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Abstract
We study error detection and error correction in a computationally bounded world, where errors
are introduced by an arbitrary polynomial time adversarial channel. We consider codes where the
encoding procedure uses random coins and define two distinct variants: (1) in randomized codes,
fresh randomness is chosen during each encoding operation and is unknown a priori, while (2) in
self-seeded codes, the randomness of the encoding procedure is fixed once upfront and is known to
the adversary. In both cases, the randomness need not be known to the decoding procedure, and
there is no trusted common setup between the encoder and decoder. The encoding and decoding
algorithms are efficient and run in some fixed polynomial time, independent of the run time of the
adversary.

The parameters of standard codes for worst-case (inefficient) errors are limited by the Singleton
bound: for rate R it is not possible to detect more than a 1 − R fraction of errors, or uniquely
correct more than a (1−R)/2 fraction of errors, and efficient codes matching this bound exist for
sufficiently large alphabets. In the computationally bounded setting, we show that going beyond the
Singleton bound implies one-way functions in the case of randomized codes and collision-resistant
hash functions in the case of self-seeded codes. We construct randomized and self-seeded codes under
these respective minimal assumptions with essentially optimal parameters over a constant-sized
alphabet:

Detection: the codes have a rate R ≈ 1 while detecting a ρ ≈ 1 fraction of errors.

Correction: for any ρ < 1/2, the codes uniquely correct a ρ fraction of errors with rate R ≈ 1− ρ.
Codes for computationally bounded errors were studied in several prior works starting with Lipton
(STACS ’94), but all such works either: (a) need some trusted common setup (e.g., public-key
infrastructure, common reference string) between the encoder and decoder, or (b) only handle
channels whose complexity is a prior bounded below that of the code.
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88:2 Detecting and Correcting Computationally Bounded Errors

1 Introduction

The theory of error detection and error correction goes back to the seminal works of
Shannon [21] and Hamming [7]. A sender encodes a message and sends the resulting
codeword over a noisy channel that may introduce errors by modifying a subset of the
codeword symbols. A receiver gets the modified codeword and attempts to decode the original
message. The goal of error-detection is to recover the original message when there are no
errors or detect the presence of errors. The goal of error-correction is to always uniquely
recover the original message. The main parameters of interest are the rate R, defined as the
ratio of message length to codeword length, and the relative error tolerance ρ, defined as the
ratio between the number of errors that can be detected/corrected and the codeword length.

Starting with the work of Hamming [7], a large body of research studies codes for worst-
case computationally unbounded (adversarial) channels that can introduce arbitrary errors
patterns. The error tolerance in this setting is fully determined by the distance of the code,
which is subject to several well-established fundamental bounds. For example, the Singleton
bound implies that for any rate R ≥ 0 the relative error tolerance is ρ ≤ 1 − R for error
detection and ρ ≤ (1 − R)/2 for error correction. Furthermore, there are efficient codes
matching the Singleton bound for sufficiently large alphabet sizes.

Computationally Bounded Channels

We consider a setting similar to that of Hamming [7], where errors are introduced by a
fully adversarial channel, but with the additional natural restriction that the channel is
computationally bounded, and can run in arbitrary polynomial (or even sub-exponential) time.
This restriction is well motivated – if an error pattern takes longer than the lifetime of the
universe to compute, then we can safely assume it will not occur. Our goal is to construct
efficient codes that can detect/correct errors in this setting with rate vs error-tolerance
trade-offs that go beyond the Singleton bound. Many prior works starting with [11] and
including [14, 12, 8, 4, 17, 1, 18, 19, 20, 3] have previously considered computationally
bounded channels, either to get better parameters, or to achieve other desirable properties
such as improved local/list decoding. However, all such prior works suffer from at least one
of the following deficiencies:
1. Trusted setup: Many works require a trusted coordinated setup between the encoding and

decoding algorithms. For example, [11] assumes that they share a secret key, which is
unknown to the adversarial channel. Alternatively, [12] require a public-key infrastructure
where the encoding algorithm has its own secret key, while the decoding algorithm (as well
as the adversarial channel) gets the corresponding public-key. In both cases, the encoding
algorithm is also stateful and updates its state between operations. The use of secret keys
and state are significant limitations that make such codes inapplicable in many natural
settings. The work of Grossman, Holmgren and Yogev [3] introduces the notion of seeded
codes that only requires a light trusted setup consisting of a common (uniformly) random
seed shared by the encoder and decoder. They construct such seeded codes correcting
ρ ≈ 1−R errors over a large alphabet based on strong and non-standard cryptographic
hardness assumptions – namely a certain form of two-input correlation-intractable hash
functions, which are currently only known to exist in the random-oracle model, but
have no known provably secure instantiations under standard cryptographic hardness
assumptions.

2. Codes have higher complexity than adversary: Many works [4, 17, 18, 19, 20] restrict the
complexity (time/size or space) of the adversarial channel to be bounded by some arbitrary
polynomial chosen a priori, and the complexity of the encoding/decoding algorithms then
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scales accordingly to some sufficiently larger polynomial. In particular, the adversarial
channel is not powerful enough to evaluate the encoding/decoding algorithms in these
schemes. This is a significant limitation, since we cannot argue that such schemes protect
against all errors that can arise in a computationally bounded world – a world that can
compute the encoding/decoding algorithms of the scheme can also find error patterns
to defeat them! In contrast, we would like to have efficient codes with some fixed
polynomial run-time that protect against arbitrary polynomial (or even sub-exponential
time) adversarial channels.

The different prior works and their properties are summarized in Table 1.

Table 1 Summary of related work. Seeded codes are also known as Monte-Carlo codes in
the literature and require a common random seed shared by the encoder and decoder as a trusted
setup. Randomized codes require fresh on-the-fly randomness at each encoding operation. Seeded +
randomized codes require both simultaneously. Codes for channels in SIZE(nc) have correspondingly
larger run-time poly(nc), while codes for channels in P/poly have some a priori fixed polynomial
run-time independent of the channel. Some works focus on the binary alphabet while others focus
on larger alphabets.

work Setup/Type Channel Decoding Assumption

[11] symmetric-key
stateful encoding P/poly unique one-way functions

[12] public key
stateful encoding P/poly unique one-way functions

[4] seeded + randomized SIZE(nc) list none
[17] randomized SIZE(nc) list derandomization assumption
[18] randomized SPACE(nδ) unique none
[19] seeded + randomized SIZE(nc) unique none
[20] randomized SIZE(nc) unique derandomization assumption

[3] seeded P/poly unique correlation-intractable hash
(random oracle)

This work randomized P/poly unique one-way functions
This work self-seeded P/poly unique collision-resistant hash

1.1 Our Results
In this work we construct error detection and error correction codes for computation-
ally bounded channels, while simultaneously achieving: (1) no trusted setup, (2) a fixed
polynomial-time code that protects against arbitrary polynomial (or even sub-exponential)
time adversarial channels, (3) provable guarantees under basic/minimal computational hard-
ness assumptions, (4) essentially optimal trade-offs between rate and error tolerance beyond
the Singleton bound for sufficiently large constant-sized alphabets.

Randomized/Self-Seeded Codes

Standard deterministic codes cannot achieve better parameters against (non-uniform) com-
putationally bounded channels beyond what they achieve for computationally unbounded
channels, and in particular, they cannot go beyond the Singleton bound. This is because
a worst-case message and error pattern for which detection/correction fails can simply be
hard-coded as non-uniform advice to an efficient adversary. To overcome this limitation,
we therefore consider codes (Enc, Dec), where the encoding procedure Enc takes additional
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88:4 Detecting and Correcting Computationally Bounded Errors

randomness as input. We consider two variants. In the basic variant of randomized codes,
fresh randomness r for the encoding algorithm is chosen each time on the fly and is unknown
to the adversary ahead of time. The adversary chooses a worst-case message m, gets the
resulting randomized codeword c← Enc(m; r) for a fresh random r, and then chooses the
error e as an arbitrary efficiently computable function of the codeword. We also consider a
stronger variant called self-seeded codes, where the randomness r of the encoding algorithm
is fixed once and for all and known to the adversary a priori. That is, the adversary gets the
randomness r and then uses it to adaptively choose the message m (which fully defines the
codeword c = Enc(m; r)) along with the error e. In both cases, the fractional Hamming weight
of e is bounded by the error tolerance ρ. Error detection ensures that with overwhelming
probability the resulting erroneous codeword c′ = c + e decodes to m when there are no
errors, and decodes to either m or ⊥ when there are errors. Error correction ensures that
with overwhelming probability c′ decodes to m.

