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Abstract
Product states, unentangled tensor products of single qubits, are a ubiquitous ansatz in quantum
computation, including for state-of-the-art Hamiltonian approximation algorithms. A natural
question is whether we should expect to efficiently solve product state problems on any interesting
families of Hamiltonians.

We completely classify the complexity of finding minimum-energy product states for Hamiltonians
defined by any fixed set of allowed 2-qubit interactions. Our results follow a line of work classifying
the complexity of solving Hamiltonian problems and classical constraint satisfaction problems based
on the allowed constraints. We prove that estimating the minimum energy of a product state is in
P if and only if all allowed interactions are 1-local, and NP-complete otherwise. Equivalently, any
family of non-trivial two-body interactions generates Hamiltonians with NP-complete product-state
problems. Our hardness constructions only require coupling strengths of constant magnitude.

A crucial component of our proofs is a collection of hardness results for a new variant of the
Vector Max-Cut problem, which should be of independent interest. Our definition involves sums
of distances rather than squared distances and allows linear stretches.

We similarly give a proof that the original Vector Max-Cut problem is NP-complete in 3
dimensions. This implies hardness of optimizing product states for Quantum Max-Cut (the
quantum Heisenberg model) is NP-complete, even when every term is guaranteed to have positive
unit weight.
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1 Introduction

Product states, unentangled tensor products of single-qubit states, have served as an effective
focus for better understanding quantum phenomena. Because general quantum states
cannot be described efficiently, approximation algorithms must be restricted to output
some subset of states, an ansatz. Mean-field approaches are common as first steps in
statistical mechanics, and recent approximation algorithms for extremal energy states of
local Hamiltonians have relied on proving that product states provide good approximations
in particular regimes [17, 4, 5, 18, 31, 32]. In fact, because in some natural regimes the
ground states are rigorously well-approximated by product states [4], optimal approximation
algorithms for local Hamiltonians on arbitrary interaction graphs must be capable of finding
good product states. Understanding product state optimization is essential for understanding
the complexity of Hamiltonian approximation generally.

Product states are a natural intermediate between classical and quantum states, allowing
for superposition but not entanglement. Unlike general quantum states, they have succinct
classical descriptions: a single-qubit pure state can be specified by two complex numbers, and
an n-qubit pure product state can be specified by 2n complex numbers. One could consider
“more quantum” intermediates, in the form of reduced states of two or more qubits. However,
verifying the consistency of a set of quantum marginals is a QMA-complete problem, even for
2-qubit reduced states [27, 10]. Therefore, product states are uniquely useful when optimizing
directly over state vectors.

We study the following question: for a family of Hamiltonians defined by a given set of
allowed interactions, what is the complexity of computing the extremal energy over product
states? Additionally, how does the complexity of optimizing over product states relate to
that of optimizing over general states? For example, for a QMA-hard local Hamiltonian,
must finding the optimal product state in turn be NP-hard?1

This question follows a long line of work classifying the complexity of constraint satisfaction
problems (CSPs) based on the sets of allowed constraints, clauses, or interactions between
variables. In particular, the dichotomy theorem of Schaefer [35] showed that for any set
of allowed Boolean constraints, the family of CSPs is either efficiently decidable or is NP-
complete. In the context of quantum problems, Cubitt and Montanaro [14] introduced a
similar classification of ground state energy problems for 2-local Hamiltonians, showing that
for any fixed set of allowed 2-qubit interactions, the 2-LH problem is either in P or NP-,
StoqMA-, or QMA-complete (the StoqMA case relies on the concurrent work of Bravyi and
Hastings [6]). We briefly survey some of this line of classical and quantum work in Related
Work below.

1 The product state problem is always in NP since product states have succinct classical descriptions
with which we can compute the expected energy contribution from each local Hamiltonian term in time
polynomial in the size of the term.
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While the complexity of finding the extremal states (e.g. the ground state) of 2-local
Hamiltonians is well understood, the complexity of finding optimal product state solutions
has been only sparsely studied [22]. The only NP-hardness results for such problems are
based on mapping a classical problem to a diagonal 0-1 valued Hamiltonian [39].

An additional motivation for our study is the hope of developing new methods for
identifying families of local Hamiltonians for which problems involving general ground states
are not hard. While a complete complexity classification for the general 2-LH problem is
known, more refined attempts at classification which take into account restrictions on the
sign of the weights or geometry of the system are currently incomplete [33]. Developing
algorithms for product states is a “mostly classical” problem that is easier to analyze, and
progress involving product states may inform our expectations regarding general states.

In this work, we completely classify the complexity of finding optimal product states
for families of 2-local Hamiltonians. In fact, we find the complexity of the product state
problem is fully determined by the complexity of the general local Hamiltonian problem: if
the general problem is NP-hard, the product state problem is NP-complete, and otherwise it
is in P. To arrive at our results, we study a variant of the Vector Max-Cut which should
be of independent interest especially to the optimization community. As a corollary to our
classification theorem, we give the first published proof that estimating optimal product
state energies in the Quantum Max-Cut model is NP-complete, and we show hardness
holds even for unweighted Hamiltonians.2

1.1 Our Contributions
Formal definitions are given in Section 2. A k-local Hamiltonian is a sum of Hamiltonian
terms each of which only acts non-trivially on at most k qubits, analogous to k-variable
Boolean clauses. k-LH denotes the problem of estimating the ground state energy (the
minimum eigenvalue across all states) of a k-local Hamiltonian to inverse-polynomial additive
precision. Given a set of local terms S, S-LH is k-LH restricted to Hamiltonians such that
every term belongs to S. Finally, prodLH and S-prodLH are the restrictions of these
problems to product states, i.e. to minimize ⟨ϕ|H|ϕ⟩ where H is the Hamiltonian and |ϕ⟩
ranges over tensor products of single-qubit states.3

2-local S-prodLH

The classification of the general ground state energy problem by Cubitt and Montanaro [14]
completely classifies S-LH for any fixed set S of 2-qubit terms, showing it is either in P or it
is one of NP-, StoqMA-, or QMA-complete.

In the same vein, we give a complete classification of product state complexity for families
of 2-local Hamiltonians as a function of the set of allowed 2-qubit interactions. For any given
set S of 2-qubit terms, we prove the problem S-prodLH is either in P or is NP-complete. To
the best of our knowledge, ours is the first systematic inquiry into the complexity of product
state problems.

▶ Theorem 1. For any fixed set of 2-qubit Hamiltonian terms S, if every matrix in S is
1-local then S-prodLH is in P, and otherwise S-prodLH is NP-complete.

2 A more complex unpublished proof based on large graph cycles was known earlier by Wright [40].
3 An earlier version of this work considered exact versions of product state and graph problems. We have

now improved our hardness results to hold up to an inverse-polynomial additive gap.
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Additionally, our hardness constructions only require coupling strengths (weights) of at
most constant magnitude. This is preferable in practice and contrasts with most known
QMA-hardness constructions.

The sets for which [14] shows S-LH is in P are the same for which we show S-prodLH
is in P, i.e. those containing only 1-local terms. This immediately implies that a family of
2-local Hamiltonians has efficiently-computable minimum product state energy if and only if
it has efficiently-computable ground state energy.

▶ Corollary 2. For any fixed set of 2-qubit Hamiltonian terms S, the problem S-LH is in P
if and only if S-prodLH is in P.

▶ Corollary 3. For any fixed set of 2-qubit Hamiltonian terms S, the problem S-LH is
NP-hard if and only if S-prodLH is NP-complete.

Our results imply that hardness of product state approximations is not restricted to
Hamiltonians for which product states well approximate ground states: for any QMA-hard
family of terms, our result implies that (assuming QMA ̸= NP) we can construct a family
of local Hamiltonians that are NP-hard to product state approximate and for which the
product states do not well approximate the ground state by constructing Hamiltonians on
two systems, each with one of these properties, and taking a disjoint union thereof. This
implies that algorithms using product states to approximate the ground states of QMA-hard
Hamiltonians face a “double penalty”: hardness of approximating product states which
themselves imperfectly approximate ground states.

The Stretched Linear Vector Max-Cut problem

Our hardness constructions for product state problems embed an objective function which we
prove is NP-complete. This objective function generalizes the classical Max-Cut problem.
Given work on other variations of Max-Cut, we expect this problem and our reductions
should be of independent interest, especially to the optimization and approximation com-
munities.

In Max-Cut, one is given a graph G = (V,E) and asked to assign to each vertex v a
label v̂ = ±1 so as to achieve the maximum number of oppositely labeled adjacent vertices:

MC(G) = 1
2 max

ı̂=±1

∑
ij∈E

(1 − ı̂ȷ̂) = 1
2 max

ı̂=±1

∑
ij∈E

|̂ı− ȷ̂|. (1)

A problem referred to as Vector Max-Cut, Rank-k-Max-Cut, or Max-Cutk (MCk) has
been studied [8, 7, 22] which generalizes Max-Cut to assigning k-dimensional unit vectors
so as to maximize the angles between adjacent vertex labels, or equivalently to maximize the
squared distances between adjacent vertex labels:

MCk(G) = 1
2 max

ı̂∈Sk−1

∑
ij∈E

(1 − ı̂ · ȷ̂) = 1
4 max

ı̂∈Sk−1

∑
ij∈E

∥ı̂− ȷ̂∥2
. (2)

Our new problem can be seen as a stretched and linear version of MCk. The goal in
W-linear-Max-Cut (MCL

W ) is to assign unit vectors so as to maximize the distance
between adjacent labels:

MCL
W(G) = 1

2 max
ı̂∈Sd−1

∑
ij∈E

∥Wı̂−Wȷ̂∥ = 1
2 max

ı̂∈Sd−1

∑
ij∈E

√
∥Wı̂∥ + ∥Wȷ̂∥ − 2(Wı̂)⊤(Wȷ̂), (3)



J. Kallaugher, O. Parekh, K. Thompson, Y. Wang, and J. Yirka 63:5

where W is a fixed d× d diagonal matrix. Comparing MCk and MCL
W , our problem sums

over un-squared distances and incorporates a linear stretch given by W . We consider the
decision version of this problem, in which the objective is to test whether the optimal solution
is at least b or no more than a, for b− a ≥ 1/poly(n). Note that, unlike S-LH, this is an
unweighted problem – one could naturally define a weighted version but our hardness results
will not require this.

Geometrically, MCk corresponds to embedding a graph into the surface of a unit sphere
with the objective of maximizing the sum of the squared lengths of every edge. Likewise,
our problem MCL

W corresponds to embedding a graph into the surface of a d-dimensional
ellipsoid, with radii defined by the entries of W , with the objective of maximizing the sum of
the (non-squared) edge lengths.

Despite being generalizations of the NP-complete Max-Cut problem, hardness of neither
MCk nor MCL

W is trivial. The Goemans-Williamson approximation algorithm for Max-Cut
on an n-vertex graph begins with efficiently computing the solution to MCn via an SDP. In
fact, deciding MCk is known to be in P for any k = Ω(

√
|V |), [28, Theorem 8.4] or [3, (2.2)].

And while it has been conjectured by Lovász that MCk is NP-complete for all constants
k ≥ 1, in [29, p. 236] and earlier, no proof has been given for any k > 1.

Our main theorem concerning W-linear-Max-Cut, which is used to prove Theorem 1,
is the following.

▶ Theorem 4. For any fixed non-negative W = diag(α, β, γ) with at least one of α, β, γ
nonzero, W-linear-Max-Cut is NP-complete.

Quantum Max-Cut Product States and MC3

As a corollary of our classification theorem, we give the first published proof of the fact that
product state optimization in the Quantum Max-Cut (QMC) model is NP-hard. This
model, also known as the anti-ferromagnetic Heisenberg model, is equivalent to S-LH with
S = {XX + Y Y + ZZ}. We note that a sketch of a different proof for this specific problem
was previously known but unpublished [40]. That proof was based on large graph cycles, and
our gadgets are simpler to analyze.

However, the proof of Theorem 1 utilizes Hamiltonian gadgets involving negative weights
(unlike the aforementioned proof of [40]). This leaves open whether prodQMC remains
NP-hard on unweighted graphs. In Section 5, we give a direct proof of hardness using the
fact that the unweighted product-state version of QMC is equivalent to MC3 (Equation (2)).
Our work then is also the first published proof that MCk is NP-complete for some k > 1 (in
our case, k = 3), partially resolving a conjecture of Lovász [29, p. 236]. Note that as with
MCL

W , we consider the decision version in which the goal is to determine whether the value
is above b or below a, for b and a with inverse-poly separation.

