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Abstract
We initiate a study of doubly-efficient interactive proofs of proximity, while focusing on properties
that can be tested within query-complexity that is significantly sub-linear, and seeking interactive
proofs of proximity in which
1. The query-complexity of verification is significantly smaller than the query-complexity of testing.
2. The query-complexity of the honest prover strategy is not much larger than the query-complexity

of testing.
We call such proof systems doubly-sublinear IPPs (dsIPPs).

We present a few doubly-sublinear IPPs. A salient feature of these IPPs is that the honest
prover does not employ an optimal strategy (i.e. a strategy that maximizes the verifier’s acceptance
probability). In particular, the honest prover in our IPP for sets recognizable by constant-width
read-once oblivious branching programs uses a distance-approximator for such sets.
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1 Introduction

This work combines the mind-frames of interactive proofs of proximity (i.e., IPPs) and
doubly-efficient interactive proofs (de-IPs), while giving the notion of doubly-efficient a new
meaning that focuses on the query-complexity of the honest prover strategy. Specifically, we
focus on properties that can be tested by reading a small portion of the input (equiv., have
query-complexity that is significantly sub-linear), and seek interactive proofs of proximity in
which
1. The query-complexity of verification is significantly smaller than the query-complexity of

testing.
2. The query-complexity of the honest prover strategy is not much larger than the query-

complexity of testing.
In addition, we may seek analogous relations for the time-complexities; yet, we recall that,
in the context of property testing, time-complexity is secondary to query-complexity (see [4,
Sec. 1.3.1]).

A salient feature of (almost all) the IPPs that we present is that the honest prover does
not employ an optimal strategy, because it cannot afford to read the entire input (per the
second query-complexity condition). In particular, while an optimal prover strategy for the
verifiers that we present achieves perfect completeness, our honest provers don’t.

© Noga Amir, Oded Goldreich, and Guy N. Rothblum;
licensed under Creative Commons License CC-BY 4.0

16th Innovations in Theoretical Computer Science Conference (ITCS 2025).
Editor: Raghu Meka; Article No. 6; pp. 6:1–6:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noga.amir@weizmann.ac.il
mailto:oded.goldreich@weizmann.ac.il
https://orcid.org/0000-0002-4329-135X
mailto:rothblum@alum.mit.edu
https://orcid.org/0000-0001-5273-6472
https://doi.org/10.4230/LIPIcs.ITCS.2025.6
https://eccc.weizmann.ac.il/report/2024/143/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Doubly Sub-Linear Interactive Proofs of Proximity

1.1 Our focus: query-efficient generation of proofs of proximity

Focusing on properties that can be tested in sub-linear query-complexity, we initiate a study
of interactive proofs of proximity in which verification requires less queries than testing
whereas proving does not require much more queries than testing. We recall the wider context
first.

Property testing. The focus of property testing[6, 22] is on approximate decision procedures
that read small portion of their input (see [4] for an introduction to the subject). For a
predetermined property (i.e., a set of valid objects), approximate decision means distinguishing
between objects that have the property and objects that are far from any object having this
property.1 Such procedures, called testers, are probabilistic and obtain local views of the
object by performing queries; that is, the object is seen as a function and the testers get
oracle access to this function (and thus may be expected to read only part of the object).

The insistence on procedures that read a small portion of the input reflects envisioning
applications in which the input is huge and fetching it entirely is infeasible. In some of these
applications, one may afford computation time that is almost linear in the size of the input,
although fetching the entire input is still deemed infeasible.

Proofs. A generic question is whether proofs can offer verification that is more efficient than
the corresponding decision. In the context of property testing, this refers to interactive proofs
of proximity (IPPs)[3, 21]. In such proof systems, verification should require significantly
less queries than testing, and suitable notions of completeness and soundness should hold.2
Specifically, completeness means that inputs that have the property should be accepted with
high probability (when the prover uses an adequate strategy), whereas soundness means that
inputs that are far from the property should be rejected with high probability (no matter
what strategy is employed by the prover). Indeed, in the completeness condition we consider
a honest prover, whereas in the soundness condition we consider a cheating one.

Doubly-efficient proofs. Seeking to utilize proof systems in reality prohibits the use of
arbitrary honest provers. Such applications require that the honest prover strategy be
relatively efficient, a requirement that is captured by the term double-efficiency, which refers
to the complexities of both the verifier and the honest prover. Given our postulate that it is
infeasible to fetch the entire input and our focus on query complexity, this means that the
honest prover strategy should also have query complexity that is significantly smaller than
linear. We call such proof systems doubly-sublinear IPPs (dsIPPs).

Note that dsIPPs may exist only for properties that can be tested using small query
complexity. This is the case because the interaction between the verifier and the honest
prover (along with the queries they make) can be emulated by the tester. Hence, we focus
on properties that can be tested using small query complexity and ask for which of these
properties we can obtain dsIPPs?

1 Distances are measured according to the relative Hamming measure; that is, x ∈ {0, 1}n is considered
ε-far from y ∈ {0, 1}n if x and y differ on more than ε · n locations.

2 In addition, one requires low communication complexity. In particular, this does not allow the prover to
send the entire input to the verifier (a possibility that is not relevant in the context of double-efficiency
that we consider here).
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We stress that the notion of double-efficiency employed here is different from the notion
employed in the context of IPs (see[10, 19, 5]) and also in studies of IPPs that made reference
to doubly-efficient IPPs (e.g.[20]). In these prior cases, the reference was to polynomial
running time of the honest prover, whereas we focus on its query complexity and on the case
that it is small (and in particular is sub-linear).

1.2 Our Main Results
We construct doubly-sublinear IPPs (dsIPPs) for several problems. Specifically, for any
property that can be decided by a constant-width read-once oblivious branching program
(ROOBP), for approximating the input’s Hamming weight, for telling whether a given
function is a permutation, and for a relaxation of the graph bipartiteness problem in the
bounded-degree model.

As mentioned earlier, the honest prover strategies in (almost all) the dsIPPs that we
present do not employ an optimal strategy, because they cannot afford to read the entire input.
In particular, while optimal prover strategies for these IPPs achieves perfect completeness
(i.e., the verifier always accepts inputs that have the property), our honest provers do not
achieve perfect completeness.

1.2.1 Protocol for Read-Once Oblivious Branching Programs
We construct a dsIPP for any property that can be decided by constant-width read-once
oblivious branching programs (ROOBPs). Recall that in such branching programs, in each
layer, all vertices are labelled by the same input variable (which is the one being read), and
each input variable labels the vertices of at most one layer. A branching program decides a
property Π if it accepts all inputs in the property and rejects all inputs that are not in the
property. See Section 4.1 for a fuller discussion on ROOBPs.

Newman [16] showed that any property that can be decided by a constant-width ROOBP
has a tester that makes poly(1/ε) queries, where the exponent of the polynomial is linear in
the width of the branching program. We construct a dsIPP for any such property, where the
verifier’s query complexity is only O(1/ε), which is optimal.3

▶ Theorem 1 (dsIPP for ROOBPs, informal). Let Π be a property that can be decided by a
constant-width ROOBP, and let n and ε denote the input length and the proximity parameter.
Then, for every r : N→ N, there exists an r(n)-round dsIPP for Π such that the verifier has
query complexity O(1/ε), the honest prover has query complexity Õ(n1/r(n)) · poly(r(n)/ε),
and the communication complexity is O(n1/r(n) · r(n) · (log n)/ε).

See Corollary 20 for a full and formal statement. Evidently, our protocol allows for a
trade-off between the number of rounds (on one hand) and the query complexity of the
prover and the communication (on the other hand). In particular, a logarithmic number of
rounds suffices for getting the prover’s query complexity and the communication to depend
only poly-logarithmically on n. The verifier’s runtime can be linear in the communication
complexity assuming access to a suitable procedure specifying the structure of the ROOBP
(see below).4 The prover’s runtime depends on the computational complexity of tolerant
testing for properties decided by ROOBPs, see below.

3 Consider the set property {0i1n−i : i ∈ [n]}, the input x = 0n/21n/2 and a honest prover strategy that
refers to the input x but is also invoked as a cheating strategy on a random input r that is at Hamming
distance 2ε from x. Then, an o(1/ε)-query verifier cannot distringuish the two cases.

4 We remark that for a general non-uniform ROOBP no verifier can have a sublinear running time: for
example, one layer in the ROOBP might make it go into a state that rejects all inputs. Without reading
the entire ROOBP, the verifier has no hope of detecting whether there is a “universal rejection” layer.
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6:4 Doubly Sub-Linear Interactive Proofs of Proximity

Our protocol builds on an IPP of Goldreich, Gur and Rothblum[7], in which the honest
prover reads the entire input. On the other hand, the IPP of[7] works also for unbounded
width (but its communication complexity grows logarithmically with the width). We note
that our dsIPP is actually tolerant (see below), whereas this was not the case for the protocol
of [7] (or the tester of [16], see below).

A reduction to tolerant testing. An interesting feature of our IPP is that the honest prover
strategy is reduced to tolerant testing (or distance approximation) for a property that can
be decided by an ROOBP of (at most) the same width and length. A tolerant tester [17]
for a property Π gets proximity parameters εc < εf and is supposed to accept (w.h.p.) if
the input is εc-close to the property, and to reject (w.h.p.) if the input is εf -far from the
property. The complexity is usually measured as a function of the gap εf − εc (and possibly
also of the input length).

Theorem 1 follows by plugging any tolerant tester for constant-width ROOBPs into our
general reduction (which is stated in Theorem 2). While, as noted above, Newman’s tester
for ROOBPs[16] is not tolerant, we show that that it can be made tolerant. This contribution
of the current work is presented in the full version of the article.

Our reduction of the prover’s strategy to tolerant testing ROOBPs actually gives a
tolerant dsIPP of ROOBPs, where Tolerant IPPs are defined analogously to tolerant testers.5
Fixing the ROOBP under consideration, the reduction assumes that the honest prover has
access to a distance approximator that gets an ROOBP of (at most) the specified width and
length, and approximates the distance of an input from the corresponding property (i.e., the
property decided by the ROOBP). We need the deviation of the distance approximation to
be O((εf − εc)/r), and its error probability to be sufficiently small. The approximator only
needs to operate on “sub-ROOBPs” of the original ROOBP.

