
Fine-Grained Equivalence for Problems Related to
Integer Linear Programming
Lars Rohwedder
University of Southern Denmark (SDU), Odense, Denmark

Karol Węgrzycki
Saarland University, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract
Integer Linear Programming with n binary variables and m many 0/1-constraints can be solved
in time 2Õ(m2)poly(n) and it is open whether the dependence on m is optimal. Several seemingly
unrelated problems, which include variants of Closest String, Discrepancy Minimization, Set Cover,
and Set Packing, can be modelled as Integer Linear Programming with 0/1 constraints to obtain
algorithms with the same running time for a natural parameter m in each of the problems. Our
main result establishes through fine-grained reductions that these problems are equivalent, meaning
that a 2O(m2−ε)poly(n) algorithm with ε > 0 for one of them implies such an algorithm for all of
them.

In the setting above, one can alternatively obtain an nO(m) time algorithm for Integer Linear
Programming using a straightforward dynamic programming approach, which can be more efficient
if n is relatively small (e.g., subexponential in m). We show that this can be improved to n′O(m) +
O(nm), where n′ is the number of distinct (i.e., non-symmetric) variables. This dominates both of
the aforementioned running times.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Integer Programming, Fine-Grained Complexity, Fixed-Parameter Tractable
Algorithms

Digital Object Identifier 10.4230/LIPIcs.ITCS.2025.83

Related Version Full Version: https://arxiv.org/abs/2409.03675

Funding Lars Rohwedder : Supported by Dutch Research Council (NWO) project “The Twilight Zone
of Efficiency: Optimality of Quasi-Polynomial Time Algorithms” [grant number OCEN.W.21.268].
Karol Węgrzycki: This work is part of the project TIPEA that has received funding from the
European Research Council (ERC) under the European Unions Horizon 2020 research and innovation
programme (grant agreement No. 850979).

Acknowledgements We thank Friedrich Eisenbrand for his valuable insights and constructive
discussions that enhanced this work.

1 Introduction

The study of parameterized complexity for Integer Linear Programming has a long history:
classical works by Lenstra [15] and Kannan [12] and very recently Rothvoss and Reis [19]
provide FPT algorithms in the number of variables n of an ILP of the form Ax ≤ b, x ∈ Zn.
In an orthogonal line of research, Papadimitriou [17] gave an FPT algorithm in the number
of constraints and the size of the coefficients of A and b for an ILP in the standard form
Ax = b, x ∈ Zn

≥0. Interest in the second line of work has been renewed by the improved
algorithms due to Eisenbrand, Weismantel [9] and Jansen, Rohwedder [11], which give
essentially optimal running times (m∆)O(m) poly(n) due to a conditional lower bound based
on the Exponential Time Hypothesis (ETH) [14]. Here, ∆ is the maximum absolute size

© Lars Rohwedder and Karol Węgrzycki;
licensed under Creative Commons License CC-BY 4.0

16th Innovations in Theoretical Computer Science Conference (ITCS 2025).
Editor: Raghu Meka; Article No. 83; pp. 83:1–83:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9434-4589
https://orcid.org/0000-0001-9746-5733
https://doi.org/10.4230/LIPIcs.ITCS.2025.83
https://arxiv.org/abs/2409.03675
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

83:2 Fine-Grained Equivalence for Problems Related to Integer Linear Programming

of an entry in A. The work by Eisenbrand and Weismantel also considers a version where
variables are subject to box-constraints, which will be the primary focus of this work, see the
definition below.

Integer Linear Programming
Input: Constraint matrix A ∈ {−∆, . . . , ∆}m×n, right-hand side b ∈ Zm, variable
bounds ℓ, u ∈ Zn

≥0.
Task: Find x ∈ Zn with

Ax = b

ℓi ≤ xi ≤ ui i = 1, 2, . . . , n.

We refer to the variant where ℓ = (0, . . . , 0)T and u = (1, . . . , 1)T as binary Integer
Linear Programming.

Binary Integer Linear Programming
Input: Constraint matrix A ∈ {−∆, . . . , ∆}m×n, right-hand side b ∈ Zm.
Task: Find x ∈ {0, 1}n with

Ax = b.

The running times obtained in [9] for either variant is (m∆)O(m2) poly(n). Also for matrices
with only 0/1 coefficients nothing better than 2Õ(m2) poly(n) is known. It is an intriguing
question whether the slightly unusual exponent of Õ(m2) is necessary, which is in the spirit
of fine-grained complexity. Since the dominant complexity-theoretic assumption of P ̸=NP is
not powerful enough to show precise lower bounds on running times, the field of fine-grained
complexity is concerned with finding lower bounds via stronger conjectures, see e.g., [2, 20, 6].
A number of such conjectures exist by now, often with interesting connections between them.
Even if one doubts these conjectures, the reductions still provide insights into how problems
relate to each other.

Based on existing conjectures, the best lower bound known on the exponent of Integer
Linear Programming is Ω(m log m) from the easier unbounded setting [14], which is of
course not tight in this setting. In this paper, we take another path: we assume that Integer
Linear Programming cannot be solved faster than the state-of-the-art and present several
other natural parameterized problems that are all equivalent with respect to improvements
on their running time.

▶ Hypothesis 1 (ILP Hypothesis). For every fixed ε > 0, there is no 2O(m2−ε) poly(n) time
algorithm for Integer Linear Programming with ∆ = O(1).

In all of the problems below, the symbol m is chosen for the parameter of interest.

Closest String with Binary Alphabet
Input: Alphabet Σ = {0, 1}, strings s1, s2, . . . , sm ∈ Σn

Task: Find string t ∈ Σn minimizing

max
i

d(t, si),

where d(t, si) is the Hamming distance between t and si, i.e., the number of positions
the two strings differ in.

We refer to the generalization with arbitrary Σ simply as Closest String.

L. Rohwedder and K. Węgrzycki 83:3

Discrepancy Minimization
Input: Universe U = {1, 2, . . . , n}, set system S1, S2, . . . , Sm ⊆ U

Task: Find coloring χ : U → {−1, 1} minimizing

max
i

∣∣∣∣∣ ∑
u∈Si

χ(u)

∣∣∣∣∣ .

Set Multi-Cover
Input: Universe U = {1, 2, . . . , m}, set system S1, S2, . . . , Sn ⊆ U , b ∈ N
Task: Find I ⊆ {1, 2, . . . , n} of minimal cardinality such that for each v ∈ U there are
at least b sets Si with i ∈ I and v ∈ Si.

Set Multi-Packing
Input: Universe U = {1, 2, . . . , m}, set system S1, S2, . . . , Sn ⊆ U , b ∈ N
Task: Find I ⊆ {1, 2, . . . , n} of maximal cardinality such that for each v ∈ U there are
at most b sets Si with i ∈ I and v ∈ Si.