The main technical difference between randomized and self-seeded codes is adaptivity: in
the former the message m to be encoded is chosen by the adversary before the randomness
r is chosen, while in the latter the message m can adaptively depend on r.1 Self-seeded
codes allow us to fix the randomness for the code once and for all as a public seed, and
afterwards the code is fully deterministic. Moreover, the seed can be chosen by the encoder
unilaterally without any coordination with the decoder. For example, different software
manufacturers can individually choose their own seeds to be used by the encoding algorithms
in their software, while allowing for interoperability with the decoders implemented by other
manufacturers without any coordination. Self-seeded codes should be contrasted to the
notion of seeded codes in [3], which required a shared random seed as a common trusted
setup between the encoder and decoder. Self-seeded codes are the strongest notion and
directly imply the seemingly incomparable notions of randomized codes and seeded codes.

Minimal Assumptions

We show that any randomized code that goes beyond the Singleton bound with error detection
tolerance ρ > 1−R or error correction tolerance ρ > (1−R)/2 implies one-way functions,
while any such seeded (and therefore also self-seeded) code implies collision-resistant hash
functions.

Main Theorem

We construct randomized and self-seeded codes going beyond the Singleton bound, with
essentially optimal parameters for both error detection and error correction, under the above
respective minimal assumptions.

▶ Theorem 1 (Informal). Assuming one-way functions (resp. collision-resistant hash func-
tions) there exist efficiently computable randomized (resp. self-seeded) error-detection and
error-correction codes for arbitrary polynomial-time adversarial errors with the following
parameters:

Error Detection: For any constant 0 < ε < 1, there is a code over a constant-sized
alphabet with rate R = 1− ε that detects a ρ = 1− ε fraction of errors.

1 Randomized codes may also be secret-coin, where the adversary never sees the full randomness r.
However, our construction will be public-coin and the randomness r can be easily recovered from the
codeword c.
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Error Correction: For any constants 0 < ε < 1 and 0 ≤ ρ < 1/2, there is a code over a
constant-sized alphabet with rate R = 1− ρ− ε that uniquely corrects from a ρ fraction of
errors.

If we assume sub-exponentially secure one-way functions (resp. collision-resistant hash
functions), then the above properties hold even for sub-exponential time adversarial errors.

Recall that, in the case of error-detection, the Singleton bound says that the relative error
tolerance ρ ≤ 1−R necessarily degrades as the rate improves when considering worst-case
errors; in contrast, for computationally bounded errors, our result simultaneously achieves
the best possible error tolerance ρ ≈ 1 and rate R ≈ 1. In the case of error correction, the
Singleton bound says the maximal error tolerance is ρ ≤ (1 − R)/2 for worst-case errors,
while for computationally bounded errors our result achieves twice as large error tolerance
ρ ≈ 1−R, subject to the upper limit ρ < 1/2.

Our achieved parameters are essentially optimal, up to the arbitrarily small constant
ε. This is clear for error detection, where we get the best possible rate R ≈ 1 and error
tolerance ρ ≈ 1 simultaneously. For error-correction, one cannot tolerate ρ ≥ 1/2 fraction
of errors since an efficient adversarial channel can modify 1/2 the codeword positions to a
fresh encoding of a different message, causing decoding to fail with probability at least 1/2.2
Moreover, one cannot have rate R > 1− ρ since zeroing out the first ρ fraction of positions
of the codeword would remove information about the message, causing decoding to fail.

We remark that, not only are one-way functions and collision-resistant hash functions
the minimal assumptions needed to achieve the above results, they are considered some of
the most standard and well-studied cryptographic assumptions/primitives. In particular,
one-way functions are a minimal assumption necessary for essentially any non-trivial task in
cryptography and are implied by all concrete cryptographic hardness assumptions. Collision-
resistant hash functions are not known to be implied by one-way function, but can be
constructed from essentially every concrete cryptographic hardness assumption, such as
hardness of factoring, discrete logarithms, learning with errors, etc.

The closest related prior work of [3] achieves essentially the same parameters as our work,
but only for the weaker notion of seeded codes, which require trusted setup, and only by
assuming a strong form of “two-input correlation-intractable hash functions”, which we do
not know how to instantiate under any standard cryptographic hardness assumption. Our
result for self-seeded codes yields a stronger primitive under significantly weaker minimal
assumptions. Comparing the notions of randomized, seeded and self-seeded codes, it is
clear that self-seeded codes are the strongest notion easily implying the other two, while
randomized and seeded codes are seemingly incomparable. Interestingly, since we show
that any non-trivial seeded codes imply collision-resistant hashing, which in turn implies
self-seeded codes, we show that seeded and self-seeded codes are equivalent in terms of the
needed assumptions.

Simultaneous Correction and Detection

While we stated separate results for error-detection and error-correction above, we can also
simultaneously achieve a non-trivial combination of correction and detection. In particular,
we can augment the previous theorem statement with the following:

2 The works of [11, 12] overcome this limitation by having a stateful and secret keyed encoding procedure
to ensure that an adversarial channel cannot generate/reuse valid codewords.

ITCS 2025



88:6 Detecting and Correcting Computationally Bounded Errors

For any constants 0 < ε < 1 and 0 ≤ ρc < 1/2, there is a code over a constant-sized
alphabet with rate R = 1 − ρc − ε that simultaneously uniquely corrects from a ρc

fraction of errors and detects a ρd = 1− ρc − ε fraction of errors.

The above implies both of the previously stated results for error detection (by setting ρc = 0)
and error correction (by ignoring ρd). However simultaneous error correction and detection
is an interesting property, which is more than the sum of its parts. It gives a single decoding
procedure that either outputs a message or ⊥ (error detection symbol) and is guaranteed to
uniquely recover the correct message if the error rate is ≤ ρc and to never output the wrong
message as long as the error rate is ≤ ρd. We can envision scenarios where correcting a small
fraction of errors (e.g., ρc = .1) may suffice. Our result show that for such instances, we can
have a code with a correspondingly large rate (e.g., R ≈ .9) while simultaneously being able
to detect a much larger fraction of errors (e.g., ρd ≈ .9) at no additional cost.

Alphabet Size

We note that our results hold for large constant-size alphabets, but do not extend to the
case of a binary alphabet. Giving optimal results for binary codes that detect/correct
computationally bounded errors under minimal assumptions remains an interesting open
problem. The results of [3] for seeded error correcting codes using a strong form of correlation
intractable hash functions extend to the binary case and show that one can uniquely decode
computationally bounded errors with essentially the same parameters as list-decoding for
worst-case errors. It remains an open problem to achieve such results for randomized or
self-seeded codes under any assumptions, and/or to to get provably secure seeded codes
under standard cryptographic hardness assumptions.

1.2 Our Techniques
Our techniques are quite simple in retrospect. We start by showing how to construct self-
seeded codes assuming collision-resistant hashing, and then discuss how to modify these
results to get analogous ones for randomized codes from one-way functions. Throughout the
introduction, we use “≈” to denote that two values differ by an arbitrarily small constant.

Self-Seeded Error Detection with Sub-Exponential Alphabet

We start with a naive construction of self-seeded error-detection codes that requires a sub-
exponentially large alphabet size, and then show how to reduce the alphabet size to some
(large) constant. Let H = {hr : {0, 1}k → {0, 1}λ}r∈{0,1}λ be a collision-resistant hash
function family with output length λ (security parameter), which we can think of as λ = kα

for some small constant α > 0. Given a random public seed r ← {0, 1}λ, no polynomial-time
adversary can find two messages m ̸= m′ such that hr(m) = hr(m′).