Before stating the reduction, we also specify the access the verifier and the prover need to
the ROOBP in order to get sublinear runtimes. We assume that the prover and the verifier
have (unit cost) access to two procedures that specify the structure of the ROOBP as follows.
The first procedure, given two nodes u and v in the ROOBP, returns a bit indicating whether
there is a path from u to v. The second procedure gets as input the index i of a layer and
returns the vertices in that layer. (We emphasize that these procedures do not depend on the
input to the ROOBP: they ignore edge labels and refer to the ROOBP as a directed graph.)

▶ Theorem 2 (Reducing tolerant dsIPP to distance approximation for ROOBPs, informal). For
any constant w, let Πw be a property that can be decided by a width w ROOBP, and let
εc, εf denote the proximity parameters. Suppose that there exists a distance approximator for
w-width ROOBP (and its subgraphs) with query-complexity Qw(δ, η, n) and time-complexity
Tw(δ, η, n), when δ denotes the approximation parameter, η denotes the error probability
bound, and the ROOBP has length n. Then, for every r : N→ N, there exists an r(n)-round
tolerant dsIPP for Πw such that

The verifier’s query-complexity is O(1/δ), and the honest prover’s query-complexity is
O(n1/r(n) · Qw(δ, η)/δ), where δ = (εf − εc)/3r(n) and η = δ/O(n1/r(n)).
The communication complexity is O(n1/r(n) · r(n) · (log n)/δ).

5 Specifically, if the input is εc-close to the property, then the honest prover should convince the verifier
to accept (w.h.p.); but if the input is εf -far from the property, then the verifier should reject (w.h.p.)
regardless of the prover’s strategy. We stress that, while in the context of testing, tolerant testing and
distance approximation are equivalent (under suitable parameters), this is not the case for dsIPPs (see
Section 2 and Remark 8).
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Assuming that the verifier and the prover have access to procedures specifying the structure
of the ROOBP (see above), the verifier’s runtime equals the communication complexity (up
to constant factors), and the honest prover’s runtime is O(n1/r(n)·r(n)·Tw(δ, η, n))·Õ(1/δ).

See Theorem 19 for a full and formal statement. As discussed above, Theorem 1 is
obtained from the above reduction by plugging in a distance approximator for constant-width
ROOBPs, which we construct based on Newman’s (non-tolerant) property tester. While
the reduction of Theorem 2 only has polynomial dependence on the width of the ROOBP,
Newman’s tester and our tolerant version of it have an exponential dependence on the width
of the ROOBP (which is the reason that Theorem 1 holds only for constant width).6 See the
details in Section 4.6.

1.2.2 Protocol for Hamming Weight
We construct a dsIPP for the Hamming weight (HW) problem, where the input is a string
x ∈ {0, 1}n and a claim about its Hamming weight. Note that Hamming weight cannot be
computed by constant-width ROOBP [18], so the results of Section 1.2.1 do not give a dsIPP
for HW.

Approximating the (relative) Hamming weight up to distance ε requires O(1/ε2) queries in
the standalone setting. We construct a dsIPP with O(1/ε) verifier queries (which is optimal).

▶ Theorem 3 (dsIPP for Hamming weight, informal). Let n and ε denote the input length and
the proximity parameter for the Hamming weight problem (HW). Then, for every r : N→ N,
there exists an r(n)-round dsIPP for HW such that the verifier has query complexity O(1/ε)
and the honest prover’s query complexity and its runtime are both Õ(n1/r(n) · r3(n)/ε3).
Furthermore, the verifier’s runtime and the communication complexity are both O(n1/r(n) ·
r(n) · Õ(1/ε)).

See Theorem 10 for a full and formal statement. This protocol also obtains a trade-off
between the number of rounds and the honest prover’s runtime. Taking the number of rounds
to be logarithmic in n gives a honest prover with query complexity and runtime that are
poly-logarithmic in n. The honest prover’s query complexity and runtime grow cubically
with (the reciprocal of) the proximity parameter. We wonder whether this dependence can
be improved to quadratic (which would be optimal [1]).

Rothblum, Vadhan and Wigderson [21] also constructed an IPP for Hamming weight, but
did not have a sub-linear honest prover. Our HW protocol borrows ideas from the IPP for
ROOBP of[7]. Indeed, one can get an IPP for HW directly from their ROOBP protocol, by
applying it to the O(n)-width ROOBP that computes HW. However, their protocol does not
have a sub-linear prover.

1.2.3 Protocol for PERM
For n ∈ N, the set PERM consists of all permutations over [n]. Here we consider the problem
of testing (resp., verifying) whether a function f : [n]→ [n] is in PERM. Note that PERM has
a tester of complexity O(

√
n/ε), which we outline below, whereas a query lower bound of

Ω(
√

n) follows from[13].7 Furthermore, PERM has two different (1-round) IPPs, which were
presented in[13] and[7], respectively. We review them next:

6 In contrast, Theorem 2 holds also for varying width, but in that case the complexities have a multiplicative
factor of poly(w).

7 See also a direct proof in[23, Apdx A].
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6:6 Doubly Sub-Linear Interactive Proofs of Proximity

1. In the IPP of[13] the verifier selects uniformly at random a point r ∈ [n], and sends r to
the prover, who is supposed to return its f -preimage; the verifier accepts if and only if
the prover’s answer is mapped by f to r.

2. In the IPP of[7], the verifier selects uniformly at random a point r ∈ [n], queries f on it,
and sends y ← f(r) to the prover, who is supposed to return its f -preimage; the verifier
accepts if and only if the prover’s answer equals r.
(This IPP, unlike the previous one, utilizes prover-oblivious queries.)

In both cases, f ∈ PERM is always accepted, whereas functions that are ε-far from PERM are
rejected with probability Ω(ε). (In both cases, the protocol is repeated O(1/ε) times to yield
an IPP.)

More importantly, in both cases, the honest prover finds the required f -preimage by
querying f on all points (or practically so). Our initial conjecture was that an IPP for PERM
cannot have a verifier that uses o(

√
n) queries and an honest prover that makes o(n) queries.

Interestingly, this “working conjecture” is wrong.

▶ Theorem 4 (dsIPP for PERM). For every α ∈ (0, 0.5), there exists a 1-round IPP for PERM
that has a verifier that uses O(n/ε)0.5−α queries and an honest prover that uses O(n/ε)0.5+α

queries.

The communication and time complexity of both parties is Õ((n/ε)0.5+α).

Sketch of the proof of Theorem 4. The straightforward tester for PERM consists of selecting
q = O(

√
n/ε) random points in [n], querying the function f : [n] → [n] on them, and

rejecting if and only if collisions are found (among the f -images).
Evidently, any f ∈ PERM is accepted with probability 1, whereas (as can be seen later) any

f that is ε-far from PERM is rejected with high constant probability. A similar analysis for
the soundness case implies that for any f that is ε-far from PERM, if we select O(n/ε)0.5+α)
random points, then we expect to see Ω(n2α) collisions and that these collisions involve
Ω(n2α) disjoint pairs of points. This leads us to the following protocol.

1. The verifier selects p = O(n/ε)0.5+α (distinct) random points in [n], denoted s1, ..., sp,
and sends them to the prover,

2. The prover queries the input f : [n]→ [n] on these p sample points, and sends the answers
(a1, ..., ap)← (f(s1), ..., f(sp)) to the verifier.

3. The verifier rejects if it sees a collision (i.e., if ai = aj for some i ̸= j).
4. Otherwise, it sub-samples m = O(n/ε)0.5−α of the original points, queries f on each of

these m samples, and accept if and only if all answers match the prover’s answers (i.e., if
f(si) = ai for the i’s it sub-sampled).

Clearly, f ∈ PERM is always accepted. Turning to the soundness analysis, we fix an arbitrary
function f that is ε-far from PERM and let C

def= {x∈ [n] : |f−1(f(x))| > 1} denote the set of
points that form collisions under f . Then, |C| > ε · n; actually, |C| − |f(C)| > ε · n, because
modifying f to a permutation requires changing its value on all but a single point in f−1(y)
for every y ∈ f(C).

An analogous consideration applies to the sample of p points, denoted S = {s1, ..., sp},
that is sent to the prover. Specifically, the answers provided by the prover must disagree
with the values of f on at least |S| − |f(S)| points, because for each s ∈ S the prover
must provide different answers to all the other points in S that are in f−1(f(s)) (since
otherwise the verifier rejects in Step 2). Towards upper-bounding |f(S)|, we observe that it
is upper-bounded by |f ′(S)|, where f ′ : [n]→ [n] is defined such that for every x, x′ ∈ [n] it



N. Amir, O. Goldreich, and G. N. Rothblum 6:7

holds that (i) f ′(x) ̸= f ′(x′) whenever f(x) ̸= f(x′) and (ii) for each x that forms a collision
under f , the restriction of f ′ to f−1(f(x)) is 2-to-1 except on at most one element (in case
|f−1(f(x))| is odd). Now, we lower-bound |S| − |f ′(S)| by the number of collisions of S

under f ′ (i.e., |{{i, j}∈([p]
2 ) :f ′(si) = f ′(sj)}|)

First note that the number of collisions of [n] under f ′ is at least
∑

y∈f(C) ⌊|f−1(y)|/2⌋,
which is at least |C|/3 > εn/3. Hence, with high probability over the choice of S ∈ ([n]

p ),
we get Ω(ε · p2/n) = Ω((n/ε)2α) collisions of S under f ′. In this case, there are Ω((n/ε)2α)
disjoint pairs of points in S such that the elements in each pair have the same f ′-image (and
hence also the same f -image).

Wishing to avoid rejection in Step 2, the prover must cheat on the values of the Ω((n/ε)2α)
foregoing points (in S), but (with high probability) at least one of these points will appear
in the sub-sample that the verifier selects in Step 4 (since the sub-sample rate is m/p =
O(ε/n)2α). Hence, in Step 4, when quering the function f on this sub-sample, the verifier
detects this cheating and rejects (w.h.p.). This completes the proof of Theorem 4.

