kolokolova, Anthony Ostuni, and anonymous
reviewers for their many helpful comments and suggestions.

1 Introduction

Traditionally, algorithm design and computational complexity both measure computational
time as a function of the input size. Thus, the complexity of computational problems is
crucially sensitive to the way the instances are represented as bit sequences. While graphs and
abstract data structures can be complex and expressive in the worst case, practical instances

© Shreya Gupta, Boyang Huang, Russell Impagliazzo, Stanley Woo, and Christopher Ye;
licensed under Creative Commons License CC-BY 4.0

16th Innovations in Theoretical Computer Science Conference (ITCS 2025).
Editor: Raghu Meka; Article No. 58; pp. 58:1–58:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sfgupta@ucsd.edu
https://orcid.org/0009-0006-4408-8296
mailto:boyangh@ucsd.edu
https://boyang-huang.github.io/
https://orcid.org/0009-0009-3294-6312
mailto:rimpagliazzo@ucsd.edu
https://cseweb.ucsd.edu/~russell/
https://orcid.org/0000-0003-3236-9796
mailto:tlwoo@ucsd.edu
https://orcid.org/0009-0003-5426-0027
mailto:czye@ucsd.edu
https://czye17.github.io/
https://orcid.org/0009-0004-0528-5639
https://doi.org/10.4230/LIPIcs.ITCS.2025.58
https://arxiv.org/abs/2407.19102
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 The Computational Complexity of Factored Graphs

are often highly structured or regular. For example, road networks are often organized
into repetitive grid patterns. Similarly, in databases, relations frequently inherit underlying
structures from previous relations through operations like joins. In molecular geometry,
compounds such as graphite are composed of layers of graphene, with each layer forming
a regular honeycomb structure. If the input instance has sufficiently regular structure, we
might hope to compress the object into a more succinct representation.

An algorithm that is efficient with respect to the size of the succinct encodings would
then be able to compute the desired result more efficiently than an algorithm that takes a
naive representation of the input. This raises the question: when does knowing that the input
instance was created in a uniform way (or has a succinct representation) make computation
easier?

To address this question, various formulations of “succinct representation” have been
explored. For example, one such formulation is given by a Boolean circuit that can produce
any particular input bit [35, 61]. Frequently, the complexity of problems given in this type
of succinct format is exponentially more difficult than when the input is given explicitly (see
e.g. [35, 31, 49, 48]). However, it’s important to note that the difficulty only increases as a
function of the smaller size parameter, and the actual problem has not necessarily become
more difficult.

Another type of succinct representation, factored instances, was introduced by [21]. While
they give a number of specific problems rather than introduce the concept abstractly, we can
generalize by thinking of a fixed set of operations that take pairs of instances to possibly
larger instances. For example, one natural operation might be set sum, taking two sets
of integers A, B to the set of all sums A + B = {a + b | a ∈ A, b ∈ B}. Instead of being
described directly, the input to a factored problem is given as this operation applied to a pair
of possibly smaller instances. If these operations can be computed in polynomial time, the
size of the output might be polynomially larger than the input, so this representation might
be considerably smaller than the original. For each such set of operations and problem on
instances, we can define a parameterized version of the problem on factored instances, where
the input is represented as a formula in these (binary) operations over smaller instances,
with the parameter k being the number of smaller instances. If the underlying problem is
polynomial time solvable, then for fixed k, the problem remains polynomial time solvable,
but with an exponent that potentially grows with k. How the compressed representation
affects the difficulty of the problems can be formalized in terms of the complexity of such
factored problems from the point of view of parameterized complexity. In this paper, we
consider such parameterized factored problems for graphs, using standard graph products
and union as our operations.

To make this precise, we first review some standard concepts from parameterized complex-
ity. The gold standard for tractability in parameterized complexity is membership in the class
of fixed-parameter tractable (FPT) problems [25]. Roughly speaking, a factored problem
will be fixed-parameter tractable (i.e. in FPT) if on an instance composed using k smaller
instances of size at most n, there is an algorithm computing the function in O(f(k)nC) time
for some fixed function f and absolute constant C independent of k. In these settings, we
think of n as large and k as small, so that any dependence on k alone is preferable over
an exponent of n that grows with k. A natural approach to solving problems on factored
graphs is to explicitly compute the graph, requiring time and space nO(k), and solving the
problem on the explicit graph. Such an algorithm has an exponent growing with k. Thus
such factored problems will always be in XP1, the class of problems that are polynomial for

1 assuming the problem can be solved in polynomial time on the explicit graph

S. Gupta, B. Huang, R. Impagliazzo, S. Woo, and C. Ye 58:3

any particular k, but not necessarily in FPT. Even for simple problems with linear time
algorithms (on explicit graphs), computing an explicit representation already requires nO(k)

time and so this approach does not put the problem in FPT.
In this work, we initiate the study of the complexity of computational problems on

factored graphs. In particular, we consider the question: for a given computational problem,
is there an algorithm substantially better than first explicitly computing the factored graph
G? This can be formalized as: is the problem in FPT, and, if not, how does the best
exponent of n possible depend on k?

1.1 Definition of Factored Graphs
We consider a highly natural class of factored problems where the instances are graphs, and
the operations are well-studied graph products and unions. Our factored graphs consist of
arbitrary combinations of graphs under the following (binary) operations. Unless otherwise
stated, all graphs are directed and (a, b) denotes an edge from a to b.

1. Cartesian Product. Given A, B, the Cartesian product A□B has vertices (a, b) for
a ∈ A, b ∈ B and there is an edge from (a, b) to (c, d) if either 1) a = c and (b, d) ∈ E(B),
or 2) (a, c) ∈ E(A) and b = d.

2. Tensor Product. Given A, B, the tensor product A×B has vertices (a, b) for a ∈ A, b ∈
B and there is an edge from (a, b) to (c, d) if (a, c) ∈ E(A) and (b, d) ∈ E(B).

3. Union. Given A, B, the union A ∪ B has vertices x ∈ V (A) ∪ V (B) and there is an edge
from x to y if (x, y) ∈ E(A) ∪ E(B).

A factored graph G can be defined by an ordered tree T (G), where internal nodes are
labelled by one of the above three operations □, ×, ∪ and leaves are labelled with (possibly
identical) input graphs. Since each operation is associative, we in fact allow the internal
nodes to have arbitrary degree.2 We say that a factored graph G = f(G1, . . . , Gk) is of
complexity (n, k) if the tree has k leaves and each input graph has at most n vertices. Here,
we stress that the we parameterize by the number of leaves in T (G), regardless of the fan-in
of specific internal nodes or if a certain input graph appears in multiple leaf nodes. As an
example, both (A × B) × A and A × B × A are factored graphs of complexity (n, 3), where
n = max(|V (A)|, |V (B)|). We illustrate their tree structures in Figure 1.

×

×

A B

A

Tree structure of (A × B) × A.

×

A B A

Tree structure of A × B × A.

Figure 1 Tree structures of factored graphs (A × B) × A and A × B × A. Both factored graphs
have complexity (n, 3) where n = max(|V (A)|, |V (B)|). Note that in this example the two factored
graphs are in fact isomorphic.

2 We require each internal node to have degree greater than 1, as otherwise the operation is the identity.

ITCS 2025

58:4 The Computational Complexity of Factored Graphs

As another example, any graph G can be represented by a factored graph of complexity
(2, |E(G)|) by taking a union over all edges of the graph.

We define a factored component of G, denoted GF , as follows. GF is defined by an ordered
tree T (GF), which is obtained from T (G) by deleting every internal node v labeled by ∪ and
attaching exactly one child of v to its parent. Another way to understand this is that, since
the union and product operations obey the distributive law, we can recursively apply this law
to convert a factored graph formula into a union of products. Then, each of these product
terms is a factored component. The vertices of GF are kF -tuples (note kF ≤ k, where kF is
the number of leaves of T (GF) and k is the number of leaves of T (G)). We emphasize that
the vertices are flattened tuples and do not preserve the topology of T (GF) beyond the order
of the leaves. We call kF the dimension of the factored component GF . The edges of GF are
determined by T (GF) according to the definition of the graph operations □ and ×.