The encoding algorithm Enc(m; r) takes a message m ∈ {0, 1}k and parses it as n = k/w

symbols m = (m1, . . . , mn) over an alphabet Σdata = {0, 1}w for some large w = O(λ). It
then “folds in” the seed r and hash of the message hr(m) into each message symbol to yield
the codeword

c = ( [m1, r, hr(m)] , [m2, r, hr(m)] , . . . , [mn, r, hr(m)] ) ∈ Σn

interpreted as n symbols over the larger alphabet Σ = {0, 1}w+2·λ. The decoding algorithm
Dec(c′) gets

c′ = ( [m′1, r′1, y′1] , [m′2, r′2, y′2] , . . . , [m′n, r′n, y′n] ) ∈ Σn,
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which gives a candidate message m′ = (m′1, . . . , m′n). It checks that the second part of each
codeword symbol has the same common seed value r′1 = · · · = r′n and that the third part of
each symbol has the same common hash value y′i = hr′

i
(m′); if so it outputs m′ else ⊥. The

code achieves rate R = w/(w + 2λ) ≈ 1 by choosing a sufficiently large w = O(λ). Moreover,
it achieves error-tolerance ρ = 1− 1/n. Unless the adversary changes every symbol of the
codeword c, or finds a collision, decoding is guaranteed to output the correct message m or
⊥. To see this, assume at least one symbol of the codeword remains unchanged and decoding
outputs m′ ̸= m for some m′ ̸= ⊥. Then it must be the case that r′i = r, y′i = hr(m′) = hr(m)
for all i and therefore the this gives a collision m ̸= m′ such that hr(m) = hr(m′).

Self-Seeded Error Detection with Constant Alphabet

We reduce the alphabet size to a constant by applying a standard error-correcting code
(Encctrl, Decctrl) over a constant sized alphabet to the small “control” value (r, hr(m)). In
particular, for some constants w > v, we use a code with alphabet Σctrl = {0, 1}v such that
Encctrl : {0, 1}2λ → Σn

ctrl maps a 2λ-bit message to a codeword of length n = k/w. The
corresponding rate of the code is very small Rctrl = O(λ/k) = o(1), but we will want large
distance δctrl ≈ 1. Such codes can be constructed by concatenating Reed-Solomon codes
with a brute-force inner code over the alphabet Σctrl (see Theorem 13). We do not need
efficient error-decoding for now, but only require an efficient way to recognize and valid
codewords and invert them without errors. The encoding algorithm of our self-seeded code
Enc(m; r) first computes cctrl = (cctrl,1, . . . , cctrl,n) = Encctrl((r, hr(m))) ∈ Σn

ctrl. It interprets
m ∈ {0, 1}k as m = (m1, . . . , mn) ∈ Σn

data consisting of n = k/w symbols over the alphabet
Σdata = {0, 1}w and then “folds” the two vectors together to yield the final codeword

c = ( [m1, cctrl,1] , . . . , [mn, cctrl,n] ) ∈ Σn,

interpreted as n symbols in over the alphabet Σ = Σdata × Σctrl = {0, 1}v+w. The decoding
algorithm Dec(c′) gets

c′ = ( [m′1, c′ctrl,1] , . . . , [m′n, c′ctrl,n] ) ∈ Σn,

and recovers a candidate message m′ = (m′1, . . . , m′n) as well as a candidate c′ctrl =
(c′ctrl,1, . . . , c′ctrl,n). It checks that c′ctrl is a valid codeword and if so recovers (r′, y′) such that
c′ctrl = Encctrl(r′, y′). If c′ctrl is not a valid codeword or hr′(m′) ̸= y′, it outputs ⊥ else it
outputs m′. Note that this generalizes the previous naive idea with a sub-exponentially large
alphabet, which corresponds to using a repetition code for the control code. The rate of
the overall code is R = w/(w + v) which can be made arbitrarily close to 1 by choosing a
sufficiently large constant w > v. The error-tolerance is ρ = δctrl ≈ 1. In particular, if c′ is
within distance ρ of c and c′ctrl is a valid codeword then it must be the case that c′ctrl = cctrl
and hence r′ = r, y′ = hr(m). In this case, the only way that that decoding can output some
m′ ̸= m is if the values form a hash collision hr(m′) = hr(m).

Self-Seeded Error Correction

To achieve error-correction, we use essentially the same construction as before, but additionally
encode the data m using an efficiently list-decodable error-correcting code (Encdata, Decdata)
over a constant size alphabet Σdata = {0, 1}w for some large constant w. For any constant
ρ < 1/2 we want this code to have rate Rdata ≈ 1 − ρ and to be list-decodable from a
ρ fraction of errors. This can be accomplished using the codes of [5]. Moreover, we will
now want the code (Encctrl, Decctrl) to efficiently uniquely decode from ρ errors, which
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can be achieved with the same parameters as previously. Our self-seeded code Enc(m; r)
computes cctrl = (cctrl,1, . . . , cctrl,n) = Encctrl((r, hr(m))) ∈ Σn

ctrl as before, and also cdata =
(cdata,1, . . . , cdata,n) = Encdata(m) ∈ Σn

data. It then “folds” the two codewords together to
yield the final codeword

c = ( [cdata,1, cctrl,1] , . . . , [cdata,n, cctrl,n] ) ∈ Σn

where Σ = Σdata × Σctrl = {0, 1}v+w. The decoding algorithm Dec(c′) gets

c′ = ( [c′data,1, c′ctrl,1] , . . . , [c′data,n, c′ctrl,n] ) ∈ Σn.

It applies list-decoding on the data part c′data of the received value c to recover a polynomial
list of candidate messages {m(i)} = Decdata(c′data). It also uniquely decodes (r′, y′) =
Decctrl(c′ctrl). Then it outputs the first value m(i) such that hr′(m(i)) = y′, or outputs ⊥ if
none is found or if either of the decoding procedures fail. The rate of the overall code is
R = Rdata · (w + v)/w ≈ 1− ρ by choosing sufficiently large constants w > v. To analyze
the error-correction, first observe that if the received value c′ within relative distance ρ

of c = Enc(m; r) then, by the correctness of list-decoding of the “data code”, the correct
message m will be in the decoded list with m = m(i) for some i, and by the correctness of
unique decoding of the “control code” we have (r′, y′) = (r, hr(m)). So the only way that
error correction can fail is if there is another m(j) ≠ m in the list such that hr(m(j)) = hr(m),
but this gives a collision on the hash function.

Randomized Codes from One-Way Functions

Our constructions of randomized codes with error-detection and error-correction are identical
to the above constructions of self-seeded codes, but instead of requiring the hash family hr to
be collision-resistant, we only need it to be a universal one-way hash function (UOWHF). A
UOWHF ensures that a polynomial time adversary that selectively chooses a message m first
and then gets the seed r cannot find a collision m′ ̸= m such that hr(m) = hr(m′) except with
negligible probability. Such UOWHFs can be constructed from one-way functions [13, 16].
Recall that the only difference between self-seeded and randomized codes is whether the
encoded message m can be chosen adaptivley depending on the randomness r or selectively
before r is chosen, which exactly matches the difference between collision-resistant hash
functions and UOWHFs.