Many of these problems are well-known applications of ILP techniques. For example, Knop et
al. [13] provided mO(m2) · poly(n) algorithms for Closest String and Set Multi-Cover.
Discrepancy Minimization is usually considered within the context of approximation
algorithms (see, e.g., [3]).

As mentioned above, our main result is the following equivalence.

▶ Theorem 2. The following statements are equivalent:
(1) There exists an 2O(m2−ε) poly(n) algorithm for Integer Linear Programming with

∆ = O(1) with ε > 0.
(2) There exists an 2O(m2−ε) poly(n) algorithm for Binary Integer Linear Programming

with A ∈ {0, 1}m×n and n ≤ mO(m) with ε > 0.
(3) There exists an 2O(m2−ε) poly(n) algorithm for Closest String with Binary Alpha-

bet with ε > 0.
(4) There exists an 2O(m2−ε) poly(n) algorithm for Discrepancy Minimization with ε > 0.
(5) There exists an 2O(m2−ε) poly(n) algorithm for Set Multi-Cover with ε > 0.
(6) There exists an 2O(m2−ε) poly(n) algorithm for Set Multi-Packing with ε > 0.
Note that Item 1 is the negation of Hypothesis 1. All problems in Theorem 2 are easily
transformed into the first problem, i.e., Integer Linear Programming with ∆ = O(1),
while maintaining the same value of m. Hence, the more interesting aspect of the theorem is
that all these problems are as expressive as the first one.

Hypothesis 1 considers Integer Linear Programming with relatively small entries,
i.e., ∆ = O(1). One can also ask the question of whether there is any parameter regime for
∆ for which the state-of-the-art can be improved. In this spirit, a stronger variant of the
conjecture is the following.

▶ Hypothesis 3 (Strong ILP Hypothesis). For every fixed ε > 0 and δ ≥ 0, there is no
2O(mδ+2−ε) poly(n) time algorithm for Integer Linear Programming with ∆ = 2mδ .

Note that Hypothesis 1 is a special case of Hypothesis 3 for δ = 0. Another interesting
regime is the complexity of Integer Linear Programming with ∆ = 2m, because of a
connection to block-structure integer programming, which we elaborate on later. There, the
state-of-the-art algorithm requires time mO(m3) poly(n), Integer Linear Programming
with large entries can be reduced to an equivalent instance with a 0/1 matrix as seen in the
following theorem, but the reduction is not strong enough to show equivalence between the
two hypotheses.

ITCS 2025

83:4 Fine-Grained Equivalence for Problems Related to Integer Linear Programming

▶ Theorem 4. There is a polynomial time algorithm that transforms an instance of Integer
Linear Programming with ∆ > 1 into an equivalent one with A′ ∈ {0, 1}m′×n′ for
m′ = O(m log ∆) and n′ ≤ m′O(m′).

This implies that if there is an algorithm with running time 2O(m1.5−ε) poly(n) for Integer
Linear Programming with A ∈ {0, 1}m×n, then there is a 2O(m3−ε′

) poly(n) time algorithm
for Integer Linear Programming with ∆ = 2m.

One might hope to improve the theorem to m′ = O(m
√

log ∆), since then a
2O(m2−ε) poly(n) time algorithm for 0/1 matrices would imply a 2O(m3−ε′

) poly(n) time
algorithm for ∆ = 2m. However, such a reduction would imply the strong result that
under ETH is equivalent to Hypothesis 1. This is because under ETH the Subset Sum
problem, i.e., the case when m = 1, cannot be solved in ∆o(1) poly(n) time [1] and the
hypothetical reduction would be able to encode an instance of Subset Sum into an ILP
with m = O(

√
log ∆). We are not aware of any meaningful reduction in the other direction,

i.e., from large m and small ∆ to smaller m and larger ∆. It is possible to aggregate m

constraints into a single one with entries bounded by ∆′ = ∆O(m2), but this reduction seems
useless since the resulting parameter range requires poly(∆′) · poly(n) time due to the ETH
lower bound mentioned above.

Assuming Hypothesis 3, we derive a tight lower for a form of block-structured integer
linear programs that has been studied extensively in recent literature. For simplicity, we
consider here the basic setting with m × m submatrices.

n-Fold Integer Linear Programming
Input: Square matrices A1, . . . , An, B1, . . . , Bn ∈ {−∆, . . . , ∆}m×m, right-hand sides
b(0), . . . , b(n) ∈ Zm.
Task: Find x(1), . . . , x(n) ∈ Zm

≥0 with

A1x(1) + . . . + Anx(n) = b(0)

B1x(1) = b(1)

...

Bnx(n) = b(n)

▶ Theorem 5. For every δ > 0, there is no algorithm with running time 2O(m3−δ) poly(n)
for n-Fold Integer Linear Programming when the maximum absolute entry is bounded
by ∆ = O(1), unless Hypothesis 3 is false.

This matches the best algorithms known for the problem, see [5] and references therein. The
reduction follows the same idea as used in [10], where the authors show a non-tight quadratic
lower bound for the exponent based on ETH. Our lower bound is stronger simply because
the conjecture we base it on is stronger.

1.1 Tightness of more general problems

There are several other, more general problems to the ones mentioned above, for which
known algorithms would be tight assuming that one cannot improve the running time for
the class of problems in Theorem 2. However, we do not know if these are all equivalent.

L. Rohwedder and K. Węgrzycki 83:5

The algorithm by Eisenbrand and Weismantel [9] also works for the optimization version
of ILP, i.e.,

max cTx, Ax = b, ℓ ≤ x ≤ u, x ∈ Zn.

This leads to the same running time of (m∆)O(m2) poly(n) except for a slightly higher
constant in the exponent. Notably, the coefficients of c do not increase the number of
arithmetic operations.

Given a matrix A ∈ {−∆, . . . , ∆}m×n and a convex function g : Rm → R∪ {∞}, Dadush,
Léonard, Rohwedder, and Verschae [7] have shown that one can find the minimizer of
g(Ax), x ∈ {0, 1}n in time (m∆)O(m2) poly(n) (assuming polynomial time to evaluate g).
This problem is a generalization of Binary Integer Linear Programming, since one can
take g(b′) = 0 if b′ = b and g(b′) = ∞ otherwise.

Given a linear matroid M = (E, I), where |E| = n, a matrix A ∈ {−∆, . . . , ∆}n×m and
a right-hand side b ∈ Zm, Eisenbrand, Rohwedder, and Węgrzycki [8] gave an algorithm
that finds a basis B of M such that AxB = b in time O(m∆)O(m2) poly(n), where xB is the
incidence vector of B. This generalizes Binary Integer Linear Programming, since one
can take E as the set of binary variables and n additional dummy variables and then take
M as the uniform matroid of rank n.