The vertex and edge sets of G are then given by the union of the vertex and edge sets
of the factored components. While a vertex may belong to multiple factored components,
they must all have the same dimension, allowing us to define the dimension of a vertex
(Definition 14). We also observe that G has at most 2k factored components. We give a
more formal definition of factored graphs as well as simple examples in Section 2.

1.2 Our Contributions
Our first result provides an unconditional hardness for a natural parameterized version of
the well-studied Lexicographically First Maximal Independent Set (LFMIS) problem. The
standard decision version of the LFMIS problem takes as input a graph G = (V (G), E(G)),
where the vertices are indexed as V (G) = {0, 1, . . . , |V (G)|−1}, and a special vertex s ∈ V (G).
The problem asks whether s belongs to the LFMIS of G. In the parameterized version, the
input is given as a factored graph G = f(G1, . . . , Gk) and the vertex indices are provided
only for each graph factor V (Gi) = {0, 1, . . . , |V (Gi)| − 1}. To recover the indices for V (G),
recall that each vertex in the factored graph G is a flattened tuple of numbers (v1, . . . , vk′) for
some k′ ≤ k, and therefore, we define the vertex indices to be given according to the standard
lexicographic order of these tuples, with the index 0 given to the vertex with the lowest
lexicographic order. In this work, we show that the LFMIS problem on factored graphs is
XP-complete under FPT-reductions3 and therefore unconditionally not in FPT, providing a
lower bound on the best possible exponent as a function of k. LFMIS is a natural P-complete
problem [18], studied by [58, 59, 60] including in the parallel setting [20, 50, 12, 8]. We use
the P-completeness of this problem as an intuition for why the factored version might be
difficult (XP-complete), but we know of no direct connection between P-completeness and
hardness of the factored version.

▶ Theorem 1 (XP-completeness of LFMIS). The LFMIS problem on factored graphs is
XP-complete under FPT-reductions and not fixed-parameter tractable. In particular, the
LFMIS problem on a factored graph G = f(G1, . . . , Gk) of complexity (n, k) requires nΩ(

√
k)

time.

While many works in parameterized complexity gave conditional lower bounds against
problems in FPT [25], for example completeness for the W-hierarchy [25, 26, 28] or the
A-hierarchy [32], unconditional lower bounds against natural problems in FPT are relatively
rare [27]. Moreover, although it is known that FPT ⊊ XP via a diagonalization argument,

3 See Definition 9.3 [27]. Also formally stated in Definition 20 in the context of factored graph problems.

S. Gupta, B. Huang, R. Impagliazzo, S. Woo, and C. Ye 58:5

the literature on XP-complete problems remains sparse. The “pebble game” problem was
first introduced by Kasai, Adachi, and Iwata [45]. Its parameterized version, the “k-pebble
game”, was one of the earliest natural combinatorial problems shown to require Ω(nk) time
and be XP-complete [1]. As an application of the k-pebble game, some other game problems,
such as the “cat and mouse game” [13] and the “k-peg game”, have also been proven to be
XP-complete via reductions from the k-pebble game problem [1]. More recently, Berkholz
established an unconditional lower bound of O(n(k−3)/12)-time for the existential k-pebble
game [6]. Our result provides yet another natural example of an XP-complete problem with
an explicit lower bound of nΩ(

√
k).

In contrast to the LFMIS problem on factored graphs, we show that the well-studied
problem of clique counting [51] is in FPT, solvable in a fixed polynomial of the input graph
sizes (where the exponent possibly depends on the size of the clique of interest) times some
function on the number of input graphs. Subgraph counting (in particular clique counting)
has been studied by a long line of works [51, 16, 11, 42] in a variety of computational models
[21, 24, 2, 56, 39]. On graphs with n vertices, s-cliques can be counted in O(ns) time (and
nΩ(s) time is necessary under standard hardness assumptions). We show that counting
s-cliques on factored graphs of complexity (n, k) is in O(g(s, k)ns) time for some fixed (large)
function g. Note that we do not show clique counting is in FPT with respect to the clique
size parameter s, but only with respect to the complexity of the factored graph k.

▶ Theorem 2 (Counting Clique Subgraphs is in FPT). Let H be a clique on s vertices.
Then, computing the number of exact copies of H in G, denoted #H(G), is fixed-parameter
tractable. In particular, there is an algorithm computing #H(G) on factored graphs G of
complexity (n, k) in O (g(s, k)ns) time for some function g(s, k).

Finally, we turn to the problem of reachability, one of the most fundamental computational
problems on graphs. On an explicit graph, algorithms such as depth-first search (DFS) and
breadth-first search (BFS) compute reachability in linear time. This raises the question: can
reachability on factored graphs be computed efficiently? Moreover, reachability is closely
related to classic space complexity classes. The general reachability problem is an important
NL-complete problem [57, 43]; meanwhile, Cook and Mckenzie showed that reachability on
a directed acyclic graph of outdegree at most one is L-complete [19]. This naturally gives
rise to another question: does the completeness of reachability for a classic complexity class
extend to its parameterized counterpart when the inputs are given as factored graphs, similar
to what we have seen in the case of LFMIS in Theorem 1?

Indeed, we show that the parameterized version of reachability on factored graphs is
XNL-complete under FPT-reductions, where XNL is the class of parameterized problems
solvable in nondeterministic logarithmic space for any fixed parameter k. On the other hand,
while we cannot provide a definitive answer to whether reachability on factored graphs is in
FPT, we show that answering this question would exactly resolve a major open problem
in classical complexity theory. Specifically, we establish a parameterized analog of the
well-known open problem that asks whether NL ⊆ DTIME(nC) for some fixed constant C.

▶ Theorem 3 (XNL-completeness of Reachability). Reachability on factored graphs is XNL-
complete under FPT-reductions. Furthermore, the following are equivalent:
1. There is a constant C such that NL ⊆ DTIME(nC).
2. XNL ⊆ FPT.

This result also has several further implications. First, we observe that if reachability
is not in FPT, NSPACE(h(n)) ̸⊆ P for any space-constructible h(n) = ω(log n). On the
other hand, if reachability is in FPT then the Exponential Time Hypothesis (ETH) is false.

ITCS 2025

58:6 The Computational Complexity of Factored Graphs

In particular, we claim that since k-SUM (determining if in a set of n numbers of O(k log n)
bits there is a subset of k numbers summing to zero) is in NL, then k-SUM can be solved
in O

(
nC

)
= no(k) time, and therefore ETH is false [55].4 Finally, by combining the above

implications, one can also conclude that if ETH is true, then NSPACE(ω(log n)) ⊊ P, a
result that, to the best of our knowledge, has not been previously established.

Parameterized space complexity classes, including XL and XNL, have also been studied
extensively in the literature [10, 17, 33, 29]. Chen, Flum, and Grohe introduced the first
complete problems for XL and XNL under parameterized-logspace-reductions5 [17]. In a
related direction, [9] identified a wide variety of problems complete for the class XNLP,
which is the class of parameterized problems solvable in nondeterministic logarithmic space
and polynomial time for each parameter. Most relevant to our result, Elberfeld, Stockhusen,
and Tantau also showed that a parameterized version of reachability with multi-colored edges
is complete for the class parameterized-NL-cert under PL-reductions [29].

1.3 Related Work
A long line of work, initiated by [25, 26, 28, 32], has studied the complexity of parameterized
problems as a function of their input size and a parameter. Within parameterized complexity,
a common theme is to study the complexity of problems given succinct representations
of their input. For example, several previous works have investigated the complexity of
computing Nash equilibrium of succinct games (represented implicitly) [31, 23, 22, 34, 53, 36].
As another example, [62] considers the complexity of combinatorial problems with succinct
representation. Similarly, [52, 63, 40, 41, 49, 48, 14, 15] study the complexity of various
computational problems on periodic structures, i.e., travel schedules on a periodic timetable.

