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Abstract
A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer
can pass, but all efficient classical computers cannot (under some cryptographic assumption). Such
protocols play a crucial role in the certification of quantum devices. Existing single-round protocols
based solely on a cryptographic hardness assumption (like asking the quantum computer to factor a
large number) require large quantum circuits, whereas multi-round ones use smaller circuits but
require experimentally challenging mid-circuit measurements.

In this work, we construct efficient single-round proofs of quantumness based on existing knowledge
assumptions. While knowledge assumptions have not been previously considered in this context, we
show that they provide a natural basis for separating classical and quantum computation. Our work
also helps in understanding the interplay between black-box/white-box reductions and cryptographic
assumptions in the design of proofs of quantumness. Specifically, we show that multi-round protocols
based on Decisional Diffie-Hellman (DDH) or Learning With Errors (LWE) can be “compiled” into
single-round protocols using a knowledge-of-exponent assumption [7] or knowledge-of-lattice-point
assumption [36], respectively. We also prove an adaptive hardcore-bit statement for a family of
claw-free functions based on DDH, which might be of independent interest.
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1 Introduction

Demonstrating quantum advantage, the point where a quantum computer can solve a problem
that no existing classical computer can, is both a theoretical and technological challenge. It
requires a problem that is plausibly intractable for classical algorithms and which admits an
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efficient quantum algorithm, ideally one that can be performed with noisy intermediate-scale
quantum (NISQ) devices [42]. Additionally, the problem’s solution should be efficiently
verifiable by a classical computer. This is necessary if one wishes to have a convincing and
scalable way of proving quantum advantage. Currently, there are three main paradigms for
demonstrating quantum advantage.

The most straightforward one is to solve a problem which is believed to be classically hard,
such as integer factorization. A quantum computer could efficiently solve this task by running
Shor’s algorithm [43] and the solution can be efficiently verified by multiplying the factors
reported by the prover. But while Shor’s algorithm is efficient in the sense of only requiring
a polynomial-size quantum circuit, the actual circuit for any reasonably-sized integer to be
factored is too large to implement with NISQ devices [22, 25]. Another approach is based
on the classical hardness of sampling problems such as random circuit sampling [12, 6, 44]
or boson sampling [1, 48, 37]. While these experiments can be implemented with current
hardware, they are not efficiently verifiable.

The work of Brakerski et al. [13] introduced a new approach towards testing for quantum
advantage, referred to as a proof of quantumness protocol. Akin to the cryptographic
notions of proof or argument systems [24, 15, 23], a proof of quantumness is an interactive
protocol between a polynomial-time classical verifier and an ostensibly quantum polynomial-
time prover. The verifier issues challenges to the prover and checks the correctness of the
prover’s responses. The key feature of such a protocol is that there should exist an efficient
quantum strategy that allows the prover to correctly answer the verifier’s challenges with
high probability, whereas any efficient classical strategy can only succeed with low probability
(under some plausible cryptographic hardness assumption such as the classical intractability
of factoring, Decisional Diffie-Hellman (DDH), or the Learning With Errors (LWE) problem).

In contrast to other paradigms for proving quantum advantage, the cryptographic proofs
of quantumness of Brakerski et al. and follow-up works do not require the quantum prover
to break the underlying computational hardness assumption. Instead, they leverage the fact
that the restriction imposed on the prover through mid-protocol interaction limits a classical
prover’s capacity for correctly responding to subsequent challenges from the verifier more
strongly than it limits a quantum prover.

The advantage of these protocols over an integer factorization-based test is that they
have much smaller circuits than Shor’s algorithm, making them potentially more suitable for
implementation on near-term devices [30, 29, 49, 26, 35, 4]. However, due to their interactive
nature, they require the honest quantum prover to perform mid-circuit measurements for
each of the verifier’s challenges. Mid-circuit measurements on a subset of qubits are difficult
to implement on existing quantum devices without disturbing neighboring qubits and can
thus degrade the quality of the remaining computation. An experimental implementation
of the two-round protocol by Brakerski et al. [49] directly compared the performance of an
ion-trap quantum computer running the protocol with and without mid-circuit measurements,
revealing a significant difference. Thus, implementing this proof of quantumness protocol at
the scale required for quantum advantage seems especially challenging.1 It would therefore
be desirable to have proofs of quantumness with relatively small quantum circuits and which
involve only one round2 of interaction between the verifier and the prover. Beyond the
practical motivation, this would also give us a better understanding of the structure required
for demonstrating quantum advantage in a way that is efficiently verifiable.

1 Note that the instance sizes of the underlying cryptographic problem in [49] are so small that they can
easily be broken by a laptop. For a convincing demonstration of quantum advantage, one would have to
use instance sizes that cannot be broken even by the fastest classical supercomputers.