Finally, Closest String (with arbitrary alphabet) can still be solved in time
mO(m2) poly(n) for example by casting it as the previous matroid problem [8] or as a
block structured ILP, see [13].

1.2 Algorithm for few distinct variables
We show that the running time of 2Õ(m2) poly(n) for Integer Linear Programming with
∆ = O(1), i.e., the subject of Hypothesis 1, can be improved if the number of distinct
variables is low. For the sake of generality, we state the algorithmic result for the optimization
variant and any range of ∆.

▶ Theorem 6. Consider the integer programming problem

max cTx

Ax = b (1)
ℓi ≤ xi ≤ ui i = 1, . . . , n

x ∈ Zn .

Let ∆ be an upper bound on the absolute value of entries of A. The problem (1) can be solved
in time

nm+1 · O(m∆)m · log(∥u − ℓ∥∞).

Using standard reductions, see e.g. Section 2.5.2, one may reduce ∥u − ℓ∥∞ to (m∆)O(m),
making the logarithmic factor insignificant.

We will now interpret this running time and point out interesting special cases.

Binary ILP with A ∈ {0, 1}m×n

Here, the running time above implies an n′O(m) + O(nm) time algorithm, where n′ is the
number of distinct variables, i.e., variables that differ either in their entry of c or in their
column of A: one can merge identical variables in time 2O(m) + O(nm) time, after which

ITCS 2025

83:6 Fine-Grained Equivalence for Problems Related to Integer Linear Programming

Closest Strong
with Bin. Alphabet

Discrepancy
Minimization

Set
Multi-Cover

Set
Multi-Packing

Binary ILP
A ∈ {0, 1}m×n

ILP
∆ = O(1)

Lemma 17Lemma 13

Lemma 12

Theorem 4

Lemma 15

Lemma 16

Lemma 8

Lemma 7

ILP
∆ = 2m

n-Fold ILP
∆ = O(1)

Theorem 5Theorem 4 (non-tight)

equivalence

Figure 1 Overview of reductions in this paper.

∥u∥∞ ≤ n. Furthermore, without loss of generality, the rows of A are linearly independent,
thus m ≤ n′. Hence, the overall running time is

2O(m) + O(nm) + n′m+1 · O(m)m · log n ≤ n′O(m) · log n + O(nm)

≤ n′O(m) + O(nm).

Here, the last inequality follows from a case distinction whether log n is greater than n′O(m) or
not. Note that in the setting without objective function we have n′ ≤ 2m. Thus, this running
time is at least as good as the known 2Õ(m2) poly(n) time algorithms. It also dominates the
running time of nO(m) one would get by simple dynamic programming over the right-hand
sides b′ that are feasible (for which there can be at most nm).

Binary ILP with A ∈ {0, 1}m×n and a constant number of 1s in each column

Here, the number of distinct columns is polynomial in m and the previous case implies a
running time of mO(m) + O(nm), meaning that Hypothesis 1 does not extend to this special
case.

2 Reductions

The basic idea of all reductions for Theorem 2 is that we transform one problem with
parameter m into another problem with parameter m′ = O(m · logO(1) m). Additionally
the size of the instance may only increase from n to 2O(m2−δ) poly(n) for some δ > 0. The
concrete reductions we prove can be seen in Figure 1.

L. Rohwedder and K. Węgrzycki 83:7

2.1 Closest String
Let d be the bound on the maximum hamming distance in the decision version of Closest
String with Binary Alphabet. For a string s ∈ Σn we denote by s[i] the ith character.
For i ≤ j we write s[i . . . j] for the substring from the ith to the jth character.

▶ Lemma 7. Theorem 2, Statement 1 implies Statement 3

Proof. The following is an ILP model for Closest String with Binary Alphabet.

n∑
i=1

xi · 1{sj [i]=0} + (1 − xi) · 1{sj [i]=1} ≤ d for all j ∈ {1, 2, . . . , m}

x ∈ {0, 1}n

One may add slack variables to turn the inequalities into equalities. ◀

▶ Lemma 8. Theorem 2, Statement 3 implies Statement 2

Proof. We want to transform the following ILP

Ax = b (2)
x ∈ {0, 1}n

where A ∈ {0, 1}m×n, into an equivalent instance of Closest String. We first rewrite (2)
into a more convenient form.

▷ Claim 9. One can in polynomial time construct a matrix C ∈ {−1, 1}(2m+2)×2n and some
c ∈ Z2m+2 such that (2) is feasible if and only if there is a solution to

Cx ≤ c (3)
x ∈ {0, 1}2n.

Furthermore, every feasible x for (3) has x1 + · · · + x2n = n.

This follows from simple transformations. We defer the proof until later and first show how
the reduction follows from it. By comparing to the ILP formulation of Closest String
we observe that (3) corresponds to a “non-uniform” variant of Closest String. It can be
reformulated as: given strings s1, . . . , s2m+2 ∈ {0, 1}2n and bounds d1, . . . , d2m+2 ∈ Z, find a
string t ∈ {0, 1}2n such that for each j = 1, . . . , m we have d(t, sj) ≤ dj . This follows from
the ILP model given in the proof of Lemma 7. Furthermore, we have the guarantee that
any solution has exactly n ones. To transform this into a regular instance, we add two more
strings r1, r2 and to each string sj we add 4n more characters, which makes a total of 6n

characters per string. The strings of this instance s′
1, . . . , s′

2m+2, r1, r2 are defined as

r1 = (0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0, , 0),
r2 = (1, . . . , 1, 1, . . . , 1, 1, . . . , 1, 0, , 0),
s′

j = (sj︸ ︷︷ ︸
2n chars

, 1, . . . , 1︸ ︷︷ ︸
n chars

, 0, . . . , 0︸ ︷︷ ︸
n chars

, 1, . . . , 1,︸ ︷︷ ︸
2n−dj chars

0, . . . , 0︸ ︷︷ ︸
dj chars

).

Here, we assume without loss of generality that dj ∈ {0, . . . , 2n}. We claim that there is
a solution to this instance with maximum Hamming distance 2n if and only if there is a
solution to the non-uniform instance.

ITCS 2025

83:8 Fine-Grained Equivalence for Problems Related to Integer Linear Programming

▷ Claim 10. If there is a string t′ ∈ {0, 1}6n with distance at most 2n to r1, r2, and s′
j ,

j = 1, 2, . . . , 2m + 2, then there is also a string t ∈ {0, 1}2n with distance at most dj to sj ,
j = 1, 2, . . . , 2m + 2.