▶ Theorem 5. MC3 is NP-complete.

▶ Corollary 6. Quantum Max-Cut restricted to product states, prodQMC, is NP-complete,
even when all terms are restricted to have positive unit weight.

1.2 Proof Overview
2-local S-prodLH

As product states have classical descriptions and their energies can be calculated in polynomial
time, S-prodLH is automatically in NP, so we focus on how we show hardness. Our approach
is in two parts. We show how to reduce MCL

W to S-prodLH, and later we show that MCL
W

ITCS 2025
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NP-complete (Theorem 4). More precisely, the first part of our approach is to show that
for any S containing a strictly 2-local term, there exists a corresponding weight matrix W
meeting the conditions of Theorem 4 so that MCL

W is NP-hard. For any instance of MCL
W

with this fixed W , we show how to construct a Hamiltonian from S such that the minimum
product state energy encodes the MCL

W value, yielding Theorem 1.
We interpret problems over product states as optimization problems on the collection of

Bloch vectors for each single-qubit state. For example, consider S-prodLH with the specific
set S = {XX + Y Y + ZZ} (the QMC model). In this case, by writing each qubit v in the
Bloch vector representation

|ϕv⟩⟨ϕv| = 1
2 (I + v1X + v2Y + v3Z) ,

the energy contributed by an interaction between qubits u and v is

tr ((XuXv + Y uY v + ZuZv) |ϕu⟩⟨ϕu| |ϕv⟩⟨ϕv|) = u1v1 + u2v2 + u3v3. (4)

So, given a Hamiltonian which is the sum of XYZ interactions between pairs of qubits, the
problem of estimating the extremal product state energies is equivalent to optimizing the
objective function∑

uv

wuvu · v

over 3-dimensional unit vectors, where each edge uv corresponds to the Hamiltonian’s
(weighted) interaction graph. Up to constant shifts and scaling, this is equivalent to MC3,
introduced in Equation (2).

More generally, because the Pauli matrices are a basis for all Hermitian matrices, any
2-qubit interaction can be written as H =

∑3
i,j=1 Mijσiσj +

∑3
k=1(∗)ckσkI + wkIσk, where

the σi are the Pauli matrices, for some M , c, w. Then, the energy of a given product state is
calculated similarly to Equation (4). However, the resulting expression potentially contains
many terms.

Our approach is to take an arbitrary 2-qubit term and insert it into gadgets which
simplify the energy calculations. First, in the proof of Theorem 1, we borrow a trick of [14]
and symmetrize the terms. For any 2-qubit interaction Hab on qubits a, b, the combined
interaction Hab +Hba is symmetric, invariant under swapping the qubits. A similar trick
handles the case of anti-symmetric terms.

Second, in the proofs of Lemmas 14 and 15, we show how to use a symmetric or anti-
symmetric term to embed the MCL

W value into the minimum energy of a gadget. We begin
by removing the 1-local terms, such as σ1I or Iσ2, again taking inspiration from gadgets
used by [14]. For two qubits u, v corresponding to two vertices in a MCL

W instance, the
gadget adds two ancilla qubits and weights each interaction within the gadget to effectively
cancel out the 1-local terms. When the two ancilla qubits vary freely, we find the minimum
energy contributed by the entire four-qubit gadget is determined by the distance between
the states of u and v. Although each individual edge contributes energy proportional to the
squared distance between their states, the overall gadget contributes energy proportional to
just the distance of the two “vertex qubits”, −∥Mu−Mv∥. With some massaging, we can
treat M as a non-negative diagonal matrix which meets the conditions of Theorem 4.

Therefore, as desired, we have that the MCL
W value for an NP-complete instance of MCL

W

can be embedded into the minimum product state energy of an S-prodLH instance.
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Stretched Linear Vector Max-Cut

To prove that MCL
W is NP-hard for any fixed diagonal non-negative W with at least one

nonzero entry, we divide into three cases, in Lemmas 21–23. Our first proof is a reduction
from the standard Max-Cut problem, while the other two are reductions from 3-Coloring.

When there is a unique largest entry of W , we reduce from Max-Cut by taking any
input graph G and forming G′ by adding large star gadgets around each of the vertices of
G, each using many ancilla vertices. Because the ancilla vertices in each gadget have just
one neighbor (the original vertex at the center of the gadget), their optimal vector labels
given any choice of labels for the center vertices are the negation of the center vertex labels.
This means they heavily penalize assigning the center vertices any labels that are not along
the highest-weight axis. Therefore, when the maximum entry of W is unique, the optimal
MCL

W assignment to G′ will have its vector labels almost entirely along the highest-weight
axis. The assignment can trivially earn the maximum possible value on the star gadgets,
and the amount additional amount it can earn on the original edges of G corresponds to the
Max-Cut value of G.

When all of the entries of W are equal, we reduce from 3-Coloring. Given a graph G,
we construct G′ by replacing each edge with a 4-clique gadget, made by adding one ancilla
vertex per gadget, along with a single ancilla vertex shared by every gadget. We show that
G is 3-colorable iff G′ has a sufficiently large MCL

W value. Specifically, we show this holds iff
there is a vector assignment that simultaneously achieves (nearly) the maximum value on all
of the clique gadgets. Achieving the maximum objective value on a clique corresponds to
maximizing the total distance between each pair of vectors, and this enforces a predictable
arrangement.

When weights are equal, assigning these vectors can be viewed as inscribing vectors in the
unit sphere, and it is known that maximal perimeter polyhedra inscribed in the sphere must
be regular. So for a 4-clique, the vector labels must form a regular tetrahedron. We carefully
argue that for regular tetrahedra, fixing two of the vertices (approximately) fixes the other
two vertices up to swapping (several of these geometric facts are proved in Section A). This
means that the clique gadget corresponding to an edge uv in G shares two vertices with any
gadget corresponding to an edge vw incident to the first edge: v and the “global” ancilla
shared by all gadgets. This means that, once we fix the vector assigned to the global ancilla,
the choice of a vector for v restricts the labels of both u and w to be chosen from a set of two
vectors. So simultaneously optimizing every clique gadget is possible iff, for each connected
component of G′, we can 3-color that component with three vectors (corresponding to, for
any v in the component, the vector assigned to v, the vector assigned to the global ancilla
vertex, and the two vectors that can share a maximal tetrahedron with those two).

Finally, when the two largest entries of W are equal but distinct from the third, we combine
the two previous approaches. Inserting star gadgets effectively reduces the problem from
three dimensions to two, by penalizing vector assignments not in the 2d space corresponding
to the two largest entries of W . We then add 3-clique gadgets, with one ancilla for each
edge in G, and optimizing these over two dimensions corresponds to inscribing maximal
perimeter triangles in the unit circle. Now, assigning a vector to one vertex fixes the optimal
vectors assigned to the other two vertices (again up to swapping them) and so there is again
a one-to-one correspondence between vector assignments simultaneously optimizing every
clique gadget and 3-colorings of the connected components of G.

ITCS 2025
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Three-Dimensional Vector Max-Cut

Our proof that MCk with positive unit weights is NP-complete runs on very similar lines
to our 3-Coloring reduction for MCL

W with all weights equal. However, there is one
additional complication: that proof depended on the fact that the sum of the side lengths
of the tetrahedron is uniquely maximized by choosing it to be regular. This is not the case
when we instead consider the squared side lengths, for instance assigning half the vectors
to one pole of the sphere and half to the other would achieve the same bound. So we use
a different gadget: instead of replacing every edge with a 4-clique, we replace every edge
with a 4-clique that in turn has its edges replaced with triangles. It turns out that this
gadget does have a unique optimal MCk assignment, which in particular assigns the vectors
in the 4-clique to a regular tetrahedron, allowing us to proceed along the same lines as the
aforementioned proof.

1.3 Related Work
Brandão and Harrow [4] give simple conditions under which 2-local Hamiltonians have
product states achieving near-optimal energy, such as systems with high-degree interaction
graphs. This suggests that unless NP = QMA, such Hamiltonians cannot be QMA-complete.
Since then, there has been a line of work on the relationship between product states and
general ground states in other Hamiltonians, in the more general case when the two problems
are not equivalent. See e.g. [5, 17, 20].

Product states have especially been studied in the context of the Quantum Max-Cut
problem, introduced by Gharibian and Parekh [18]. Briët, de Oliveira Filho, and Vallentin [8]
give hardness results conditional on the unique games conjecture for approximating the
optimal product state in the QMC model. Related work by Hwang, Neeman, Parekh,
Thompson, and Wright [22] also gives tight hardness results for the QMC problem under a
plausible conjecture. Parekh and Thompson [32] give an optimal approximation algorithm
for QMC when using product states.

See [22] for an exposition of the relationship between QMC restricted to product state
solutions and the Vector Max-Cut problem. Studying vector solutions to Max-Cut
has a long history [29], including the seminal Goemans-Williamson algorithm [19]. This
study is usually with the goal of a solution to the original Max-Cut problem, which relates
to approximation ratios of integer and semidefinite programs. Bounding these ratios has
been referred to in terms of Grothendieck problems and inequalities: see [7, 2] for further
context on this nomenclature. A tight NP-hardness result is known for the non-commutative
Grothendieck problem [9] which also generalizes the “little” Grothendieck problem over
orthogonal groups [2]. Iterative algorithms (heuristics) for solving MCk are also well-studied
in the literature (see [11] and citing references), since in practice solving MCk is often faster
than solving the corresponding SDP relaxation.

Cubitt and Montanaro [14] classified S-LH for sets S of 2-qubit terms. This work relies in
turn on the work of Bravyi and Hastings [6] to classify the StoqMA case. [14] also examined
a variant where S is assumed to always contain arbitrary single-qubit terms. Follow-up work
by Piddock and Montanaro [33] began investigating classifying the complexity of S-LH under
the additional restrictions of positive weights (anti-ferromagnetic model) and/or interactions
restricted to a spatial geometry such as a 2D grid. [15, 34] continued along these lines, and
introduced Hamiltonian simulations rather than computational reductions.

In classical computer science, Schaefer [35] gave a dichotomy theorem showing that
given a fixed set of allowed constraints, the family of CSPs is either decidable in P or is
NP-complete; but see Section 2 or [14] for some important assumptions that are made in the
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quantum versus classical models. In fact, Schaefer’s classification offers a more fine-grained
classification with classes within P. Later, [12, 25] gave a similar dichotomy theorem for
the complexity of Max-SAT and related optimization problems, where the question is not
just whether all clauses are simultaneously satisfiable but how many are simultaneously
satisfiable. Applying weights to constraints becomes relevant with Max-SAT, and is covered
in their work. This work is especially relevant given k-LH is more analogous to Max-SAT
than to SAT. Continuing, Jonsson [23] classified these problems when both positive and
negative weights are allowed. While arbitrary weights seem natural in the quantum setting,
previous classical work simply assumed all weights were non-negative. The book [13] offers an
excellent survey of this area. The more recent results of [24, 36] extend classical classification
results to problems with non-binary variables (analogous to qudits).

1.4 Open Questions
1. We have shown a relationship between when product state problems and general Hamilto-

nian problems are hard. This points toward an important question: can some “interesting”
class of local Hamiltonians or a Hamiltonian problem for which we do not know an explicit
efficient algorithm be proven not hard, e.g. neither NP- nor QMA-hard, by showing the
corresponding product state problem is in P?

2. Is a more refined classification of the complexity of product state problems, taking into
account allowable weights or spatial geometry in the vein of [33], or imposing other
promises, possible?

3. While little progress has been made classifying the general S-LH problem for higher-
locality families, can we classify S-prodLH for families of k-local Hamiltonians with
k > 2?

4. Can we relate approximability instead of just complexity? For example, does the ability
to α-approximate the product state problem imply the ability to β-approximate the
general ground state problem on families defined by some sets of allowed interactions but
not others?

5. As mentioned above, we make the first progress towards a conjecture of Lovász [29] that
MCk is NP-hard for any k = O(1). We only focus on k = 3 here because of our interest
in prodLH. Can our proof be generalized to other values of k?

2 Preliminaries

We assume familiarity with the conventions of quantum computation [38] and complexity
theory [1, 26]. See also [16, 14] for surveys of Hamiltonian complexity.

2.1 Notation
I denotes the identity operator. λmin(H) and λmax(H) denote the minimum and maximum
eigenvalues of an operator H. In the same manner as with asymptotic O(·) notation, we use
poly(n) to denote a term that can be bounded by some fixed polynomial in n.