2 Throughout the paper, we use the convention that a one-round protocol refers to a protocol with two
messages, one message from the verifier to the prover and one message back.
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The recent breakthrough work of Yamakawa and Zhandry made progress in this direction
by giving a single-round proof of quantumness protocol in the random oracle model (ROM) [45].
Prior to their work, Brakerski et al. constructed single-round proofs of quantumness in the
ROM that additionally required a structured computational assumption, such as factoring or
LWE [14]. However, with both of these approaches the circuits that the prover would have to
perform are possibly larger than those in existing multi-round proofs of quantumness [13, 29].

Our main result is a single-round proof of quantumness that only requires the same small
circuits as an existing multi-round interactive proof of quantumness and is based on knowledge
assumptions, a cryptographic idea that turns out to be natural for proofs of quantumness.
We achieve this by starting from the two-round protocol of [13] and removing one of the
rounds of interaction through the use of a knowledge assumption [17, 40, 16, 36, 32]. As
explained in [32], a knowledge assumption is a statement of the form:

“If an algorithm A outputs an object of type X, it must know a corresponding witness
of the type W , such that the output and the witness are in some relation R ⊆ X×W .”

The rationale behind knowledge assumptions is that certain computational tasks, per-
formed by some probabilistic algorithm A, can only be performed efficiently by following
a specific sequence of steps, thus obtaining a series of intermediate values. Informally, we
say that A must have “known” the intermediate values for its specific output. This is made
more precise by saying that there exists an efficient extractor A∗ that receives as input A’s
random coins and outputs (or extracts) the relevant intermediate values of A.

Knowledge assumptions have traditionally been used for the design of protocols that
require both extractability (like in proof/argument of knowledge protocols) and succinctness [9,
32]. In our case, we are able to leverage knowledge assumptions to construct efficient, single-
round proofs of quantumness. As far as we are aware, this is the first time knowledge
assumptions are used in this context. We argue that their application here is natural and
in some sense necessary, if one wishes to avoid multi-round interaction or working in the
ROM. Intuitively, this is because some aspect of the proof of quantumness protocol has to
differentiate between classical and quantum provers. In multi-round protocols, this distinction
comes from the fact that classical provers can be rewound, but quantum provers generally
cannot. In a ROM-based protocol, the distinction arises from the ability to record classical
queries to a random oracle in a way that is not possible quantumly.

In our single-round protocols, the classical-quantum distinction is due to the knowledge
assumption: for example, if f : X → Y is a one-way function with a sparse range (i.e. most
values in Y are not in the range of f), it is plausible that a classical prover that produces a
value in the range of f must have done so by evalating the function on some x ∈ X , and
must therefore also “know” the corresponding preimage; this can be captured formally as a
knowledge assumption [16, 8]. However, a quantum prover can do the following: first prepare
the state

∑
x |x⟩|f(x)⟩, then measure the second register in the computational basis to obtain

an image y ∈ range(f), and measure the first register in the Hadamard basis to “erase” any
knowledge of the preimage x. Such a prover can be said to produce a value in the range of
f without knowledge of a preimage. It is this distinction between classical and quantum
computation that our single-round proofs of quantumness exploit. We note that a related idea
of oblivious LWE sampling was recently explored in [18]; since a proof of quantumness only
requires soundness against classical provers, we do not need to analyse the quantum prover
in detail, but it might be interesting to explore the relation between knowledge assumptions
used in our work and the (strong) notion of oblivious LWE sampling proposed in [18]. We
discuss the classical-quantum distinction and the impossibility of single-round proofs of
quantumness with black-box security reductions in more detail in Section 3.

ITCS 2025
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Organsation

The rest of this work is structured as follows: in Section 1.1, we give a brief overview of the
two-round proof of quantumness from [13]. This will form the basis for our single-round proof
of quantumness. In Section 1.2, we recall two existing knowledge assumptions from [7, 36]
that we use in our protocols. In Section 2, we explain how to make use of these knowledge
assumptions to obtain different single-round proofs of quantumness. In Section 3 we argue
that a white-box assumption (like a knowledge assumption) seems to be necessary for single-
round proofs of quantumness. Finally, in Section 4 and Section 5 we discuss additional
related works and open questions. For a formal description of our results and proofs, we
refer to the full version of this paper [5].

1.1 A two-round proof of quantumness
To explain our results, we first need to outline the two-round (four-message) proof of
quantumness protocol from [13]. At the heart of this protocol is a collection of functions
known as Trapdoor Claw-free Functions (TCF). TCFs are a type of collision-resistant hash
function – they are 2-to-1 functions for which it should be intractable to find a colliding
pair of inputs (known as a claw), given the description of the function. Additionally, the
functions are generated with a trapdoor that allows for efficient inversion. The specific
TCFs used in [13] require an additional property known as the adaptive hardcore-bit (AHCB)
property. Informally, this states that it is not only intractable to find collisions, but given
any particular input x0 and corresponding image under the TCF, denoted y = f(x0), it
should be intractable to recover even a single bit of x1, the other input with which x0 forms
a claw (i.e. f(x1) = f(x0) = y). Prior to our work, constructing TCFs with an AHCB had
only been achieved from LWE and (non-standard) hardness assumptions of isogeny-based
group actions [3]. One of our results shows an AHCB property for a TCF based on DDH.