Necessity of Assumptions

We show that self-seeded codes beating the Singleton bound, with error-detection tolerance
ρ > 1 − R or error-correction tolerance ρ > (1 − R)/2, imply collision-resistant hash
functions (CRHFs). Start by considering a self-seeded error-detection code (Enc, Dec) with
error-detection tolerance ρ. We claim that for every fixed subset S of 1 − ρ fraction of
codeword positions, the function hr(m) = Enc(m; r)[S] that outputs the codeword symbols
of Enc(m; r) in the positions indexed by S is collision-resistant. In particular, if there is an
efficient adversary that, given r, can find a collision m ̸= m′ such that hr(m) = hr(m′), it
means that Enc(m; r) and Enc(m′; r) are at distance < ρ and therefore such an adversary
can break error detection by choosing the message m and modifying Enc(m; r) to Enc(m′; r).
Moreover, if the rate of the code exceeds the Singleton bound with R > 1 − ρ, then the
functions hr are compressing, making them CHRFs. To get the analogous result for error-
correction, we simply note that ρ-error-correction implies (2ρ)-error-detection. In particular,
if an efficient adversary given r can find two messages m0 ̸= m1 such that Enc(m0; r) and
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Enc(m1; r) are within relative distance 2ρ then it can find a “midpoint” c′ which is at relative
distance ρ from both Enc(m0; r) and Enc(m1; r). For one of b ∈ {0, 1}, modifying Enc(mb; r)
to c′ necessarily causes decoding to output the incorrect message m1−b.

We also show that randomized error-detection and error-correction codes beating the
Singleton bound imply one-way functions. The argument is somewhat different from above
since we don’t want to assume that Enc(m; r) reveals r in the full. Instead, we rely on the
fact that, if one-way functions don’t exist, then we can efficiently sample “almost uniform”
inverses of any efficient function [9]. Consider a random codeword c = Enc(m; r) for a random
message m and randomness r. For any subset S of 1− ρ fraction of codeword positions we
can efficiently find an almost uniform inverse (m′, r′) of the function f(m, r) = Enc(m; r)[S]
that outputs the codeword symbols in positions S. This means that c = Enc(m; r) and
c′ = Enc(m′; r′) agree on the positions in S and therefore have relative distance ≤ ρ. If
the rate of the code exceeds the Singleton bound with R > 1 − ρ, then there is a non-
negligible probability that m ≠ m′ since f loses information about m. Therefore the channel
that changes c to c′ is efficient and defeats error detection by introducing ρ-fraction errors.
Similarly the channel that changes a random subset of ρ/2 positions outside of S from c to
c′ defeats error correction since decoding is almost as likely to output m′ as m.

Organization of the Paper
In Section 2 we give general notations and state the ingredients that we will use. In Section 3
we give formal definitions for randomized codes and self-seeded codes. In Section 4 we state
and prove our main theorems. In Section 5 we show that randomized codes imply one-way
functions. Due to space limitations, this extended abstract does not contain the proof that
self-seeded codes imply collision resistance hash functions. The reader is referred to [22] for
a full version that contains this proof.

2 Preliminaries and Ingredients

2.1 Notations
All logarithms are taken in base 2. Let poly stand for the set of all polynomials. Let PPT
stand for non-uniform probabilistic polynomial-time. We note that while we rely on the
non-uniform model of computation by default, all our results also hold if we were to define
PPT in the uniform model. We use sans-serif (e.g., A) for PPT algorithms. A function
ν : N 7→ [0, 1] is negligible, denoted ν(k) = neg(k), if ν(k) < 1/p(k) for every p ∈ poly and
large enough k. For a set S, let x← S denote that x was drawn uniformly from S. Given a
distribution P , we use x← P to denote that x is chosen according to P .

Hamming distance

The Hamming distance between x, y ∈ [q]n is ∆(x, y) = | {i : xi ̸= yi} |. The relative Hamming
distance between x, y ∈ [q]n is δ(x, y) = ∆(x,y)

n .

Distributions and random variables

The statistical distance (also known as, variation distance) of two distributions P and Q over
a discrete domain X is defined by SD(P, Q) = maxS⊆X |P (S)−Q(S)|.

▶ Definition 2 (Min-entropy). A random variable X has min-entropy k, denoted H∞(X) ≥ k,
if maxx Pr [X = x] ≤ 2−k.
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We will also use the following lemma about average min-entropy:

▶ Definition 3 (Average min-entropy). Let (X, Y ) be a pair of random variables. The average
min-entropy of X conditioned on Y is:

H̃∞(X|Y ) = − log
[

E
y←Y

[
2−H∞(X|Y =y)

] ]
Average min-entropy gives a bound on the probability that an adversary that gets the

value of Y will guess the value of X in a single attempt. We will use the following useful
lemma that connects average min-entropy and min-entropy.

▶ Lemma 4 ([2, 15]). H̃∞(X|Y ) ≥ H∞(X, Y )− v, where 2v is the number of elements in
support of Y .

2.2 One-Way Functions
▶ Definition 5 (One-way functions). A PPT algorithm F : {0, 1}∗ → {0, 1}∗ is a one-way
function if for every PPT A and every sufficiently large k ∈ N,

Pr
x←{0,1}k

[
A(1k, F(x)) ∈ F−1(F(x))

]
≤ neg(k).

Distributional one-way functions

We will also use the classical result of Impagliazzo and Luby on distributional one-way
functions implying one-way functions.

▶ Definition 6 (Distributional One-way functions). A PPT algorithm F : {0, 1}∗ → {0, 1}∗ is
a distributional one-way function if there exists a constant c > 0 such that for every
PPT A and every sufficiently large k ∈ N,

SD
((

A(1k, F(X)), F(X)
)
,
(
X, F(X)

))
≥ 1/kc.

where X is sampled uniformly from {0, 1}k.

▶ Theorem 7 (Distributional one-way functions imply one-way functions, [9]). If there exists a
distributional one-way function then there exists a one-way function.

2.3 Universal One-Way Hash Functions
▶ Definition 8 (Universal one-way hash functions). For a security parameter k ∈ N. A family
of functions H = {hs : {0, 1}n(k) → {0, 1}ℓ(k)}s∈{0,1}ℓ(k) is a family of universal one-way
hash functions (UOWHFs) if it satisfies:
1. Efficiency: Given s ∈ {0, 1}ℓ(k) and x ∈ {0, 1}n(k), hs(x) can be evaluated in time

poly(n(k), ℓ(k)).
2. Shrinking: ℓ(k) < n(k).
3. Target Collision Resistance: For every PPT A and sufficiently large k ∈ N, if we consider

the following randomized experiment:
(x, state)← A(1k) ∈ {0, 1}n(k) × {0, 1}∗,
Sampling s← {0, 1}ℓ(k),
x′ ← A(state, s)

Then, Pr [x ̸= x′ ∧ hs(x) = hs(x′)] ≤ neg(k).
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The notion of universal one-way hash functions (UOWHF) was first introduced by Naor
and Yung [13]. Rompel [16] gave the first UOWHF construction from arbitrary one-way
functions.

▶ Theorem 9 (One-way functions imply universal one-way hash function, [13, 16]). There
is a black-box construction of universal one-way hash functions (UOWHFs) from one-way
functions (OWFs). In particular, assuming OWFs, for any arbitrarily large constant c

and arbitrarily small constant δ > 0 there is a UOWHF with input length n(k) = kc and
output/seed length ℓ(k) = kδ.

2.4 Collision Resistance Hashing
▶ Definition 10 (Collision resistance hash functions (CRHF)). For a security parameter k ∈ N.
A family of functions H = {hs : {0, 1}n(k) → {0, 1}ℓ(k)}s∈{0,1}ℓ(k) is a family of collision
resistance hash functions (CRHFs) if it satisfies:
1. Efficiency: Given s ∈ {0, 1}ℓ(k) and x ∈ {0, 1}n(k), hs(x) can be evaluated in time

poly(n(k), ℓ(k)).
2. Shrinking: ℓ(k) < n(k).
3. Collision Resistance: For every PPT A and sufficiently large k ∈ N,

Pr
s←{0,1}k,
x,x′←A(s)

[x ̸= x′ ∧ hs(x) = hs(x′)] ≤ neg(k).