▷ Claim 11. If there is a string t ∈ {0, 1}2n with distance at most dj to sj , j = 1, 2, . . . , 2m+2,
then there is also a string t′ ∈ {0, 1}6n with distance at most 2n to r1, r2, and s′

j , j =
1, 2, . . . , 2m + 2.

From these claims, the lemma follows immediately. ◀

Proof of Claim 9. We add variables x̄1, . . . , x̄n and force a solution to take exactly n many
ones

Ax = b

x1 + · · · + xn + x̄1 + · · · + x̄n = n

x, x̄ ∈ {0, 1}n.

Next, we change the equality constraints into inequalities and A into a −1, 1 matrix

A′x − 1x̄ ≤ b′

−A′x + 1x̄ ≤ −b′

x1 + · · · + xn + x̄1 + · · · + x̄n ≤ n

−x1 − · · · − xn − x̄1 − · · · − x̄n ≤ −n

x, x̄ ∈ {0, 1}n

where A′ = 2A − 1 with 1 being the all-ones m × n matrix and b′ = 2b − (n, . . . , n)T. ◁

Proof of Claim 10. Suppose there is a string t′ ∈ {0, 1}6n with distance at most 2n to each
of the strings s′

1, . . . , s′
2m+2, r1, r2. Because d(r1, r2) = 4n, string t′ must match r1 and r2 on

characters where r1 and r2 match. More precisely, t′[i] = 0 for i ∈ {4n, . . . , 6n}. Formally,
this follows because of

4n ≥ d(t′, r1) + d(t′, r2)
= d(t′[1 . . . 4n], r1[1 . . . 4n]) + d(t′[1 . . . 4n], r2[1 . . . 4n])

+ 2d(t′[4n + 1 . . . 6n], (0, . . . , 0))
≥ d(r1[1 . . . 4n], r2[1 . . . 4n]) + 2d(t′[4n + 1 . . . 6n], (0, . . . , 0))
≥ 4n + 2d(t′[4n + 1 . . . 6n], (0, . . . , 0)).

Let us now analyze the distance between t := t′[1 . . . 2n] and sj for some j. Since the last 2n

characters of t′ are zero, we have d(t′[4n + 1 . . . 6n], s′
j [4n + 1 . . . 6n]) = 2n − dj . Thus,

d(t, sj) ≤ d(t′, s′
j) − d(t′[4n + 1 . . . 6n], s′

j [4n + 1 . . . 6n])
≤ 2n − (2n − dj) = dj .

Thus, string t is a solution for the non-uniform instance. ◁

Proof of Claim 11. Let t ∈ {0, 1}2n with d(t[1 . . . 2n], sj) ≤ dj for all j. We extend it to a
string t′ ∈ {0, 1}6n by setting t′[1 . . . 2n] = t, t[2n+1 . . . 3n] = (1, . . . , 1), and t[3n+1 . . . 6n] =
(0, . . . , 0). Let us now verify that t′ has a distance at most 2n to each string. For r1, r2
note that t[1 . . . 2n] has exactly n ones by guarantee of the non-uniform instance. Thus, the
distance to r1 and r2 is exactly 2n. Consider some j ∈ {1, . . . , 2m + 2}. Then

d(s′
j , t) = d(sj , t[1 . . . 2n]) + 2n − dj ≤ 2n. ◀

L. Rohwedder and K. Węgrzycki 83:9

2.2 Discrepancy Minimization
▶ Lemma 12. Theorem 2, Statement 1 implies Statement 4

Proof. Let d be a bound on the objective in the decision version of Discrepancy Min-
imization. Let A be the incidence matrix of the given set system. Then the colorings of
discrepancy at most d are exactly the solutions of

(
A

−A

)
y ≤

d

d
...
d

y ∈ {−1, 1}n.

This can be equivalently formulated as

(
2A

−2A

)
x ≤

(
A

−A

)
1
1
...
1

 +

2d

2d
...

2d

x ∈ {0, 1}n.

where xi = (1 + yi)/2. One may translate the inequalities into equalities by introducing
slack variables. Therefore, an algorithm for Integer Linear Programming can be used
to solve Discrepancy Minimization. ◀

▶ Lemma 13. Theorem 2, Statement 4 implies Statement 2.

Proof. Consider an ILP of the form

Ax = b (4)
x ∈ {0, 1}n

for A ∈ {0, 1}m×n and n ≤ mO(m). We will construct an instance of Discrepancy
Minimization which has discrepancy zero if and only if the ILP has a feasible solution.
Towards this, we first reformulate the ILP above as

Ay = b′ (5)
y ∈ {−1, 1}n

where b′ = 2b − A (1, . . . , 1)T. Note that x is feasible for (4) if and only if y = 2x − (1, . . . , 1)T
is feasible for (5). Also, if b′ = (0, . . . , 0)T, then (5) is already equivalent to an instance of
Discrepancy Minimization that tests for discrepancy zero. To handle the general case,
we transform it into an equivalent system with right-hand size (0, . . . , 0)T. We first construct
a gadget of elements that have the same color.

▷ Claim 14. For any k ∈ N we can construct a pair of matrices B, B̄ ∈ {0, 1}(2k−1)×2k such
that there are exactly two solutions to

Bz + B̄z̄ =

0
...
0

z, z̄ ∈ {−1, 1}2k

namely z = (1, . . . , 1)T, z̄ = (−1, . . . , −1)T and z = (−1, . . . , −1)T, z̄ = (1, . . . , 1)T.

ITCS 2025

83:10 Fine-Grained Equivalence for Problems Related to Integer Linear Programming

We will defer the proof to the end of the section. Using this gadget with k = ⌈log2 n⌉ =
O(m log m) we now replace each coefficient b′

j in the previous system by the variables from
the gadget. Note that (5) is infeasible if ∥b′∥∞ > n. Thus assume without loss of generality
that ∥b′∥∞ ≤ n ≤ 2k. Let C, C̄ ∈ {0, 1}2k×m be defined as follows. The jth row of C has b′

j

many ones at arbitrary positions if b′
j ≥ 0 and is all zero otherwise; contrary, the jth row of

C̄ has −b′
j many ones at arbitrary positions if b′

j < 0 and is all zero otherwise.
Now consider the system

Ay + Cz + C̄z̄ =

0
...
0

Bz + B̄z̄ =

0
...
0

 (6)

y ∈ {−1, 1}n

z, z̄ ∈ {−1, 1}2k

.

We claim that (6) has a solution if and only if there is a solution to (5). Let y, z, z̄ be a solution
to the former. Notice that the negation of a solution is also feasible. Due to Claim 14 we
may assume without loss of generality that z = (−1, . . . , −1)T and z̄ = (1, . . . , 1)T, negating
the solution if necessary. It follows that

Cz + C̄z̄ = −b′.