For an operator A, we use superscripts such as Aabc to indicate A acts on individual
qubits a, b, and c. Unless A is symmetric, the order matters and Aab is different than Aba. If
no superscripts are used, then the action is implicit in the ordering of the terms (left versus
right).

When clear from context, we will denote the tensor product of two operators A ⊗ B

simply by AB. All terms implicitly are tensor the identity on any systems not specified.
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SWAP will denote the 2-qubit operator exchanging |01⟩ and |10⟩ while |00⟩ and |11⟩
unchanged. We call a 2-qubit term H symmetric if H = SWAP(H) SWAP, meaning
the ordering of the qubits does not matter. Alternatively, H is antisymmetric if H =
− SWAP(H) SWAP.

The single-qubit Pauli matrices are denoted X,Y, Z or σ1, σ2, σ3. Recall that {X,Y, Z, I}
is a basis for 2 × 2 Hermitian matrices. The Pauli decomposition of a 2-qubit Hermitian
matrix H is H written in the Pauli basis,

H =
3∑

i,j=1
Mijσiσj +

3∑
k=1

(vkσkI + wkIσk), (5)

with all coefficients real and the 3 × 3 matrix M referred to as the correlation matrix.
Generally, Equation (5) should include a term wII, but we will work with traceless terms
such that w = 0.

Unless otherwise stated, all graphs are undirected and simple, meaning there are no
self-loops and no multi-edges. We assume all graphs are connected, as it is straightforward to
extend any of our constructions to disconnected graphs. When summing over edges,

∑
ij∈E ,

we do not double-count ij and ji. Finally, Si = {x ∈ Ri+1 : ∥x∥ = 1} denotes the unit sphere
in (i+ 1)-dimensional space.

2.2 Definitions and Assumptions
A k-local Hamiltonian on n qubits is a Hermitian matrix H ∈ R2n×2n that can be written
as H =

∑m
i=1 Hi such that each Hi is Hermitian and acts non-trivially on at most k qubits.

More precisely, each Hi acts on some subset Si of at most k qubits and each term in the sum
is Hi ⊗ I [n]\Si , but we generally leave this implicit. We usually consider constant values of k,
so each term is of constant size independent of n. The k-qubit terms Hi are often referred to
as interactions between qubits. We may refer to eigenvalues and expectation values ⟨ψ|H |ψ⟩
as the energy of the state |ψ⟩ in the system described by H. In particular, the ground state
energy and ground state refer to the minimum eigenvalue and an associated eigenvector.

Estimating the minimum eigenvalue of a Hamiltonian is a natural quantum generalization
of estimating the maximum number of satisfiable clauses in a Boolean formula.

▶ Definition 7 (k-LH). Given a k-local Hamiltonian H =
∑m

i=1 Hi acting on n qubits with
m = poly(n), the entries of each Hi specified by at most poly(n) bits, and the norms ∥Hi∥
polynomially bounded in n, and two real parameters b, a such that b− a ≥ 1/ poly(n), decide
whether λmin(H) is at most a (YES) or at least b (NO), promised that one is the case.

In this work, we are interested in k-LH restricted to families of local Hamiltonians, where
the families are determined by sets of allowed interactions. In particular, we will be interested
in sets of 2-qubit interactions.

▶ Definition 8 (S-LH). For S any fixed set of Hamiltonian terms, define S-LH as the
problem k-LH with the additional promise that any input is of the form

∑m
i=1 wiHi where

each Hi is an element of S assigned to act on some subset of qubits and the weights wi ∈ R
have magnitude polynomially-bounded in n.

▶ Remark 9. There are several standard assumptions implicit in our definition of S-LH.
Some are not physically realistic in the context of the condensed-matter literature but allow
us to precisely characterize the complexity of these problems. First, although classical CSPs
generally allow a constraint to take as input multiple copies of the same variable, this makes
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less sense in the quantum setting and we do not allow it. Second, the definition of k-local
only restricts the dimension of each term, it does not imply any spatial locality or geometry.
Therefore, any term in H may be applied to any subset of qubits with the qubits arranged in
any order. In particular this means that, if S contains a directed term Hab, then the family
of Hamiltonians allowed as input to S-LH is equivalent to the family allowed to S ′-LH for
S ′ = S ∪ {Hba}. Third, for the purpose of classifying the complexity of S-LH, we may
assume I ∈ S, since adding or removing a term wI is equivalent to simply shifting the input
parameters a, b by w. For S containing 2-qubit terms, this fact also implies we may assume
all terms in S are traceless. Fourth, except when noted, we allow both positive and negative
weights.

Classifying the complexity of systems under additional, more physically natural restrictions
appears to be a significantly more difficult problem [14, 33].

Given this setup, our interest will be in the problems k-LH and S-LH restricted to
product states.

▶ Definition 10 (Product state). A state ρ =
⊗n

i=1 ρ
i where each ρi is a single-qubit state.

▶ Definition 11 (prodLH). Given a k-local Hamiltonian H =
∑m

i=1 Hi on n qubits with
m = poly(n), the entries of each Hi specified by at most poly(n) bits, and the norms ∥Hi∥
polynomially bounded in n, and two real parameters b ≥ a, decide whether there exists
a product state ρ with tr(ρH) ≤ a (YES) or all product states satisfy tr(ρH) ≥ b (NO),
promised that one is the case.

The problem S-prodLH is defined analogously. In both definitions, the fact that product
states have concise classical descriptions allows us to naturally consider any choice of
parameters, even an exact decision problem with b = a, in contrast to k-LH.

By convexity, a product state ρ achieves an extreme value of tr(ρH) if and only if there
exists a pure product state |ψ⟩ which achieves that value. Similarly, mixtures of product
states, known as separable states, reduce to considering pure product states.

▶ Remark 12. In the context of S-LH or S-prodLH given some fixed set S, we will describe
S as “containing” a Hamiltonian term H, or that we “have access to” H, even when formally
H /∈ S. As previously referenced in Remark 9, given a set S, the family of Hamiltonians
allowed as input to S-LH may be equivalent to the family allowed given some other set
S ′. For example, S ′ may include {PHP †} for H ∈ S and any permutation of the qubits P .
Similarly, adding constant multiples of the terms in S or any linear combinations of terms
from S does not change the family of allowed Hamiltonians. So, when discussing S-LH, we
may implicitly refer to elements of the largest set S ′ such that S-LH and S ′-LH each have
the same family of allowed inputs.

Additionally, we note that S-LH is reducible to S ′-LH for any S ′ which can be used to
implement all elements of S – whether because formally S ⊆ S ′ or through other means. In
the opposite direction, if the terms in a set S can be used to construct some term H and we
wish to show hardness of S-LH, then it is sufficient to show hardness of {H}-LH.

Finally, for a 2-local Hamiltonian, we may refer to the interaction graph, with vertices
associated with each qubit such that vertex i is adjacent to vertex j whenever a nonzero
interaction exists on qubits i and j. When all interactions are symmetric, then the graph
is undirected. Notably, when S-LH is defined with S a singleton, then an input is fully
specified by its weighted interaction graph.
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3 Classification of S-prodLH

In this section, we prove a dichotomy theorem classifying the complexity of estimating
the minimum expectation of product states for given families of 2-local Hamiltonians. In
particular, we show that for any set S of 2-qubit terms such that at least one term is not
1-local,4 the problem S-prodLH is NP-complete. These are precisely those 2-local families
such that (as shown in [14]) S-LH is QMA-, StoqMA-, or NP-complete. Conversely, if all
terms are 1-local, then both S-LH and S-prodLH are in P.

▶ Theorem 1. For any fixed set of 2-qubit Hamiltonian terms S, if every matrix in S is
1-local then S-prodLH is in P, and otherwise S-prodLH is NP-complete.

Our NP-hardness results hold with coupling strengths of at most constant magnitude.
For comparison with our classification, we recall the tetrachotomy theorem of Cubitt and

Montanaro [14] classifying S-LH for families of 2-local Hamiltonians. They proved that for
every set of 2-qubit Hamiltonian terms S, the problem S-LH is either in P or NP-, StoqMA-,
or QMA-complete, and described properties of the set S which determine the problem’s
complexity. We note that both Theorem 13 and our Theorem 1 classify the complexity of all
sets of 2-qubit terms.

▶ Theorem 13 (Theorem 7 of [14]). For S any fixed set of 2-qubit Hamiltonian terms:
If every matrix in S is 1-local, then S-LH is in P.
Otherwise, if there exists a single-qubit unitary U such that U locally diagonalizes all
elements of S (i.e. U⊗2HU†⊗2 is diagonal for each 2-qubit H ∈ S), then S-LH is
NP-complete.
Otherwise, if there exists a single-qubit unitary U such that for each 2-qubit H ∈ S,

U⊗2HU†⊗2 = αZ⊗2 +A⊗ I + I ⊗B

for some α ∈ R and 1-local Hermitian matrices A,B, then S-LH is StoqMA-complete.
Otherwise, S-LH is QMA-complete.

Combining our classification of S-prodLH with the classification of S-LH gives us
Corollaries 2 and 3.

To prove Theorem 1, showing containment in P and NP are straightforward, and our
effort is to prove NP-hardness. In the proof, we will use a simple symmetrization trick that
allows us to consider only antisymmetric or symmetric Hamiltonian terms. We then prove
two lemmas, one for each case.

▶ Lemma 14. If S contains a 2-qubit antisymmetric term that is not 1-local, then MCL
W

with W = diag(1, 1, 0) is polynomial-time reducible to S-prodLH.

▶ Lemma 15. If S contains a 2-qubit symmetric term that is not 1-local, then there exists a
fixed non-negative W = diag(α, β, γ) with at least one of α, β, γ nonzero such that MCL

W is
polynomial-time reducible to S-prodLH.

In Section 4 we prove Theorem 4, that MCL
W is NP-complete for any W = diag(α, β, γ) that

is nonzero and non-negative.
We state some helpful facts in Section 3.1 below and then prove the two lemmas in

Section 3.2. We will now use these lemmas to prove our main theorem.

4 We would prefer a more concise name for 2-qubit terms that are not 1-local, but are unaware of any. One
option is 2-qubit terms with Pauli degree 2. Alternatively, these are 2-qubit terms which have nonzero
Pauli rank, referring to the rank of the correlation matrix M in the Pauli decomposition (Equation (5)).
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Proof of Theorem 1. First consider the case where S only contains 1-local terms. Then we
can write H =

∑
i Hi, where Hi acts only on the ith qubit. If |ψi⟩ is the single-qubit state

minimizing ⟨ψi|Hi|ψi⟩, then |ψ⟩ =
⊗

i |ψi⟩ minimizes ⟨ψ|H|ψ⟩, and so S-prodLH can be
solved by finding the ground state of n single-qubit Hamiltonians, which takes O(n) time.

Now suppose S is a set of of 2-qubit Hamiltonian terms such that at least one element of
S is not 1-local. Let H be any such element. As previously mentioned, S-prodLH ∈ NP
for any fixed S, as product states have concise classical descriptions which can be used to
efficiently calculate expectation values for a given local Hamiltonian. If H is antisymmetric,
then MCL

W with fixed W = diag(1, 1, 0) is reducible to S-prodLH by Lemma 14, and
MCL

W with such a W is NP-hard by Theorem 4, so S-prodLH is NP-complete. If H is
symmetric, then by Lemma 15 there exists a non-negative nonzero matrix W = diag(α, β, γ)
such that MCL

W is reducible to S-prodLH, it is NP-hard by Theorem 4, and so S-prodLH
is NP-complete. If H is neither of these, then we use our freedom to permute the direction
H is applied to any pair of qubits a, b to apply both Hab and Hba, which is equivalent to
implementing the symmetric term H ′ = H + SWAP (H) SWAP. So, we can say S effectively
contains H ′, or formally that hardness of {H ′}-prodLH implies hardness of S-prodLH,
and again referring to Lemma 15 concludes the proof. ◀

3.1 Closure Properties of S-prodLH

Before proving the two lemmas required in the proof of Theorem 1, we review several more
facts regarding 2-qubit Hamiltonian terms and operations under which the complexities of
S-LH and S-prodLH are unaffected. This section mostly reviews observations made in [14].

First, for a single-qubit unitary U and an operator H, define simultaneous conjugation
by U to mean U⊗nHU†⊗n. When discussing sets S of k-qubit terms, we define simultaneous
conjugation to mean {U⊗kHU†⊗k|H ∈ S}.