1.2.4 Protocol for Bipartiteness
We construct a dsIPP for a relaxation of graph bipartiteness in the bounded degree model.
In this model (see, e.g.,[4, Sec. 9.1]), the input is an undirected n-vertex graph of constant
maximum degree d. The input graph is represented by its incidence function g : [n]× [d]→
[n] ∪ {0} such that g(v, i) is the i-th neighbor of the vertex v (or 0 if v has less than than
i neighbors). The prover and the verifier have query access to this function. The distance
between two n-vertex graphs is the ratio (over dn/2) of the number of edges on whose
presence or absence they disagree.

The promise problem we consider is that the input graphs are rapidly-mixing graphs;
that is, graphs in which a random lazy walk of logarithmic length starting at any vertex
reaches any other vertex with probability Θ(1/n). (An ℓ-step lazy walk is described by a
ℓ-long sequence over [2d] such that i ∈ [2d] indicates a step that moves from the current
vertex v to its ith neighbor (in case v has at least i neighbors) and staying in place if v has
less than i neighbors.)

▶ Theorem 5 (dsIPP for bipartiteness). Let n and ε denote the number of vertices and
the proximity parameter. Then, there exists a 1-round dsIPP for bipartiteness on rapidly-
mixing graphs in the bounded-degree graph model in which the verifier’s query complexity is
O(log(n)/ε), and the honest prover’s query and time complexity are Õ(

√
n/ε). Furthermore,

the verifier’s runtime is polylog(n)/ε, and the communication complexity is O(log(n)/ε).

Related work. Goldreich and Ron [9] showed a Ω(
√

n) lower bound on the query complexity
of testing bipartiteness.8 A later work of the same authors[8] shows a tester with Õ(

√
n) ·

poly(1/ε) query complexity. We remark that their tester works for general graphs, without
needing the rapidly-mixing condition. Rothblum, Vadhan and Wigderson [21] constructed
an IPP for an intermediate relaxation of bipartiteness, where the YES case includes all the
bipartite graphs, but the NO case includes only the graphs that are both far from bipartite
and rapidly-mixing. In their IPP, the verifier’s query complexity is O(log(n)/ε), but the

8 Their lower bound, which is stated for general 3-regular graphs, also holds under the additional promise
that the graphs are rapidly-mixing (see the exposition in [4, Sec. 9.3.1]). In particular, the distribution
of NO cases is concentrated on expander graphs (see [4, Clm. 9.18.1]). A similar analysis shows that
the YES cases are bipartite expanders (w.h.p.)

ITCS 2025



6:8 Doubly Sub-Linear Interactive Proofs of Proximity

honest prover is not sub-linear: it has to read the entire graph. Our proof of Theorem 5 uses
the [21] protocol, but shows a sublinear-time implementation for the honest prover, where
the implementation works for graphs that are both rapidly-mixing and bipartite.

Proof of Theorem 5: The sublinear-time honest prover. We first recall the[21] protocol.
In the basic test, the verifier picks a random vertex s, and performs a lazy random walk
of length ℓ = O(log(n)), which is long enough to guarantee the “rapidly-mixing” condition
(see above), reaching a vertex t. The verifier sends s and t to the prover, asks the prover to
recover the parity of a (simple) path that leads from s to t, and accepts if and only if the
answer equals the parity of the number of “real moves” in the lazy walk (i.e., moves in which
the walk did not stay in the current vertex). If the graph is bipartite, then the prover, who
can read the entire graph, can always answer correctly by checking whether s and t are on
the same side of the bipartition. As shown in[21], if the graph is rapidly mixing and ε-far
from bipartite, then a cheating prover will fail with probability Ω(ε). In order to reduce
the soundness error (from 1− Ω(ε) to 1/3), this basic test is repeated r = O(1/ε) times in
parallel (and the verifier accepts if and only if it accepted in all invocations of the basic test).

We construct a sub-linear time honest prover for the basic test. Upon receiving the
vertices s and t, the prover performs w = O(

√
n · log(1/ε)) independent random walks of

length ℓ starting at s, as well as w independent random walks of length ℓ starting at t. Let
Ws (resp., Wt) denote the set of vertices traversed in (the union of all) the walks that started
at s (resp., t). The prover checks if there is a vertex v in the intersection of Ws and Wt (i.e.,
a vertex encounted in a walk that started at s as well as in a walk that started at t). If so,
then the prover has found a walk from s to t (going through v), and it replies with the parity
of the number of real moves on this walk.

Soundness follows directly from the soundness of the [21] protocol (since we did not
change the verifier). We now argue for completeness (alas not perfect completeness). If the
graph is bipartite, then all paths from s to t have the same parity. Thus, whenever the prover
finds a path from s to t (i.e., when the intersection is non-empty), then it returns the correct
parity. It remains to show that in each of execution of the basic test (i.e., for each s and t

sent by the verifier), the intersection of Ws and Wt is non-empty with probability at least
1− (1/3r). We show this in Claim 6, which is where we use the condition that the graph is
rapidly-mixing, and it follows that the verifier accepts in all r repetitions with probability at
least 2/3.

▷ Claim 6. If the graph is rapidly-mixing, then, for every two vertices s, t ∈ [n], the
probability, over the honest prover’s random walks, that Ws ∩Wt = ∅ is at most 1/3r.

Proof. We focus on the sets W ′
s ⊂ Ws and W ′

t ⊂ Wt of terminal vertices reached by the
random walks (i.e., the final vertex in each walk), and show that these subsets intersect with
probability at least 1− (1/3r). Using the rapidly-mixing condition, observe first that taking
w = O(

√
n · log(1/ε)) = O(

√
n log r) independent walks from s, with probability at least

1 − (1/6r), the number of distinct vertices reached (i.e., the size of the set W ′
s) is Ω(

√
n).

Assuming that this event occurs, and recalling that each of the random walks starting at t is
rapidly-mixing, we infer that, with probability at least Ω(1/

√
n), such a walk terminates in

a vertex that resides in W ′
s. Recalling that there are O(

√
n · log r) walks starting at t, the

probability that they all land outside of W ′
s is thus at most 1/6r. The claim follows. ◁
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1.3 Further Related Work
Goldwasser, Rothblum, Shafer and Yehudayoff [11] studied interactive proofs for approximate
verification of the results of a machine-learning computation on an unknown underlying
distribution. The verifier and the honest prover both have sampling access to the unknown
distribution (in some of their results the honest prover also has membership queries, see
also [12]). While their model is quite different from ours, there is a similarity in spirit: if
we think of the unknown distribution as a “huge input” to the proof system, then they are
also concerned with proof systems where verification is more efficient than the computation
being verified (a learning problem), and proving is not much more expensive than performing
the same computation. In particular, proving is sub-linear in the size of the “input” (the
unknown distribution). The settings, however, are quite different: both in the access to the
input (querying an unknown function vs. sampling from an unknown distribution), and in
the types of tasks studied (approximate decision vs. machine learning). We stress that other
recent works on verifying properties of unknown distributions [2, 14, 15] do not study honest
provers with sublinear sample complexity.

1.4 Technical Overview
In this section provide overviews of our dsIPPs for Hamming Weight and for properties that
are decidable by ROOBPs. Recall that the dsIPPs for PERM and for a relaxed version of
Bipartiutness were sketched in prior sections.

We start by outlining our IPPs for Hamming Weight (HW), and then extend its underlying
ideas to obtain IPPs for ROOBPs. Both IPPs follow an abstract idea that underlies the IPPs
of[21, 7], but deviate from it in a significant manner. Loosely speaking, the IPPs of[21, 7]
rely on partitioning the original property to sub-properties that refer to parts of the original
input. However, while the IPPs of[21, 7] call for an honest prover strategy that finds optimal
partitions of the property to sub-properties, we shall use partitions that are sub-optimal,
because these sub-optimal partitions can be found more efficiently (by the honest prover).

IPPs for Hamming Weight (HW). Our r-round IPPs proceed by recursion, where for a
parameter k (to be set to n1/r), the current input x is partitioned to k equal-length blocks,
denoted x1, ..., xk. Clearly, the Hamming weight of x, denoted wt(x), equals the sum of the
Hamming weights of the xi’s (i.e.,

∑
i∈[k] wt(xi)). Hence, wishing to prove that wt(x) equals

w, an optimal prover determines the corresponding weights of the xi’s, denoted w1, ..., wk,
sends the wi’s to the verifier, who selects a random i, and the parties proceed to prove
that the weight of xi equals wi. (Indeed, after r iterations, the verifier can check the claim,
which refers to a single bit, by making a single query.) Needless to say, determining these
wi’s requires reading the entire input x, which we want to avoid. Instead, we consider a
query-efficient honest prover that obtains approximations of the desired wi’s (or obtains the
exact value when |x| = k, which happens after r − 1 recursion steps). This requires relaxing
the verification procedure so that it does not reject in case the sum

∑
i wi does not equal w

(but is rather only close to it).
As in[21], the soundness analysis relies on the fact that if |wt(x)−w| > ∆, then, for every

sequence of wi’s such that
∑

i∈[k] wi = w, it holds that
∑

i∈[k] |wt(xi)−wi| > ∆; equivalently,
if x is ε-far from having weight w, then, for every sequence of wi’s such that

∑
i∈[k] wi = w,

on the average, xi is ε-far from having weight wi. Note, however, that if we allow
∑

i∈[k] wi

to deviate from w by say ε′ · |x|, then, on the average, xi is (ε− ε′)-far from having weight
wi. Hence, at the bottom of the recursion, the expected distance of single bits from their
claimed weight is ε− r · ε′, which means that the verifier rejects with such probability. Using
ε′ = ε/2r and repeating the protocol O(1/ε) times, we obtain the desired IPP.

ITCS 2025



6:10 Doubly Sub-Linear Interactive Proofs of Proximity

IPPs for constant-width ROOBP. As in the case of HW, we wish to proceed by recursion.
Indeed, in the r-round IPP of[7], on current input x, an optimal prover determines the path
in the current ROOBP that accepts x, which (as before) is partitioned to equal-length strings
x1, ..., xk. This path defines k sub-ROOBPs that each accept the corresponding xi’s. Alas,
determining these sub-ROOBPs requires reading the entire input x, which we want to avoid.