Thus, Ay = b′, which concludes the first direction. For the other direction, assume that
there is a solution y to (5). We set z = (−1, . . . , −1)T, z̄ = (1, . . . , 1)T, which by Claim 14
satisfies Bz + B̄z̄ = (0, . . . , 0)T. As before we have that Cz + C̄z̄ = −b′. Thus, y, z, z̄ is a
solution to (6). This establishes the equivalence of the initial ILP instance to (6), which
corresponds to an instance of Discrepancy Minimization where we test for discrepancy
zero with m′ = O(m log m) sets. ◀

Proof of Claim 14. The existence of such a matrix can be proven by induction: for k = 1,
we simply take B = B̄ = (1). Now suppose that we already have a pair of matrices
B, B̄ ∈ {0, 1}(2k−1)×2k as above. Then we set

B′ =

 B 0
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

 and B̄′ =

 B̄ 0
0 · · · 0 1 · · · 1
1 · · · 1 0 · · · 0

 ∈ {0, 1}(2k+1)×2·2k

.

It can easily be checked that choosing either z = z′ = (1, . . . , 1)T, z̄ = z̄′ = (−1, . . . , −1)T or
z = z′ = (−1, . . . , −1)T, z̄ = z̄′ = (1, . . . , 1)T satisfies

B′
(

z

z′

)
+ B̄′

(
z̄

z̄′

)
=

0
...
0

 . (7)

Now take any z, z′, z̄, z̄′ ∈ {−1, 1}2k+1 that satisfy (7). Then we have that Bz + B̄z̄ =
(0, . . . , 0)T. Hence by induction hypothesis either z = (1, . . . , 1)T, z̄ = (−1, . . . , −1)T or
z = (−1, . . . , −1)T, z̄ = (1, . . . , 1)T. Assume for now the first case holds. Then because of the
second-to-last rows of B, B̄ we have

L. Rohwedder and K. Węgrzycki 83:11

2k +
2k∑

i=1
z̄′

i =
2k∑

i=1
zi + z̄′

i = 0.

Hence, z̄′ = (−1, . . . , −1)T = z̄. Similarly, the last row of B, B̄ implies that z′ = (1, . . . , 1)T =
z. Analogously, if z = (−1, . . . , −1)T, z̄ = (1, . . . , 1)T then z′ = z and z̄′ = z̄. ◁

2.3 Set Multi-Cover

▶ Lemma 15. Theorem 2, Statement 1 implies Statement 5.

Proof. An instance of the decision version of Set Multi-Cover with a bound d on the
cardinality can be formulated as

x1 + · · · + xn ≤ d

Ax ≥

b
...
b

x ∈ {0, 1}n

where A ∈ {0, 1}m×n is the incidence matrix of the given set system. This can easily
be translated to the form of (1) by introducing slack variables. Notice that this ILP has
m + 1 constraints. Thus, a faster algorithm for ILP would imply a faster algorithm for Set
Multi-Cover. ◀

In the remainder, we show that the converse is also true.

▶ Lemma 16. Theorem 2, Statement 5 implies Statement 2.

Proof. First, we reduce to a “non-uniform” version of Set Multi-Cover where each element
v has a different demand bv. Let A ∈ {0, 1}m×n and b ∈ Zm

≥0 and consider the solutions to

Ax = b

x ∈ {0, 1}n.

First, we add n additional binary variables x̄ and the requirement that exactly n variables
are equal to one, i.e.,

Ax = b

x1 + · · · + xn + x̄1 + · · · + x̄n = n

x ∈ {0, 1}n

x̄ ∈ {0, 1}n.

This system is equivalent to the previous one, by setting n − x1 − · · · − xn arbitrary variables
x̄i to 1. Next, we transform the equality constraints Ax = b into inequalities:

ITCS 2025

83:12 Fine-Grained Equivalence for Problems Related to Integer Linear Programming

Ax ≥ b

(1 − A)x + 1x̄ ≥

n
...
n

 − b

x1 + · · · + xn + x̄1 + · · · + x̄n = n

x ∈ {0, 1}n

x̄ ∈ {0, 1}n.

Here, 1 denotes the n × n all-ones matrix. Note that the second constraint is equivalent to
Ax ≤ b, since we fixed the number of ones in the solution. This ILP is feasible if and only if
the optimum of the following ILP is n.

min x1 + · · · + xn + x̄1 + · · · + x̄n

Ax ≥ b

(1 − A)x + 1x̄ ≥

n
...
n

 − b

x1 + · · · + xn + x̄1 + · · · + x̄n ≥ n

x ∈ {0, 1}n

x̄ ∈ {0, 1}n.

This ILP corresponds to an instance of non-uniform Set Multi-Cover with 2m+1 elements.
To reduce a non-uniform instance S1, . . . , Sn, (bv)v∈U , to a uniform instance of Set

Multi-Cover we proceed as follows: add one new element and n many new sets to the
instance. The coverage requirement of each element is n. The new element is contained
in each of the new sets and in none of the old ones. Thus, each new set has to be taken.
Furthermore, we add each old element v to n − bv many arbitrary new sets. ◀

2.4 Set Multi-Packing
▶ Lemma 17. Theorem 2, Statements 5 and 6 are equivalent.

Proof. Notice the following duality between Set Multi-Cover and Set Multi-Packing.
Let U = {1, 2, . . . , m}, S1, S2, . . . , Sn, and b ∈ N be an instance of Set Multi-Cover. Now
consider the instance of Set Multi-Packing with universe U , set system S̄1 = U \ S1, S̄2 =
U \ S2, . . . , S̄n = U \ Sn, and bounds b̄ = n − b. This is a bipartition between instances of
Set Multi-Cover and Set Multi-Packing, i.e., it can be performed in both ways.

For one pair of such instances, a solution I for Set Multi-Cover is feasible if and only
if Ī = {1, 2, . . . , n} \ I is feasible for Set Multi-Packing. Thus, if the optimum of Set
Multi-Cover is k, then the optimum of Set Multi-Packing is n − k. ◀

2.5 Integer Linear Programming
In this section, we prove Theorem 4, i.e., we show how to reduce an ILP with large coefficients
into a (larger) ILP with only 0/1 coefficients.

L. Rohwedder and K. Węgrzycki 83:13

▶ Theorem 4. There is a polynomial time algorithm that transforms an instance of Integer
Linear Programming with ∆ > 1 into an equivalent one with A′ ∈ {0, 1}m′×n′ for
m′ = O(m log ∆) and n′ ≤ m′O(m′).

Furthermore, we show how to reduce an ILP with arbitrary upper and lower bounds into
one with at most (m∆)O(m) binary variables. Note that this implies that Statements 1 and 2
are equivalent and concludes the proof of Theorem 2.