Most relevant to this paper, several works have investigated computational problems on
graphs with succinct representations such as small circuits [35], distributed graphs described
by low complexity agents [4], and factored problems [21]. However, none of these works
consider the complexity of factored graphs formed under graph products.

On the subject of succinct representations, researchers have also studied how to represent
graphs as efficiently as possible [44, 38, 5, 30, 7, 47, 54].

2 Preliminaries

Unless otherwise noted, we work with directed graphs, with edges from a to b denoted by
(a, b). For a graph G, we denote its vertices by V (G) and edges by E(G). For any subset
of vertices S ⊂ V (G), let G[S] denote the subgraph induced by S. For a set X, we define
P(X) = {Y : Y ⊆ X} to be the power set of X.

2.1 Graph Products
We begin with the definitions of the relevant graph operations. Let G and H be two directed
graphs.

▶ Definition 4. The Cartesian product G□H of G and H has vertex set V (G) × V (H) and
directed edges ((v1, u1), (v2, u2)) if and only if either

v1 = v2 and (u1, u2) ∈ E(H), or
u1 = u2 and (v1, v2) ∈ E(G)

4 We need O(k2 log n) bits to verify that k numbers of O(k log n) bits sum to zero.
5 Also known as PL-reductions, a more restrictive notion compared to FPT-reductions

S. Gupta, B. Huang, R. Impagliazzo, S. Woo, and C. Ye 58:7

As a simple example, note that the Cartesian product of two paths is a grid.

▶ Definition 5. The tensor product G × H of G and H has vertex set V (G) × V (H) and
directed edges ((v1, u1), (v2, u2)) if and only if (v1, v2) ∈ E(G) and (u1, u2) ∈ E(H).

▶ Definition 6. The union G ∪ H of G and H has vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H).

While there are many other graph products and operations to consider, such as the or
product, or graph negation, we will primarily focus our study of factored graphs under the
above three operations.

We note that the above three operations are associative, and observe that the products
of higher arity are given as follows.

▶ Definition 7. The Cartesian product □ k
i=1Gi has vertex set

∏k
i=1 V (Gi) and directed edges

((v1, . . . , vk), (u1, . . . , uk)) if and only if there is some index j ∈ [k] such that (vj , uj) ∈ E(Gj)
and vi = ui for all i ̸= j.

▶ Definition 8. The tensor product ×k
i=1Gi has vertex set

∏k
i=1 V (Gi) and directed edges

((v1, . . . , vk), (u1, . . . , uk)) if and only if (vi, ui) ∈ E(Gi) for all i ∈ [k].

▶ Definition 9. The union
⋃k

i=1 Gi of G and H has vertex set
⋃k

i=1 V (Gi) and edge set⋃k
i=1 E(Gi).

2.2 Factored Graph Construction
We now describe how the above operations construct factored graphs. Formally, we define a
factored graph by describing how the above graph operations combine the input graphs into
a single graph. This motivates the definition of a factored graph according to a tree which
specifies the order of operations, or the tree structure of a factored graph.

▶ Definition 10 (Factored Graph Tree Structure). The factored graph tree structure with
k leaves, denoted f(G1, . . . , Gk), is an ordered tree with k leaves where internal nodes are
labelled by an operation (one of □, ×, or ∪) and the leaves are labelled by graphs G1, . . . , Gk.
Note that Gi are arbitrary and not necessarily distinct. We require that each internal node
has degree at least 2.

Let G = f(G1, . . . , Gk) denote that G is the factored graph given by the factored graph tree
structure f(G1, . . . , Gk). For convenience, let T (G) denote the factored graph tree structure.
We say that the factored graph tree structure f(G1, . . . , Gk), or simply G, is of complexity
(n, k) if T (G) has at most k leaves and each leaf is labelled by a graph with at most n vertices.

To illustrate our definitions, we will use the following example of a factored graph
G = ((A × B) ∪ C)□ (D × (E ∪ F)). Note that there is a natural correspondence between the
tree structures of factored graphs and the formulas of the above form, by using parentheses
to delineate subtrees of the tree structure. The tree structure of G is given in Figure 2.

We now describe how the vertex and edge sets of a factored graph are obtained from its
tree structure. First, we define factored components of factored graphs.

▶ Definition 11 (Factored Component). Let G be a factored graph. A factored component
GF of G is the factored graph whose tree structure T (GF) is obtained from the tree structure
of G by recursively replacing each internal node labelled by ∪ with the subtree rooted at one
of its children. Note that the internal nodes of T (GF) are labelled either □ or ×.

ITCS 2025

58:8 The Computational Complexity of Factored Graphs

□

∪

×

A B

C

×

D ∪

E F

Figure 2 Tree structure of the factored graph G = ((A × B) ∪ C)□ (D × (E ∪ F)).

We say GF has dimension ℓ if T (GF) has ℓ leaves. Suppose the leaves are labelled
G1, . . . , Gℓ. Then, V (GF) =

∏ℓ
i=1 V (Gi). We say every vertex v ∈ V (GF) has dimension ℓ.

The edge set E(GF) is determined by T (GF) and E(G1), . . . , E(Gℓ) following the rules of
Cartesian and tensor products.

In our example, the factored components are (A × B)□ (D × E), (A × B)□ (D ×
F), C □ (D × E), and C □ (D × F), with dimensions 4, 4, 3, 3, respectively. Some example
tree structures of factored components are given in Figure 3.

□

×

A B

×

D E

Tree structure of (A × B)□ (D × E).

□

C ×

D F

Tree structure of C □ (D × F).

Figure 3 Examples of the Tree Structures of Factored Components.

Here, we emphasize that the vertex sets of the factored components are flattened products
of the vertex sets of the graphs labeling the leaves. For example, the vertex of the factored
component (A × B)□ (D × E) has the form (a, b, d, e) not ((a, b), (d, e)). In particular, the
vertex sets do not depend on the topology of the tree beyond the order of the leaves. Finally,
the vertex and edge set of G is simply the union of the factored components.

▶ Definition 12 (Factored Graph). Let G = f(G1, . . . , Gk) be a factored graph with tree
structure T (G) and factored components GF1 , . . . , GFm . Define V (G) =

⋃m
i=1 V (GFi) and

E(G) =
⋃m

i=1 E(GFi
).

We note here that different factored graphs can have identical vertex and edge sets. For
example, G1 = (H1 × H2) × H3 and G2 = H1 × (H2 × H3) both have vertex set

∏3
i=1 Hi

and edges from (h1, h2, h3) to (h′
1, h′

2, h′
3) if and only if (hi, h′

i) ∈ E(Hi) for all i. This aligns
with our expectation, as the tensor product is associative.

S. Gupta, B. Huang, R. Impagliazzo, S. Woo, and C. Ye 58:9

Note that a single vertex in G can belong to multiple factored components. In our
running example, if there is a vertex x ∈ V (E) ∩ V (F), then the vertex (c, d, x) is in the
factored components corresponding to C □ (D×E) and C □ (D×F). However, both factored
components have dimension 3. This is formalized in the following lemma, which follows
directly from the construction of factored graphs.

▶ Lemma 13. Suppose v ∈ V (G) is in factored components GF , GF ′ . Then, dim(GF) =
dim(GF ′).

This allows us to define the dimension of a vertex dim(v) as the dimension of any factored
component it belongs to.

▶ Definition 14 (Vertex Dimension). Let G = f(G1, . . . , Gm) be a factored graph and v ∈ V (G)
be a vertex. The dimension of v, denoted by dim(v), is the dimension dim(GF) of any factored
component GF that contains v.

By construction, the endpoints of any edge must belong to the same factored component.

▶ Lemma 15. Let (u, v) ∈ E(G) be an edge. Then, u and v belong to the same factored
component.