▶ Fact 16. For any single-qubit unitary U , the complexities of S-LH and S-prodLH are
equal to the complexities of S ′-LH and S ′-prodLH, respectively, where S ′ is S simultaneously
conjugated by U .

Observe that U⊗n (
∑m

i=1 Hi)U†⊗n =
∑m

i=1 U
⊗kHiU

†⊗k. Simultaneous conjugation by U

gives a bijection between Hamiltonians allowed in S-LH and S ′-LH as well as S-prodLH and
S ′-prodLH. The above fact follows from observing that this bijection preserves expectation
values, and that U⊗n |ϕ⟩ is a product state iff |ϕ⟩ is.

As an application of Fact 16, the following is based on an observation in [14].

▶ Fact 17. For any choice of permutation π on {1, 2, 3} and any choice of two of c1, c2, c3 =
±1, there exists a single-qubit unitary U and corresponding third coefficient s.t. simultaneous
conjugation by U maps the Pauli matrices {σ1, σ2, σ3} to {cπ(1)σπ(1), cπ(2)σπ(2), cπ(3)σπ(3)}.
So, writing every element of S in the Pauli basis, relabeling all σi with cπ(i)σπ(i) in the
decompositions of each element of S does not change the complexity of S-LH or S-prodLH,
where π and two of the coefficients can be chosen arbitrarily.

To justify the above fact, consider simultaneously rotating the three axes of the Bloch
sphere. Next, we quote the following, more involved, fact without proof.
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▶ Fact 18 ([14, 21]). Let H be a 2-qubit Hamiltonian term with Pauli decomposition
H =

∑3
i,j=1 Mijσiσj +

∑3
k=1(vkσkI + wkIσk). For any single-qubit unitary U ,

U⊗2H(U†)⊗2 =
3∑

i,j=1
(RMRT )ijσiσj +

3∑
k=1

((Rv)kσkI + (Rw)kIσk) (6)

for some R ∈ SO(3). Likewise, for any R ∈ SO(3), there exists a single-qubit U such that
the Pauli decomposition of U⊗2H(U†)⊗2 matches Equation (6).

A further straightforward observation from [14] is that in the Pauli decomposition
(Equation (5)), if H is symmetric then the correlation matrix M is symmetric, and if H is
antisymmetric then M is skewsymmetric, meaning M = −M⊤.

Finally, the below observation combines some of the above facts to establish a “normal
form” for symmetric and antisymmetric terms.

▶ Fact 19. If a 2-qubit Hamiltonian term H is symmetric, and so the associated correlation
matrix M is symmetric, there exists R ∈ SO(3) which diagonalizes M . Combining Facts 16
and 18, for any 2-qubit symmetric term H, there exists a symmetric term of the form H ′ =∑3

i=1 uiσiσi +
∑3

j=1 vj(σjI + Iσj) such that the complexities of {H}-LH and {H}-prodLH
are respectively the same as {H ′}-LH and {H ′}-prodLH.

If H is a 2-qubit antisymmetric term that is not 1-local, then M is skewsymmetric
and nonzero. Such an M may be block diagonalized via some R ∈ SO(3) such that H is
mapped to a(σiσj − σjσi) +

∑3
k=1 vk (σkI − Iσk) [37, 14]. In particular, by Fact 17, H can

be mapped to a(XZ − ZX) +
∑3

k=1 v
′
k (σkI − Iσk). Therefore, the complexities of {H}-LH

and {H}-prodLH are unaffected by assuming H has this form.

3.2 Proofs of Antisymmetric and Symmetric Lemmas
We now prove the two lemmas required in the proof of the main theorem, respectively
handling the cases that S contains an antisymmetric term and that S contains a symmetric
term. In both cases, it is sufficient for S to contain just a single term. Interestingly, our
construction in Lemma 14 for antisymmetric terms is unweighted, meaning all weights are
+1. In this case, the final Hamiltonian is fully determined by the specification of a single
2-qubit term and the interaction graph. Our construction in Lemma 15 uses positive and
negative unit weights, ±1. Intuitively, antisymmetric terms inherently allow negativity by
simply permuting the qubits they act on, while for symmetric terms we must use negative
weights.

Proof of Lemma 14. Consider an arbitrary instance of the problem MCL
W with W =

diag(1, 1, 0). For a given graph G = (V,E), the objective function is

MCL
W(G) = 1

2 max
ı̂∈S2

∑
ij∈E

∥Wı̂−Wȷ̂∥.

Given a parameter C, we must decide whether MCL
W(G) is at least C or at most C − ε. To

reduce MCL
W to S-prodLH, we first construct a gadget using the promised antisymmetric

term. Then, we apply this gadget according to the graph G such that the minimum energy
of a product state in our final Hamiltonian will equal − MCL

W(G).
Denote the assumed 2-qubit antisymmetric term that is not 1-local in S by H. By Fact 18,

our antisymmetric term H may be mapped to a term of the form

w
(
XaZb − ZaXb

)
+

3∑
k=1

vk

(
σa

kI
b − Iaσb

k

)
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where all coefficients are real, and we have w ̸= 0 since the term is not 1-local. As explained
in Remark 12 and Section 3.1, the complexity of {H}-prodLH is equivalent to that of
{H ′}-prodLH for H ′ derived using a variety of operations, including permutations and
linear combinations. If w is negative, then we redefine the direction the term acts in, Hab

versus Hba, so that w is positive. Finally, we scale5 the term so that w = 1 and define a
single-qubit Hermitian matrix A =

∑3
k=1 vkσk. Given the complexity is unchanged using H

or H ′, we simply redefine the original term, so that

Hab = XaZb − ZaXb +AaIb − IaAb.

Next, we use a symmetrization gadget to remove the 1-local terms AI − IA. For four
qubits a, b, c, d, define

B = Hab +Hbc +Hcd +Hda.

Note that here the direction of the interaction matters, since the terms are asymmetric. Then

B = (Xa −Xc)(Zb − Zd) − (Za − Zc)(Xb −Xd).

Now we consider how B interacts with product states on four qubits. For e = a, b, c, d,
define

ρe = 1
2(I + re · ve)

with ve = (Xe, Y e, Ze) the Pauli operators and re = (xe, ye, ze) the Bloch vector. Then,
writing any product state on qubits a, b, c, d as ρaρbρcρd, the expectation value on B is
tr

(
Bρaρbρcρd

)
. After eliminating terms, we find this equals

(ra − rc)⊤W ′(rb − rd) for W ′ =

 0 0 1
0 0 0

−1 0 0

 .
It is helpful to note that W ′⊤ = −W ′.

Now, consider the graph G given as input to MCL
W . Associate a qubit with each vertex

and call these the “vertex qubits”. For each edge ij, construct a copy of B such that it acts
on qubits ij and two ancilla qubits. The vertex qubits may be shared among several gadgets,
while the ancilla qubits are part of only one gadget. In particular, we choose to associate the
vertex qubits with qubits a and c in each copy of B, letting b and d be the ancilla. We will
refer to the copy of B which acts on vertex qubits i and j as Bij . Our Hamiltonian is then

Hfinal =
∑
ij∈E

Bij .

Before analyzing the full Hamiltonian Hfinal, consider the minimum expectation of a
single gadget Bij if the two vertex qubits are fixed, i.e. minrb,rd(ri − rj)⊤W ′(rb − rd). The
minimum is achieved when rb = −W ′⊤(ri − rj)/

∥∥W ′⊤(ri − rj)
∥∥ and rd = −rb, which yields

an expectation of

−2
∥∥W ′′(ri − rj)

∥∥ for W ′′ = diag(1, 0, 1).

5 If we want the terms to have unit weights, we could forgo scaling the term and reduce to w MCL
W

instead. As w > 0 this problem has the same complexity as MCL
W.
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Therefore, given an arbitrary graph G = (V,E), applying our gadget to every edge constructs
a Hamiltonian such that the minimum expectation of any product state is equal to

2 min
ri∈S2

∑
ij∈E

−
∥∥W ′′(ri − rj)

∥∥ = −2 max
ri∈S2

∑
ij∈E

∥∥W ′′(ri − rj)
∥∥.

For any graph G, the objective MCL
W(G) is equal for W = diag(1, 1, 0) and W ′′ =

diag(1, 0, 1). Alternatively, we may use our freedom to relabel Paulis to redefine the 2-qubit
term H such that the final weight matrix is W .

Finally, multiplying the full HamiltonianHfinal by 1
2 gives us that the minimum expectation

of any product state equals

− max
ri∈S2

∑
ij∈E

∥∥W (ri − rj)
∥∥ = − MCL

W(G).

We conclude deciding MCL
W reduces to deciding prodLH on Hfinal. Since Hfinal is entirely

constructed from the antisymmetric term H ∈ S, this completes the desired reduction of
MCL

W with W = diag(1, 1, 0) to S-prodLH. ◀

Next we prove the lemma dealing with S containing a symmetric term. The construction
is nearly the same as the in the previous proof, but requires negative weights to implement
the symmetrization gadget removing 1-local terms.

Proof of Lemma 15. Given fixed S, we will show there exists some fixed W such that MCL
W

reduces to S-LH. But, before describing W , we must analyze S.
Denote the assumed 2-qubit symmetric term that is not 1-local in S by H. As in the

previous proof, without changing the complexity of {H}-prodLH we may conjugate and
scale as necessary so that

Hab = α−XaXb + β−Y aY b + γ−ZaZb +
3∑

j=1
vj(σa

j I
b + Iaσb

j),

where all coefficients are real and at least one of α−, β−, γ− is nonzero since H is nonzero.
The superscripts in the above equations are to differentiate the coefficients of H from the
entries of W , which must be non-negative.

We again use a symmetrization gadget to remove the 1-local terms, but now require
negative weights. Given four qubits a, b, c, d, define B = Hab +Hcd −Hbd −Hac. This is a
rectangle with two positive edges and two negative edges. Then

B = α(Xa −Xd)(Xb −Xc) + β(Y a − Y d)(Y b − Y c) + γ(Za − Zd)(Zb − Zc).

Now we see how B interacts with product states on four qubits. For e = a, b, c, d, we again
define ρe = 1

2 (I + re · ve) with ve = (Xe, Y e, Ze) and re = (xe, ye, ze). Then, writing any
product state on a, b, c, d as ρaρbρcρd, the expectation value on B is tr

[
Bρaρbρcρd

]
, which

equals

α−(xa − xd)(xb − xc) + β−(ya − yd)(yb − yc) + γ−(za − zd)(zb − zc)

which is in turn equal to(
rb − rc

)⊤
W ′ (

ra − rd
)

for W ′ = diag
(
α−, β−, γ−)

.
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If we fix the state of qubits a and d and minimize the expectation on B, the minimum is
achieved when rb = −W ′(ra − rd)/

∥∥W ′(ra − rd)
∥∥ and rc = −rb. This minimum expectation

is −2
∥∥W ′(ra − rd)

∥∥. Observe this expectation value is equivalent to −2
∥∥W (ra − rd)

∥∥ for
W = diag(α, β, γ) where α = |α−|, β = |β−|, γ = |γ−|.

Now we are prepared to set up our reduction. For W = diag(α, β, γ), which is non-
negative and nonzero, consider an arbitrary instance of MCL

W . For a given graph G = (V,E),
the objective function is again MCL

W (G), and given a parameter C, we must decide whether
MCL

W (G) is at least C or at most C − ε.
Associate a “vertex qubit” with each vertex and construct a copy of the gadget B for

each edge ij, such that it acts on i, j and two ancilla qubits, and denote it Bij . The vertex
qubits may be shared among several gadgets, while the ancilla qubits are part of only one
gadget. In particular, we choose a and d in each gadget to be the vertex qubits.

Substituting our gadget for every edge constructs a Hamiltonian Hfinal such that the
minimum expectation of any product state is equal to

2 min
ri∈S2

∑
ij∈E

−
∥∥Wri −Wrj

∥∥ = −2 max
ri∈S2

∑
ij∈E

∥∥Wri −Wrj
∥∥.