2.5.1 From large coefficients to zero-one
We will transform an ILP of the form

Ax = b

ℓ ≤ x ≤ u

x ∈ Zn

where A ∈ {−∆, . . . , ∆}m×n into an equivalent one with A′ ∈ {0, 1}m′×n′ for m′ =
O(m log ∆). Let k = ⌈log2(∆)⌉. For the jth row of A we introduce 4(k + 1) rows in
A′, denoted by r+

0 (j), r′+
0 (j), . . . , r+

k (j), r′+
k (j), r−

0 (j), r′−
0 (j), . . . , r−

k (j), r′−
k (j). Intuitively,

the rows r+
i (j), r′+

i (j) are symmetric rows that each stand for a value of 2i in row j. Similarly,
r−

i (j), r′−
i (j) stand for a value of −2i in row j. The right-hand sides of the new ILP are bj

for row r+
0 (j) and zero for all other rows affiliated with j.

For each column Ai we derive a column of A′ as follows: for row j we consider the binary
encoding of Aji and have the column in A′ use this binary encoding in r+

0 (j), r+
1 (j), . . . , r+

k (j)
if Aji ≥ 0 and in r−

0 (j), r−
1 (j), . . . , r−

k (j) if Aji < 0. All other entries of this column are zero.
We now add auxiliary variables to shift the values from one power to another. For each

row j and each i = 0, . . . , k − 1 we add:
a variable x(i, j) with a one in row r+

i (j), r′+
i (j) and r−

i+1(j) and
a variable x̄(i, j) with a one in row r−

i (j), r′−
i (j) and r+

i+1(j).
Furthermore, for each row j and each i = 0, . . . , k we add:

a variable xa(i, j) with a one in row r′+
i (j) and r−

i (j),
a variable xb(i, j) with a one in row r′−

i (j) and r+
i (j), and

a variable xc(i, j) with a one in row r−
i (j) and r+

i (j).
Note that each auxiliary variable does not alter the total value for row j, i.e., the sum of 2i

times r+
i (j) and r′+

i (j) minus 2i times r−
i (j) and r′−

i (j) across all i.
Thus, any solution to the new ILP must correspond to a solution of the original ILP. The

converse is also true: the auxiliary variables can be adjusted to preserve the original value of
the ILP. This is because any value for one of the rows of j can always be shifted to r+

0 (j)
using the auxiliary variables, while still satisfying the constraints. Therefore, we can enforce
the value of the unchanged variables.

2.5.2 From bounded to binary variables
Consider an ILP of the form

Ax = b

ℓ ≤ x ≤ u

x ∈ Zn

ITCS 2025

83:14 Fine-Grained Equivalence for Problems Related to Integer Linear Programming

where A ∈ {−∆, . . . , ∆}m×n. We will first transform this into an equivalent ILP of the form

A′x = b′ (8)

x ∈ {0, 1}n′

where A′ ∈ {−∆, . . . , ∆}m×n′ for n′ ≤ (m∆)O(m). Assume without loss of generality that
each column of A is different. Otherwise, we can merge identical columns together by
adding the respective upper and lower bounds. This implies that n ≤ (2∆ + 1)m. Next,
we compute a vertex solution x∗ to the continuous relaxation {Ax = b, ℓ ≤ x ≤ u, x ∈ Rn}.
The proximity bound by Eisenbrand and Weismantel [9] shows that there is an integer
solution z with ∥z − x∗∥1 ≤ m(2m∆ + 1)m if any integer solution exists. Thus, choosing
ℓ′

i = max{ℓi, ⌈x∗
i ⌉ − (2∆ + 1)m} and u′

i = min{ui, ⌊x∗
i ⌋ + (2∆ + 1)m} for i = 1, 2, . . . , n, we

can replace ℓ, u by ℓ′, u′ without affecting feasibility. By shifting the solution, we can reduce
the lower bound to zero and we arrive at the following ILP that is equivalent to the original
one.

Ax = b − Aℓ′

xi ∈ {0, 1, . . . , u′
i − ℓ′

i} for all i = 1, 2, . . . , n

Note that u′
i − ℓ′

i ≤ 2m(2m∆ + 1)m. Thus replacing each variable by u′
i − ℓ′

i binary variables
we arrive at an ILP with n′ ≤ 2m(2m∆ + 1)m · n ≤ 2m(2m∆ + 1)2m binary variables.

2.6 n-Fold Integer Linear Programming
In this section, we prove Theorem 5.

▶ Theorem 5. For every δ > 0, there is no algorithm with running time 2O(m3−δ) poly(n)
for n-Fold Integer Linear Programming when the maximum absolute entry is bounded
by ∆ = O(1), unless Hypothesis 3 is false.

Consider the ILP

Ax = b (9)
x ∈ {0, 1}n

with A ∈ {−2m, . . . , 2m}m×n. We will show that this can be formulated as an equivalent
n-Fold Integer Linear Program with parameter m and ∆ = O(1). The reduction
follows a similar idea as one in [10], which derives a lower bound based on Subset Sum. Note
that if (9) had arbitrary variables (not necessarily binary) then we can use the reduction of
the previous section to transform it into a binary one. For m ≥ 3, define

B =

1 0 · · · 0 1
0 · · · 0
2 −1 · · ·

2 −1 · · ·
...

. . .
2 −1 0

∈ {−1, 0, 1, 2}m×m.

L. Rohwedder and K. Węgrzycki 83:15

This matrix has the property that the system Bx = (1, 0, . . . , 0)T, x ∈ Zm
≥0 has exactly two

solutions, namely x = (0, . . . , 0, 1) and x = (1, 21, 22, . . . , 2m−2, 0). Our n-Fold Integer
Linear Program has one block A′

i, B′
i for each column Ai of A. Matrix B′

i is defined as
B above with right-hand side b′(i) = (1, 0, . . . , 0)T. Matrix A′

i is derived from Ai as follows:
consider a coefficient Aji. We rewrite

Aji = λ0 · 20 + λ1 · 21 + · · · + λm−2 · 2m−2 with λ ∈ {−2, . . . , 2}m−1.

Such a λ exists since |Aji| ≤ 2m. Then we set the jth row of A′
i as (λT, 0). Let x(i) be the

variables corresponding to block A′
i, B′

i. By choice of B′
i, b′(i) there are exactly two settings

of x(i) that satisfy B′
ix

(i) = b′(i), namely x(i) = (0, . . . , 0, 1) and x(i) = (20, 21, . . . , 2m−2, 0).
Thus A′

ix
(i) ∈ {(0, . . . , 0)T, Ai}. Hence, the n-Fold Integer Linear Program with

b(0) = b is equivalent to (9).