Using the fact that the ROOBP has bounded width, it follows that, for each i ∈ [k], there
is a bounded number of sub-ROOBPs (i.e., the square of the width bound) such that xi

is accepted by (at least) one of them. Using a distance approximator for (constant-width)
ROOBPs, the honest prover can find, for each i ∈ [k], a sub-ROOBP such that xi is close
to being accepted by this sub-ROOBP. This means that the foregoing description has to
be modified: In subsequent iteration of the recursion it does not necessarily hold that the
current x is accepted by the current ROOBP; it is only the case that the current x is close
to being accepted by the current ROOBP. But in this case, for x = (x1, ..., xk), it does not
necessarily hold that each xi is close to being accepted the corresponding sub-ROOBPs, but
it is rather the case that their average distance from these sub-ROOBPs is small; that is, if
x is ε-close to the current ROOBP, then for some ε1, ..., εi such that

∑
i∈[k] εi/k = ε, each

xi is εi-close to a corresponding sub-ROOBP, but it is not necessarily the case that εi ≈ ε

for each i ∈ [k].
Recall that the honest prover does not find these εi’s, but rather finds their approximate

values (as well as the corresponding sub-ROOBPs). Specifically, for width bound b, the
honest prover considers an auxilary graph G with k + 1 layers, index 0, 1, ..., k, such that the
ith layer of G contains the vertices that are at the i ·k layer of the current ROOBP. Each pair
of vertices in adjacent layers of G represents a possible sub-ROOBP, where pairs in layers
i− 1 and i of G represent a sub-ROOBP that reads xi. For each such pair, the honest prover
estimates the distance of xi from being accepted by the corresponding sub-ROOBP, where
these estimates are obtained by invoking the distance-approximator (for ROOBPs). Using a
shortest path algorithm, the honest prover finds sequence of intermediate vertices (v1, ..., vk−1)
in G such that the average distance of the xi’s from the corresponding sub-ROOBPs, denoted
(B1, ..., Bk), is minimal, and sends (v1, ..., vk−1) to the verifier along with the corresponding
distances. (As in the case of HW, the verifier will select i ∈ [k] uniformly at random, and
the parties will proceed to prove the corresponding claim (i.e., that xi is εi-close to being
accepted by the corresponding sub-ROOBP).)

2 Preliminaries and Definitions

For strings x, y ∈ {0, 1}n, the relative Hamming distance between x and y is the fraction of
coordinates in which they disagree (we often refer to this as the distance for short). If this
distance is at most ε, then we say that x is ε-close to y, and otherwise we say that x is ε-far
from y. We define the distance of x from a (non-empty) set S ⊆ {0, 1}n as its distance from
the closest y in S, and we define the string being ε-close and ε-far from the set analogously.
We extend these definitions from strings to functions by identifying a function with its truth
table.

A property Π (or a language) is a set of strings of varying lengths (i.e. in {0, 1}∗). The
approximate decision problem for Π is deciding, for specified proximity parameters, whether
an input string is close or far from the property. See [4] for an introduction to property
testing: the field that studies algorithms of sublinear query complexity for such approximate
decision problems.



N. Amir, O. Goldreich, and G. N. Rothblum 6:11

▶ Definition 7 (Interactive Proof of Proximity (IPP, tolerant)). An IPP is a protocol between
two probabilistic parties, a prover P and a verifier V who both get an input length n and a
joint input x ∈ {0, 1}n. The verifier has query access to x (and explicit access to the input
length n). The parties interact and at the end of the interaction the verifier accepts or rejects.
The protocol is a (tolerant) IPP for a property Π and for proximity parameters εc, εf : N→ R
if for every input length n and every input x ∈ {0, 1}n:

Completeness: If x is εc(n)-close to the property Π (in relative Hamming distance),
then the verifier, after interacting with the prover P , accepts with probability at least
2/3 (the probability is over the prover’s and the verifier’s coin tosses). If the verifier,
interacting with the honest prover, accepts every input in the language with probability 1
then we say that the IPP has perfect completeness.
In this work we focus on IPPs where the honest prover only has query access to the input
x (similarly to the verifier, it gets the input length n as an explicit input).
Soundness: If x is εf (n)-far from the property Π, then for every cheating strategy P ∗,
the verifier V , after interacting with the prover P ∗, rejects with probability at least 2/3
(the probability is over the verifier’s coin tosses, w.l.o.g. the cheating prover can be taken
to be deterministic, and can have explicit access to the entire input).

A non-tolerant IPP is one where εc = 0. In this case, we refer to a single proximity
parameter ε = εf (the parameter εc is implicit). Testers are viewed as a special case of IPPs
in which there is no prover (or no interaction with it).

The protocol’s complexity measures include the (honest) prover’s and the verifier’s query
complexities and runtimes, the communication complexity and the round complexity (the
number of back-and-forth communication rounds). These complexities are typically measured
as a function of the gap (εf (n)− εc(n)) between the proximity parameters and of the input
length.

Our focus in this work is on protocols where the query complexities of the verifier and
the honest prover are as small as possible. In particular, we focus on properties that have
testers of sublinear query complexity and require that the verifier’s query complexity should
be smaller than the tester’s. The prover’s query complexity should be as close as possible to
the tester’s. We refer to these as doubly sub-linear IPPs (dsIPPs, see the discussion in the
Introduction).
▶ Remark 8. We emphasize that, while in the context of testing, tolerant testing and distance
approximation are equivalent [17] (under suitable parameters), this is not the case for IPPs.
The reason for this divergence is that a tolerant IPP only provides a one-sided guarantee:
it can affirmatively convince the verifier of upper bounds on the input’s distance from the
property, but it does not convince the verifier of a lower bound on the distance.
▶ Remark 9. We remark that in the study of standard IPPs (where the honest prover can read
the entire input), if we allow linear communication complexity, then the query complexity
can always be tiny. This is because the prover can send the entire input to the verifier. The
verifier receives this alleged input and verifies that it is close to the real input by checking
consistency for a few random locations (these are the only queries made to the real input).
If the alleged input is close to the real input, then the verifier can simply check if the alleged
input is in the property (or, for tolerant protocols, that it is at the appropriate distance
from the property). For dsIPPs it is not clear that linear communication always allows for a
sublinear verifier. In particular, the aforementioned strategy cannot be utilized because the
honest prover doesn’t know the entire input and cannot send it. Thus, dsIPPs with linear (or
even polynomial) communication may be an interesting object for further study.
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3 dsIPP for the Hamming Weight Problem

In this section, we present a doubly sub-linear IPP (dsIPP) for the Hamming Weight Problem.
Specifically, given a claimed weight σ ∈ N, a proximity parameter ε > 0 and an oracle access
to an input x ∈ {0, 1}n, we present an r-round IPP, with r = log(n) and with poly-logarithmic
communication complexity, in which V verifies that wt(x) = σ using query complexity of
O( 1

ε ), the honest prover P uses poly-logarithmic query complexity. We note that we use r to
represent the number of (pairs) of message exchanges (and not the total number of messages
sent).

First, in Section 3.1, we present a standard IPP for the Hamming Weight Problem. This
IPP (which is not doubly sub-linear) uses a divide-and-conquer approach, and in it the prover
P computes exact weights for sub-sequences of the input x. Then, in Section 3.2, we present
a warm-up towards a dsIPP: We amend the standard IPP by allowing P to approximate the
Hamming weight of the sub-sequences, and relaxing the accepting conditions of V in a way
that doesn’t compromise the completeness and soundness of the protocol. Unfortunately, in
this IPP the prover P still has query complexity of Ω(n). Lastly, in Section 3.3, we present
the actual dsIPP, which applies the IPP presented in Section 3.2 recursively, thus improving
the query complexity of P without compromising the query complexity of V .

3.1 The Standard IPP
Given some σ, we want to verify that wt(x) = σ. First, we observe that when we partition x

to k consecutive equally-length parts, x1, ..., xk, the following holds:
On the one hand, if wt(x) = σ, then

∑
i wt(xi) = σ.

On the other hand, if |wt(x)− σ| > εn, then for any (σ1, ..., σk) such that
∑

i σi = σ, it
holds that

∑
i|wt(xi)− σi| > εn.

Given the above, we consider the following IPP: P sends (σ1, ..., σk)← (wt(x1), ..., wt(xk))
to V . Then, V verifies that

∑
i σi = σ, and if so, selects at random i ∈ [k], and verifies

that wt(xi) = σi (by reading the entire xi). Note that if wt(x) = σ and V interacts with
P , then for every i, it holds that wt(xi) = σi, and the verifier always accepts. However,
if |wt(x) − σ| > εn and

∑
i σi = σ, it holds that

∑
i

wt(xi)−σi

k > ε · n
k . Then, the average

deviation of the claimed weight of x from the actual weight of x translates to a deviation
on a corresponding fraction of random i’s, hence guarantees that the verifier rejects with
probability at least ε. To increase the rejection probability, we can repeat this procedure for
O( 1

ε ) times.
The query complexity of the verifier is the length of a single xi times the number of

repetitions, which gives O( n
ε·k ). However, to compute (wt(x1), ..., wt(xk)), the prover must

access to the entire input x, which yields query complexity of n.

3.2 A Warm-Up towards a dsIPP
In this section, we aim to achieve poly-logarithmic query complexity for the honest prover
P without compromising the query complexity of the verifier V : We amend the interaction
described in Section 3.1 by allowing P to approximate the Hamming weight of the sub-parts
of x. However, at the end of this section, we explain why P still has query complexity of
Ω(n). In Section 3.3, we show how to solve this issue and present the actual dsIPP.

First, we observe that for a deviation parameter δ > 0 and an error probability parameter
η > 0, there exists a (δ, η)-approximator for the Hamming weight of x ∈ {0, 1}n with query
complexity O( log( 1

η )
δ2 ) and error probability η: Given the input x and the deviation parameter
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δ, the approximator chooses, uniformly at random, O( log( 1
η )

δ2 ) indices of x, and outputs the
(normalized) number of indices i for which x[i] = 1. Using Chernoff bound, we can show that
with probability at least 1− η, the output of the approximator deviates from wt(x) by at
most δn.

Based on this approximator, we amend the interaction such that the prover provides
approximated weights to the verifier, by using the approximator with some predefined error
probability η > 0 and deviation parameter δ > 0 (we fix both parameters later). That
is, P sends (σ1, ..., σk) to V , such that for every i ∈ [k], σi is a (δ, η)-approximation for
wt(xi). We also change the verifier’s accepting conditions in the interaction, so that V

allows this deviation (and doesn’t reject P ’s approximations). That is, V now verifies that
|σ −

∑
i σi| ≤ δn, chooses i ∈ [k] uniformly at random, and verifies that |wt(xi)− σi|≤ δ·n

k

(by reading the entire xi). Similar to the standard IPP, we repeat the protocol for O( 1
ε )

times.