Simply multiplying Hfinal by 1
2 makes this equal to − MCL

W(G).
We conclude that given S contains a 2-qubit symmetric term H that is not 1-local,

there exists some non-negative W = diag(α, β, γ) with at least one nonzero entry such that
MCL

W (G) reduces to prodLH(Hfinal). Since Hfinal was constructed using only the symmetric
term H ∈ S, this is also a reduction to an instance of S-prodLH, as desired. ◀

4 The Stretched Linear Max-Cut Problem

We study a generalization of the classical Max-Cut problem which arises naturally from
our study of product states and which is likely of independent interest. Both Max-Cut and
its generalization

MCk(G) = 1
2 max

ı̂∈Sk−1

∑
ij∈E

1 − ı̂ · ȷ̂ = 1
4 max

ı̂∈Sk−1

∑
ij∈E

∥ı̂− ȷ̂∥2

were introduced in Section 1. As the above equation emphasizes, maximizing the distance
between vectors is equivalent to maximizing the angle, optimally being anti-parallel.

Our new problem is defined with two significant changes. First, the sum is over distances
rather than squared distances. Second, the distances are allowed to incorporate a linear
stretch.

▶ Definition 20 (W-linear-Max-Cut (MCL
W )). For a fixed d × d diagonal matrix W ,

given an n-vertex graph G = (V,E) and thresholds b > a ≥ 0 with b− a ≥ 1/ poly(n), decide
whether

MCL
W (G) = 1

2 max
ı̂∈Sd+1

∑
ij∈E

∥Wı̂−Wȷ̂∥ = 1
2 max

ı̂∈Sd+1

∑
ij∈E

√
∥Wı̂∥ + ∥Wȷ̂∥ − 2(Wı̂)⊤(Wȷ̂)

is at least b or at most a.

A comparison of the geometric interpretations of MCk and MCL
W was given in Section 1. A

further interpretation comes from treating the edges of the graph as springs or rubber bands.
As explored in [29], the potential energy of a spring is quadratic in its length, so the MCk

value represents the total potential energy of the system given a particular embedding. On
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the other hand, the force or tension of each spring is linear in its length. So, MCL
W gives the

total force, tension, or pressure such an arrangement of springs would apply to the surface of
the sphere (or ellipsoid, more generally).

In both problems, the objective is a linear sum, of either the distances or the inner
products. Both problems generalize the traditional Max-Cut problem, since when restricted
to ±1 labels, distances are directly proportional to squared distances. Previous work was
likely motivated to focus on squared distances because approximation algorithms like SDPs
naturally apply to inner products but not to square roots of inner products.

Our main theorem concerning W-linear-Max-Cut is the below.

▶ Theorem 4. For any fixed non-negative W = diag(α, β, γ) with at least one of α, β, γ
nonzero, W-linear-Max-Cut is NP-complete.

Our hardness proofs do not require any edge weights (unlike our Hamiltonian constructions
in the previous section).

Containment in NP is immediate, and we break the proof of NP-hardness into three cases
based on the entries of W . The three cases depend on how many entries of W are equal,
requiring different approaches for dealing with degenerate solutions. We assume throughout
that 1 = α ≥ β ≥ γ; as we show in the final proof of Theorem 4, this suffices by scaling
and symmetry. Lemma 21 considers the case when all three entries are equal. Lemma 22
considers the case when the largest entry is unique. Lemma 23 finally considers the case
when the two largest entries are equal and distinct from the third, combining techniques
from the previous two proofs. Note that these cases are not entirely disjoint.

When W = diag(1, 1, 1), we prove hardness by reducing from the NP-complete 3-
Coloring problem. We replace every edge in the graph with a 4-clique, or tetrahedron. To
deal with the symmetry created by equally weighted axes, all of the gadgets are connected to
a new sink vertex, removing a degree of freedom. We then argue that there is an assignment
to the new graph that simultaneously (nearly) maximizes all of these cliques iff the original
graph is 3-colorable.

▶ Lemma 21. For W = diag(1, 1, 1), W-linear-Max-Cut is NP-hard.

Proof. We will reduce from 3-Coloring. Consider an arbitrary graph G = (V,E) on n

vertices and m edges. We construct H = (V ′, E′) as follows: Start with G. For each edge
ij ∈ E, add vertices kij , tij and connect i, j, kij , tij to form a 4-clique. Then add a sink
vertex t and an edge ttij for each tij . H therefore consists of m edge-disjoint 4-cliques, each
containing one edge from G, and m additional edges from vertices tij to t.

We claim that if G is 3-colorable, then MCL
W (H) ≥ mMCL

W (K4) +m. Conversely, we
claim that if MCL

W (H) ≥ mMCL
W (K4) +m− ε, for an ε = Ω

(
1/m2)

we will choose later,
then G is 3-colorable.

First, suppose G is 3-colorable. We will show how to derive a vector assignment to H
attaining mMCL

W (K4) +m from a 3-coloring of G. Define

∆W (u, v, w, r) = 1
2

∑
ij∈{uv,uw,ur,vw,vr,wr}

∥Wi−Wj∥

Let u, v, w, r be vectors corresponding to a regular tetrahedron inscribed in the unit sphere,
known to achieve the maximum perimeter of any inscribed tetrahedron at 4

√
6 [30]. We

3-color G (and therefore the vertices of H other than (kij)ij∈E , (tij)ij∈E , and t) with u, v, w,
assigning each vertex the vector matching its color. Then for each ij ∈ E, we assign kij
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the vector in {u, v, w} not assigned to i or j, and r to tij . Finally, we assign −r to t. By
construction, this assignment will yield a value of MCL

W (K4) on each 4-clique gadget, and
the edges ttij will each contribute exactly 1. Thus MCL

W (H) ≥ mMCL
W (K4) +m, as desired.

Now we will show the converse. Suppose there exists an assignment (k̂)k∈V ′ of vectors
achieving greater than mMCL

W (K4)+m−ε on H. We construct a 4-coloring of each connected
component of H \ {t} as follows: Choose an edge ij in the corresponding component of G
(note that there is a 1-to-1 correspondence between components of G and H \ {t}). Let
ı̂, ȷ̂, k̂ij , t̂ij be the vectors assigned to the vertices of the corresponding clique in H. Our
coloring will use these four vectors as colors, which we denote as the set C. We assign each
vertex v the color corresponding to the element of C that is closest to the vector assigned to
v in the MCL

W assignment. We will show that this is a proper coloring, and that it assigns
the same color to every tij , and therefore gives a 3-coloring of G.

To show that this is a proper coloring, we need to show that every pair of adjacent vertices
in H \ {t} are assigned different colors, i.e. that the closest elements of C to the vectors
assigned to them in the MCL

W assignment are distinct. As every edge in H \ {t} is contained
in some 4-clique corresponding to some edge xy of G, it will suffice to show the following: for
every edge xy in the component of G containing ij, if d is the smallest number of edges in a
path in G starting with ij and ending with xy, each of x̂, ŷ, k̂xy and t̂xy is within O(d

√
ε) of

a different element of C.
First we note that, as H consists of m edge-disjoint 4-cliques and m other edges, and the

maximum any assignment can earn on an edge is 1, the lower bound on the total amount
the assignment earns implies that every 4-clique earns at least MCL

W (K4) − ε and the other
edges (txyt)xy∈E earn at least 1−ε each. So by trigonometry we immediately have that every
t̂xy is within O(

√
ε) of −t̂, and therefore within O(

√
ε) of each other, and t̂ij in particular.

For the other vertices, we proceed by induction on d. We have the desired result trivially
for d = 1, as in this case ij = xy. Now suppose it holds for d. Let xy be the end of a
(d+ 1)-edge path starting with ij. Without loss of generality let y be the vertex of xy earlier
in the path, and let z be the immediately prior vertex in the path, so by the inductive
hypothesis ŷ, ẑ, k̂yz, and t̂yz are within O(d

√
ε) of different elements of C. Furthermore,

as both {x̂, ŷ, k̂xy, t̂xy} and {ŷ, ẑ, k̂yz, t̂yz} are vertices of tetrahedra with perimeters at
least 4

√
6 − ε, by Lemma 29 the edge lengths of these tetrahedra are all in the interval

[ 4
√

6
6 −O(

√
ε), 4

√
6

6 +O(
√
ε)]. So as we have already shown that t̂yz, t̂xy, and t̂ij are all within

O(
√
ε) of each other, then the criteria of Lemma 30 are satisfied with ABCD = ŷt̂xyx̂k̂xy

and AEFG = ŷt̂yz ẑk̂yz and so x̂ and k̂xy are each within O(
√
ε) of (different) elements of

{ẑ, k̂yz}. So then the result follows by the triangle inequality.
We now have that every vertex in H is assigned a vector within O(m

√
ε) of an element of

C, and so taking ε to be a sufficiently small constant times 1/m2, we can take these distances
to be at most 0.1. Moreover, for any two adjacent vertices, the choice of color will be different,
and so as by Lemma 29 the distances between these four vectors are at least 4/

√
6 − O(ε),

this implies any two adjacent vertices are assigned different colors, and so we have a proper
4-coloring of H \ {t}. Finally, note that, as every t̂xy is within O(ε) of every other one, this
implies all the txy were assigned the same color, and so no vertex in G uses this color. So
this gives us a proper 3-coloring of G. ◀

Next, in Lemma 22 we consider the case W = diag(1, β, γ) and 1 > β, γ ≥ 0, in which
the maximum weight is unique. The approach in the proof of Lemma 21, reducing from
3-Coloring, can in fact be modified to cover this case, but analyzing triangles inscribed in
ellipses instead of circles is more technical. Instead, we take a different approach and in the
case of a unique maximum (whether β equals γ or not) give a reduction from Max-Cut
instead of 3-Coloring.
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We insert ancilla vertices so that every vertex in the original graph is the center of a large
star. These star gadgets amplify any deviation from the highest-weight axis such that any
near-optimal solution must approximate a standard 1-dimensional labeling, as in Max-Cut.

▶ Lemma 22. For any W = diag(1, β, γ) with 1 > β ≥ γ ≥ 0, W-linear-Max-Cut is
NP-hard.

Proof. We reduce from the standard NP-complete Max-Cut problem. For any graph
G = (V,E) with n vertices and m edges, we construct a graph H = (V ′, E′) with V ⊆ V ′

and E ⊆ E′ by, for each v ∈ V , adding K = m3n ancilla vertices vi, and then adding an
edge from each of these vertices to v so that v is the center of a K-star. Now |V ′| = n(1 +K)
and |E′| = m+Kn.

We claim that, for any C > 1 and for large enough n, MC(G) ≥ C implies MCL
W (H) ≥

C +Kn and MCL
W (H) > C +Kn− 1/2 implies MC(G) ≥ C.

First, suppose there is a cut of G with value at least C. We construct a corresponding
assignment of vectors to vertices in V ′. First assign the vector (1, 0, 0) to all vertices in V

which are labeled +1 in G and (−1, 0, 0) to those with labels −1. Then, for every vertex in
v ∈ V , which by construction is at the center of a star of ancilla qubits in H, assign the
vector opposite the one assigned to v to each of the ancilla vertices. This assignment of
vectors gives an objective value of at least C on the edges from the original graph and Kn

on the edges of the star gadgets, and so the MCL
W value of this assignment is C +Kn.

Now suppose there exists an assignment of vectors achieving MCL
W value greater than

C +Kn− 1 on H. We will show that the cut given by sgn(v̂1) for each v ∈ V (i.e. projecting
v̂ to the x-axis and checking whether it is ≥ 0 or < 0) has value at least C.

First, for each v ∈ V , let ŝgn(v̂) = (sgn(v̂1), 0, 0). We will show that this is close
to v̂. Because the original graph can contribute at most m to the MCL

W objective, and
each star gadget can contribute at most K, each star gadget must contribute at least
K + (C − 1/2 −m) ≥ K − 1/2 −m > K

(
1 − 2m

K

)
. By Lemma 26, for the K-star to achieve

at least K
(
1 − 2m

K

)
, the vector v̂ assigned to v must satisfy

∥Wv̂ − ŝgn(v)∥ ≤ δ for δ = 2
√

2m
K

√
1 + β2

1 − β2 .

We will use this fact to show that the MCL
W value earned by the vector assignment on the

original graph G is close to the value of the cut we defined. We have∣∣∣∣∣∣
∑
ij∈E

∥Wı̂−Wȷ̂∥ −
∑
ij∈E

∥ŝgn(̂ı) − ŝgn(ȷ̂)∥

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
ij∈E

(∥Wı̂−Wȷ̂∥ − ∥ŝgn(̂ı) − ŝgn(ȷ̂)∥)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
ij∈E

(∥Wı̂− ŝgn(̂ı)∥ + ∥Wȷ̂− ŝgn(ȷ̂)∥)

∣∣∣∣∣∣ ≤ 2mδ = 4
√

2
n

√
1 + β2

1 − β2 = O
(
1/

√
n

)
which is < 1/2 for large enough n.