We mention that the parameters of CRHFs above do not matter much: any “non-trivial”
CRHF implies an “arbitrarily good” CRHF. That is, start with any CRHF with arbitrarily
large polynomial seed/output length ℓ(k) that has even 1-bit compression n(k) = ℓ(k) + 1.
Then, for any arbitrarily small constant δ > 0 and arbitrarily large constant c, we can also
get a CRHF with small seed/output length ℓ(k) = kδ and large input length n(k) = kc.
Therefore, when we assume the existence of CRHFs we without loss of generality assume the
above “arbitrarily good” CRHF parameters.3

2.5 Standard Correcting/Detecting Codes
We now define error-correcting codes for information-theoretic adversaries also called Ham-
ming channels. In this section, a code is a pair (Enc, Dec) of deterministic encoding and
decoding algorithms, and different notions are obtained by considering the requirements of
the decoding algorithm.

▶ Definition 11 (Standard codes for Hamming channels). Let k, n, q be parameters and let
Enc : {0, 1}k → [q]n be a function. We say that Enc is an encoding function for a code that:

decodes d errors, if there exists a function Dec : [q]n → {0, 1}k such that for every
m ∈ {0, 1}k and every v ∈ [q]n with ∆(Enc(m), v) ≤ d, we have Dec(v) = m.
L-list-decodes d errors, if the function Dec is allowed to output a list of size at most L,
and for every m ∈ {0, 1}k and every v ∈ [q]n with ∆(Enc(m), v) ≤ d, we have m ∈ Dec(v).
detects d errors, if there exists a function Dec : [q]n → {0, 1}k ∪ {⊥} such that for
every m ∈ {0, 1}k, Dec(Enc(m)) = m and for every v ∈ [q]n such that v ̸= Enc(m) and
∆(Enc(m), v) ≤ d, we have Dec(v) = ⊥.

3 We can decrease the seed/output length by changing the security parameter from k to kε for a sufficiently
small ε and noting that poly/negl in kε is the same as poly/negl in k. We can increase the input length
arbitrarily using the Merkle-Damgard transform.

ITCS 2025



88:12 Detecting and Correcting Computationally Bounded Errors

The rate of the code is the ratio of the message length and output length of Enc, where
both lengths are measured in bits. That is the rate R = k

n·log q .
A code (Enc, Dec), is explicit if Enc and Dec run in polynomial time. (Naturally, this

makes sense only for a family of encoding and decoding/detecting functions with varying
message length k block length n(k), and alphabet sizes q(k)).4

We will also use the following construction by Guruswami and Rudra [5] for optimal
list-decodable codes over a constant alphabet.

▶ Theorem 12 ([5]). For every 0 < R < 1, every sufficiently small ε > 0, there is an explicit
family of codes over an alphabet of size 2O(ε−4 log( 1

ε )) that have rate at least R and which can
be list decoded up to a fraction 1 − R − ε of errors in polynomial time, with a list of size
nO(ε−1 log( 1

ε )).5

It is folklore that for every ε > 0 by using code concatenation it is possible to construct
standard codes with distance d ≥ 1− ε and rate R = o(1) for any sufficiently large k with
an alphabet size that depends on ε. We make this formal in the following Theorem (see for
example the book by Guruswami, Rudra, and Sudan [6] for more details).

▶ Theorem 13. For every sufficiently small 0 < ε, and every computable function n : N 7→ N
such that for every sufficiently large k, n(k) > kc, (for a universal constant c > 1) there exists
an explicit standard code (Enc, Dec), for Enc: {0, 1}k → [q]n(k) and Dec: [q]n(k) → {0, 1}k

with alphabet q = 2(1/ε3) such that the code has distance d(k) > n(k)− ε ·n(k) and (uniquely)
decodes from d(k)/2− 1 errors.

3 Definitions for Randomized Codes and Self-Seeded Codes

In this section, we formally define randomized codes and self-seeded codes, and their related
notions of error detection and correction.

3.1 Randomized Codes
We start by giving a formal definition of randomized encoding and decoding algorithms. This
syntax will be also shared with our notion of self-seeded codes defined in the next section.

▶ Definition 14 (Randomized codes). Let n, q : N 7→ N be poly-time computable functions.
An (n, q)-randomized code is a pair (Enc, Dec) such that:

Enc is a PPT algorithm that on input m ∈ {0, 1}k outputs a string in c ∈ [q(k)]n(k). We
use Encr(m) to denote the instantiation of Enc(m) when using the string r as random
coins.
Dec is a PPT algorithm that on input z ∈ [q(k)]n(k) outputs a string m̂ ∈ {0, 1}k ∪ {⊥}.

4 We point out that traditionally codes are indexed by the codeword length (that is, k and q are chosen as
a function of the codeword size n). However, for the sake of consistency with the rest of our definitions,
we chose to define the codeword length n and alphabet q as a function of the input size k.

5 We remark that while Theorem 12 does not explicitly mention that the rate can be achieved for every
sufficiently large message size k, and instead just claims that it holds for infinitely often choices of k. A
careful examination of the construction and proof by [5] reveals that the argument and proof hold for
every sufficiently large k, given a suitable expander graph. An explicit construction for such graphs
were given for every sufficiently large k in [10] (see Lemma 2.7 for a formal proof). Thus, we assume
that Theorem 12 holds for every sufficiently large k.
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For a fixed k ∈ N, the rate of the code for k is defined to be Rk = k
log(q)·n(k) . When

R = limk→∞Rk ∈ [0, 1] is well defined we say that R is the rate of the code. We omit all or
a subset of the functions n and q when they are clear from the context.

We now define a notion of reliable codes for randomized codes, which essentially states
that it is possible to recover the message given a codeword (that was not damaged by error).

▶ Definition 15 (Codes with reliable decoding). A randomized code (Enc, Dec) is said to be
perfectly reliable if for every k ∈ N and m ∈ {0, 1}k, Pr [Dec(Enc(m)) = m] = 1.

Intuitively, in randomized codes, each time the sender wants to send a message, it samples
fresh randomness on the fly and uses it to encode the message. We make this formal in the
definition below.

▶ Definition 16 (Error detection/correction for randomized codes). Let n, ℓ, d : N 7→ N be poly-
time computable functions and let (Enc, Dec) be a randomized code. For a PPT algorithm A
and k ∈ N, consider the following randomized experiment:
1. (m, state)← A(1k) ∈ {0, 1}k × {0, 1}∗
2. Compute c← Enc(m) (by sampling r ← {0, 1}ℓ(k) and computing Encr(m)).
3. z ← A(m, state, c)

We say that the code:
is reliable if for every PPT algorithm A and every sufficiently large k ∈ N:
Pr [Dec(c) ̸= m] ≤ neg(k).6
detects d-errors if it is a reliable code, and for every PPT algorithm A and every
sufficiently large k ∈ N: Pr [∆(c, z) ≤ d(k) ∧Dec(z) /∈ {⊥, m}] ≤ neg(k).
corrects d-errors if for every PPT algorithm A and every sufficiently large k ∈ N:
Pr [∆(c, z) ≤ d(k) ∧Dec(z) ̸= m] ≤ neg(k).

For a constant ρ ∈ [0, 1], the code detects or corrects ρ-relative errors, if for every
sufficiently large k ∈ N, ρ ≤ d(k)/n(k).

Note that by definition if a code corrects d-errors for d > 0 then the code is reliable. In
addition, our definition of error detection permits also error correction (that is, when errors
are induced, the decoding algorithm can either return ⊥ or successfully decode and return the
original message m). By doing so we can achieve simultaneous error detection and correction
(that is, the same decoding function can at the same time satisfy the notion of detection and
correction defined above).

3.2 Self-Seeded Codes
We now formally, define the notion of self-seeded codes. A self-seeded code is a randomized
code that shares the same syntax as defined in 14. However, a self-seeded code provides a
strictly stronger notion of security as compared to the notion of error correction and detection
for randomized codes stated above in Definition 16.