3.2.1 Correctness

The completeness of the protocol still holds (but with a completeness error): If wt(x) = σ

and we interact with P , then for a single invocation of the protocol the following holds: For
every i ∈ [k], with probability at least 1−k ·η, it holds that |σi−wt(xi)| ≤ δ·n

k , and therefore
also

∑
i|wt(xi)− σi| ≤ δn, and the verifier accepts. Since we invoke the protocol for O( 1

ε )
times, then the verifier accepts in all invocations with probability at least 1 − t · η where
t = O( k

ε ). Thus, we can set η ≤ 0.01 · 1
t = O( ε

k ), and the verifier accepts with high constant
probability in all invocations.

To show the soundness of the protocol also holds, we observe that if |wt(x) − σ| > εn,
then for any (σ1, ..., σk) such that |σ−

∑
i σi| ≤ δn, it holds that

∑
i|wt(xi)− σi| > (ε− δ)n.

Then, the average deviation of the claimed weight of x from the actual weight of x, beyond
the allowed deviation, translates to a deviation on a corresponding fraction of random i’s.
Since the verifier rejects if |wt(xi)−σi| > δn

k , we can set δ = ε
3 < ε

2 and infer that the verifier
still rejects with probability at least Ω(ε) in a single invocation. Since we invoke the protocol
for O( 1

ε ) times, we get that the verifier rejects with high constant probability in at least one
of the invocations.

3.2.2 Query Complexity

Now, let us analyze the query complexity of V and P :
The query complexity of V is O( n

εk ), because we read a sub-sequence of the input of
length n

k for O( 1
ε ) repetitions.

The query complexity of P is O(k·log( k
ε )

ε·δ2 ), since we invoke the approximator with error
probability parameter η = O( ε

k ) for k times in each of the O( 1
ε ) repetitions.

Since we can (δ, 0.1)-approximate the Hamming weight of x without any interaction using
query complexity O( 1

δ2 ), we can perform ε-test for the Hamming weight of x using query
complexity O( 1

ε2 ). Therefore, for the IPP to be meaningful, we want the query complexity
of V to be o( 1

ε2 ). To achieve this in our setting, we must require k = ω(ε · n). However,
this causes the query complexity of P to be Ω(n), whereas we want our IPP to be doubly
sub-linear. In the next section, we extend the foregoing IPP by applying it recursively, and
show that we can get both query complexity of o( 1

ε2 ) for V , and poly-logarithmic query
complexity for P .
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3.3 The Actual dsIPP
In Section 3.2, we aim to achieve poly-logarithmic query complexity for the honest prover P ,
without compromising the query complexity of the verifier V . Unfortunately, for reasons
explained at Section 3.2.2, P still has query complexity of Ω(n).

To solve this, we extend the IPP presented in Section 3.2 by applying it recursively: That
is, after V selects at random i ∈ [k], instead of directly computing the Hamming weight of
xi, both parties recursively run the protocol on xi with the claimed Hamming weight σi, and
do it for r rounds. Only in the base of the recursion, V computes the Hamming weight of
the input (at this level), and accepts accordingly. This gives us an improvement in the query
complexity of the verifier, as the length of the input after r rounds is ( n

kr ), while the number
of times the prover needs to run the approximator grows only to k · r (in every repetition).
To make sure that the query complexity of V is o( 1

ε2 ), we set k = n
1
r .

Indeed, we now allow the prover to deviate from the claimed weight for r times: At each
of the recursion levels, as well as in the base level. Thus, to make sure that soundness still
holds (i.e. the total allowed deviation is not too big), we set the verifier’s allowed deviation
(i.e. δ) to be smaller (by a factor of r).

To make sure that completeness still holds, we first change the error probability parameter
of the approximator. P now runs the approximator for a total of t = O( k·r

ε ) times, and so
we set η = 0.01 · 1

t = O( ε
k·r ). In addition, we observe the following: Assume V interacts with

P , with input x and weight parameter σ, such that wt(x) = σ. Then, when we are not in the
first recursion level, then the weight parameter provided to the protocol is the approximated
weight provided by P in the previous recursion level. Therefore, the weight parameter in the
current recursion level might deviate from the actual weight of the input in this level. Since
P also performs weight approximations in the current recursion level, we need to account for
both deviations. Details follow.

▶ Protocol 1. dsIPP for the Hamming Weight Problem
Query Access Input: x ∈ {0, 1}n

Deviation Parameter: ε > 0
Other Parameters: Weight σ ∈ N, initial number of rounds r0 and remaining number
of rounds r

1. Set k = n
1

r0 , δ = ε
3r0

, and η = O( ε
k·r0

).
2. V : If r = 0 then accept iff |wt(x)− σ| ≤ δn

2 .
3. P :

a. For every i ∈ [k], approximate wt(xi) up to a deviation factor of δ
2 with probability

at least 1− η: Choose uniformly at random m = O( log( 1
η )

δ2 ) indices of xi and set the
approximation σi as the estimated fraction of indices j for which xi[j] = 1.

b. Send (σ1, ..., σk) to V .
4. V :

a. Verify that |σ −
∑

i σi| ≤ δn, otherwise reject.
b. Choose uniformly at random i ∈ [k] and send i to P .

5. Both parties recursively invoke the protocol with input xi, deviation parameter ε, weight
σi, and remaining number of rounds r − 1.

Repeat the protocol for O( 1
ε ) times, and accept iff V accepts in all repetitions.

We show that Protocol 1 is a dsIPP for the Hamming Weight Problem: In Section 3.3.1,
we show the correctness of the protocol, and in Section 3.3.2, we present the query complexity
of the protocol.
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3.3.1 Correctness
Completeness. Assume wt(x) = σ and V interacts with P . We observe that at any
recursion level (but the base level), the following claim holds: If our input is x′ and our
weight parameter is σ′ such that |wt(x′)− σ′| ≤ δ|x′|

2 , then with probability at least 1− η · k,
the prover P sends (σ′

1, ..., σ′
k) to V such that the following holds:

1. The verifier doesn’t reject in Step 4(a) (i.e., |σ′ −
∑

i σ′
i| ≤ δ|x′|).

2. The protocol is recursively invoked with some x′
i and σ′

i for which |wt(x′
i)− σ′

i| ≤
δ|x′|

2 .
The claims follows from the fact that P runs the approximator on every x′

i with deviation
parameter δ

2 and error probability parameter η. Then, since we start with wt(x) = σ, with
probability at least 1− η · k · r0, the verifier doesn’t reject in Step 4(a) in all the r0 recursion
levels. By the second item of the claim, the base of the recursion is also invoked with an
input x′ and weight parameter is σ′ such that |wt(x′)− σ′| ≤ δ|x′|

2 , and the verifier accepts.
Since we repeat the protocol for O( 1

ε ) times, we get that the verifier accepts in all invocations
with probability at least 1− t ·η where t = O( k·r0

ε ). Then, since we set η = 0.01 · 1
t = O( ε

k·r0
),

we get that V accepts with high constant probability in all invocations.

Soundness. Assume |wt(x)− σ| > εn. We observe that in each recursion level, we lose at
most an additive factor of δ. Since we set δ = ε

3r0
, we get that after r0 rounds, we are still at

distance at least ε
2 from a valid assertion. Thus, the verifier rejects with probability at least

Ω(ε) in each invocation, and therefore rejects with high constant probability in at least one
of the O( 1

ε ) invocations.

3.3.2 Computational Complexity
We present the query, communication and time complexity of Protocol 1. Let us start by
analyzing the query complexity of V (denoted QV ) and P (denoted QP ):

QV = O( n
εkr0 ) = O( 1

ε ), because we read a sub-sequence of the input of length n
kr0 = 1 for

O( 1
ε ) times.

QP is the query complexity of the approximator times the number of calls P makes to
the approximator in all repetitions:

The query complexity of the approximator is O( r2
0 ·log( k·r0

ε ))
ε2 ), because P invokes the

approximator with error probability parameter η = O( ε
k·r0

) and deviation parameter
δ = O( ε

r0
).

P calls the approximator for k · r0 times in each of the O( 1
ε ) repetitions.

Since we set k = n
1

r0 , we get that QP = Õ( n
1

r0 ·r3
0

ε3 ).

Hence, regardless of how we set r0, the query complexity of the verifier is O( 1
ε ) = o( 1

ε2 ).
Indeed, the larger we set r0, the smaller QP gets, but this causes the round complexity to
grow. Specifically, to minimize QP , we can set r0 = log(n), and we get QP = Õ( log3(n)

ε3 ).
Now, the communication of Protocol 1 is O( k·r0

ε · log( r0
ε )): In each of the O( 1

ε ) repetitions
there are r0 rounds, and in each round the prover P sends k weight approximations that
can be represented by O(log( r0

ε )) bits (because the approximations are up to a factor of
δ = O( ε

r0
)). Again, since we set k = n

1
r0 , we can set r0 = log(n) and get poly-logarithmic

communication complexity.
Lastly, the time complexity of the honest prover (denoted TP ) is the same as its query

complexity (i.e., TP = QP ), whereas the time complexity of the verifier (denoted TV ) is
O(k·r0

ε · log( r0
ε )), because in each of the O( 1

ε ) repetitions there are r0 rounds, and in each
round the verifier performs simple calculations on O(k) values that can be represented by
O(log( r0

ε )) bits.
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We conclude with the following theorem, that summarizes what we achieved in this
section.

▶ Theorem 10. For every function r : N → N, there exists an r(n)-round dsIPP for

the Hamming Weight Problem with QV = O( 1
ε ), QP = Õ(n

1
r(n) ·r(n)3

ε3 ) and communication

complexity of O( n
1

r(n) ·r(n)·log( r(n)
ε )

ε ). In addition, the time complxity of the dsIPP is TP = QP

and TV = O( n
1

r(n) ·r(n)·log( r(n)
ε )

ε ).

4 Tolerant dsIPP for ROOBPs of Constant Width

In this section, we present a tolerant dsIPP for ROOBPs of constant width. Before we review
our plan in Section 4.2, let us recall some standard definitions related to ROOBPs.