Using for a second time the fact that the edges of the star gadgets can contribute at most
Kn to the MCL

W (H), the vector assignment must achieve at least C − 1/2 on G, and so

C − 1/2 ≤ 1
2

∑
ij∈E

∥Wı̂−Wȷ̂∥ ≤ 1
2

∑
ij∈E

|ŝgn(̂ı) − ŝgn(ȷ̂)| + O
(
1/

√
n

)
implying that the value of our cut is strictly greater than C − 1 for sufficiently large n.
Therefore, as it is integer-valued it is at least C, concluding the proof. ◀
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Finally, we give Lemma 23, in which W = diag(1, 1, γ) and 1 > γ. Our proof combines the
techniques in the previous two proofs. Similar to the proof of Lemma 21, we show hardness
by reducing from 3-Coloring. Our construction begins by replacing every edge in the graph
with a 3-clique. Then, as in the proof of Lemma 22, we insert large star gadgets on every
vertex, forcing solutions away from the low-weight z-axis. With solutions restricted to two
dimensions, we are able to argue there is an assignment to the new graph that simultaneously
(nearly) maximizes all of the cliques iff the original graph was 3-colorable.

▶ Lemma 23. For any W = diag(1, 1, γ) with 1 > γ ≥ 0, W-linear-Max-Cut is NP-hard.

Proof. Consider an arbitrary instance of 3-Coloring on a graph G = (V,E) with n vertices
and m edges. Construct a new graph H ′ = (V ′, E′) by taking G and, for each edge ij ∈ E,
adding a vertex kij and edges ikij and jkij , so that each edge in G corresponds to a 3-clique
(K3) in H ′. Note that the m cliques constructed this way are edge-disjoint. Next, for each
vertex v in H ′, add K = m6 ancilla vertices vi, each connected to v so that v is the center of
a K-star. Call the final graph H ′′ = (V ′′, E′′), for which we have (K + 1)(n+m) vertices
and 3m+K(n+m) edges.

We claim that if G is 3-colorable, then MCL
W (H ′′) ≥ K(n+m) + 3

√
3m. Conversely, we

claim that if MCL
W (H ′′) > K(n+m) + 3

√
3m− ε, for an ε = Ω

(
1/m2)

we will choose later,
then G is 3-colorable. As testing 3-colorability is NP-hard, this will prove the theorem.

First, suppose G is 3-colorable. Let C be any set of three vectors in the xy-plane achieving
the maximum value of MCL

W (K3) = 3
√

3. Given any 3-coloring of G, we assign one of these
vectors to each color, and thus assign vectors from C to G with no two adjacent vertices
having the same vector. We extend this assignment to H ′ by, for each of our constructed
3-cliques i, j, kij , assigning the vector in C that was not assigned to either i or j to kij . Now
each of these cliques contributes 3

√
3 to the objective, and as there are m of them and they

are edge-disjoint, this contributes 3
√

3m to the objective. To extend to H ′′ and its star
gadgets, every edge of a star centered on vertex v can trivially contribute ∥v∥ to the objective
value. Because all vectors are in the xy-plane, and so the unit circle, this means they all
contribute 1. So in total, there exists an assignment with value 3

√
3m+K(n+m).

Now suppose there exists a vector assignment achieving greater than K(n+m)+3
√

3m−ε
on H ′′. For a vector v̂ = (v̂x, v̂y, v̂z), let ŝgn(v̂) denote the vector (v̂x, v̂y, 0)/∥(v̂x, v̂y, 0)∥. We
assign colors as follows. Choose any of the K3 gadgets i, j, kij in H ′′ corresponding to an
edge ij in the original graph. Let ı̂, ȷ̂, k̂ij be the vectors assigned to the vertices, respectively.
Assign three colors to the vertices. Then, choose any K3 gadget i, ℓ, kiℓ adjacent to the
first. For each vertex in the second clique, consider its assigned vector and round it via ŝgn,
determine which of the rounded vectors ŝgn(̂ı), ŝgn(ȷ̂), ŝgn(k̂ij) it is closest to, and assign the
same color. We continue coloring adjacent cliques in this way, comparing rounded vectors to
the original set ŝgn(̂ı), ŝgn(ȷ̂), ŝgn(k̂ij), until the coloring is propagated to the entire graph.
This colors all of the vertices in H ′, which are the centers of star gadgets in H ′′. We will
show no adjacent vertices in H ′ were assigned the same color. Since G is a subgraph of H ′,
this also implies a proper coloring of G, as desired.

We first show that just as the assigned vectors must achieve a large objective value on
the clique gadgets, the star gadgets force the rounded vectors to achieve a similar score.
Because the m clique gadgets can each contribute at most 3

√
3 to the objective value, the

star gadgets in H ′′ must contribute at least K(n+m) − ε. Similarly, because the edges of
each star can contribute at most K, each star must achieve at least K − ε. For any vertex in
s in H ′, consider the star gadget centered on it in H ′′. As shown in Lemma 26, for the star
to achieve K(1 − ε/K), the vector ŝ assigned to s must satisfy
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∥Wŝ− ŝgn(ŝ)∥ ≤ δ for δ = 2
√

ε

K

√
1 + γ2

1 − γ2 .

On the other hand, because the star gadgets can contribute at most K(n+m) to the objective
value, the vector assignment must achieve at least 3

√
3m− ε on the remaining edges, the

ones in H ′. Given the vectors are close, we have that∣∣∣∣∣∣
∑

ij∈E′

∥Wı̂−Wȷ̂∥ −
∑

ij∈E′

∥ŝgn(̂ı) − ŝgn(ȷ̂)∥

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

ij∈E′

∥Wı̂−Wȷ̂∥ − ∥ŝgn(̂ı) − ŝgn(ȷ̂)∥

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

ij∈E′

∥Wı̂− ŝgn(̂ı)∥ + ∥Wȷ̂− ŝgn(ȷ̂)∥

∣∣∣∣∣∣ ≤ 2|E′|δ = 12
√
εm−2.

Therefore, for µ = ε+ 12
√
εm−2, the set of rounded vectors must achieve at least 3

√
3m− µ

on the rest of H ′. Because each of the m clique gadgets can contribute at most 3
√

3, the
rounded vectors must achieve at least 3

√
3 − µ on each individual clique.

The rounded vectors exist in the xy-plane, which means they are inscribed in the unit
circle. Maximizing the sum of the edge lengths on a K3 gadget is equivalent to maximizing
the perimeter of a triangle. For a triangle in the unit circle to have nearly maximal perimeter,
it must be nearly regular; as shown in Lemma 27, if the perimeter is at least 3

√
3 − µ, then

each edge length must be in the interval
√

3 ± 4√
µ.

Now, consider any two adjacent vertices u, v in H ′, which are at the center of star gadgets
in H ′′. We must show they were assigned different colors. The two vertices exist in some K3
gadget in H ′, and the coloring procedure, starting from i, j, kij , must have reached them in
at most m rounds. At each step in the procedure, there is a colored clique and a successive
adjacent clique which share a clique. Two nearly regular triangles which share a vertex
must nearly share their other vertices; as shown in Lemma 28, the distance between the first
clique’s rounded vectors and the second clique’s is at most O

(√
µ

)
.

After m rounds of the coloring procedure, we conclude u and v must be assigned colors
such that ŝgn(û), ŝgn(v̂) are each at distance at most m× O

(√
µ

)
= O

(
ε1/4)

away from the
same-colored rounded vectors in the initial clique. Both the initial clique and the clique
containing u and v must have vectors separated by at least

√
3 − ε. For sufficiently small

ε (ε = Θ
(
1/m2)

with a sufficiently small constant suffices), ŝgn(û), ŝgn(v̂) cannot also be
within O(

√
ε) of the same initial vector, so we conclude they must be associated with different

colors, and this is a proper coloring. ◀

We now conclude with a proof of the main theorem of this section, that W-linear-Max-Cut
is NP-complete for any fixed diagonal 3 × 3 non-negative nonzero W .

Proof of Theorem 4. The containment of W-linear-Max-Cut for any diagonal W is
straightforward. With W a constant, given a claimed vector assignment, the value MCL

W (G)
can be verified in time linear in the number of edges.

To show hardness, we make two simplifications. First, because MCL
cW = cMCL

W for a
constant c, we can easily reduce to an instance in which we assume the largest entry of W
equals 1. Second, although rearranging the entries of diagonal W requires changing any vector
assignment, it does not change the objective value. So MCL

diag(α,β,γ) = MCL
diag(β,α,γ) and

any other rearrangement of W , and we can assume the entries are ordered 1 ≥ α ≥ β ≥ γ ≥ 0.
With this, the theorem follows by Lemmas 21–23. ◀
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5 NP-Hardness of Unweighted Quantum Max-Cut

Our lower bounds elsewhere in this paper are for local Hamiltonian problems in which terms
can be given positive or negative weight. They apply in the model where all weights are
restricted to being of constant weight but require some terms with negative weight to work.
In this section we show that this restriction can be removed for one of the best-studied local
Hamiltonian problems: the Quantum Max-Cut (or QMC) problem.

The Quantum Max-Cut problem can be defined as S-LH with F = {XX +Y Y +ZZ}.
We will write h for XX + Y Y + ZZ.6

▶ Definition 24 (Quantum Max-Cut (QMC)). Given a Hamiltonian H =
∑n

ij wijHij

acting on n qubits where each Hij = I − hij, all wij are real, polynomially-bounded, and
specified by at most poly(n) bits, and two real parameters b, a such that b− a ≥ 1/ poly(n),
decide whether λmax(H) is at least b (YES) or at most a (NO).

Note that we have written QMC as a maximum eigenvalue problem (with a flip and
shift of the local terms) rather than in terms of the minimum eigenvalue as for k-LH in
Definition 7. This is to follow the norm in previous work; note that as both the terms and the
objective function are flipped, an instance of the problem defined this way will be equivalent
to an instance of the corresponding k-LH problem with the same weights.

When minimizing (maximizing) the eigenvalue and the weights are restricted to be
non-negative (non-positive), it is referred to as the anti-ferromagnetic Heisenberg model.
Flipping the restrictions, e.g. minimizing with non-positive weights, is referred to as the
ferromagnetic Heisenberg model. The latter case is trivial when viewed as an optimization
problem (as |00⟩ earns 0 on the local term, and so the problem is optimized by assigning |0⟩
to every qubit), so we will be interested in hardness results for the former.

It is straightforward to verify that for two qubits a, b with pure states ρa, ρb,

tr
(
ρa ⊗ ρb h

)
= ra · rb = 1 − 1

2
∥∥ra − rb

∥∥2
,

where ra, rb are the corresponding Bloch vectors. This shows that deciding QMC restricted
to product states, which we denote prodQMC, is equivalent to the standard Vector
Max-Cut problem in three dimensions:

▶ Definition 25 (Max-Cutk(MCk)). Given an n-vertex graph G = (V,E) and thresholds
b > a ≥ 0 such that b− a ≥ 1/ poly(n), decide whether

MCk = 1
2 max

ı̂∈Sk−1

∑
ij∈E

1 − ı̂ · ȷ̂ = 1
4 max

ı̂∈Sk−1

∑
ij∈E

∥ı̂− ȷ̂∥2

is at least b or less than a.

Note that this is different from the W-linear-Max-Cut we studied in Section 4 as it
considers squared distances. Furthermore, while Max-Cut is a classic NP-complete problem,
MCk is not expected to be hard for all values of k, and in particular is tractable when
k = n = |V |.

Our main result classifying S-prodLH immediately implies {h}-prodLH, and therefore
also prodQMC and MC3, is NP-complete. However, the proof of Lemma 15 utilizes
Hamiltonian gadgets involving negative weights. This leaves open whether prodQMC and

6 Other work frequently includes a multiplicative factor, e.g. 1/2, in the definition of h and/or of QMC.

ITCS 2025



63:24 Complexity Classification of Product State Problems for Local Hamiltonians

MC3 remain NP-hard on unweighted graphs. We now prove that MC3 is NP-hard even when
restricted to positive unit weights. This is the first published proof of this fact, although we
note that a sketch of a different proof was previously known for this specific problem [40].