Algorithm 1 The Proof of Quantumness of [13] (informal).

1. The verifier generates a description of a TCF f , together with its trapdoor, t. It then
sends f to the prover.

2. The prover sends the verifier a point y in the image of f . Denote as x0 and x1 the
associated preimages, so y = f(x0) = f(x1).

3. With probability 1/2, the verifier sends the prover one of the following two challenges:
(a) Preimage test. The verifier asks the prover for a valid preimage of y. Denoting the

prover’s response as x, the verifier accepts iff f(x) = y.
(b) Equation test. The verifier asks the prover for a non-zero string d, such that

d · (x0 ⊕ x1) = 0. The verifier uses the trapdoor, t, to recover x0 and x1 from y and
then checks whether the equation is satisfied, accepting if it is and rejecting otherwise.

Given a family of TCFs, with the AHCB property, the Brakerski et al. protocol from [13]
is described informally in Protocol 1. Brakerski et al. showed that, assuming the AHCB
property, no polynomial-time classical prover makes the verifier accept with probability
non-negligibly3 larger than 3/4 (this is referred to as the soundness of the protocol). At the
same time, they gave a simple quantum strategy which would allow the prover to succeed
with probability 1 (referred to as the completeness of the protocol). This honest prover first
creates an equal superposition over evaluations of f ,

3 A negligible function f , denoted by f = negl(𝜆), is a function f : N → R such that f(𝜆) = o(𝜆−c) for
every constant c ∈ R.
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∑
x

|x⟩|f(x)⟩ .

The prover then measures the second register, resulting in a value y = f(x0) = f(x1), and
collapsing the state in the first register to

|x0⟩+ |x1⟩√
2

. (1.1)

We can see that if this state is measured in the computational basis, it results in one of the
two preimages of y, thus providing a valid response to the preimage test. Conversely, if the
state is measured in the Hadamard basis (i.e. applying Hadamard gates to all qubits and
measuring in the computational basis), the result will be a string d such that d · (x0⊕x1) = 0,
yielding a valid response to the equation test. Thus, a quantum prover implementing this
strategy would make the verifier accept with probability 1.

The intuition for why it is classically intractable to succeed in this protocol is that a
classical prover that answers both the preimage and equation tests correctly can be rewound
so as to obtain both a valid preimage and a valid equation. However, having both would
contradict the AHCB property. In contrast, a quantum prover cannot be rewound and can
use the state from Equation (1.1) to answer either of the two challenges correctly, but not
both at the same time. Communication between the two rounds is crucial for the security
proof, as a reduction to the AHCB property requires that the prover holds a preimage and
equation for the same y. This can only be guaranteed if the prover commits to a fixed choice
of y before receiving the second challenge.

A natural question is whether the equation test on its own is already classically intractable.
Unfortunately, simply removing the preimage test breaks the security proof of [13]: the
AHCB property says that it is hard to produce an image, an equation, and a preimage
together. Therefore, without the preimage test one cannot use a successful classical prover
in the proof of quantumness to break the AHCB property, as one does not have access to a
preimage4. Indeed, it can be shown that no black-box reduction can reduce the security of
this “equation-test only” proof of quantumness to LWE ([39], see also Section 3).

Our results show that a variation of the “equation-test only” proof of quantumness can be
made to work, provided we use a knowledge assumption to replace the role of the preimage
test. Intuitively, the knowledge assumption can be used to “extract” a preimage from a
successful classical prover without the need for an explicit preimage test. Since a knowledge
assumption deals with the inner workings of a prover, our result can be interpreted as a
white-box reduction from a version of the equation test to the AHCB property.

1.2 Knowledge assumptions
Knowledge assumptions posit the existence of an efficient extractor that is able to produce
certain intermediate values that are in some relation with the output of an algorithm. A
canonical example is the so-called knowledge of exponent assumption (KEA), introduced
by Damgård in [17]. Informally, this says that given a generator g of some multiplicative

4 We remark here that this is actually not the only problem that arises when removing the preimage
test. In fact, Urmila Mahadev observed that for both constructions we consider, there exists a classical
winning strategy in the equation test which involves evaluating f on an extended domain. In the original
Brakerski et al. protocol [13], this strategy is excluded by the preimage test. In our protocols, this
strategy is excluded by adding another type of test which does not increase the number of rounds of the
protocol and is explained in Section 2.