4.1 Definitions
▶ Definition 11 (ROOBP). A branching program (BP) on n variables is a directed acyclic
graph that has a unique source vertex (denoted s) with in-degree 0 and a unique sink vertex
(denoted t) with out-degree 0. Each non-sink vertex is labeled by an index i ∈ [n], and has 2
outgoing edges, which are labeled by either 0 or 1. An input x ∈ {0, 1}n defines a walk on
B starting at the source vertex, such that at every vertex labeled by i ∈ [n], the step taken
is on the edge labeled by xi. The output of the branching program B on input x ∈ {0, 1}n,
denoted B(x), is defined as 1 if the walk reached the sink vertex, and 0 if it got “stuck” before
reaching it (i.e., the walk reached vertex labeled by i ∈ [n], and there was no outgoing edge
labeled by xi).

An oblivious BP is a BP in which the nodes are partitioned into levels, L0, ..., Ln, and
edges are going only from one level to nodes in the consecutive level. In addition, all the
vertices of some level are associated with the same index. Therefore, we can say that the level
itself is associated with some index. A read-once oblivious BP (ROOBP) is a BP in
which no two levels are associated with the same index. An ROOBP of constant width w

is an ROOBP in which every level has at most w vertices.

From now on, let B be an ROOBP with n variables and width at most w.
▶ Remark 12. By the above, there’s a 1-1 correspondence between an s⇝ t path in B and
an accepting input for B. In that case, we say that the s⇝ t path is associated with the
accepting input.
▶ Remark 13. We say that two vertices u ∈ Ll and v ∈ Ll′ in B are connected only if they
are connected via a directed path. If l < l′, we say that u is forwards-connected to v,
and v is backwards-connected to u.
▶ Remark 14. Without loss of generality, we assume:
1. For every i ∈ {0, ..., n− 1}, Li is associated with the index i. Otherwise, we can change

the input x to an input x′ by reordering its indices accordingly.
2. B depends on the entire input. Otherwise, we can change the input to x′ ∈ {0, 1}n′ , and

then B will depend on every index of x′.
3. There exists a path between the source and the sink of B; this is equivalent to assuming

there exists an x ∈ {0, 1}n accepted by B.

▶ Definition 15 (Absolute and Relative Distance). We denote the absolute distance between
two strings x, x′ ∈ {0, 1}n by ∆(x, x′) = |{x[i] ̸= x′[i] : i ∈ [n]|, and their relative distance
by ∆(x, x′) = ∆(x,x′)

n . Assume there exist an accepting input for B, an ROOBP of length n.
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We denote the absolute distance of a string x ∈ {0, 1}n from B by ∆(x, B) = min{∆(x, x′) :
x′ ∈ {0, 1}n, B(x′) = 1}. Similarly, the relative distance of x from B is denoted by
∆(x, B) = min{∆(x, x′) : x′ ∈ {0, 1}n, B(x′) = 1}.

4.2 Our Plan
For a fixed ROOBP B of width w, proximity parameters εf > εc ≥ 0, and oracle access to
an input x ∈ {0, 1}n, we present an r-round IPP, with r = log(n) and with poly-logarithmic
communication complexity, in which V uses query complexity of O( 1

εf −εc
), the honest prover

P uses poly-logarithmic query complexity, and the following holds:
If ∆(B, x) ≤ εc, then when communicating with P , with probability at least 2/3 the
verifier V accepts x.
If ∆(B, x) > εf , then when communicating with any prover P ∗, with probability at least
2/3 the verifier V rejects x.

We note that we use r to represent the number of (pairs) of message exchanges (and not the
total number of messages sent).

Our plan is as follows: First, in Section 4.3, we present a standard tolerant IPP for the
ROOBP Problem. This IPP (which is not doubly sub-linear) uses a divide-and-conquer
approach, and in it the prover P partitions the ROOBP to a sequence of k sub-ROOBPs
(see Definition 16) according to the accepting path associated with an accepting input that
minimizes the distance to x in B (see Definition 17). Then, in Section 4.4, we present a
warm-up towards the tolerant dsIPP: We amend the standard tolerant IPP by allowing P

to partition the ROOBP according to an approximated path, and relaxing the accepting
conditions of V in a way that doesn’t compromise the completeness and soundness of the
protocol. Unfortunately, in this IPP the prover P still has query complexity of Ω(n). Lastly,
in Section 4.5, we present the actual tolerant dsIPP, which applies the IPP presented in
Section 4.4 recursively, thus improving the query complexity of P without compromising the
query complexity of V .

4.3 The Standard Tolerant IPP
Given some ROOBP B, and proximity parameters εf > εc ≥ 0, we want to verify that
∆(B, x) ≤ εc. In the following tolerant IPP, that adapts the non-tolerant IPP from [7], we
decompose B to k consecutive equally-length sub-ROOBPs, B1, ..., Bk. Therefore, we start
with defining the notion of a sub-ROOBP.

▶ Definition 16 (sub-ROOBP). For 0 ≤ i ≤ j ≤ n, let u ∈ Li and v ∈ Lj . We define B[u, v]
as a sub-ROOBP of B, with the following properties:

The source (resp., sink) vertex of B[u, v] is u (resp., v).
B[u, v] is of length j − i.
If x ∈ {0, 1}n is the input for B, then x[i + 1, j] = x[i + 1] · x[i + 2] · · · ·x[j] is the input
for B[u, v].

Indeed, there is more than one way we can decompose B to k consecutive equally-length
sub-ROOBPs, because for each sub-ROOBP there could be up to w2 possible source-sink pairs.
Therefore, we continue with defining the notion of (what we consider) a valid decomposition
of B to k sub-ROOBPs: A decomposition that doesn’t cause us to “lose” any distance (i.e.
the average distance of x from all the sub-ROOBPs in the decomposition is at least the
distance of x from B). We can achieve this by enforcing the decomposition to follow some
path associated with some accepting input for B, since for any accepting input x′ we have
∆(x, x′) ≥ ∆(x, B).
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▶ Definition 17 ((k, π)-Decomposition). Let B be an ROOBP, and let π be an accepting
path in B. The (k, π)-decomposition of B is a sequence of k sub-ROOBPs of B, denoted
Bk,π = (B1, ..., Bk), such that for every i ∈ [k], the source of Bi is the (i−1)·n

k ’th vertex in π,
and the sink of Bi is the i·n

k ’th vertex in π.

Now, we observe that when we partition x to k consecutive equally-length parts, x1, ..., xk,
the following holds:

On the one hand, if x is εc-close to B, then for (B1, ..., Bk), the (k, π)-decomposition of
B constructed according to an accepting input that minimizes the distance to x, it holds
that

∑
i

∆(Bi,x)
k ≤ εc.

On the other hand, if ∆(B, x) > εf , then for any (B1, ..., Bk), a (k, π)-decomposition of
B constructed according to some accepting path in B, it holds that

∑
i

∆(Bi,xi)
k > εf .

Given the above, we consider the following IPP: The prover P finds the (k, π)-decomposition
of B constructed according to an accepting input that minimizes the distance to x. Then, P

checks the distance of xi from each of the sub-ROOBPs in the decomposition, and sends V a
succinct representation of the decomposition (for example, the sink of every sub-ROOBP),
as well as the obtained distances. After V receives some decomposition (B1, ..., Bk) and
claimed distances (ε̂1, ..., ε̂k), V verifies that (B1, ..., Bk) is a valid (k, π)-decomposition of
B, and that the average of the claimed distances is at most εc. Lastly, V selects at random
i ∈ [k], and verifies that ∆(Bi, xi) = ε̂i (by reading the entire xi).

Note that if x is εc-close to B and V interacts with P , then
∑

i
ε̂i

k ≤ εc, and for every
i ∈ [k], it holds that ∆(Bi, xi) = ε̂i, and the verifier always accepts. However, if ∆(B, x) > εf ,
then for any valid decomposition (B1, ..., Bk) and claimed distances (ε̂1, ..., ε̂k) sent by some
prover P ∗ such that

∑
i

ε̂i

k ≤ εc, it holds that
∑

i
∆(Bi,xi)−ε̂i

k > εf − εc. Then, the average
deviation of the actual distance of x from B, from the claimed distance of x from B, translates
to a deviation on a corresponding fraction of random i’s, which guarantees that the verifier
rejects with probability at least εf − εc. To increase the rejection probability, we can repeat
this procedure for O( 1

εf −εc
) times.

We stress that V can verify the validity of a (k, π)-decomposition without any query
access to the input x. Thus, the query complexity of the verifier is the length of a single xi

times the number of repetitions, which gives O( n
(εf −εc)·k ). However, to find an accepting

input that minimizes the distance to x, the prover must access to the entire input x, which
yields query complexity of Ω(n).

4.4 A Warm-Up towards a tolerant dsIPP
In this section, we aim to achieve poly-logarithmic query complexity for the honest prover
P without compromising the query complexity of the verifier V : We amend the interaction
described in Section 4.3 by allowing P to divide the ROOBP B according to an accepting
input that approximates the distance of x to B. However, at the end of this section, we
explain why P still has query complexity of Ω(n). In Section 4.5, we show how to solve this
issue and present the actual tolerant dsIPP.

In the full version of this paper, we show the existence of a δ-distance-approximation
algorithm for ROOBPs of constant width with query complexity that is independent of the
length of the input, n. That is, we show there exists an algorithm that given an ROOBP B

of width w, an input x ∈ {0, 1}n, deviation parameter δ > 0 and error probability parameter
η > 0, outputs ε̂ such that with probability at least 1 − η it holds that |ε̂ −∆(B, x)| ≤ δ,
and this algorithms has query complexity of ( log( 1

η )·2w

δ )O(w).
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Based on this distance-approximation algorithm, we amend the interaction as follows:
P performs distance approximation (with parameters δ and η we fix later) for every (k, π)-
decomposition (constructed according to every accepting path π). Since P performs distance
approximation also for the decomposition of B constructed according to an accepting input
that minimizes the distance to x, P can just choose the the (k, π)-decomposition which yields
the minimal (average) distance approximation. That is, P chooses Bk,π∗ = (Bπ∗

1 , ..., Bπ∗

k ) for
which

∑
i

ε̂π∗
i

k is minimal.
Even though there could be many possible (k, π)-decompositions, the total number of

sub-ROOBPs in all the (k, π)-decompositions is upper-bounded by w2 · k: For every i ∈ [k],
there are at most w2 possible source-sink pairs for the i’t sub-ROOBP. Thus, using the union
bound, with probability at least 1− w2 · k · η, all approximations deviate from the actual
distance by at most δ, and the following holds:

For every i ∈ [k], it holds that ∆(Bπ∗

i , xi) ≤ ε̂π∗

i + δ.
If ∆(B, x) ≤ εc, then since P chooses the (k, π)-decomposition which yields the minimal
(average) distance approximation, we get that

∑
i

ε̂π∗
i

k ≤ εc + δ.