Our approach is similar to the proof of Lemma 21, which demonstrated hardness of MCL
W

for W = I by replacing every edge with a 4-clique (with one vertex connected to a source
vertex), and showing that the resulting graph could simultaneously optimize all of these
4-cliques (by assigning vectors corresponding to a regular tetrahedron) if and only if the
original graph was 3-colorable.

However, the change in objective function from distances to squared distances causes a
problem: while the regular tetrahedron is the unique optimal solution for MCL

W (K4), in the
case of MC3(K4), setting v1 = v2 = (1, 0, 0), v3 = v4 = (−1, 0, 0) would also be optimal. So
we replace each edge of the 4-cliques with triangles, which penalize the degenerate solution
and forces the vectors assigned to the vertices of the 4-cliques toward regular tetrahedra.

▶ Theorem 5. MC3 is NP-complete.

Proof of Theorem 5. Clearly MC3 is in NP. To show hardness, we reduce 3-Coloring to
MC3. Given an instance G = (V,E) on n vertices and m edges, we first replace every edge
with a copy of K4. That is, for each edge ij ∈ E, we add vertices qij , tij and add edges to
form a 4-clique. Call the new graph H ′ = (V ′, E′). Then in H ′, we replace every edge with a
copy of K3. That is, for all ij ∈ E′ we add a vertex rij and edges irij and jrij . Finally, we
add a sink vertex t and for every edge ij ∈ E, in the original graph, add edge ttij . Call the
resulting graph H ′′ = (V ′′, E′′). For future reference, let R denote a copy of K4 with each
edge replaced by a copy of K3, which we may call a “tetrahedron with adjoined triangles”.

We claim that if G has a proper 3-coloring then MC3(H ′′) ≥ mMC3(R) +m. Conversely,
we claim that if MC3(H ′′) ≥ mMC3(R) +m− ε, for an ε = Ω

(
1/m2)

we will choose later,
then there is a 3-coloring of G. Later, we will show MC3(R) = 10 + 2

√
3.

First, suppose G is 3-colorable. Let S consist of the following three unit vectors in R3:(√
8/9, 0,−1/3

)
,
(

−
√

2/9,
√

2/3,−1/3
)
,
(

−
√

2/9,−
√

2/3,−1/3
)
.

Along with (0, 0, 1), these are the four vertices of a regular tetrahedron inscribed in the unit
sphere. Assign each one of the vectors of S to each color, such that every vertex in G is
assigned a vector and no adjacent vertices have the same vector. We copy those vectors to
the vertices of H ′, and for each vertex qij we assign the vector in S not assigned to i or j.
We assign (0, 0, 1) to each vertex tij . We copy these vectors to the vertices of H ′′. In H ′′ we
assign (0, 0,−1) to t. Finally, for each edge ij ∈ E′ and 3-clique i, j, rij , the only uncolored
vertex is rij , and we assign the unique unit vector that is antiparallel to the sum of the
vectors assigned to i and j.

Now we calculate the objective value that this assignment achieves. For vertex i, let ı̂
denote the assigned vector. For any edge ij in G, the vectors assigned to the associated K4
gadget correspond to vertices of a regular tetrahedron, and it can be directly calculated that
for any of the six edges ab, we have â · b̂ = −1/3. For edges ttij , we have t · tij = −1. For
edges irij , given ı̂ · ȷ̂ = −1/3 and r̂ij ∝ −(̂ı+ ȷ̂), the inner product is ı̂ · r̂ij = ȷ̂ · r̂ij = −1/

√
3.

In total, for each edge ij in G, the graph H ′′ has a gadget with six edges in a K4 gadget,
twelves edges in K3 gadgets, and one edge incident on t. Plugging the inner products we
calculated into the definition of MCk gives a total objective value of m(10 + 2

√
3) +m.

Second, suppose there is a set of unit vectors ı̂ for i ∈ V ′′ such that MC3(H ′′) ≥
mMC3(R) +m − ε. We color the vertices of H ′, comprised of the K4 gadgets, as follows.
Pick some color and assign it to all of the vertices tab. Then, choose any K4 gadget i, j, kij , tij
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in H ′ corresponding to an edge ij in the original graph. Let ı̂, ȷ̂, k̂ij , t̂ij be the vectors assigned
to the vertices, respectively. Assign three colors to the uncolored vertices arbitrarily. Then,
choose any K4 gadget i, ℓ, kiℓ, tiℓ adjacent to the first. For each uncolored vertex in the
second clique, consider its assigned vector, determine which of ı̂, ȷ̂, k̂ij it is closet to, and
assign the same color. We continue coloring adjacent cliques in this way, comparing vectors
to the original set ı̂, ȷ̂, k̂ij , until the coloring is propagated to the entire graph.

Although we assigned four colors, one of them is used exclusively by the vertices tab.
Since these vertices are not in G, if this is a proper 4-coloring of H ′, then it gives a proper
3-coloring of the subgraph G. So, in the remainder of the proof we will show that no two
adjacent vertices in H ′ were assigned the same color.

The graph H ′′ is comprised of m edge-disjoint gadgets R as well as m edges ttab. In order
for the total objective value to be greater than mMC3(K3) +m− ε, each gadget R must
contribute at least MC3(R) − ε and each edge ttab must contribute at least 1 − ε. As shown
in Lemma 31, the sum of squared edge lengths of a “tetrahedron with adjoined triangles”
is nearly maximized iff the lengths of the edges forming the tetrahedron are nearly regular.
Specifically, for a gadget R to achieve at least 10 + 2

√
3 − ε, each side of the tetrahedron

must be in the interval 4/
√

6 ± O(
√
ε).

Now consider any two adjacent vertices v, u in H ′. The two vertices exist in some K4
gadget in H ′, and the coloring procedure must have reached it after at most m rounds. At
each step in the procedure, there is a colored clique and a successive adjacent clique. There
are two copies of R in H ′′ which contain those two 4-cliques from H ′. The gadgets share
one vertex. Additionally, each gadget has a vertex adjacent to the sink t, whose assigned
vectors must be at distance at least 2 − 2ε from t̂. Since all of these are in the unit sphere,
standard trigonometry shows those two assigned vectors must themselves be within O(ε) of
each other. As verified in Lemma 30, considering two nearly regular tetrahedra which share
one vertex and have a pair of similar vertices, the other vertices of the tetrahedra must each
be within O(

√
ε) of each other.

After m rounds of the coloring procedure, we conclude that v̂, û are each at distance
at most m × O(

√
ε) away from the same-colored vectors in the original set ı̂, ȷ̂, k̂ij . Since

all of the edges of the 4-clique gadgets must be at least 4/
√

6 − O(
√
ε), for ε = Θ

(
1/m2)

sufficiently small the vectors v̂, û cannot be near the same original vector. Therefore, they
must been colored differently, as desired. ◀

By the correspondence described earlier in the section, we immediately have the desired
bound on S-prodLH.

▶ Corollary 6. Quantum Max-Cut restricted to product states, prodQMC, is NP-complete,
even when all terms are restricted to have positive unit weight.
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A Geometry Lemmas

First, we give a simple lemma regarding star graphs. Our goal is to show that inserting star
gadgets into a graph forces maximal solutions to MCL

W to be close to the highest weighted
axes.

▶ Lemma 26. Consider a star graph SK with center vertex v and K neighbors. Consider
any 0 ≤ ε ≤ 1 and any W = diag(1, w2, w3) with 1 ≥ w2 ≥ w3 ≥ 0 and w3 < 1.
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Let Π denote the projector onto the axes for which wi = 1 (so the projector onto the
x-axis or the xy-plane). Similarly, let λ be the largest wi which is not equal to 1 (either w2
or w3). Let ŝgn(v̂) = Πv/∥Πv∥.

If vectors are assigned to SK which achieve at least MCL
W(SK) ≥ K(1 − ε), and v̂ is the

vector assigned to v, then

∥Wv̂ − ŝgn(v̂)∥ ≤ δ for δ = 2
√
ε

√
1 + λ2

1 − λ2 .

Proof. Suppose to the contrary that ∥Wv̂ − ŝgn(v̂)∥ > δ. We know that

∥Wv̂ − ŝgn(v̂)∥ =
√

(ŝgn(v̂)x − v̂x)2 + (ŝgn(v̂)y − w2v̂y)2 + w2
3 v̂

2
z

=
√

(ŝgn(v̂)x − v̂x)2 + (ŝgn(v̂)y − w2v̂y)2 + w2
3

(
1 − v̂2

x − v̂2
y

)
≤

√(
1 − v̂2

x − v̂2
y

)
+ λ2(1 − v̂2

x − v̂2
y) =

√
(1 + λ2)(1 − v̂2

x − v̂2
y),

where the inequality holds for v̂x, v̂y ∈ [0, 1]. Combining, we have that (1+λ2)(1−v̂2
x−v̂2

y) > δ2,
which implies v̂2

x + v̂2
y < 1 − δ2/(1 + λ2). Now we are ready to find that the maximum

objective value earned on the star is less than half of

K(1 + ∥Wv̂∥) = K +K
√
v̂2

x + v̂2
y + λ2v̂2

z = K +K
√
v̂2

x + v̂2
y + λ2(1 − v̂2

x − v̂2
y)

= K +K
√

(v̂2
x + v̂2

y)(1 − λ2) + λ2 ≤ K +K

√(
1 − δ2

1 + λ2

)
(1 − λ2) + λ2

= K +K
√

1 − 4ε ≤ K +K(1 − 4ε) = K(2 − 4ε).

So, the objective value is less than K(1−2ε), which is less than K(1−ε), a contradiction. ◀

Next, we study the geometry of triangles. For a triangle ABC, let L(ABC) denote the
sum of the edge lengths. It is straightforward to show that for a triangle inscribed in a circle
of radius r, L(ABC) ≤ 3

√
3r, which is uniquely achieved by an equilateral triangle [30].

▶ Lemma 27. Consider a triangle ABC inscribed in the unit circle and any 0 ≤ ε < 1. If
L(ABC) ≥ 3

√
3 − ε, then each edge length is in the interval

[√
3 − 4

√
ε,

√
3 + 4

√
ε
]
.

Proof. For the sake of contradiction, suppose L(ABC) ≥ 3
√

3 − ε and that there exists an
edge length outside the interval

√
3 ± 4

√
ε.

First suppose that some edge length is greater than
√

3 + 4
√
ε. Because the maximum

value of L is 3
√

3, this implies at least one edge length is less than
√

3 − 2
√
ε. So whether an

edge length is above or below the interval, some edge length is less than
√

3 − 2
√
ε.

Given L(ABC) ≥ 3
√

3 − ε and some edge length is less than
√

3 − 2
√
ε, some edge length

must be greater than (3
√

3 − ε −
√

3 + 2
√
ε)/2 ≥

√
3 +

√
ε, so there exists a pair of edge

lengths whose difference is greater than 3
√
ε.

We relabel the triangle so that ∥AC∥ ≥ ∥AB∥ ≥ ∥BC∥ and ∥AC∥ − ∥BC∥ > 3
√
ε. We

can rotate the unit circle as necessary so that ABC is of the form

A = (a, b) B = (−a, b) C = (cx, cy).

Define C ′ = (0,−1). We will show L(ABC ′) − L(ABC) > ε, implying L(ABC) is less than
3
√

3 − ε, a contradiction.
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Both L(ABC) and L(ABC ′) are sums of 3 edge lengths. The edge AB is shared and
we have that ∥AC ′∥ = ∥BC ′∥, so we are interested in 2∥AC ′∥ − ∥BC∥ − ∥AC∥. We may
calculate

∥AC ′∥ =
√

2 + 2b, ∥BC∥ =
√

2 + 2bcy + 2acx, ∥AC∥ =
√

2 + 2bcy − 2acx.

From here, we may verify

4∥AC ′∥2 = (∥BC∥ + ∥AC∥)2 + (∥BC∥ − ∥AC∥)2
,

and so

(2∥AC ′∥ + ∥BC∥ + ∥AC∥) (2∥AC ′∥ − ∥BC∥ − ∥AC∥) ≥ (∥BC∥ − ∥AC∥)2
,

and

2∥AC ′∥ − ∥BC∥ − ∥AC∥ ≥ (∥BC∥ − ∥AC∥)2 (2∥AC ′∥ + ∥BC∥ + ∥AC∥)−1
.

To lower bound the left-hand side, we use our lower bound on the difference between the
edge lengths and the upper bound that all lengths in the unit circle are less than 2. We find

2∥AC ′∥ − ∥BC∥ − ∥AC∥ >
(
3
√
ε
)2 8−1 = 9ε/8.