As a corollary, we show that there are no edges between vertices of different dimensions,
since vertices in the same factored component necessarily have the same dimension.

▶ Corollary 16. Let (u, v) be an edge in G. Then, u and v have the same dimension.

Finally, since every vertex has a unique dimension, it is clear that vertex dimension
partitions the vertices of the factored graph. Thus, vertex dimension induces an equivalence
relation on V (G).

2.3 Parameterized Complexity
In this section, we review the parameterized complexity classes relevant to this paper with
respect to problems on factored graphs. We begin with the definition of fixed-parameter
tractability (FPT).

▶ Definition 17 (Fixed-parameter Tractability (FPT) for Factored Graph Problems). A problem
on factored graphs is fixed-parameter tractable if there exists an algorithm that solves the
problem on factored graph inputs of complexity (n, k) in time O

(
g(k)nC

)
, where g is a

function of k and C is a constant independent of k.

We also study the parameterized complexity classes XP and XNL, which correspond to
the parameterized version of the classical complexity classes P and NL, respectively. More
generally, one can define the parameterized version XC for any classical complexity class C
as follows [27]: a parameterized language L ∈ XC if and only if Lk ∈ C for every parameter
k. Here, Lk is referred to as the k-th slice of L, which is the subset of L consisting of all
instances with parameter k. We now give the definitions of XP and XNL in the context of
factored graph problems.

▶ Definition 18 (XP for Factored Graph Problems). A problem on factored graphs is in XP
if there exists an algorithm that solves the problem on factored graph inputs of complexity
(n, k) in time O

(
f(k)nf(k)), where f is a function of k.

ITCS 2025

58:10 The Computational Complexity of Factored Graphs

▶ Definition 19 (XNL for Factored Graph Problems). A problem on factored graphs is in
XNL if there exists a nondeterministic algorithm that solves the problem on factored graph
inputs of complexity (n, k) in space O (f(k) log n), where f is a function of k.

Finally, for XP- and XNL-completeness, we follow the usual definition that a problem
is considered to be complete for a complexity class C if it belongs to C and is hard for C
under some suitable notion of reductions. Here, we use the standard notion of parameterized
mapping reduction (see Definition 9.3 in [27]), also known as the FPT-reduction [17], under
which the class FPT is closed. We now give a definition for XP- and XNL-hardness under
this reduction in the context of factored graph problems.

▶ Definition 20 (XP-hardness (resp. XNL-hardness) for Factored Graph Problems). A problem
L′ on factored graphs is XP-hard (resp. XNL-hard) if for every parameterized language
L ∈ XP (resp. L ∈ XNL), there exists a mapping F such that for every parameter k, Lk

mapping reduces to L′
k′ under F using O(f(k)nO(1)) time, where f is a function of k and k′

depends only on k.

3 Technical Overview

In this section, we provide a technical overview of our results. Due to space constraints, the
proofs are left to the full version of the paper.

3.1 Lexicographically First Maximal Independent Set
Recall that our first main result is the XP-completeness of the LFMIS problem on factored
graphs.

▶ Theorem 1 (XP-completeness of LFMIS). The LFMIS problem on factored graphs is
XP-complete under FPT-reductions and not fixed-parameter tractable. In particular, the
LFMIS problem on a factored graph G = f(G1, . . . , Gk) of complexity (n, k) requires nΩ(

√
k)

time.

Theorem 1 is a consequence of a generic reduction from an arbitrary language L ∈
DTIME(nℓ) to the LFMIS problem on factored graphs. Specifically, given a language
L ∈ DTIME(nℓ) and the corresponding Turing machine that decides L in O(nℓ) time, we
construct a factored graph G of complexity (O(n), O(ℓ2)) using O(ℓ2n2) time, such that
solving the LFMIS on G simulates the Turing machine M . Then, it is fairly straightforward
from this reduction that the problem is XP-complete. Moreover, we also obtain the explicit
lower bound of nΩ(

√
k) by an application of the Time Hierarchy Theorem to the reduction.

Before proceeding to the detailed explanation, we first provide a high level intuition of
this construction. Given a Turing machine, we can encapsulate its computation history in a
matrix, where each row represents a configuration of the Turing machine at a specific time.
The key idea of the reduction is to construct a graph in such a way that selecting vertices
for the LFMIS corresponds to recovering the matrix entries, and thereby simulating the
machine. To achieve this, we construct a graph with a grid structure mirroring the matrix.
At each grid point, we place a collection of vertices representing all the possible choices for
the corresponding matrix entry. The edges are defined according to the machine’s transition
function to ensure that the LFMIS chooses the single correct vertex from each grid point
that agrees with the computation history of the Turing Machine, effectively allowing us to
simulate the Turing machine by solving the LFMIS on the graph. It turns out that this
graph has a highly regular structure and therefore can be factorized into a more succinct
representation. In the remainder of this (sub)section, we explain this reduction in further
detail.

S. Gupta, B. Huang, R. Impagliazzo, S. Woo, and C. Ye 58:11

Let L be a language in DTIME(nℓ) and let M be the corresponding Turing machine
that decides L in time O(nℓ). Given an input x to M , if M halts within time T , then the
entire computation history of M on x can be represented by a T × T matrix W , where
the i-th row of W represents the configuration of M at time i. To achieve this, each entry
Wi,j contains the following information about the j-th tape cell at time i: 1) the symbol
occupying the cell, 2) whether the tape head is over the cell, and 3) the machine’s current
state if the tape head is over the cell. The goal now is to define a graph G such that the
LFMIS of G recovers the computation history W , thereby simulating the machine M . We
modify the Turing machine so that it suffices to query a single vertex in the graph for the
halting state of M .

Explicit Graph Definition

We begin by defining G explicitly as an ordinary graph and then give a factored representation
of G. Let S be the set of vertices corresponding to all possible choices for an entry in the
matrix W . We define the vertex set of G to be T 2 copies of S, arranged in a T × T grid-like
pattern analogous to the matrix W . Each copy of S is referred to as a supernode, and we
use Si,j to denote the supernode in the i-th row and j-th column. Intuitively, the supernode
Si,j represents all possible choices for the entry Wi,j . Therefore, we must define the edges of
G such that the LFMIS includes the single correct vertex, which we call wi,j , from each Si,j

that agrees with the entry Wi,j .
The edge set of G consists of two types of edges: intra-supernode and inter-supernode

edges. The intra-supernode edges are designed to ensure that the LFMIS contains at most one
vertex within each supernode. This is easily achieved by defining a complete digraph on each
supernode. On the other hand, the inter-supernode edges are constructed to ensure that the
LFMIS contains the correct vertex from each supernode that agrees with the corresponding
entry of W . This construction is more subtle and leverages the fact that the configuration
at any given time of a deterministic machine uniquely determines the next configuration.
Moreover, since the tape head can only move one step left or right at a time, each entry Wi,j

can be uniquely determined given only the three neighboring entries from the previous row:
Wi−1,j−1, Wi−1,j , Wi−1,j+1 (instead of the entire previous row). To view this from another
perspective: the entries Wi−1,j−1, Wi−1,j , and Wi−1,j+1 each restricts the possible choices
for Wi,j according to the machine’s transition function. We define edges between neighboring
supernodes to encode these restrictions. Specifically, for v ∈ Si,j and v′ ∈ Si+1,j′ , a directed
edge (v, v′) indicates that, if v is chosen to represent the j-th tape cell at time i, then v′

cannot represent the j′-th tape cell at the next time step i + 1, based on the machine’s
transition function. We hope that if the vertices wi−1,j−1 ∈ Si−1,j−1, wi−1,j ∈ Si−1,j , and
wi−1,j+1 ∈ Si−1,j+1 are correctly contained in the LFMIS, then the edges ensure that wi,j

is the unique vertex in Si,j that is not adjacent to wi−1,j−1, wi−1,j , or wi−1,j+1. This will
allow us to build the LFMIS inductively. The base case (which corresponds to the first row)
is more technical and involves adding horizontal connections between supernodes.