Lastly, we also change V ’s accepting conditions in the interaction, so that V allows the
deviation. That is, after V receives (B1, ..., Bk) and (ε̂1, ..., ε̂k), in addition to verifying that
(B1, ..., Bk) is a valid decomposition, V verifies that

∑
i

ε̂i

k ≤ εc + δ, and after V chooses
i ∈ [k] uniformly at random, V verifies that ∆(Bi, xi) ≤ ε̂i + δ (by reading the entire xi).
Similar to the standard IPP, we repeat the protocol for O( 1

εf −εc
) times.

4.4.1 Correctness
We claim that the completeness of the protocol still holds (but with a completeness error).
If V interacts with P , then for a single invocation of the protocol, using the union bound,
with probability at least 1− η · k · w2, all approximations deviate from the actual distances
by at most δ. Then, if ∆(B, x) ≤ εc, it holds that

∑
i

ε̂π∗
i

k ≤ εc + δ, and for every i ∈ [k] it
holds that ∆(Bπ∗

i , xi) ≤ ε̂π∗

i + δ, and the verifier accepts. Since we invoke the protocol for
O( 1

εf −εc
) times, then for t = O( k·w2

εf −εc
), the verifier accepts in all invocations with probability

at least 1 − η · t. Thus, we can set η ≤ 0.01 · 1
t = O( εf −εc

k·w2 ), and the verifier accepts with
high constant probability in all invocations.

To show the soundness of the protocol also holds, assume ∆(B, x) > εf , and let (B1, ..., Bk)
be a decomposition that P ∗ sends, along with the respective claimed distance approximations
(ε̂1, ..., ε̂k). If the decomposition is valid, then

∑
i

∆(Bi,xi)
k > εf . Thus, if

∑
i

ε̂i

k ≤ εc + δ,
we get that

∑
i

∆(Bi,xi)−ε̂i

k > εf − εc − δ. Then, the average deviation of the actual
distance of x from B, from the claimed distance of x from B, beyond the allowed deviation,
translates to a deviation on a corresponding fraction of random i’s. Since the verifier rejects
if ∆(Bi, xi) > ε̂i + δ, we can set δ = εf −εc

3 , and infer that the verifier still rejects with
probability at least Ω(εf − εc) in a single invocation. Since we invoke the protocol for
O( 1

εf −εc
) times, we get that the verifier rejects with high constant probability in at least one

of the invocations.

4.4.2 Query Complexity
Now, let us analyze the query complexity of V and P :

Because V can verify that the (k, π)-decomposition that P sends is valid without any query
access to the input x, the query complexity of V is O( n

(εf −εc)·k ): V reads a sub-sequence
of the input of length n

k for O( 1
εf −εc

) repetitions.

ITCS 2025



6:20 Doubly Sub-Linear Interactive Proofs of Proximity

The query complexity of P is k · (
log( k

εf −εc
)·2w

εf −εc
)O(w), because the distance approximation

algorithm with deviation parameter δ = O(εf − εc) and error probability parameter

η = O( εf −εc

w2·k ) has query complexity of (
log( k

εf −εc
)·2w

εf −εc
)O(w), and P invokes the algorithm

for w2 · k times in each of the O( 1
εf −εc

) repetitions.
Since we can δ-approximate ∆(B, x) without any interaction using query complexity ( 2w

δ )O(w),
we can perform tolerant (εf , εc)-test for ROOBPs using query complexity ( 2w

εf −εc
)O(w). There-

fore, for the IPP to be meaningful, we want the query complexity of V to be o(( 2w

εf −εc
)O(w)).

To achieve this in our setting, we must require k = ω(( εf −εc

2w )O(w)) · n). However, this causes
the query complexity of P to be Ω(n), whereas we want our IPP to be doubly sub-linear. In
the next section, we extend the foregoing IPP by applying it recursively, and show that we can
get both query complexity of o(( 2w

εf −εc
)O(w)) for V , and poly-logarithmic query complexity

for P .

4.5 The Actual dsIPP
In Section 4.4, we aim to achieve poly-logarithmic query complexity for the honest prover P ,
without compromising the query complexity of the verifier V . Unfortunately, for reasons
explained at Section 4.4.2, the prover P still has query complexity of Ω(n).

To solve this, we extend the IPP presented in Section 4.4 by applying it recursively: That
is, after V selects at random i ∈ [k], instead of directly checking the distance of xi from Bi,
both parties recursively run the protocol on xi with Bi, and do it for r rounds. Only in the
base of the recursion, assuming the input is x′ and the ROOBP is B′, V checks the distance
of x′ from B′ and accepts accordingly. This gives us an improvement in the query complexity
of the verifier, as the length of the input after r rounds is ( n

kr ), while the number of times
the prover needs to run the distance approximation algorithm grows only to w2 · k · r (in
every repetition). In order to make the query complexity of V independent of the input
length, we set k = n

1
r .

Now, we observe the following: Assume V interacts with P , with input x and ROOBP B,
such that ∆(B, x) ≤ εc. Then, since we are only guaranteed that

∑
i

ε̂i

k ≤ εc + δ, when both
parties recursively apply the protocol with input xi and ROOBP Bi, we can’t guarantee that
∆(Bi, xi) ≤ εc (or even guarantee that ∆(Bi, xi) ≤ εc + δ).

Therefore, we amend the protocol as follows: In addition to the input x and the ROOBP
B, we add a claimed distance parameter, ε̂, that represents P ’s claim regarding the distance
of x from B. In the first recursion level, we set ε̂ = εc, since P claims that ∆(B, x) ≤ εc.
Then, at each recursion level, assume our input x′, our ROOBP is B′, our (new) claimed
distance parameter is ε̂′, and P sends the decomposition (B1, ..., Bk) and the respective
approximations (ε̂′

1, ..., ε̂′
k). Then, V verifies that (B1, ..., Bk) is a valid decomposition and

that
∑

i
ε̂′

i

k ≤ ε̂′ + δ (i.e., we replace εc in the previous condition with the new parameter
ε̂′). Lastly, for some i ∈ [k] both parties recursively run the protocol on x′

i with B′
i and the

claimed distance ε̂′
i, and at the base of the recursion, V verifies that the distance of the input

from the ROOBP does not exceed the claimed distance by more than δ.
Now, on every recursion level, P only claims that the average distance doesn’t grow too

much with respect to the approximated distance in the previous recursion level.
Since P uses a distance approximation algorithm with some error probability parameter
η > 0, and chooses the (k, π)-decomposition of B that yields the minimal average distance
approximation from x, the claim holds for all recursion levels with probability at least
1− η · k · w2 · r0, and at the base level, the verifier accepts. Since P invokes the protocol for
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O( 1
εf −εc

) times, then for t = O( w2·k·r
εf −εc

), the verifier accepts in all invocations with probability
at least 1 − η · t. Thus, we can set η = 0.01 · 1

t = O( εf −εc

w2·k·r ), and the verifier accepts with
high constant probability in all invocations. Lastly, we note that at each recursion level, we
want V to account for two possible deviations: In the approximation that P provides for the
previous recursion level (i.e. ε̂), and in the approximations that P performs in the current
recursion level (i.e. (ε̂1, ..., ε̂k)).

For soundness, we observe that V allows the prover to exceed from the initial claimed
distance (i.e., εc) by at most δ for r times: At each of the recursion levels, as well as in the
base level. Thus, to make sure that soundness still holds (i.e. V does not allow the prover to
exceed too much in distance), we set δ to be smaller (by a factor of r). Details follow.

▶ Protocol 2. Tolerant dsIPP for the ROOBP Problem
Query Access Input: x ∈ {0, 1}n

Proximity Parameters: εf > εc ≥ 0
Massive Parameter: ROOBP B of width w

Other Parameters: Claimed distance ε̂ (initialized to εc in the first round), initial
number of rounds r0 and remaining number of rounds r

1. Set k = n
1

r0 , δ = εf −εc

3r0
, and η = O( εf −εc

r0·k·w2 ).

2. V : If r = 0 then accept iff ∆(B, x) ≤ ε̂ + δ
2 .

3. P :
a. For every i ∈ [k], and for every u ∈ L (i−1)·n

k

and v ∈ L i·n
k

, approximate the distance
of xi from B[u, v] with deviation parameter δ

2 and error probability parameter η.
b. For every (k, π)-decomposition of B, Bk,π = (Bπ

1 , ..., Bπ
k ), let (ε̂π

1 , ..., ε̂π
k) be the

respective distance approximations obtained in the previous step.
c. Find a decomposition Bk,π∗ for which

∑
i ε̂π∗

i is minimal, and send (a succinct
representation of) Bk,π∗ , along with (ε̂π∗

1 , ..., ε̂π∗

k ), to V .
4. V :

a. Verify that Bk,π∗ is a valid (k, π)-decomposition, and that
∑

i
ε̂π∗

i

k ≤ ε̂+δ. Otherwise,
reject.

b. Choose uniformly at random i ∈ [k] and send i to P .
5. Both parties recursively invoke the protocol with input xi, ROOBP Bπ∗

i , claimed
distance ε̂π∗

i , and remaining number of rounds r − 1.

Initiate the protocol with ε̂ = εc, repeat the protocol for O( 1
εf −εc

) times, and accept iff V

accepts in all repetitions.