▶ Definition 17 (Error detection/correction for self-seeded codes). Let n, ℓ, d : N 7→ N be
poly-time computable functions. A randomized code is said to be a self-seeded code if
the following holds: For a PPT algorithm A and k ∈ N, consider the following randomized
experiment:

6 This is a weaker variant of Definition 15. Our construction achieves the stronger variant of perfect
reliability. However, our lower bounds results are stronger since they apply to this weaker notion.
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1. r ← {0, 1}ℓ(k)

2. (m, z)← A(r)
We say that the code:

is reliable if for every PPT algorithm A and every sufficiently large k ∈ N:
Pr [Dec(Encr(m)) ̸= m] ≤ neg(k).
detects d-errors if it is a reliable code, and for every PPT algorithm A and every
sufficiently large k ∈ N: Pr [∆(Encr(m), z) ≤ d(k) ∧Dec(z) /∈ {⊥, m}] ≤ neg(k).
corrects d-errors if for every PPT algorithm A and every sufficiently large k ∈ N:
Pr [∆(Encr(m), z) ≤ d(k) ∧Dec(z) ̸= m] ≤ neg(k).

For a constant ρ ∈ [0, 1], the code detects or corrects ρ-relative errors, if for every sufficiently
large k ∈ N, ρ ≤ d(k)/n(k).

Self-seeded code enables the sender to sample its randomness once, fix it, and then use
this same randomness for encoding multiple messages (this contrasts with the standard
notion of randomized codes, which requires the sender to generate fresh randomness for each
message in real time). We stress that after being fixed, this randomness is known to any
potential adversary but is not given to the decoding algorithm.7 Still, we require that no
efficient adversary can find a message and a close error vector that leads to a decoding error.

Indeed, self-seeded codes offer a stronger adaptive notion of security, where the adversary
can choose the message m adaptively based on the randomness fixed by the sender. In
contrast, standard randomized codes require the sender to choose fresh randomness after the
adversary has decided on the message.

4 Optimal Randomized Codes and Self-Seeded Codes

We now state our main theorems for randomized codes and self-seeded codes. Our results show
that it is possible to construct codes that bypass the Singleton bound for computationally
bounded channels under minimal cryptographic assumptions. Specifically, for the randomized
codes construction, we assume the existence of one-way functions, and for the self-seeded
codes construction, we assume the existence of a collision resistance hash function.

Main theorem

We state our result for randomized codes and self-seeded codes together in the following
theorem.

▶ Theorem 18 (Randomized codes [resp., self-seeded codes] with constant alphabet size).
Assuming the existence of one-way functions [resp., collision resistance hash functions], the
following holds: For every constant 0 ≤ p < 1/2 and every sufficiently small constant 0 < ε,
there exists a (q, n)-randomized [resp., (q, n)-self-seeded code] code with rate R = 1− p− ε

that simultaneously (uniquely) corrects p relative errors and detects from 1− p− ε relative
errors. Moreover, the alphabet size q is a constant that depends on ε.

The proof of Theorem 18 appears in Section 4.2 and relies on our construction described
in Section 4.1.

7 We note that our notion of self-seeded codes is strictly stronger than the notion of “seeded codes” defined
in [3]. Seeded codes (unlike self-seeded codes), requires the encoding and decoding algorithms to share
a random seed. Thus, unlike self-seeded codes, seeded codes necessitate a trusted setup between the
encoding and decoding.
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▶ Remark 19. If the underlying cryptographic primitives assumed in our theorem statements
(that is, one-way functions for randomized codes and collision resistance hash functions for
self-seeded codes) have sub-exponential security, then our constructed codes in Theorem
18 will also have sub-exponential failure probability for correction and detection against
channels that are computable by sub-exponential size circuits. This follows since all our
reductions run in polynomial time and have a polynomial loss in advantage. However, for
the sake of simplicity, we focus on the case of polynomial/negligible security in our formal
statements and proofs.

4.1 Construction
In this section, we describe the construction that we will use to prove Theorem 18.

We now describe the encoding and decoding algorithms. In Figure 1, we state the
parameters and ingredients that are needed to define our encoding and decoding algorithms
(Enc, Dec) that are specified in Figure 2. The encoding and decoding algorithms are essentially
the same for randomized codes and for self-seeded codes. In both cases the encoding algorithm
Enc takes as input a message m and some value r. For randomized codes, a fresh random
r is chosen every time we send a new message, and for the self-seeded codes r is sampled
once (and is given to any possible adversary), and this single fixed r could be used in the
encoding of multiple messages.

In both cases, the decoding algorithm Dec only takes as input a possibly damaged
codeword z. In particular, the decoding algorithm is not provided with the seed r.

4.2 Proof of Theorem 18
In this section, we prove Theorem 18. We make use of the following technical lemma. The
proof for the lemma is given below in Section 4.2.1.

▶ Lemma 20. If there are ingredients and parameters that satisfy the conditions stated in
Figure 1. Moreover, if the hash family H specified in Figure 1 is a family of universal one-
way hash functions [resp., collision resistance hash functions]. Then, the code (Enc, Dec) as
specified in Figure 2 is a (q, n)-randomized code [resp., (q, n)-self-seeded code]. Moreover, the
code is perfectly reliable, has alphabet size q = qctrl · qdata, rate R = Rdata · log(qdata)

log(qdata)+log(qctrl) ,
and the decoding algorithm simultaneously,

detects from dctrl − ddata errors, and
corrects from ddata errors.

Proof of Theorem 18. Note that one-way functions imply universal one-way hash functions
that satisfy the conditions stated for the hash family H in Figure 1 (see, Theorem 9).

Given a sufficiently small 0 < ε, let ε̂ = ε/4 and apply Theorem 12 for ε̂ and Rdata =
1− p− ε̂ to get a standard code (Encdata, Decdata) with rate Rdata = 1− p− ε̂, codeword
length ndata alphabet size qdata = 2O(ε̂−5) . Moreover, (Encdata, Decdata) list decodes from
ddata = p · ndata errors (that is, from p relative errors) with a list size that depends only on
ε̂ and k. Note also that we can increase the alphabet size by bundling symbols together
without damaging the list decoding and the rate Rdata of the code, and so, we can assume
that log(qdata) is of size at least ε̂−5. To summarize (Encdata, Decdata) meets the conditions
stated in Figure 1 for “data code” for the parameters Rdata and ddata and log(qdata) > ε̂−5.

Apply theorem 13 for ε̂ to get a code (Encctrl, Decctrl) with codeword length ndata = nctrl,
alphabet size at most qctrl = 2ε̂−3 that has distance dctrl > nctrl(1− ε̂) and efficient decoding
of up to dctrl/2 − 1 errors. Note that for a sufficiently small ε (and ε̂) it holds that
dctrl > 2ddata + 1. This means that (Encctrl, Decctrl) meets the conditions stated in Figure 1
for the “control code” with parameters dctrl and log(qctrl) < ε̂−3.
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List of ingredients and parameters: Let q, qdata, qctrl, ddata, dctrl, ℓ, n : N 7→ N and Rdata : N 7→
R be poly-time computable functions.
Data code: A family of standard codes (Encdata, Decdata) such that Encdata : {0, 1}k →

[qdata]n list-decodes from ddata errors with rate Rdata and polynomial list size.
A hash family: H = {hs : {0, 1}k → {0, 1}ℓ}s∈{0,1}ℓ that is efficiently computable. Where

we require that 2ℓ := ℓ′ ≤ kcℓ (where cℓ < 1 is a fixed universal constant).
Control code: Code with large distance: A family of standard codes (Encctrl, Decctrl), such

that Encctrl : {0, 1}ℓ′
→ [qctrl]n has distance larger than dctrl > 2 · ddata + 1 and efficiently

uniquely decodes from dctrl/2− 1 errors. (Note that we require the codeword size n to be
the same in Encdata and Encctrl).

Figure 1 Parameters and Ingredients for folding construction.

Encoding algorithm
We define an encoding function Enc : {0, 1}k × {0, 1}ℓ → [q]n:
Input: A message m ∈ {0, 1}k. And coins r ∈ {0, 1}ℓ.
Output: A codeword c ∈ [q]n for q := qctrl · qdata.
Operation :

Encode the data: Compute cdata = Encdata(m) ∈ [qdata]n.
Hash the encoded data: Compute y = hr(m) and set w := (y, r).
Encode the control: Compute cctrl = Encctrl(w) ∈ [qctrl]n
Fold the control and data codes: Compute c ∈ ([qdata]× [qctrl])n, where for every i ∈ [n],

ci = ((cdata)i, (cctrl)i). That is, ci contains the ith symbol of cdata and cctrl.
Output: c.