Factored Graph Construction

Naively, this graph has Ω(T 2) vertices, where T 2 = Ω(n2ℓ). However, since the computation
rules of M are local (depending only on the symbol of the work tape under the head) and
repetitive (the same rules apply regardless of the head’s absolute position), we can give a
succinct factored representation of G. Specifically, we show that G has a factored graph
representation of complexity (O(n), O(ℓ2)). The factorization of G is outlined in Figure 4.

ITCS 2025

58:12 The Computational Complexity of Factored Graphs

Figure 4 Overview of the Factorization of G. Supernodes are enclosed within dotted circles.

The key idea is to break down the graph G into regular and repetitive substructures.
Following this, we begin by decomposing G into two subgraphs, G1 and G2, such that both
subgraphs share the same vertex set as G, but G1 contains only the intra-supernode edges and
G2 contains only the inter-supernode edges. G1 forms a T × T grid of complete supernodes,
which can be represented as the Cartesian product of an empty T × T grid of vertices and
a single complete supernode. Similarly, G2 is a T × T grid of supernodes, but with edges
connecting neighboring supernodes in four possible directions: vertical (V), horizontal (H),
diagonally-right R, and diagonally-left (L). We can further decompose G2 into four subgraphs
V , H, R, and L, which only contain the edges which are in the direction indicated by the
name of the subgraph. Each of these subgraphs can be further decomposed into a “structure”
graph and a “relation” graph using the tensor product. The structure graph S consists of
a T × T grid of (ordinary) vertices with edges connecting all neighboring vertices in the
corresponding direction of the subgraph. The relation graph R encodes the connections
between vertices in neighboring supernodes in the corresponding direction. Moreover, the
structure graphs themselves can be further factorized. For example, the structure graph S

for the subgraph V can be expressed as the Cartesian product of a path of length T and an
empty graph on T vertices. When the path length is a perfect power bk (where b, k ≥ 1 are
integers), it can be further decomposed into a union of k factored graphs of complexities
(b, k). Further details can be found in the full version of the paper.

3.2 Counting s-Cliques
In contrast to the first result, our second main result states that counting cliques on factored
graphs is in FPT. For this result, we assume that all graphs are undirected.

S. Gupta, B. Huang, R. Impagliazzo, S. Woo, and C. Ye 58:13

▶ Theorem 2 (Counting Clique Subgraphs is in FPT). Let H be a clique on s vertices.
Then, computing the number of exact copies of H in G, denoted #H(G), is fixed-parameter
tractable. In particular, there is an algorithm computing #H(G) on factored graphs G of
complexity (n, k) in O (g(s, k)ns) time for some function g(s, k).

In the technical overview, we use edge counting (s = 2) as an illustrative example. Note
that if (u, v) is an edge, u, v must have the same dimension (Corollary 16), so we may count
the edges in each dimension separately. Thus, fix a dimension d ≤ k.

There are at most 2k factored components of dimension d. While some edges may
belong to multiple factored components, we can use the inclusion-exclusion principle to avoid
double-counting such edges. In particular, it suffices to consider counting the number of
edges in an arbitrary intersection of factored components GF1 ∩ . . . ∩ GFm . Note that the
number of such intersections, while being a large function of k, is crucially independent of n.

Fix such an intersection and consider a pair of vertices u, v with u = (u1, . . . , ud) and
v = (v1, . . . , vd). Note that by determining whether ui, vi are equal or adjacent for all
i ∈ [k], we can infer from the factored graph tree structure whether (u, v) ∈ E(G). Thus,
we can categorize all pairs of vertices into 22k groups based on the relations ui = vi and
(ui, vi) ∈ E(Gi). Note also that these groups are disjoint. Next, we collect the subset of
groups that form edges in the current intersection GF1 ∩ . . . ∩ GFm . To count the number
of edges, it then suffices to sum up the sizes of each group in this collection. For a given
group, we can determine its size in O(kn2) time since the relations on each coordinate are
independent. In particular, we can count the number of pairs of vertices in each input graph
satisfying the relevant constraints and take the product over all input graphs.

3.3 Reachability
Finally, we study the reachability problem on factored graphs.

▶ Theorem 3 (XNL-completeness of Reachability). Reachability on factored graphs is XNL-
complete under FPT-reductions. Furthermore, the following are equivalent:
1. There is a constant C such that NL ⊆ DTIME(nC).
2. XNL ⊆ FPT.

We begin with an overview of the proof for the XNL-completeness result, followed by
that for the equivalence result. In fact, we will see that both proofs rely on the same major
building blocks in slightly different ways.

XNL-completeness

We follow the standard framework for showing that reachability is NL-complete [57].
Membership in XNL can be established using the same algorithm that shows the ordinary

reachability problem is in NL, even if the input is now given as a factored graph. As in
the standard proof, we non-deterministically guess the next vertex in the path and thus
only require O(k log n)-space for factored graphs G = f(G1, . . . , Gk) of complexity (n, k).
Formally, each vertex in G can be specified by O(k log n) bits, since each vertex is a tuple of
at most k coordinates and each coordinate is a vertex in an input graph Gi with at most n

vertices. Thus, the algorithm requires O(k log n) bits to write down the current vertex and,
since the factored graph has at most nk vertices, at most O(k log n) bits to keep track of the
number of steps taken so far.

For XNL-hardness, suppose we have some language L ∈ XNL. Then, there exists a
nondeterministic Turing machine M deciding L using f(k) log n-space on inputs of length
n and parameter k, for some function f of k. The standard reduction creates an explicit

ITCS 2025

58:14 The Computational Complexity of Factored Graphs

configuration graph where each vertex encodes a tuple consisting of state, input and work tape
positions, and a setting of the work tape. Since the work tape has length f(k) log n, there are
at least nf(k) distinct settings of the work tape. Thus, even though reachability is computable
in linear time, the size of the graph already depends exponentially on f(k). However, we
are able to exploit the locality of Turing machine operations so that the configuration graph
can in fact be encoded by a factored graph of complexity (poly(n), poly(f(k))). Given some
configuration of M on input x (a tuple of state, tape head locations and work tape contents),
we split the configuration into segments, where each segment only contains log n contiguous
bits of the work tape contents. Note that each segment, even if it encodes a state and tape
head locations, only has nO(1) possible values, since one segment of the work tape only has
log n bits. Thus, we can represent all possible configurations of a segment explicitly using a
graph with nO(1) vertices, while a product of f(k) segment graphs can explicitly represent
any full configuration of M on input x.

It remains to express the appropriate transitions between configurations using a factored
graph. There are two types of transitions: intra-segment transitions, where the work tape
head stays within the same segment, and inter-segment transitions, where the work tape head
moves from one segment to another (adjacent) segment. In either case, at most two segments
of the work tape are active, where a segment is active during a transition if the work tape head
either starts or ends in the segment and inactive otherwise. Thus, we can express individual
segments (or pairs of segments) explicitly using input graphs of size nO(1). Since the active
segments and inactive segments do not interact, we can encode all intra-segment transitions
of a single segment using factored graphs of complexity (nO(1), f(k)). Similarly, we can
encode all inter-segment transitions between a single pair of adjacent segments. Summing
over all O(f(k)) segments and pairs of adjacent segments, we encode the configuration graph
in a factored graph of complexity (nO(1), O(f(k)2)).

We now briefly describe how the locality of Turing machine computation allows us to
express the configuration graph of M on x using factored graphs. In the overview, we describe
only intra-segment transitions. First, note that if the work tape head is not currently placed
in a segment, the work tape contents of this segment cannot change. We thus define an
inactive graph, where for every possible work tape content, we create a self-loop vertex. If
the work tape head is currently placed in the segment, the work tape contents may change.
Thus, we define an active graph with all possible configurations on a given segment as nodes,
and edges encoding valid transitions. For a given segment, taking the tensor product of
the active graph for this segment and the inactive graph for all other segments encodes all
intra-segment transitions. A similar construction can be used to construct factored graphs
that encode inter-segment transitions.