ITCS 2025
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group G, as well g𝛼 for some random power 𝛼, the only way to produce a new pair of the
form (h, h𝛼) is by exponentiating the original pair. In other words, any efficient (randomized)
algorithm A which outputs (h, h𝛼) given (g, g𝛼) must “know” an exponent k such that
h = gk. This is formalized by saying that for every such algorithm A, there exists an efficient
extractor A∗ that, given (g, g𝛼) and the random coins of A for which A outputs (h, h𝛼), will
output (or extract) the exponent k such that h = gk with overwhelming probability:

▶ Assumption 1 (KEA (informal), from [17]). Let A be an efficient probabilistic algorithm
which receives as input a generator g of a multiplicative group G and a random group element
g𝛼. Then there exists an efficient extractor A∗, which uses the same input and random coins
r as A, and such that

Pr
[

(h, h′)← A (g, g𝛼, r)
h𝛼 = h′

∧ k ← A∗ (g, g𝛼, r)
gk ̸= h

]
= negl(𝜆) . (1.2)

Variations of this assumption have also been considered, such as the t-KEA, in [7], in
which the input to A is instead of the form (gr, g𝛼r), where r is a t-dimensional vector and
exponentiation is element-wise.

The rationale behind knowledge of exponent assumptions is that the function that maps k

to (gk, g𝛼k) has a sparse image (considered as a subset of G×G). Thus, it seems implausible
that A could come up with a valid image simply by cleverly sampling its output from G×G
without exponentiating the input.5

More recently, similar knowledge assumptions were proposed for lattices. One example,
introduced in [36], is known as the knowledge of lattice point assumption (denoted as LK-𝜖).
This says the following: suppose there is an efficient randomized classical algorithm A which
takes as input a lattice basis A and outputs a point c that is 𝜖-close to the lattice L(A).
Then A must “know” the lattice point closest to c.

▶ Assumption 2 (LK-𝜖 (informal), from [36]). Let 𝜖 be a fixed constant in (0, 1/2). Denote
by 𝜆(L) the norm of the shortest vector in a lattice L. Let A be an efficient probabilistic
algorithm which receives as input a basis A of a lattice L and outputs a vector y. Then there
exists an efficient algorithm A∗which uses the same input and random coins r as A, and
outputs a lattice point p ∈ L such that

Pr
[

y← A (A, r)
∃ c ∈ L(A) s.t. ||c− y|| ≤ 𝜖 · 𝜆(L(A)) ∧

p← A∗ (A, r)
p ̸= c

]
= negl(𝜆) . (1.3)

The motivation for this assumption is similar to that of KEA – the set of points that
are close to the lattice (for a suitable choice of 𝜖) is sparse in the set of all points, and the
only apparent efficient strategy to sample from this sparse set is to pick a random lattice
point and perturb it. This lattice knowledge assumption and variants of it have been used to
construct efficient FHE and SNARK schemes [19, 27].

For our results, we will use t-KEA and LK-𝜖 , which we state formally in [5, Assumption 4]
and [5, Assumption 5].

5 An alternative way of coming up with an image would be if A could determine 𝛼, given g and g𝛼.
However, this would entail solving the discrete logarithm problem, which is believed to be classically
intractable.
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2 Main results

Our main result is that combining knowledge assumptions with standard cryptographic
assumptions, like LWE or DDH, leads to efficient single-round proof of quantumness protocols.
To make our results modular, we first show how to construct a general single-round proof of
quantumness from a cryptographic primitive that we call Doubly Extended Extractable Noisy
Trapdoor Claw-free Functions (abbreviated e3NTCF). Second, we give two constructions
of e3NTCF: one from the DDH and t-KEA assumptions, and one from the LWE and LK-𝜖
assumptions.

2.1 Single-round proof of quantumness from e3NTCF
Our starting point is the protocol from [13], which we explained in Section 1.1. Recall that
there, one uses a TCF with the AHCB property, and argues that if a classical prover could
succeed in the preimage and equation tests, by rewinding we could construct a tuple (x, y, d)
of a preimage, image, and equation that would contradict the AHCB property.

Now suppose that the TCF family F = {f : X → Y} used in this protocol had
an additional extractability property: for any classical prover that produces an image
y ∈ range(f), there exists an extractor that produces a corresponding preimage x. This is, in
essence, a knowledge assumption. With such an extractable TCF, we could simply remove
the preimage test from Protocol 1: then, if we had a classical prover that succeeded in this
modified protocol, we could use that prover to find an image y ∈ range(f) and equation
d, and use the extractor to find a corresponding preimage x, such that (x, y, d) break the
AHCB property.

Unfortunately, we do not know how to construct such an extractable TCF with AHCB
from existing knowledge assumptions such as t-KEA or LK-𝜖6. The key difficulty here is
that the extractability and AHCB properties have to hold simultaneously.

One way to circumvent this issue would be to introduce an additional function family
H = {h : X → Y} that is indistinguishable from the TCF family F (i.e. given a description
of a random choice of either kind of function, it is hard to tell which kind of function it is).
This function family H can be constructed such that it has an extractability property, i.e. if
a classical algorithm produces a value y in the image of h, an extractor can find a preimage
x (under a standard knowledge assumption such as t-KEA). However, H itself is not a TCF
and has no AHCB property.

We now want to combine the AHCB property of F with the extractability property of H.
For this we leverage that the two function families are computationally hard to distinguish7:
if we send a description of either f ∈ F or h ∈ H to a classical prover, the prover cannot tell
which kind of function it received. This suggests the following protocol.
1. The verifier generates a description of a TCF f ∈ F (with a trapdoor t) or an extractable

function h ∈ H and sends this function description to the prover.