Overall, we have found that L(ABC ′) − L(ABC) > ε. ◀

▶ Lemma 28. Consider triangles ABC and ADE inscribed in the unit circle. If all edges
of the triangle have lengths in the interval

√
3 ± δ, then the points {B,C} are each within

O(δ) distance of (different) points in {D,E}.

Proof. Because these are vectors restricted to a unit circle, we can assume A = (1, 0, 0).
Given A is fixed, we can characterize the constraints on the other points as follows. B,C,D,E
must lie in the intersection of the unit circle with a circular shell bounded by radii

√
3 − δ

and
√

3 + δ centered at A. Given
√

3 + δ < 2, it is clear this intersection is two disjoint
segments of the unit circle.

We wish to upper bound the distance between points in either of these regions. This
is the distance between the ends of the regions, along a chord from the point at distance√

3 − δ to the point at distance
√

3 + δ.
The length of the chord can be bound as follows. Given a chord length d, the internal angle

is 2 arcsin(d). Given an angle θ, the chord length is 2 sin(θ/2). So, we can convert the known
distances to angles, take the difference, and convert back to a distance: 2 sin(arcsin((

√
3 +

δ)/2) − arcsin((
√

3 − δ)/2)). This is equivalent to 2 sin (arcsin(d/2) − arcsin ((d− 2δ)/2)) for
d =

√
3 + δ. Observing this function is increasing in d, we can upper bound the value by

taking d <
√

3 + 0.1. The Taylor series of 2 sin(arcsin(
√

3+0.1
2 ) − arcsin(

√
3+0.1−δ

2 )) gives that
this is at most 2.5δ. ◀

Next, we transition to considering tetrahedra. For a tetrahedron ABCD, let L(ABCD)
denote the sum of the edge lengths. It is known that for a tetrahedron inscribed in a
sphere of radius r, L(ABCD) ≤ 4

√
6r, and the maximum is uniquely achieved by a regular

tetrahedron [30].

▶ Lemma 29. Consider a tetrahedron ABCD inscribed in the unit sphere and any ε ≥ 0. If
L(ABCD) ≥ 4

√
6 − ε, then each edge length is in the interval

[
4

√
6

6 − 50
√

2ε
3 , 4

√
6

6 + 50
√

2ε
3

]
.
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Proof. For the sake of contradiction, suppose L(ABCD) ≥ 4
√

6 − ε and that there exists an
edge length outside the given interval.

First consider the case that some edge length is greater than 4
√

6
6 + 50

√
2ε

3 . Because the
maximum of L in the unit sphere is 4

√
6, at least one of the other edge lengths must be less

than 4
√

6
6 − 10

√
2ε

3 . So, whether an edge length is above or below the interval, in both cases
some edge length is less than 4

√
6

6 − 10
√

2ε
3 .

If L(ABCD) ≥ 4
√

6 − ε and some edge length is less than 4
√

6
6 − 10

√
2ε

3 , then some edge
length must be greater than

(
4
√

6 − ε− 4
√

6
6 + 10

√
2ε

3

)
/5 ≥ 4

√
6

6 + 2
√

2ε
3 . So, there exists a

pair of edges such that the difference in their lengths is greater than 12
√

2ε
3 = 4

√
2ε.

If two edge lengths e1, e2 in a tetrahedron differ by more than 4
√

2ε, then there must
exist a pair of adjacent edges which differ by more than 2

√
2ε. This is because either the

two edges are adjacent, or they are both adjacent to a third edge e3 and that length must be
closer to e1 or to e2, i.e. min{∥e3 − e1∥, ∥e2 − e1∥} ≤ ∥e1 − e2∥/2 We relabel the tetrahedron
so that ∥AC∥ − ∥BC∥ > 2

√
2ε.

Next, without changing the value of L, we can rotate ABCD such that A,B are of
the form A = (a,−b, 0) B = (−a,−b, 0). Let C = (cx, cy, cz) D = (dx, dy, dz) and
C ′ = (0, cy,

√
1 − c2

y) D′ = (0, dy,
√

1 − d2
y), We will show L(ABC ′D′) − L(ABCD) > ε,

implying L(ABCD) must in fact be less than 4
√

6 − ε.
Both L(ABCD) and L(ABC ′D′) are sums of 6 edge lengths. We can ignore AB. We can

directly verify that ∥C ′D′∥ − ∥CD∥ is√
(cy − dy)2 + (cx − dx)2 + (cz − dz)2 + 2cxdx + 2czdz + 2

√
c2

x + c2
z

√
dx + d2

z

−
√

(cx − dx)2 + (cy − dy)2 + (cz − dz)2,

and so is clearly non-negative. We may calculate

∥AC ′∥ = ∥BC ′∥ =
√

2 + 2bcy

∥BC∥ =
√

2 + 2bcy + 2acx

∥AC∥ =
√

2 + 2bcy − 2acx

and similar expressions for ∥AD′∥, ∥BD′∥, ∥BD∥, ∥AD∥.
Just as in the proof of Lemma 27, we may verify

2∥AC ′∥ − ∥BC∥ − ∥AC∥ = (∥BC∥ − ∥AC∥)2 (2∥AC ′∥ + ∥BC∥ + ∥AC∥)−1

>
(

2
√

2ε
)2

8−1

= ε.

Similarly, 2∥AD′∥−∥AD∥−∥BD∥ is twice the difference of the quadratic mean and arithmetic
mean of ∥AD∥, ∥BD∥, which is non-negative by the generalized mean inequality.

Overall, we have found that L(ABC ′D′) − L(ABCD) > ε. ◀

▶ Lemma 30. Consider tetrahedra ABCD and AEFG inscribed in the unit sphere with
∥B − E∥ ≤ ε. If all edges of the tetrahedra have lengths in the interval 4

√
6

6 ± δ, then the
points {C,D} are each within O(δ + ε) distance of (different) points in {F,G}.

Proof. Because this is the unit sphere, we can rotate so that A,B are in the xy-plane and
equidistant from the y-axis.
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Given A,B,E are fixed, we can characterize the constraints on the other points as follows.
Let R1 denote the region bounded by a spherical shell centered at A with radii 4

√
6

6 − δ and
4

√
6

6 + δ. Similarly, let R2 denote a region of the same size and shape but centered at B. The
points C,D must exist in the intersection of R1, R2, and the unit sphere. The constraints
imply the intersection is two disjoint sectors of the unit sphere opposite A and B, call them
S1, S2. Similarly, the points F,G must exist within ε of S1 and S2.

We wish to show that any two points in S1 must be close, and similarly for S2. Consider
any two points P1, P2 in S1. Fixing P1 and letting d(P2) = ∥P1 − P2∥, the function d is
convex in P2 over S1. Therefore, the extremes of the distance ∥P1 − P2∥ will occur at the
four extremal points of S1, identified by their distances 4

√
6

6 ± δ from A and B.
If P1 is at 4

√
6

6 + δ from A and from B, then d(P2) is maximized with P2 at 4
√

6
6 − δ from

A and B. From point P1, moving 2δ towards A and then 2δ towards B is an upper bound
on the distance to P2, so ∥P1 − P2∥ ≤ 4δ.

The other extreme may occur with 4
√

6
6 + δ and 4

√
6

6 − δ as the distances from P1 to A
and B, respectively, and as the distances from P2 to B and A, respectively. Recalling that
we were able to assume A,B are in the xy-plane and symmetric about the z-axis, it is clear
that P1, P2 must be symmetric such that P1 = (0, Py, Pz), P2 = (0,−Py, Pz). This implies
A,B, P1, P2 are coplanar, and so ABP1P2 is a cyclic quadrilateral inscribed in a circular
cross-section of the unit sphere. We know the lengths of three sides and the diagonals of
this quadrilateral and want to know the fourth side, ∥P1P2∥. Ptolmey’s Theorem for cyclic
quadrilaterals gives us that

∥AP1∥ × ∥BP2∥ = ∥AB∥ × ∥P1P2∥ + ∥AP2∥ × ∥BP1∥.

Simplifying, we find

∥P1P2∥ ≤
(
4
√

6 + δ
)2 −

(
4
√

6 − δ
)2

4
√

6 − δ
= 8

√
6δ

2
√

6 − 3δ
≤ 8

√
6δ

2
√

6
= 4δ.

Overall, we conclude that given any two points in S1, the distance between the points is at
most O(δ), and similarly for S2.

Finally, we return to the shapes ABCD and AEFG. Since the distance ∥CD∥ must be
in 4

√
6

6 ± δ, one point must be in S1 and one point in S2. Similarly, one of F,G must be near
S1 and one near S2. So arbitrarily, C,F are within ε of S1 and D,G are within ε of S2. We
can conclude ∥C − F∥ and ∥D −G∥ are at most O(δ + ε), as desired. ◀

We will use the name “tetrahedron with adjoined triangles” to refer to a three-dimensional
tetrahedron such that for each edge there is an additional point with which the ends of the
edge are joined to form a triangle. In total, there are 10 vertices and 12 edges. The shape
will be assumed to be inscribed in the unit sphere, so a vector describing any vertex of the
tetrahedron or a triangle is a unit vector. For some instance R of this shape with assigned
vertex locations, let L(R) denote the sum of the squared edge lengths. The following lemma
says that for L(R) to be maximized, the edges of the tetrahedron must approximate a regular
tetrahedron.

▶ Lemma 31. Given a tetrahedron with adjoined triangles R, L(R) ≤ 10+2
√

3. Furthermore,
If any edge of the tetrahedron has a length outside of the interval [ 4√

6 − ε, 4√
6 + ε], then

L(R) < 10 + 2
√

3 − Ω
(
ε2)

.
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Proof. Suppose the vertices of the tetrahedron are V1, V2, V3, V4, and the additional vertex
forming a triangle with edge ViVj is vij . Let sij denote the length of edge ij.

Note that the optimal location (which maximizes L) of a vertex vij is entirely determined
by the locations of Vi and Vj , since it has no other neighbors. Given Vi, Vj , the point which
maximizes the squared distances is proportional to −(Vi + Vj). Moreover, because we are in
the unit sphere, the maximum objective achieved by a triangle ViVjvij when Vi, Vj are fixed
is entirely determined by the length of ViVj alone; their exact coordinates do not matter,
due to rotational symmetry. Combining these two facts and applying trigonometry, we may
calculate that given an edge length of the tetrahedron sij , the maximum objective value of
the triangle ViVjvij is

t(sij) = 1 +
s2

ij

4 +

√
1 −

s2
ij

4 .

Now, because R is the disjoint union of the six triangles which each have one of the
tetrahedron’s edges as a side, we can express

L(R) =
4∑

i<j

t(sij).

A regular tetrahedron inscribed in the unit sphere has edge lengths equal to 4/
√

6.
So, if R is formed by a regular tetrahedron and the ideal points for the triangles, then
L(R) = 6 t(4/

√
6) = 10 + 2

√
3.

Now, we suppose the tetrahedron is not regular and some side length is not in the interval
4√
6 ± ε. As noted in prior lemmas, it is known that the maximum sum of the (unsquared)

edge-lengths of a tetrahedron is 4
√

6 [30], so we have
∑

i<j sij ≤ 4
√

6. If any edge length
is greater than 4√

6 + ε, then the sum of the other five sides must be greater 5 × 4√
6 − ε

(otherwise, L(R) could be trivially increased, meaning our assumption gives a lower bound
on the difference), so some side is less than 4√

6 − ε/5. So whether some side is above or
below the interval, there exists a side sij <

4√
6 − ε/5.

Analyzing t(s), we see it is increasing and concave down on the interval [1.22, 2). The
maximum occurs at t(

√
3). We can assume all edge lengths are at least 1.22 and in the

concave-down region, as otherwise the total edge length is less than t(1.22)+5 t(
√

3) = 13.4145,
which is bounded away from the optimum 10 + 2

√
3 ≈ 13.464. Therefore, the sum of t over

the edges of a regular tetrahedron are greater than over a non-regular tetrahedron:

6 t
(

4√
6

)
>

4∑
i<j

t(sij).

In particular,

6 t
(

4√
6

)
−

4∑
i<j

t(sij) ≥ 2 t
(

4√
6

)
− t

(
4√
6

− ε

5

)
− t

(
4√
6

+ ε

5

)
.

After extensive calculation, the difference of the sum over a regular tetrahedron (the LHS)
minus the sum over the non-regular tetrahedron (the RHS) is Ω

(
ε2)

. ◀
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