3 Algorithm for few distinct variables

In this section, we prove Theorem 6.

▶ Theorem 6. Consider the integer programming problem

max cTx

Ax = b (1)
ℓi ≤ xi ≤ ui i = 1, . . . , n

x ∈ Zn .

Let ∆ be an upper bound on the absolute value of entries of A. The problem (1) can be solved
in time

nm+1 · O(m∆)m · log(∥u − ℓ∥∞).

We assume without loss of generality that in (1) we have ℓ = (0, 0, . . . , 0). Note that
otherwise, one may obtain an equivalent ILP with ℓ = (0, 0, . . . , 0), u′ = u−ℓ, and b′ = b−Aℓ.
We first decompose each ui into a sum of powers of two with the properties described in the
following lemma. Such a construction is well-known in literature, see e.g. [18, 4, 16].

▶ Lemma 18 (Cover). For every integer k ∈ N and h ≥ ⌊log k⌋, there exist integers
c0(k), . . . , ch(k) ∈ {0, 1, 2} such that{

h∑
i=0

2ixi : 0 ≤ xi ≤ ci(k) for all 0 ≤ i ≤ h

}
= {0, 1, . . . , k}.

We call such a set c0(k), . . . , ch(k) a cover of k. This set can be found in polynomial time in
h.

Proof. For n ∈ N, let bini(n) ∈ {0, 1} denote the ith bit of the binary representation of n.
Let B := 2h − 1 be the bottom bits, and let T = k − B represent the top bits of k. Now,
consider the sets

SB :=
{

h−1∑
i=0

2ixi : 0 ≤ xi ≤ bini(B) for all 0 ≤ i ≤ h − 1
}

and

ST :=
{

h∑
i=0

2ixi : 0 ≤ xi ≤ bini(T) for all 0 ≤ i ≤ h

}
.

ITCS 2025

83:16 Fine-Grained Equivalence for Problems Related to Integer Linear Programming

We will set ci(k) := bini(B) + bini(T) ∈ {0, 1, 2}. Showing that these numbers are a cover of
k is equivalent to

SB ⊕ ST := {b + t | b ∈ SB , t ∈ ST } = {0, 1, . . . , k}.

First, observe that SB = {0, 1, . . . , 2h − 1}. Moreover, there is no gap of length at least 2h

in the set ST , that is, for every nonzero a ∈ ST , there exists a smaller b ∈ ST such that
a − b < 2h. This b can be constructed by flipping an arbitrary bit of a to 0. Therefore,
SB ⊕ ST consists of consecutive numbers. The smallest number in SB ⊕ ST is clearly 0, and
the largest is B + T = k. ◀

We set h = ⌊log2(∥u∥∞)⌋. Using the lemma above, for each i, we decompose ui = c0(ui) ·
20 + c1(ui) · 21 + · · · + ch(ui) · 2h with its cover. We can now naturally rewrite (1) as

max
h∑

i=0
2icTz(i)

h∑
i=0

2iAz(i) = b

0 ≤ z
(k)
i ≤ ck(ui) k ∈ {0, . . . , h}

z(0), . . . , z(h) ∈ Zn .

Each z(j) produces a partial solution for some unknown right-hand side b(j) = 2jAz(j). We
write b(≤j) = 20Az(0) + 21Az(1) + · · · + 2jAz(j).

Our approach is now to compute, for j = 0, 1, . . . , h and for every potential value of b(≤j),
a solution z(0), z(1), . . . , z(j). To do this, we first reduce the search space of relevant vectors
b(≤j).

▶ Lemma 19. Consider A ∈ Zm×n and b ∈ Zm with ∥A∥∞ ≤ ∆. Suppose that y =
y(0) · 20 + y(1) · 21 + · · · + y(h) · 2h satisfies Ay = b and 0 ≤ y(j) ≤ u(j) with u(j) ∈ {0, 1, 2}n

for each j ∈ {0, . . . , ℓ}. Then for b(≤j) = 20Ay(0) + 21Ay(1) + · · · + 2jAy(j), we have

b(≤j) ≡ b mod 2j+1

and furthermore

b(≤j) ∈ {−2j+2mn∆, . . . , 2j+2mn∆}m .

Proof. The first property follows from the observation that b(>j) := b − b(≤j) is a vector
with each component being a multiple of 2j+1. Hence, b(≤j) ≡ b − b(>j) ≡ b mod 2j+1.

For the second property, observe that ∥y(h)∥1 ≤ ∥u(h)∥1 ≤ 2n for each h. Therefore,
∥b(≤j)∥∞ ≤

∑j
h=0 2h+1n∆ ≤ 2j+2nm∆. ◀

We say that a vector b′ ∈ Zm is relevant for j if b′ ≡ b mod 2j+1 and ∥b′∥∞ ≤ 2j+2mn∆.
Clearly, the following holds:

▷ Claim 20. For every j, the number of relevant vectors for j is O(mn∆)m.

We will now iteratively compute solutions for all vectors relevant for j+1 from the solutions
for all relevant vectors for j with j ≥ 0. Note that this will immediately establish Theorem 6.

▶ Lemma 21. Let Sj be a set of optimal solutions to (1) for all b′ ∈ Zm that are relevant
for j. Then, in time nm+1 · O(m∆)m, we can compute a set Sj+1 of optimal solutions for
all b′′ ∈ Zm relevant for j + 1.

L. Rohwedder and K. Węgrzycki 83:17

Proof. Let V be the set of all vectors b′ ∈ Zm with b′ ≡ b mod 2j+1 and ∥b′∥∞ ≤ 2j+2mn∆.
We define an edge-weighted directed acyclic graph with vertices {s}∪V (0)∪V (1)∪. . .∪V (n),

where V (0), V (1), . . . , V (n) are n + 1 copies of V , and s is a distinguished source vertex.
If j ≥ 0, there is an edge from s to every vertex vb′ ∈ V (0) such that the vector vb′

corresponds to a relevant vector b′ ∈ Zm for j for which (1) has a solution xb′ . This edge
indicates feasibility, and the weight of the edge from s to vb′ is the value cTxb′ for the optimal
solution xb′ . In the base case where j < 0, there is exactly one edge of weight 0 to the vertex
in V (0) that corresponds to the all-zero vector.

For each vertex in V (i−1) for 0 < i ≤ n, there is an edge to the corresponding vertex
in V (i) with weight zero. Further, if cj+1(ui) ≥ 1, for every vertex corresponding to b′ in
V (i−1), there is an edge to the vertex in V (i) that corresponds to b′ + 2jAi (if it exists). The
weight of this edge is 2jci.