6 To be precise, we found that using these knowledge assumptions directly on the known NTCF construc-
tions based on DDH and LWE does not work to infer extractability.

7 One may ask here why we do not use computational indistinguishability to directly transfer the
extractability property of H to F , given that the extractor is an efficient algorithm. This has to do
with the exact form of the extractability property: successful extraction is only guaranteed under the
condition y ∈ range(h), which cannot be checked efficiently without the trapdoor. Thus, while we can
exploit the computational indistinguishability of F and H in our protocol, it is not possible to use
computational indistinguishability to infer an analogous extractability property for F .

ITCS 2025
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2. The verifier receives (y, d) from the prover.
If the verifier sent a TCF f , it uses the trapdoor to recover x0 and x1 such that
y = f(x0) = f(x1) and accepts iff d · (x0 ⊕ x1) = 0.
If the verifier sent an extractable function h, it accepts iff y ∈ range(h).

Suppose that a classical prover succeeded in this protocol with high probability. We can
use this prover (and the corresponding extractor for the extractable function family) to break
the AHCB property of f as follows: given a description of f ∈ F , run the prover to generate
(y, d). Then use the extractor on this prover on input f ∈ F to generate a preimage x. We
claim that (x, y, d) violates the AHCB property.

Note that this reduction runs the extractor for the function family H on an input f ∈ F ,
i.e. it runs the extractor on an input for which it was not designed. However, recall that
descriptions of f and h are computationally indistinguishable. On the other hand, the
extractor as well as the function that checks whether the extractor produced a correct
preimage are efficient. Therefore, since the protocol ensures that on input h, the classical
prover produces y ∈ range(h), it follows that when we run the extractor for this classical
prover on an input f ∈ F , it will still produce a valid preimage of y = f(x0) = f(x1);
otherwise, we could distinguish f from h.

When trying to construct such a pair (F ,H) of function families from DDH and t-KEA,
we are faced with one additional technical challenge: the only evident construction of an
extractable function family H works by extending the functions f ∈ F to a larger domain X ′
(on which F no longer satisfies the AHCB property) and constructing extractable functions
h : X ′ → Y, i.e. the extractability property of h only holds with respect to the extended
domain X ′. This means that the extractor may, on input y ∈ f(X ), produce a x ∈ X ′ \ X
that also maps to y. While this is a valid preimage to y, it is not useful for breaking the
AHCB property: for that we need a preimage x ∈ X .

We therefore introduce a third function family, G = {g : X ′ → Y}, that is computationally
indistinguishable from both H and the extension of F . The functions in G are injective even
on the larger domain X ′. In our proof of quantumness, the verifier will check that when sent
a function g, the prover returns an image y ∈ g(X ), i.e. the image y must be in the range
of the restricted domain X . This essentially forces the prover to evaluate any function it
receives only on the restricted domain8 X , since if it evaluated the injective function g on an
input x ∈ X ′ \ X , the verifier would reject the resulting image y.

In summary, our single-round proof of quantumness relies on a triplet of function families
(F ,G,H) with the following properties:9

▶ Definition 1 (e3NTCF, informal). A tuple of function families (F ,G,H) is called a Doubly
Extended Extractable Noisy Trapdoor Claw-free Functions (abbreviated e3NTCF) if
1. F is a TCF family with an AHCB property.
2. G is an injective trapdoor one-way function family.
3. H is an extractable one-way function family, in the sense that for any algorithm that takes

the description of h ∈ H as input and outputs y ∈ range(h), there exists an extractor
which outputs a preimage x such that h(x) = y.

4. The functions are computationally indistinguishable from each other. In other words, given
a description of a function from one of the three families, no polynomial-time classical
algorithm can determine the function’s type with probability non-negligibly greater than
1/3.

8 This also serves to exclude the “extended-domain” attack mentioned in Footnote 4.
9 As usual, this primitive depends on a security parameter 𝜆, which we suppress for readability.
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For the formal statement, see [5, Definition 8].
The notion of an e3NTCF function family is an extension of Injective Invariant Noisy

TCFs, which were introduced in [38] to derive a protocol for verifying general quantum
computations, and which only use the first two types of families F and G.

The preceding discussion naturally leads to the single-round Protocol 2 (see [5, Protocol 4]
for the formal protocol), based on an e3NTCF. Our main result is that this protocol is a
proof of quantumness, i.e. that an efficient quantum prover can succeed with high probability,
but no efficient classical prover can.