Equivalence to the Open Problem

For the forward direction, suppose there exists an absolute constant C such that NL ⊆
DTIME(nC). To show that XNL ⊆ FPT, it now suffices to show reachability on factored
graphs is in FPT due to its XNL-completeness under FPT-reductions. Note that the
algorithm used in the proof of XNL-membership is in fact an NL algorithm for each fixed
parameter k. Thus, if NL ⊆ DTIME

(
nC

)
for some C independent of k, then for any fixed

k, reachability on factored graphs of complexity (n, k) can be computed in time O(kCn2C)
(as factored graphs of this complexity have input size O(kn2)) and is therefore in FPT.

Conversely, if XNL ⊆ FPT, then in particular, reachability on factored graphs is in FPT.
Now, consider any language L ∈ NL with its associated nondeterministic Turing machine M

that decides L in S log n space for some constant S. Using the same construction as in the

S. Gupta, B. Huang, R. Impagliazzo, S. Woo, and C. Ye 58:15

proof of XNL-hardness, we construct a factored graph G of complexity (nO(1), O(S2)) where
solving reachability on G simulates M . Since reachability on factored graphs is in FPT,
it follows that reachability on G can be solved in time O(f(S2)nO(1)) for some function f ,
where the exponent on n is independent of S, hence independent of the specific language
L ∈ NL. This shows that NL ⊆ DTIME(nC) for some absolute constant C.

4 Conclusion and Future Work

We have studied the computational complexity of various problems on factored graphs. Even
among problems with polynomial time algorithms on explicit graphs, we have shown that
their parameterized complexity when the input is represented as a factored graph can differ
quite drastically. In the context of parameterized complexity, we have sought to characterize
which problems on factored graphs are in FPT. On the positive side, counting the number
of copies of a small clique is in FPT. On the negative side, LFMIS is unconditionally not in
FPT. Finally, we show that determining whether reachability is in FPT is equivalent to
determining whether NL ⊆ DTIME(nO(1)).

Can the unconditional lower bounds for LFMIS on factored graphs be used to prove
similar unconditional lower bounds for other parameterized problems? One obstacle to
doing this is the gap in complexity between the P-complete LFMIS problem and the easily
parallelizable problems that form the bulk of the literature in parameterized complexity.
However, reductions in fine-grained complexity often cut across traditional complexity classes,
e.g., [46]. So we do not know a reason why this should not also be the case here. Either
finding such unconditional results or explaining their impossibility would both be interesting.
We could also hope to prove similar results for other P-complete problems.

While our lower bounds separate the problems of interest from FPT, they do not rule
out significant improvements on the naive nO(k) algorithm of computing the factored graph
G explicitly and solving the problem on G itself. For example, our LFMIS lower bound only
unconditionally rules out algorithms with time no(

√
k). An interesting open problem is to

provide a more fine-grained analysis of the complexity of factored graph problems, possibly
distinguishing between the number of product and union operations.

In this work, we have chosen to study factored graphs under graph products and unions,
specifically the Cartesian and tensor products. A natural extension is to consider other
products and operations on graphs, or other interesting objects. Factored problems on bit
strings were introduced in [21], and implicitly on integer-valued vectors in [3]. Do similar
results hold for factored problems for these input domains and operations?

References
1 Akeo Adachi, Shigeki Iwata, and Takumi Kasai. Some combinatorial game problems require

omega(nk) time. J. ACM, 31(2):361–376, March 1984. doi:10.1145/62.322433.
2 Enric Boix Adserà, Matthew S. Brennan, and Guy Bresler. The average-case complexity

of counting cliques in erdős-rényi hypergraphs. CoRR, abs/1903.08247:FOCS19–39, 2019.
doi:10.48550/arXiv.1903.08247.

3 Haozhe An, Mohit Gurumukhani, Russell Impagliazzo, Michael Jaber, Marvin Künnemann,
and Maria Paula Parga Nina. The fine-grained complexity of multi-dimensional ordering
properties. Algorithmica, 84(11):3156–3191, 2022. doi:10.1007/s00453-022-01014-x.

4 Sanjeev Arora, David Steurer, and Avi Wigderson. Towards a study of low-complexity
graphs. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas,
and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th International
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume
5555 of Lecture Notes in Computer Science, pages 119–131. Springer, Springer, 2009. doi:
10.1007/978-3-642-02927-1_12.

ITCS 2025

https://doi.org/10.1145/62.322433
https://doi.org/10.48550/arXiv.1903.08247
https://doi.org/10.1007/s00453-022-01014-x
https://doi.org/10.1007/978-3-642-02927-1_12
https://doi.org/10.1007/978-3-642-02927-1_12

58:16 The Computational Complexity of Factored Graphs

5 Jérémy Barbay, Luca Castelli Aleardi, Meng He, and J. Ian Munro. Succinct representation of
labeled graphs. In Takeshi Tokuyama, editor, Algorithms and Computation, 18th International
Symposium, ISAAC 2007, Sendai, Japan, December 17-19, 2007, Proceedings, volume 4835 of
Lecture Notes in Computer Science, pages 316–328. Springer, Springer, 2007. doi:10.1007/
978-3-540-77120-3_29.

6 Christoph Berkholz. Lower bounds for existential pebble games and k-consistency tests.
In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS
2012, Dubrovnik, Croatia, June 25-28, 2012, pages 25–34. IEEE Computer Society, 2012.
doi:10.1109/LICS.2012.14.

7 Guy E. Blelloch and Arash Farzan. Succinct representations of separable graphs. In
Amihood Amir and Laxmi Parida, editors, Combinatorial Pattern Matching, 21st Annual
Symposium, CPM 2010, New York, NY, USA, June 21-23, 2010. Proceedings, volume
6129 of Lecture Notes in Computer Science, pages 138–150. Springer, Springer, 2010.
doi:10.1007/978-3-642-13509-5_13.

8 Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. Greedy sequential maximal independent
set and matching are parallel on average. In Guy E. Blelloch and Maurice Herlihy, editors,
24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, Pittsburgh,
PA, USA, June 25-27, 2012, pages 308–317. ACM, 2012. doi:10.1145/2312005.2312058.

9 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.
Parameterized problems complete for nondeterministic FPT time and logarithmic space.
CoRR, abs/2105.14882, 2021. doi:10.48550/arXiv.2105.14882.

10 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes of
parameterized tractability. Ann. Pure Appl. Log., 84(1):119–138, 1997. Asian Logic Conference.
doi:10.1016/S0168-0072(95)00020-8.

11 Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan Paturi. The
complexity of unique k-sat: An isolation lemma for k-cnfs. J. Comput. Syst. Sci., 74(3):386–
393, 2008. doi:10.1016/j.jcss.2007.06.015.

12 Neil J. Calkin, Alan M. Frieze, and Ludek Kucera. On the expected performance of a parallel
algorithm for finding maximal independent subsets of a random graph. Random Struct.
Algorithms, 3(2):215–222, 1992. doi:10.1002/rsa.3240030210.

13 Ashok K. Chandra and Larry J. Stockmeyer. Alternation. In 17th Annual Symposium on
Foundations of Computer Science, Houston, Texas, USA, 25-27 October 1976, pages 98–108.
IEEE Computer Society, 1976. doi:10.1109/SFCS.1976.4.

14 Hubie Chen. Periodic constraint satisfaction problems: Polynomial-time algorithms. In
Francesca Rossi, editor, Principles and Practice of Constraint Programming - CP 2003,
9th International Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003,
Proceedings, volume 2833 of Lecture Notes in Computer Science, pages 199–213. Springer,
Springer, 2003. doi:10.1007/978-3-540-45193-8_14.

15 Hubie Chen. Periodic constraint satisfaction problems: Tractable subclasses. Constraints An
Int. J., 10(2):97–113, 2005. doi:10.1007/s10601-005-0551-z.