Decoding algorithm
We define a decoding function Dec : [q]n → {0, 1}k ∪ {⊥}:
Input: A received word z ∈ [q]n.
Output: A message m̂ ∈ {0, 1}k ∪ {⊥}.
Operation :

Unfold the control and data: For every i ∈ [n] we view zi = ((zdata)i, (zctrl)i) ∈ [qdata] ×
[qctrl] and compute zdata = ((zdata)1, · · · , (zdata)n) and zctrl = ((zctrl)1, · · · , (zctrl)n).

Uniquely decode the control part: ŵ = (ŷ, r̂) = Decctrl(zctrl).
List decode the data part: Compute a list of message candidates List = Decdata(zdata), by

applying the list decoding for ddata errors.
Check control distance: If ∆(Encctrl(ŵ), zctrl) > ddata then output ⊥.
Check consistency: Output the first message m̂ ∈ List for which h

r̂
(m̂) = ŷ. If no such

message exists output ⊥.

Figure 2 Encoding and decoding algorithm.
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Thus, we can apply Lemma 20 for (Encdata, Decdata), (Encctrl, Decctrl) and H to get a
(q, n)-randomized code when we take H to be a universal one-way hash family and (q, n)-self-
seeded code if H is a collision resistance hash family. In both cases, it follows that

n = ndata
q = qdata · qctrl = 2O(ε−5),
for every sufficiently small ε (and ε̂), R = Rdata · log(qdata)

log(qdata)+log(qctrl) > (1− p− ε̂) · 1
1+ε̂ >

(1− p− ε).
The code detects from dctrl − ddata = n(1 − ε̂) − np > n(1 − p − ε) errors. That is, it
detects from 1− p− ε relative errors.
The code corrects ddata = pn errors. That is, it corrects up to p relative errors.

This concludes the proof of Theorem 18. ◀

4.2.1 Proof of Lemma 20
Let Encdata, Encctrl, hr, be as defined in Figure 1 and let (Enc, Dec) be as defined in Figure 2.
By construction, (Enc, Dec) is perfectly reliable. This holds since for every fixed randomness
r if no errors are applied, all ingredients in the construction are deterministic, and standard
codes are by definition perfectly reliable. Similarly, by construction q = qctrl · qdata and

R = k

n · log(q) = Rdata · (n · log(qdata))
n · (log(qctrl) + log(qdata)) = Rdata ·

log(qdata)
log(qdata) + log(qctrl)

.

We now prove the rest of Lemma 20. For simplicity, we focus on the randomized codes case,
the proof for the self-seeded codes is essentially the same and follows along similar lines.8

Consider the following randomized experiment for a PPT algorithm A and k ∈ N:
1. (m, state)← A(1k) ∈ {0, 1}k × {0, 1}∗
2. Compute c← Encr(m) (by sampling r ← {0, 1}ℓ(k)).
3. z ← A(m, state, c)
We make use of the following notation: Let cdata = Encdata(m), w = (hr(m), r) and
cctrl = Encctrl(w). Recall that z ∈ ([qdata]×[qctrl])n, and define zdata = ((zdata)1, · · · , (zdata)n)
and zctrl = ((zctrl)1, · · · , (zctrl)n) such that for every i ∈ [n], zi = ((zdata)i, (zctrl)i). Let
ŵ = (ŷ, r̂) = Decctrl(zctrl) and List = Decdata(zdata).

Error correction

To prove the error correction property, we need to show that

Pr [∆(c, z) ≤ ddata ∧Dec(z) ̸= m] ≤ neg(k).

We make use of the following claims:

▷ Claim 21. If ∆(c, z) ≤ ddata then m ∈ List and w = ŵ.

Proof of Claim 21. If ∆(c, z) ≤ ddata it follows that ∆(cctrl, zctrl) ≤ ddata and
∆(cdata, zdata) ≤ ddata. Since (Encctrl, Decctrl) is a standard code that uniquely decodes
from dctrl/2− 1 ≥ ddata errors it holds that w = w′. Similarly, since (Encdata, Decdata) is a
standard code that list-decodes from ddata errors it follows that m ∈ List. ◁

8 The main difference is that we consider an adaptive adversary (that is, first r ← {0, 1}ℓ(k) and then
(m, z) ← A(r)) and we reduce to the security of the CRH instead of the security of the UOWHF,
otherwise, the proof is identical.
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▷ Claim 22. ∀m̂ ∈ List, if m̂ ̸= m then Pr [hr(m̂) = y] ≤ neg(k).

Proof of Claim 22. Follows directly from the security of the universal one-way hash function,
as otherwise, we can use A to find collisions in h contradicting the collision resistance property.

◁

By Claim 21, m ∈ List and w = ŵ. Thus, by Claim 22, with all but negligible probability,
m is the only message in List for which hr(m) = y (passing the “Check consistency” step in
the decoding algorithm) which implies Dec(z) = m.

Error detection

To prove the error detection property, we need to show that

Pr [∆(c, z) ≤ dctrl − ddata ∧Dec(z) /∈ {m,⊥}] ≤ neg(k).

We make use of the following Claim.

▷ Claim 23. If ∆(c, z) ≤ dctrl − ddata and Dec(z) ̸= ⊥ then w = ŵ.

Proof. Let ĉctrl = Encctrl(ŵ) and note that the by the “Check control distance” step in
the decoding algorithm (see Figure 2), if Dec(z) ̸= ⊥ it follows that ∆(zctrl, ĉctrl) ≤ ddata.
Moreover, by construction, if ∆(c, z) ≤ dctrl−ddata it follows that ∆(cctrl, zctrl) ≤ dctrl−ddata.
Thus, if Dec(z) ̸= ⊥ and ∆(c, z) ≤ dctrl − ddata by the triangle inequality

∆(cctrl, ĉctrl) ≤ dctrl.

Since cctrl and ĉctrl are both valid codewords of the standard code (Encctrl, Decctrl) that has
distance dctrl, it follows that w = ŵ. ◁

By Claim 23 if Dec(z) ̸= ⊥ then w = ŵ. This concludes the proof, since by Claim 22, if
w = w′, with all but negligible probability, m is the only valid message that can be outputted
by Dec(z).

5 Randomized Codes Imply One Way Functions

We now show that non-trivial randomized codes imply the existence of one-way functions.
For large alphabets, this is indeed optimal since as we have seen in our construction it is
possible to construct optimal randomized codes assuming only universal one-way functions
(which can be constructed from one-way functions).

The following theorem states that if a randomized code has a rate that bypasses the
singleton bound, it implies one-way functions.

▶ Theorem 24 (Randomized codes with rate beating the Singleton bound imply one way
functions). Let (Enc, Dec) be a randomized code with rate 0 ≤ R < 1. If one of the following
holds:

The code detects ρ0-relative errors and ρ0 > 1−R + 1
n .

The code corrects from ρ1-relative errors and 2ρ1 > 1−R + 2
n .

Then there exists one-way functions.

The proof will make use of the following lemma.

▶ Lemma 25 (Non-trivial error detection/correction for randomized codes implies one-way
functions). Let (Enc, Dec) be an (n, q)-randomized code that has at least one of the following
properties:
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The code detects d-errors.
The code corrects ⌈d/2⌉-errors.

Let s := n − d, if v := ⌈log(q) · s⌉ ≤ k − 1 then F : {0, 1}k+ℓ → {0, 1}v defined so that on
input (m, r) ∈ {0, 1}k+ℓ it computes Encr(m) and outputs a binary representation of the first
s symbols is a distributional one-way function.9 10

The proof for the lemma is given below, but first, we will use it to prove Theorem 24.