Algorithm 2 Single-Round Proof of Quantumness based on e3NTCF. (informal)

1. The verifier samples a challenge type a←U {Eq, sIm, wIm}.
if a = Eq :

2. Verifier samples f ∈ F with trapdoor tf and sends a description of f to the prover.
3. Verifier receives tuple (y, d) and accepts iff d · (x0⊕x1) = 0 (and d ̸= 0). Here, (x0, x1)

are the two preimages of y, which the verifier can efficiently compute with tf .
else if a = sIm :

4. Verifier samples g ∈ G with trapdoor tg and sends a description of g to the prover.
5. Verifier receives tuple (y, d) and accepts iff y ∈ g(X ). This check is efficient using tg.

else if a = wIm :
6. Verifier samples h ∈ H with trapdoor th and sends a description of h to the prover.
7. Verifier receives tuple (y, d) and accepts iff y ∈ h(X ′). This check is efficient using th.

end if

▶ Theorem 2 (informal). Suppose that (F ,G,H) is an e3NTCF. Then Protocol 2 is a proof
of quantumness, i.e.,
1. Completeness. There exists an efficient quantum prover that succeeds with probability

1− negl(𝜆).
2. Soundness. Every efficient classical prover succeeds with probability at most 5/6+negl(𝜆).

In the theorem, 𝜆 is the security parameter. As usual, the families (F ,G,H) implicitly
depend on the security parameter and “efficient” classical or quantum provers are those
whose runtime scales polynomially in 𝜆. For the formal statement, see [5, Theorem 4].

Proof Sketch. We have already sketched the security proof when we explained why we need
to introduce the three different function families F ,G, and H. We briefly summarize the role
that each of these function families and the associated challenge types Eq, sIm, and wIm play,
and provide a high-level explanation of how the soundness constant 5/6 is derived.

The weak image test (challenge type wIm) uses the extractable function family H. This
test ensures that for any classical prover in the protocol, there exists an extractor that
extracts a preimage x ∈ X ′ to the output y = h(x) produced by the prover. Note that as
discussed above, this preimage might in principle be from the extended domain X ′, not
just X .
The strong image test (challenge type sIm) uses the injective function family G. This
test, combined with the indistinguishability of the function families F ,G, and H, ensures
that the prover evaluates any function f , g, or h only on inputs in the restricted domain
X . Furthermore, from this we can prove that for any y ∈ Y that has a preimage in X
under a given TCF function f , the extractor will output such a preimage (rather than a
different preimage in X ′ \ X ).
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The equation test (challenge type Eq) uses the TCF function family F that has the
AHCB property. The verifier checks that the prover’s output (y, d) satisfies the equation
d · (x0 ⊕ x1) = 0, with (x0, x1) the preimages of y. From the strong image test, we also
know that the extractor for a successful classical prover will produce a preimage x ∈ X
to y. Together, (x, y, d) would break the AHCB property of f , so no classical prover can
win with very high probability.

The soundness factor of 5/6 arises from the fact that the adaptive hardcore bit property
only gives an upper bound of 1/2 for the event that the prover fulfills the conditions of
all three tests simultaneously, given a function of the family F . Using the computational
indistinguishability of the function families F ,G,H, and the relation

Pr [A] + Pr [B] ≤ 1 + Pr [A ∧B]

we show that the overall success probability of a classical prover A in the prover can roughly
be bounded as

1
3( Pr

f←F

[
SEq
A

]
+ Pr

g←G

[
SsIm
A

]
+ Pr

h←H

[
SwIm
A

]
) ≤ 1

3(2 + Pr
f←F

[
“SwIm
A ∧ SsIm

A ∧ SEq
A ”

]
) ≤ 5

6

where ST
A denotes the event that A passes the test T , and “SwIm

A ∧ SsIm
A ∧ S

Eq
A ” denotes the

event that the prover succeeds in the equation test, and is employing a strategy that would
succeed in the image tests as well. This corresponds to the event that A,A∗ produce a valid
equation-image pair, which cannot occur with probability higher than 1/2 due to the AHCB
property of the function family F . ◀

A key objective in the design of our single-round proofs of quantumness was that the
required circuit sizes should not be larger than for multi-round proofs of quantumness.
Protocol 2 achieves this: to pass in the protocol, a quantum prover can simply prepare
the state

∑
|x⟩|p(x)⟩ for a given function p ∈ F ∪ G ∪ H, measure the first register in the

Hadamard basis to get a string d, and measure the second register in the computational
basis to get an image y. These are exactly the same actions as those of an honest prover in
the equation test in Protocol 1,10 except that now the honest prover can perform the entire
measurement in one step without experimentally challenging mid-circuit measurements.

2.2 Instantiating e3NTCF families from DDH and LWE
We show that e3NTCF can be instantiated either from DDH and t-KEA, or from LWE
and LK-𝜖 . Here, we only state the main results and defer a more detailed discussion of the
construction to [5, Section 4] and [5, Section 6], respectively.