Similarly, if cj+1(ui) ≥ 2, then for every vertex in V (i−1) that corresponds to a relevant
b′, there is an edge to a vertex in V (i) that corresponds to b′ + 2j+1Ai (if it exists), with a
cost of 2j+1ci.

Finally, we compute the longest path from s to each vertex in V (n), and we store these
as the values of the solutions to all the relevant right-hand sides for j + 1.

For the running time, observe that by Claim 20, we have |V | ≤ O(mn∆)m. Hence, the
graph has nm+1 · O(m∆)m vertices and edges. Thus, the longest path problem can be solved
in time nm+1 · O(m∆)m.

For correctness, consider a path in the graph from vertex vb1 ∈ V (0) to vertex vb2 ∈ V (n)

(corresponding to vectors b1 and b2 respectively). The edges of this path define a vector z(j+1)

such that 0 ≤ z(j+1) ≤ cj+1(u). Moreover, by construction, it holds that 2jAz(j+1) + b1 = b2.
Finally, the weight of this path corresponds to the value 2jcTz(j+1). ◀

References
1 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower

bounds for subset sum and bicriteria path. ACM Transactions on Algorithms (TALG),
18(1):1–22, 2022. doi:10.1145/3450524.

2 Karl Bringmann. Fine-grained complexity theory. In Proceedings of STACS, page 1, 2019.
3 Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight Hardness Results for

Minimizing Discrepancy. In Dana Randall, editor, Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pages 1607–1614. SIAM, 2011.
doi:10.1137/1.9781611973082.124.

4 Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. Faster algorithms for bounded
knapsack and bounded subset sum via fine-grained proximity results. In Proceedings of SODA,
pages 4828–4848, 2024. doi:10.1137/1.9781611977912.171.

5 Jana Cslovjecsek, Friedrich Eisenbrand, Christoph Hunkenschröder, Lars Rohwedder, and
Robert Weismantel. Block-structured integer and linear programming in strongly polynomial
and near linear time. In Proceedings of SODA, pages 1666–1681, 2021. doi:10.1137/1.
9781611976465.101.

6 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as CNF-
SAT. ACM Transactions on Algorithms (TALG), 12(3):1–24, 2016. doi:10.1145/2925416.

7 Daniel Dadush, Arthur Léonard, Lars Rohwedder, and José Verschae. Optimizing low
dimensional functions over the integers. In Proceedings of IPCO, pages 115–126, 2023.
doi:10.1007/978-3-031-32726-1_9.

8 Friedrich Eisenbrand, Lars Rohwedder, and Karol Węgrzycki. Sensitivity, Proximity and FPT
Algorithms for Exact Matroid Problems. In 2024 IEEE 65th Annual Symposium on Foundations
of Computer Science (FOCS), pages 1610–1620, 2024. doi:10.1109/FOCS61266.2024.00100.

ITCS 2025

https://doi.org/10.1145/3450524
https://doi.org/10.1137/1.9781611973082.124
https://doi.org/10.1137/1.9781611977912.171
https://doi.org/10.1137/1.9781611976465.101
https://doi.org/10.1137/1.9781611976465.101
https://doi.org/10.1145/2925416
https://doi.org/10.1007/978-3-031-32726-1_9
https://doi.org/10.1109/FOCS61266.2024.00100

83:18 Fine-Grained Equivalence for Problems Related to Integer Linear Programming

9 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the Steinitz lemma. ACM Transactions on Algorithms (TALG),
16(1):1–14, 2019. doi:10.1145/3340322.

10 Christoph Hunkenschröder, Kim-Manuel Klein, Martin Kouteckỳ, Alexandra Lassota, and
Asaf Levin. Tight lower bounds for block-structured integer programs. In Proceedings of
IPCO, pages 224–237, 2024. doi:10.1007/978-3-031-59835-7_17.

11 Klaus Jansen and Lars Rohwedder. On integer programming, discrepancy, and convolution.
Mathematics of Operations Research, 48(3):1481–1495, 2023. doi:10.1287/MOOR.2022.1308.

12 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of
operations research, 12(3):415–440, 1987. doi:10.1287/MOOR.12.3.415.

13 Dušan Knop, Martin Kouteckỳ, and Matthias Mnich. Combinatorial n-fold integer pro-
gramming and applications. Mathematical Programming, 184(1):1–34, 2020. doi:10.1007/
S10107-019-01402-2.

14 Dušan Knop, Michał Pilipczuk, and Marcin Wrochna. Tight complexity lower bounds for
integer linear programming with few constraints. ACM Transactions on Computation Theory
(TOCT), 12(3):1–19, 2020. doi:10.1145/3397484.

15 Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Mathematics
of operations research, 8(4):538–548, 1983. doi:10.1287/MOOR.8.4.538.

16 Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer implementa-
tions. John Wiley & Sons, Inc., 1990.

17 Christos H. Papadimitriou. On the complexity of integer programming. Journal of the ACM
(JACM), 28(4):765–768, 1981. doi:10.1145/322276.322287.

18 Adam Polak, Lars Rohwedder, and Karol Węgrzycki. Knapsack and subset sum with small
items. In Proceedings of ICALP, pages 1–19, 2021. doi:10.4230/LIPICS.ICALP.2021.106.

19 Victor Reis and Thomas Rothvoss. The subspace flatness conjecture and faster integer
programming. In Proceedings of FOCS, pages 974–988, 2023. doi:10.1109/FOCS57990.2023.
00060.

20 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In Proceedings of
IPEC, 2015. doi:10.4230/LIPIcs.IPEC.2015.17.

https://doi.org/10.1145/3340322
https://doi.org/10.1007/978-3-031-59835-7_17
https://doi.org/10.1287/MOOR.2022.1308
https://doi.org/10.1287/MOOR.12.3.415
https://doi.org/10.1007/S10107-019-01402-2
https://doi.org/10.1007/S10107-019-01402-2
https://doi.org/10.1145/3397484
https://doi.org/10.1287/MOOR.8.4.538
https://doi.org/10.1145/322276.322287
https://doi.org/10.4230/LIPICS.ICALP.2021.106
https://doi.org/10.1109/FOCS57990.2023.00060
https://doi.org/10.1109/FOCS57990.2023.00060
https://doi.org/10.4230/LIPIcs.IPEC.2015.17

	1 Introduction
	1.1 Tightness of more general problems
	1.2 Algorithm for few distinct variables

	2 Reductions
	2.1 Closest String
	2.2 Discrepancy Minimization
	2.3 Set Multi-Cover
	2.4 Set Multi-Packing
	2.5 Integer Linear Programming
	2.5.1 From large coefficients to zero-one
	2.5.2 From bounded to binary variables

	2.6 n-Fold Integer Linear Programming

	3 Algorithm for few distinct variables