Proof of Theorem 24. Let d = Max(⌈ρ0 · n⌉, ⌈2ρ1 · n⌉) and note that by definition at least
one of the following holds: The code detects d-errors, or corrects ⌈d/2⌉-errors. Moreover,
by our assumption on the rate of the code, it holds that d > n− R · n + 1. Let s = n− d

and let v = ⌈log(q) · s⌉ since R ≥ k
log(q)·n it holds that v ≤ k − 1. Thus, we meet the

conditions of Lemma 25 which implies that there exists a distributional one-way function (in
fact outputting the binary representation of the first s symbols of Enc is the distributional
one-way function), and by Theorem 7 there exists a one-way function. ◀

Proof of Lemma 25. For k ∈ N, let Mk and Rk denote the random variables sampled
uniformly from {0, 1}k and {0, 1}ℓ(k) respectively. Let Yk = F(Mk, Rk) and assume for
contradiction that F is not a distributional one-way function (see Definition 6). That is, for
every constant c > 0 there exists a PPT algorithm A such that for infinitely many k ∈ N,

SD
((

A(Yk), Yk

)
,
(
(Mk, Rk), Yk

))
≤ 1/kc. (1)

For a fixed k for which the above holds, we omit the subscript k from the random variables
to avoid clutter.

Let (M ′, R′) = A(Y ) and note that by the definition of average min-entropy (see Defini-
tion 3)

Pr [M = M ′] ≤ 2−H̃∞(M |Y ) ≤ 1/2 (2)

where the last inequality follows by Lemma 4 that states that H̃∞(M |Y ) ≥ H∞(M, Y )− v ≥
k − v ≥ 1.

Let C = EncR(M) and C ′ = EncR′(M ′) and recall that by definition, Y = F(M, R) is
just the binary representation of the first s symbols of C. Thus, if F(M ′, R′) = F(M, R) = Y

it follows that, ∆(EncR(M), EncR′(M ′)) ≤ n− s = d, which by Equation 1 implies that:

Pr [∆(C, C ′) > d] ≤ 1/kc. (3)

Note also that by Equation 1,

Pr [M ′ = ⊥] ≤ 1/kc (4)

We first handle the case where the code detects d-error and then the case where the code
corrects ⌈d/2⌉-errors.

9 Here, ℓ is just the implicitly assumed bound on the number of random bits used by Enc.
10 The statement of Lemma 25 could be readily extended so that restricting the output of Encr(m) to

any s symbols (that can be efficiently identified) not just the first s symbols is itself a distributional
one-way function. This would be similar to our statement on self-seeded codes made in the full version
[22], where we show that restricting the output to any subset of size s is a collision resistance hash
family. However, for the sake of simplicity, we restrict our statement and analysis to the simple case
where the distributional one-way function is defined to be the first s symbols.

ITCS 2025
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Detection. By Equation 1 and by the reliability of the code,

Pr [Dec(C ′) = M ′] ≥ Pr [Dec(C) = M ]− 1/kc > 0.9 (5)

We now define a PPT algorithm A′ (that makes use of A) that contradicts the detection
property of the code: On input 1k, A′ samples m ← {0, 1}k and on input c ∈ [q]n it runs
(m′, r′) ← A(y) where y is just the binary representation of the first s symbols of c (i.e.,
y = F(m, r)), and outputs c′ = Encr′(m′). It holds that:

M = A′(1k) (where by definition M is sampled uniformly by A′).
Compute C = EncR(M) (by sampling R← {0, 1}ℓ).
C ′ = EncR′(M ′) = A′(M, C).

Thus, A′ contradicts the d-detection property since

Pr [Dec(C ′) /∈ {M,⊥} ∧∆(C ′, C) ≤ d]
≥ Pr [Dec(C ′) = M ′ ∧M ′ /∈ {M,⊥} ∧∆(C ′, C) ≤ d]
≥ Pr [Dec(C ′) = M ′]−Pr [M ′ = M ]−Pr [M ′ = ⊥]−Pr [∆(C ′, C) > d]
≥ 0.9− 0.5− 2/kc ≥ 0.1

Where the penultimate inequality follows from Equations 5, 2, 4 and 3.

Correction. We now prove the correction property. Let G be a function defined as follows:
On inputs c, c′ ∈ [q]n, G samples a set I of random (n− s)/2 indices from the set [n] \ [s] (if
n − s is an odd number then with probability 1/2 it sample ⌈(n − s)/2⌉ indices and with
probability 1/2 it samples ⌈(n − s)/2⌉ − 1 indices), and outputs c∗ ∈ [q]n where for every
i ∈ I, c∗i = c′i and for every i ∈ [n] \ I, c∗i = ci. Intuitively, if c and c′ agree on the first s

indexes then G(c, c′) = c∗ is a random “mid point” between c and c′.
Recall that C = EncR(M), C ′ = EncR′(M ′) and let C∗ = G(C, C ′). By Equation 1 and

symmetry,

SD((M, R, C, C∗), (M ′, R′, C ′, C∗)) ≤ 2/kc. (6)

Since by assumption n− s = d, by the definition of C∗ it follows that:

Pr [∆(C, C∗) > ⌈d/2⌉] ≤ 1/kc (7)

Recall that (M, R) are sampled uniformly at random, thus, by Equations 6 and 7 and the
decoding properly of the code

Pr [Dec(C∗) = M ′] ≥ Pr [Dec(C∗) = M ]− 3/kc ≥ 0.9. (8)

We now define a PPT algorithm A′ (that makes use of A) that contradicts the correction
property of the code: On input 1k, A′ samples m ← {0, 1}k and on input c ∈ [q]n runs
(m′, r′) ← A(y) where y is just the binary representation of the first s symbols of c (i.e.,
y = F(m, r)), computes c′ = Encr′(m′) and outputs c∗ = G(c, c′). It holds that,

M = A′(1k) (where by definition M is sampled uniformly by A′).
Compute C = EncR(M) (by sampling R← {0, 1}ℓ).
C∗ = A′(M, C) (recall that C∗ = G(C, C ′) for C ′ = EncR′(M ′) and (M ′, R′) =
A(F(M, R))).
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Thus, A′ contradicts the ⌈d/2⌉-correction property since,

Pr [Dec(C∗) ̸= M ∧∆(C∗, C) ≤ ⌈d/2⌉]
≥ Pr [Dec(C∗) = M ′ ∧M ̸= M ′ ∧∆(C∗, C) ≤ ⌈d/2⌉]
≥ Pr [Dec(C∗) = M ′]−Pr [M = M ′]−Pr [∆(C∗, C) ≤ ⌈d/2⌉]
≥ 0.9− 0.5− 1/kc ≥ 0.1.

Where the penultimate inequality follows from Equations 2, 7 and 8. This concludes the
proof for Lemma 25. ◀

6 Self-Seeded Codes Imply Collision Resistance Hash Functions

We now show that non-trivial self-seeded codes imply the existence of a collision resistance
hash family. Loosely speaking, the following theorem states that if a self-seeded code has
rate that bypasses the Singleton bound, then it implies collision resistance hash functions
(since there are codes with large alphabet that can achieve the Singleton bound, this result
means that for large alphabet, any non-trivial self-seeded code implies collision resistance
functions).

We note that while the result below is stated with respect to the notion of self-seeded
codes, the same exact proof also holds for the weaker notion seeded codes defined in [3] in
which the encoding and decoding algorithms both share the random seed. Since our lower
bound still holds even if the decoding algorithm is given the random seed as input, the
lower bound immediately extends to the weaker notion of seeded codes. However, to avoid
confusion and clutter, we present our result with respect to the notion of self-seeded codes
defined in this paper.

▶ Theorem 26 (Self-Seeded codes with rate beating the Singleton bound imply collision resistance
hash functions). Let (Enc, Dec) be a self-seeded code with rate 0 ≤ R < 1. If one of the
following holds:

The code detects ρ0-relative errors and ρ0 > 1−R + 1
n .

The code corrects from ρ1-relative errors and 2ρ1 > 1−R + 2
n .

Then there exists an explicit construction for a collision resistance hash family given black-box
access to the code.

The proof for Theorem 26 appears in the full version [22].
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