For the LWE-based construction, we already know that the LWE-based TCF from [13]
has an AHCB property. We can combine this with suitable injective and extractable one-way
functions. In fact, it turns out that for the LWE-based construction, the roles of the injective
and extractable functions in Protocol 2 can be played by the same function family, i.e. we
only require two distinct families (F ,G). This simplifies the analysis somewhat, as we explain
in [5, Section 5]. Combined with Theorem 2, we obtain the following:

10 In our constructions of e3NTCF, the functions g ∈ G and h ∈ H are essentially as costly to evaluate as
f ∈ F in Protocol 1, so introducing these additional function families does not increase the demands on
an honest prover.
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▶ Theorem 3 (Informal). Assuming the classical intractability of LWE and the lattice know-
ledge assumption LK-𝜖, there exists a single-round proof of quantumness with completeness
1 − negl(𝜆) and soundness 3/4 + negl(𝜆). The circuit sizes for an honest prover in this
protocol are identical to the circuit sizes in the 2-round protocol from [13].

While a family of TCFs based on DDH was considered in [29] to construct a 3-round
proof of quantumness, it had not been shown that these functions have an AHCB property.
We prove this through a lossy sampling technique similar to the proof in [13], showing a
reduction from the AHCB property to the matrix d-linear assumption [41] (which is implied
by standard DDH). We then again augment this TCF family with an injective and an
extractable family to get the following result.

▶ Theorem 4 (Informal). Assuming the classical intractability of DDH and the knowledge of
exponent assumption t-KEA, there exists a single-round proof of quantumness with complete-
ness11 0.99− negl(𝜆) and soundness 5/6 + negl(𝜆). The circuit sizes for an honest prover in
this protocol are identical to the circuit sizes in the 3-round protocol from [29].

3 Impossibility of black-box reductions

Knowledge assumptions are non-falsifiable cryptographic assumptions [40, 20], which makes
their use somewhat undesirable. A natural question is whether our main results, single-round
proofs of quantumness, can also be achieved using only standard falsifiable (also called game-
based) assumptions such as DDH or LWE, or even weaker assumptions like the existence of
one-way functions.

As was observed in [39], the security of a single-round proof of quantumness cannot be
reduced to a quantumly hard problem like LWE in a black-box manner. The reason for
this is simple: if there existed a black-box reduction from a successful classical prover to
an algorithm for breaking LWE, we could also apply that reduction to the honest quantum
prover in the proof of quantumness. Since the honest quantum prover is required to succeed
with high probability, this would give a quantum algorithm for LWE. This rules out the
existence of such a black-box reduction.12

An extension of this reasoning suggests that the use of knowledge assumptions is still
justified even for single-round proofs of quantumness based on computational problems that
are quantumly easy: now it is of course not a contradiction to have a quantum algorithm that
breaks the underlying cryptographic assumption, but we can argue that implementing an
honest quantum prover in such a protocol is no easier than breaking the assumption outright:
Suppose we had a single-round proof of quantumness with a black-box reduction to factoring.
Then we could again use that reduction with the honest quantum prover to construct
a factoring algorithm whose only quantum component is repeatedly (and independently)
running the honest prover. In this sense, implementing the honest prover is as hard as
breaking factoring: if we had an honest prover that was much easier to implement than Shor’s
algorithm, we could use that prover and the black-box reduction to construct a much more

11 The reason completeness here is 0.99 instead of 1 is inherited from [29]. There, the quantum prover
does not create a superposition over the exact range of the TCF but over a superset. However, it can
be shown that the exact range contains at least a 0.99 fraction of the elements in the superset.

12 Note that this argument does not apply to interactive protocols, ROM-based protocols, or protocols that
use whitebox assumptions like ours: in those cases, one cannot simply run the reduction on the quantum
prover as the reduction may perform operations that only work for classical provers, e.g. rewinding or
using knowledge extractors.
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practical quantum factoring algorithm. In contrast, in the DDH-based proof of quantumness
from [29] and also in our single-round version thereof, implementing the honest quantum
prover does not require computing discrete logarithms.

4 Related work

As mentioned in Section 1.1, cryptographic proofs of quantumness were introduced in [13].
Since then, there have been a number of follow-up works aiming to understand the types
of cryptographic constructions on which these protocols can be based, as well as how to
make them more efficient [30, 14, 35, 26, 4, 31, 39]. So far, only small-scale demonstrations
of these protocols have been performed [49, 33], though the hope is that by further reducing
the sizes of the quantum circuits and the amount of interaction between the verifier and the
prover, these protocols can be performed with NISQ devices.

The only existing constructions of single-round proofs of quantumness (apart from trivial
ones like asking the prover to factor a large number) use the random oracle model [14, 45]. In
both of these prior works, the quantum circuits required to succeed in these protocols do not
have to perform mid-circuit measurements. However, instantiating the random oracle with
plausible cryptographic hash functions, like SHA-2 or SHA-3, incurs a substantial overhead.
The most efficient known quantum implementations of SHA-2 and SHA-3 [28] need a number
of qubits on the order of 104 and have a quantum gate count on the order of 106.

On the other hand, the ROM-based single-round proof of quantumness in [14] only requires
a TCF, without the need for the AHCB property. General TCFs have been constructed
from a wider variety of cryptographic assumptions, achieving lower asymptotic complexities
than known NTCF constructions. Thus, despite the fact that the use of a random oracles
introduces a significant overhead, a resource comparison between our LWE-based single-round
proof of quantumness and the ROM-based protocol of [14] is not straightforward. A more
conclusive answer on which single-round protocol admits the smallest quantum circuit for a
demonstration of quantum advantage requires a detailed finite-size analysis, which we leave
for future work.