16 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006. doi:
10.1016/j.jcss.2006.04.007.

17 Yijia Chen, Jörg Flum, and Martin Grohe. Bounded nondeterminism and alternation in para-
meterized complexity theory. In 18th Annual IEEE Conference on Computational Complexity
(Complexity 2003), 7-10 July 2003, Aarhus, Denmark, pages 13–29. IEEE Computer Society,
2003. doi:10.1109/CCC.2003.1214407.

18 Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf. Control.,
64(1-3):2–21, 1985. doi:10.1016/S0019-9958(85)80041-3.

19 Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic logarithmic space.
J. Algorithms, 8(3):385–394, 1987. doi:10.1016/0196-6774(87)90018-6.

https://doi.org/10.1007/978-3-540-77120-3_29
https://doi.org/10.1007/978-3-540-77120-3_29
https://doi.org/10.1109/LICS.2012.14
https://doi.org/10.1007/978-3-642-13509-5_13
https://doi.org/10.1145/2312005.2312058
https://doi.org/10.48550/arXiv.2105.14882
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1016/j.jcss.2007.06.015
https://doi.org/10.1002/rsa.3240030210
https://doi.org/10.1109/SFCS.1976.4
https://doi.org/10.1007/978-3-540-45193-8_14
https://doi.org/10.1007/s10601-005-0551-z
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1109/CCC.2003.1214407
https://doi.org/10.1016/S0019-9958(85)80041-3
https://doi.org/10.1016/0196-6774(87)90018-6

S. Gupta, B. Huang, R. Impagliazzo, S. Woo, and C. Ye 58:17

20 Don Coppersmith, Prabhakar Raghavan, and Martin Tompa. Parallel graph algorithms that
are efficient on average. In 28th Annual Symposium on Foundations of Computer Science, Los
Angeles, California, USA, 27-29 October 1987, pages 260–269. IEEE, IEEE Computer Society,
1987. doi:10.1109/SFCS.1987.46.

21 Mina Dalirrooyfard, Andrea Lincoln, and Virginia Vassilevska Williams. New techniques
for proving fine-grained average-case hardness. In Sandy Irani, editor, 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, pages 774–785. IEEE, IEEE, 2020. doi:10.1109/FOCS46700.2020.00077.

22 Constantinos Daskalakis, Alex Fabrikant, and Christos H. Papadimitriou. The game world is
flat: The complexity of nash equilibria in succinct games. In Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I,
volume 4051 of Lecture Notes in Computer Science, pages 513–524. Springer, Springer, 2006.
doi:10.1007/11786986_45.

23 Konstantinos Daskalakis and Christos H. Papadimitriou. The complexity of games on highly
regular graphs. In Gerth Stølting Brodal and Stefano Leonardi, editors, Algorithms - ESA 2005,
13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings,
volume 3669 of Lecture Notes in Computer Science, pages 71–82. Springer, Springer, 2005.
doi:10.1007/11561071_9.

24 Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. Parallel batch-dynamic
k-clique counting. In Michael Schapira, editor, 2nd Symposium on Algorithmic Principles
of Computer Systems, APOCS 2020, Virtual Conference, January 13, 2021, pages 129–143.
SIAM, SIAM, 2021. doi:10.1137/1.9781611976489.10.

25 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I:
basic results. SIAM J. Comput., 24(4):873–921, 1995. doi:10.1137/S0097539792228228.

26 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995. doi:10.1016/
0304-3975(94)00097-3.

27 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

28 Rodney G. Downey, Michael R. Fellows, and Kenneth W. Regan. Descriptive complexity and
the W hierarchy. In Paul Beame and Samuel R. Buss, editors, Proof Complexity and Feasible
Arithmetics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, April
21-24, 1996, volume 39 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 119–134. Citeseer, DIMACS/AMS, 1996. doi:10.1090/dimacs/039/07.

29 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space complexity of paramet-
erized problems. In Dimitrios M. Thilikos and Gerhard J. Woeginger, editors, Parameterized
and Exact Computation - 7th International Symposium, IPEC 2012, Ljubljana, Slovenia,
September 12-14, 2012. Proceedings, volume 7535 of Lecture Notes in Computer Science, pages
206–217, Berlin, Heidelberg, 2012. Springer. doi:10.1007/978-3-642-33293-7_20.

30 Arash Farzan and J. Ian Munro. Succinct representations of arbitrary graphs. In Dan Halperin
and Kurt Mehlhorn, editors, Algorithms - ESA 2008, 16th Annual European Symposium, Karls-
ruhe, Germany, September 15-17, 2008. Proceedings, volume 5193 of Lecture Notes in Computer
Science, pages 393–404. Springer, Springer, 2008. doi:10.1007/978-3-540-87744-8_33.

31 Joan Feigenbaum, Daphne Koller, and Peter W. Shor. A game-theoretic classification of
interactive complexity classes. In Proceedings of the Tenth Annual Structure in Complexity
Theory Conference, Minneapolis, Minnesota, USA, June 19-22, 1995, pages 227–237. IEEE,
IEEE Computer Society, 1995. doi:10.1109/SCT.1995.514861.

32 Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-checking.
SIAM J. Comput., 31(1):113–145, 2001. doi:10.1137/S0097539799360768.

33 Jörg Flum and Martin Grohe. Describing parameterized complexity classes. Inf. Comput.,
187(2):291–319, 2003. doi:10.1016/S0890-5401(03)00161-5.

ITCS 2025

https://doi.org/10.1109/SFCS.1987.46
https://doi.org/10.1109/FOCS46700.2020.00077
https://doi.org/10.1007/11786986_45
https://doi.org/10.1007/11561071_9
https://doi.org/10.1137/1.9781611976489.10
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1090/dimacs/039/07
https://doi.org/10.1007/978-3-642-33293-7_20
https://doi.org/10.1007/978-3-540-87744-8_33
https://doi.org/10.1109/SCT.1995.514861
https://doi.org/10.1137/S0097539799360768
https://doi.org/10.1016/S0890-5401(03)00161-5

58:18 The Computational Complexity of Factored Graphs

34 Lance Fortnow, Russell Impagliazzo, Valentine Kabanets, and Christopher Umans. On
the complexity of succinct zero-sum games. Comput. Complex., 17(3):353–376, 2008. doi:
10.1007/s00037-008-0252-2.

35 Hana Galperin and Avi Wigderson. Succinct representations of graphs. Inf. Control., 56(3):183–
198, 1983. doi:10.1016/S0019-9958(83)80004-7.

36 Gianluigi Greco, Enrico Malizia, Luigi Palopoli, and Francesco Scarcello. The complexity
of the nucleolus in compact games. ACM Trans. Comput. Theory, 7(1):3:1–3:52, 2014.
doi:10.1145/2692372.2692374.

37 Shreya Gupta, Boyang Huang, Russell Impagliazzo, Stanley Woo, and Christopher Ye. The
computational complexity of factored graphs. CoRR, abs/2407.19102, 2024. doi:10.48550/
arXiv.2407.19102.

38 Xin He, Ming-Yang Kao, and Hsueh-I Lu. Linear-time succinct encodings of planar
graphs via canonical orderings. SIAM J. Discret. Math., 12(3):317–325, 1999. doi:
10.1137/S0895480197325031.

39 Monika Henzinger, Andrea Lincoln, and Barna Saha. The complexity of average-case dynamic
subgraph counting. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of
the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference
/ Alexandria, VA, USA, January 9 - 12, 2022, pages 459–498. SIAM, SIAM, 2022. doi:
10.1137/1.9781611977073.23.

40 Franz Höfting and Egon Wanke. Polynomial algorithms for minimum cost paths in periodic
graphs. In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-
SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages
493–499. ACM/SIAM, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313868.

41 Bruce Hoppe and Éva Tardos. The quickest transshipment problem. Math. Oper. Res.,
25(1):36–62, 2000. doi:10.1287/moor.25.1.36.15211.