▶ Remark 18. P can efficiently find a decomposition in Step 3(c) as follows: Construct a
graph G = (V, E) with V being all the vertices of B in the levels (L0, L n

k
, L 2n

k
..., L k·n

k
), and

u, v ∈ V are connected in G with edge-weight ε̂u,v if P performs distance approximation for
B[u, v] in Step 3(a) and it results in ε̂u,v. Then, every (k, π)-decomposition considered in
Step 3(b) has a corresponding s⇝ t path in G, and the weight of the s⇝ t path equals the
sum of distance approximations for the sub-ROOBPs in the decomposition. Thus, P can
choose the decomposition with the shortest s⇝ t path in G.

We show that Protocol 2 is a dsIPP for ROOBPs: In Section 4.5.1, we show the correctness
of the protocol, and in Section 4.6.1, we present the query complexity of the protocol.

ITCS 2025



6:22 Doubly Sub-Linear Interactive Proofs of Proximity

4.5.1 Correctness
Completeness. Assume ∆(B, x) ≤ εc and V interacts with P . We observe that at any
recursion level (but the base level), the following claim holds: If our input is x′, our ROOBP
is B′ and our claimed distance parameter is ε̂′ such that ∆(B′, x′) ≤ ε̂′ + δ

2 , then with
probability at least 1− η · k · w2, the prover P sends (B′

1, ..., B′
k) and (ε̂′

1, ..., ε̂′
k) to V such

that the following holds:
1. The verifier doesn’t reject in Step 4(a) (i.e.,

∑
i

ε̂′
i

k ≤ ε̂′ + δ).
2. The protocol is recursively invoked with some x′

i, B′
i and ε̂′

i for which ∆(B′
i, x′

i) ≤ ε̂′
i + δ

2 .
The claims follows from the fact that P runs the distance approximation algorithm with
deviation parameter δ

2 and with error probability parameter η. Since we start with ∆(B, x) ≤
εc = ε̂, then with probability at least 1 − η · k · w2 · r0, the verifier doesn’t reject in Step
4(a) in all the r0 recursion levels. By the second item of the claim, the base of the recursion
is also invoked with an input x′, ROOBP B′ and claimed distance parameter ε̂′ such that
∆(B′, x′) ≤ ε̂′ + δ

2 , and the verifier accepts. Since we repeat the protocol for O( 1
εf −εc

) times,
we get that for t = O( k·w2·r0

εf −εc
), the verifier accepts in all invocations with probability at least

1 − η · t. Then, since we set η = 0.01 · 1
t = O( εf −εc

k·w2·r0
), we get that V accepts with high

constant probability in all invocations.

Soundness. Assume ∆(B, x) > εf . We observe that in each round, we lose at most an
additive factor of δ in distance (i.e. we allow the prover to “exceed” the claimed distance up
to an additive δ factor). Since we start with claimed distance εc, and since we set δ = εf −εc

3r0
,

we get that after r0 rounds, we are still at distance at least εf −εc

2 from a valid assertion.
Hence, the verifier rejects with probability at least Ω(εf − εc) in each invocation, and rejects
with high constant probability in at least one of the O( 1

εf −εc
) invocations.

4.6 Computational Complexity (of Protocol 2)
The query and communication complexity of our tolerant dsIPP are our main complexity
measures. Indeed, the communication complexity is O( k·log(w·n)·r0

εf −εc
), because in each of the

O( 1
εf −εc

) repetitions there are r0 rounds, and in each round the prover P sends k vertices
and k distance approximations to V that can be represented by O(k · log(w · n)) bits. Since
we set k = n

1
r0 , we can set r0 = log(n) and get poly-logarithmic communication complexity.

We continue in Section 4.6.1, where we calculate the query complexity of both the verifier
and the prover. We show that if we set r0 = log(n), then V uses query complexity of
O( 1

εf −εc
), and the honest prover P uses poly-logarithmic query complexity.

We finish by calculating the time complexity of our tolerant dsIPP. We show that, if we set
r0 = log(n), and assume both V and P have black-box access to two procedures that refer to
the input ROOBP (see Section 4.6.2 for more details), then the verifier V has time complexity
of O( log2(n)

εf −εc
). In addition, if the honest prover P uses a distance approximation algorithm

for ROOBPs with time complexity TA, then P has time complexity of O( log2(n)·TA

εf −εc
).

4.6.1 Query Complexity
Let us analyze the query complexity of V (denoted QV ) and P (denoted QP ):

Because V can verify that the (k, π)-decomposition P sends in every round is valid
without any query access to the input x, we have QV = O( n

(εf −εc)·kr0 ) = O( 1
εf −εc

): V

reads a sub-sequence of the input of length n
kr0 = 1 for O( 1

εf −εc
) times.
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P uses a distance approximation algorithm A with deviation parameter δ = O( εf −εc

r0
)

and error probability parameter η = O( εf −εc

r0·k·w2 ), with query complexity QA(δ, η, w). Then,
the query complexity of QP is QA(δ, η, w) times the number of calls P makes to A in
all the repetitions. Since P calls the approximator for w2 · k · r0 times in each of the
O( 1

εf −εc
) repetitions, and we set k = n

1
r0 , we get that QP = O( w2·n

1
r0 ·r0

εf −εc
· QA(δ, η, w)).

Hence, regardless of how we set r0, the query complexity of the verifier is O( 1
εf −εc

).
Indeed, the larger we set r0, the smaller QP gets, but this causes the round complexity to
grow. To minimize QP , we can set r0 = log(n), and we get QP = O( w2·log(n)

εf −εc
· QA(δ, η, w)).

In the full version of this paper, we show the existence of a distance approximation
algorithm with query complexity of QA(δ, η, w) = ( log( 1

η )·2w

δ )O(w). If P uses this distance
approximation algorithm, we get QP = Õ(n

1
r0 ) · ( r0·2w

εf −εc
)O(w). Again, we can set r0 = log(n),

and if we assume w is constant, we get poly-logarithmic query complexity.

4.6.2 Time Complexity

Indeed, assuming a standard access to the input ROOBP B (i.e. the “Massive Parameter”),
the time complexity of both the verifier (denoted TV ) and the honest prover (denoted TP ) is
Ω(n):

Given a sub-sequence of vertices (v0, ..., vk) in B, the verifier V has to verify that every vi

is in the i·k
n ’th level of B, and that vi ⇝ vi+1. Since v0 ∈ L0 and vk ∈ Ln, this requires

accessing the entire ROOBP, thus yields time complexity of Ω(n).
P approximates the distance of sub-parts of x from sub-ROOBPs of B of length n

k for
w2 · k times. Using the distance approximation algorithm presented in the full version of
this paper, this also yields time complexity of Ω(n).

However, we can take an alternative approach in the analysis: Assume both V and P

have black-box access to the following two procedures, that refer to the structure of the input
ROOBP, and are independent of the specific input x:
1. Given two vertices u and v, determine whether u⇝ v in B.
2. Given i ∈ {0, ..., n}, list the (up to w) vertices that are in level i of B.
In addition, assume P uses a distance approximation algorithm A with deviation para-
meter δ = O( εf −εc

r0
) and error probability parameter η = O( εf −εc

r0·k·w2 ), with time complexity
TA(δ, η, n, w) (where n is the length of the input and w is the width of the ROOBP). Now,
for i ∈ [r0], we can analyze the time complexity of V and P in the i’th round of the protocol:

V calls the first two procedures for O(k) times, obtains values that can be represented by
O(k · log(w · n)) bits, and performs simple calculations on the obtained values.
P calls the first two procedures for k times, and calls the distance approximation algorithm
for at most w2 · k times on inputs of length n

ki . By doing the foregoing, P obtains values
that can be represented by O(w2 · k · log(w · n)) bits, and performs simple calculations on
the obtained values. This yields time complexity of O(w2 ·k · (log(w ·n)+TA(δ, η, n

ki , w))).
Since V and P perform the foregoing for every i ∈ [r0] in each of the O( 1

εf −εc
) invocations

of the protocol, and since we set k = n
1

r0 , we get that:

TV = O( n
1

r0 ·r0·log(w·n)
εf −εc

)

TP = O( w2·n
1

r0 ·(r0·log(w·n)+
∑r0

i=1
TA(δ,η,n

r0−i
r0 ,w))

εf −εc
)

ITCS 2025
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To minimize the time complexity, we can set r0 = log(n), and assuming w is constant, we
get TV = O( log2(n)

εf −εc
) and TP = O( log2(n)+log(n)·TA(δ,η,n,w)

εf −εc
). We conclude with the following

theorem and corollary.

▶ Theorem 19. For every function r : N→ N, there exists an r(n)-round tolerant dsIPP for
ROOBPs of width w with proximity parameters εf > εc ≥ 0. In the tolerant dsIPP, the honest
prover P uses a distance approximation algorithm A with deviation parameter δ = O( εf −εc

r(n) )
and error probability parameter η = O( εf −εc

r(n)·n
1

r(n) ·w2
) such that the query complexity of A is

QA(δ, η) and the time complexity of A is TA(δ, η, n, w). Then, the computational complexity
of the tolerant dsIPP is as follows:

Query Complexity: QV = O( 1
εf −εc

) and QP = O( w2·n
1

r(n) ·r(n)
εf −εc

· QA(δ, η)).

Communication Complexity: O( n
1

r(n) ·r(n)·log(w·n)
εf −εc

).
Time Complexity: If both V and P have black-box access to procedures that refer to the
structure of the input ROOBP, then:

TV = O( n
1

r(n) ·r(n)·log(w·n)
εf −εc

)

TP = O( w2·n
1

r(n) ·(r(n)·log(w·n)+
∑r(n)

i=1
TA(δ,η,n

r(n)−i
r(n) ,w))

εf −εc
)

In the full version of this paper, we show the existence of a distance approximation
algorithm with time complexity of TA(δ, η, n, w) = ( log( 1

η )·2w

δ )O(w) ·n. If P uses this distance
approximation algorithm, we get the following corollary.

▶ Corollary 20. For every function r : N→ N, there exists an r(n)-round tolerant dsIPP for
ROOBPs of width w with QV = O( 1

εf −εc
), QP = Õ(n

1
r(n) ) ·( r(n)·2w

εf −εc
)O(w), and communication

complexity of O( n
1

r(n) ·r(n)·log(w·n)
εf −εc

). If both V and P have black-box access to procedures that

refer to the structure of the input ROOBP, then TV = O(n
1

r(n) ·r(n)·log(w·n)
εf −εc

) and TP =
( r(n)·2w·log(n)

εf −εc
)O(w) · n.
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