Since our construction of e3NTCFs makes use of extractable one-way functions (EOWFs),
it is natural to ask whether we could have used existing results concerning these functions [16,
8, 10]. In particular, in [8], Bitansky et al. prove the existence of a class of EOWFs from the
subexponential hardness of LWE against adversaries with bounded auxilary input, without
having to rely on a knowledge assumption. There are at least two obstacles towards applying
those results to our setting. First, the extractable one-way functions we require have to be
computationally indistinguishable from TCFs. It is unclear whether the EOWFs of [8] can
be suitably adapted to satisfy this requirement. Second, since one of the motivations for
our work is to devise more efficient single-round proofs of quantumness, we would like to
ensure that the honest quantum prover’s circuits are at most as large as in the multi-round
protocols. However, constructing a family of e3NTCFs with the EOWFs in [8] would likely
require larger circuits.

Knowledge assumptions in the quantum setting have also been considered in [34] to
derive quantum money and quantum lightning schemes. There, the assumptions are required
to be sound against quantum adversaries. This introduces some challenges in formalizing
the appropriate notion of a quantum knowledge assumption. The subsequent work of [46]
also discusses this point. Interestingly, this latter work points out how certain knowledge
assumptions can be generically broken by a quantum adversary. In some sense, this is exactly
what we exploit to arrive at our single-round proofs of quantumness.
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5 Discussion and open problems

We have shown how existing knowledge assumptions, together with standard cryptographic
assumptions, lead to efficient single-round proofs of quantumness. Our work opens up several
avenues for future research.

One such avenue is the possibility of a white-box proof for a single-round proof of
quantumness based only on the classical intractability of, say, LWE. This would circumvent
the impossibility discussed in Section 3. As mentioned in the previous section, one possible
approach would be to use the extractable one-way functions based on subexponential LWE
from [8], with the caveat that this would provide soundness against classical provers with
bounded auxiliary input. We leave this as an interesting but challenging open problem.

Currently, our construction necessitates the use of a TCF which satisfies the AHCB
property. This is a fairly strong requirement which so far has only been achieved from
LWE [13], isogeny-based group actions [3], and, in this work, the DDH assumption. It would
be desirable to use TCFs that are not known to have an AHCB property, such as those
based on Ring-LWE or Rabin’s function (x2 mod N), since those require smaller circuits
than the TCFs based on LWE or DDH, as outlined in [29, 30]. However, it is unclear if our
construction can be modified so as to not require the AHCB property; in the equation test,
the prover is allowed to output any valid equation, hence the need for an adaptive hardcore
bit. The protocol in [29] is able to circumvent this and use TCFs without an AHCB by
introducing an additional round of interaction between the verifier and the prover, leading to
a 3-round protocol. Unfortunately, there does not seem to be an obvious way of employing
knowledge assumptions to reduce the round complexity of the protocol from [29]. Thus, a
fundamentally different approach would be needed to achieve a single-round protocol without
relying on the AHCB property. Of course, for the purpose of having more practical protocols,
proving an AHCB statement for the TCFs based on Ring-LWE or Rabin’s function (even
relying on knowledge assumptions) would be equally useful.

We remark that the LWE-based approach is expected to be more efficient than the DDH
one. This is because, as is also discussed in [29], the DDH approach requires performing a
large number of group exponentiations coherently. It would therefore seem that the DDH
approach is less efficient than performing Shor’s algorithm to solve the discrete logarithm
problem. However, as [29] points out, the proof of quantumness protocol can benefit from
certain optimizations that are not known to be possible for Shor’s algorithm. As an example,
the group exponentiation circuits for the DDH-based proof of quantumness need not be
reversible, thereby halving the depth and number of gates compared to Shor’s algorithm (see
section III.D in [29] for more details).

From existing knowledge assumptions one is only able to prove soundness against classical
adversaries, i.e. one is able to bound the success probability of a classical prover, but one
cannot make a statement about the internal operations of a successful quantum prover. This
is sufficient for a proof of quantumness, but other protocols, such as certifiable randomness
generation [13], remote state preparation [21], or verification of quantum computations [38],
require soundness against quantum adversaries, i.e. one needs to have at least a partial
characterization of any quantum adversary in the protocol. As mentioned, one can derive
single-round proofs of quantumness in the random oracle model, and these can be extended
to single-round versions of quantum-sound protocols by proving security in the quantum
random oracle model [11, 14, 2, 47]. However, with knowledge assumptions, it is unclear what
the right quantum-sound analogue would be to derive these more advanced functionalities.
As mentioned in the previous section, quantum knowledge assumptions have been considered
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in [34, 46] to construct quantum money and quantum lightning schemes. These could serve
as a useful starting point for constructing single-round quantum protocols for functionalities
like single-device randomness expansion. We leave formalizing this for future work.
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