42 Shweta Jain and C. Seshadhri. The power of pivoting for exact clique counting. In James
Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang, editors, WSDM ’20: The Thirteenth
ACM International Conference on Web Search and Data Mining, Houston, TX, USA, February
3-7, 2020, pages 268–276. ACM, 2020. doi:10.1145/3336191.3371839.

43 Neil D. Jones. Space-bounded reducibility among combinatorial problems. J. Comput. Syst.
Sci., 11(1):68–85, 1975. doi:10.1016/S0022-0000(75)80050-X.

44 Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. In Janos
Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May
2-4, 1988, Chicago, Illinois, USA, pages 334–343. ACM, 1988. doi:10.1145/62212.62244.

45 Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete
problems. SIAM J. Comput., 8(4):574–586, 1979. doi:10.1137/0208046.

46 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity
of one-dimensional dynamic programming. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs,
pages 21:1–21:15. Schloss-Dagstuhl-Leibniz Zentrum für Informatik, Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.21.

47 Sebastian Maneth and Fabian Peternek. A survey on methods and systems for graph compres-
sion. CoRR, abs/1504.00616, 2015. arXiv:1504.00616, doi:10.48550/arXiv.1504.00616.

48 Madhav V. Marathe, Harry B. Hunt III, Daniel J. Rosenkrantz, and Richard Edwin Stearns.
Theory of periodically specified problems: Complexity and approximability. In Proceedings of
the 13th Annual IEEE Conference on Computational Complexity, Buffalo, New York, USA,
June 15-18, 1998, page 106. IEEE, IEEE Computer Society, 1998. doi:10.1109/CCC.1998.
694596.

49 Madhav V. Marathe, Harry B. Hunt III, Richard Edwin Stearns, and Venkatesh Radhakrishnan.
Approximation schemes for pspace-complete problems for succinct specifications (preliminary
version). In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 468–477. ACM, 1994. doi:10.1145/195058.195233.

https://doi.org/10.1007/s00037-008-0252-2
https://doi.org/10.1007/s00037-008-0252-2
https://doi.org/10.1016/S0019-9958(83)80004-7
https://doi.org/10.1145/2692372.2692374
https://doi.org/10.48550/arXiv.2407.19102
https://doi.org/10.48550/arXiv.2407.19102
https://doi.org/10.1137/S0895480197325031
https://doi.org/10.1137/S0895480197325031
https://doi.org/10.1137/1.9781611977073.23
https://doi.org/10.1137/1.9781611977073.23
http://dl.acm.org/citation.cfm?id=313559.313868
https://doi.org/10.1287/moor.25.1.36.15211
https://doi.org/10.1145/3336191.3371839
https://doi.org/10.1016/S0022-0000(75)80050-X
https://doi.org/10.1145/62212.62244
https://doi.org/10.1137/0208046
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://arxiv.org/abs/1504.00616
https://doi.org/10.48550/arXiv.1504.00616
https://doi.org/10.1109/CCC.1998.694596
https://doi.org/10.1109/CCC.1998.694596
https://doi.org/10.1145/195058.195233

S. Gupta, B. Huang, R. Impagliazzo, S. Woo, and C. Ye 58:19

50 Satoru Miyano. The lexicographically first maximum subgraph problems: P-completeness and
NC algorithms. Math. Syst. Theory, 22(1):47–73, 1989. doi:10.1007/BF02088292.

51 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem.
Commentationes Mathematicae Universitatis Carolinae, 026(2):415–419, 1985. URL: http:
//eudml.org/doc/17394.

52 James B. Orlin. The complexity of dynamic languages and dynamic optimization problems.
In Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May 11-13,
1981, Milwaukee, Wisconsin, USA, pages 218–227. ACM, 1981. doi:10.1145/800076.802475.

53 Christos H. Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-
player games. J. ACM, 55(3):14:1–14:29, 2008. doi:10.1145/1379759.1379762.

54 Victor Parque and Tomoyuki Miyashita. On succinct representation of directed graphs. In
2017 IEEE International Conference on Big Data and Smart Computing, BigComp 2017,
Jeju Island, South Korea, February 13-16, 2017, pages 199–205. IEEE, IEEE, 2017. doi:
10.1109/BIGCOMP.2017.7881738.

55 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In Moses
Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1065–1075. SIAM,
SIAM, 2010. doi:10.1137/1.9781611973075.86.

56 Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel clique counting and peeling
algorithms. In Michael Bender, John Gilbert, Bruce Hendrickson, and Blair D. Sullivan,
editors, Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete
Algorithms, ACDA 2021, Virtual Conference, July 19-21, 2021, pages 135–146. SIAM, SIAM,
2021. doi:10.1137/1.9781611976830.13.

57 Michael Sipser. Introduction to the theory of computation. SIGACT News, 27(1):27–29, 1996.
doi:10.1145/230514.571645.

58 Ryuhei Uehara. A measure of parallelization for the lexicographically first maximal subgraph
problems. In Rolf H. Möhring, editor, Graph-Theoretic Concepts in Computer Science,
23rd International Workshop, WG ’97, Berlin, Germany, June 18-20, 1997, Proceedings,
volume 1335 of Lecture Notes in Computer Science, pages 333–341. Springer, Springer, 1997.
doi:10.1007/BFb0024508.

59 Ryuhei Uehara. Another measure for the lexicographically first maximal subgraph problems
and its threshold value on a random graph. In 1999 International Symposium on Parallel
Architectures, Algorithms and Networks (ISPAN ’99), 23-25 June 1999, Fremantle, Australia,
pages 350–355. IEEE, IEEE Computer Society, 1999. doi:10.1109/ISPAN.1999.778963.

60 Ryuhei Uehara. A measure for the lexicographically first maximal independent set problem and
its limits. Int. J. Found. Comput. Sci., 10(4):473–482, 1999. doi:10.1142/S0129054199000332.

61 Emanuele Viola and Avi Wigderson. Local expanders. Comput. Complex., 27(2):225–244, 2018.
doi:10.1007/s00037-017-0155-1.

62 Klaus W. Wagner. The complexity of combinatorial problems with succinct input representation.
Acta Informatica, 23(3):325–356, 1986. doi:10.1007/BF00289117.

63 Egon Wanke. Paths and cycles in finite periodic graphs. In Andrzej M. Borzyszkowski and
Stefan Sokolowski, editors, Mathematical Foundations of Computer Science 1993, 18th Inter-
national Symposium, MFCS’93, Gdansk, Poland, August 30 - September 3, 1993, Proceedings,
volume 711 of Lecture Notes in Computer Science, pages 751–760. Springer, Springer, 1993.
doi:10.1007/3-540-57182-5_66.

ITCS 2025

https://doi.org/10.1007/BF02088292
http://eudml.org/doc/17394
http://eudml.org/doc/17394
https://doi.org/10.1145/800076.802475
https://doi.org/10.1145/1379759.1379762
https://doi.org/10.1109/BIGCOMP.2017.7881738
https://doi.org/10.1109/BIGCOMP.2017.7881738
https://doi.org/10.1137/1.9781611973075.86
https://doi.org/10.1137/1.9781611976830.13
https://doi.org/10.1145/230514.571645
https://doi.org/10.1007/BFb0024508
https://doi.org/10.1109/ISPAN.1999.778963
https://doi.org/10.1142/S0129054199000332
https://doi.org/10.1007/s00037-017-0155-1
https://doi.org/10.1007/BF00289117
https://doi.org/10.1007/3-540-57182-5_66

	1 Introduction
	1.1 Definition of Factored Graphs
	1.2 Our Contributions
	1.3 Related Work

	2 Preliminaries
	2.1 Graph Products
	2.2 Factored Graph Construction
	2.3 Parameterized Complexity

	3 Technical Overview
	3.1 Lexicographically First Maximal Independent Set
	3.2 Counting s-Cliques
	3.3 Reachability

	4 Conclusion and Future Work

