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Abstract
We answer a question of Blass and Harary about the validity of the zero-one law in random graphs
for extensions of first-order logic (FOL). For a given graph property P , the Lindström extension
of FOL by P is defined as the minimal (regular) extension of FOL able to express P . For several
graph properties P (e.g. Hamiltonicity), it is known that the Lindström extension by P is also
able to interpret a segment of arithmetic, and thus strongly disobeys the zero-one law. Common
to all these properties is the ability to express the Härtig quantifier, a natural extension of FOL
testing if two definable sets are of the same size. We prove that the Härtig quantifier is sufficient for
the interpretation of arithmetic, thus providing a general result which implies all known cases of
Lindström extensions which are able to interpret a segment of arithmetic.
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1 Introduction

In this paper we study the Erdös-Rényi binomial random graph model G(n, p). Recall that
G(n, p) is defined as a probability distribution over the set of all labeled (simple) graphs with
the vertex set [n] := {1, 2, . . . , n}, by requiring that each of the

(
n
2
)

potential edges appears
with probability p and independently of all other edges. Note that G

(
n, 1

2
)

is the uniform
distribution over the set of 2(n

2) labeled graphs with vertex set [n].
In what follows, we use P(·) to denote probabilities and E(·) to denote expected values.

1.1 Background and Previous Results
The study of random graphs was pioneered by Erdös and Rényi in the 1960s, originating from
two seminal papers [9, 10]. One of the earliest phenomena recognized in their work is the
fact that many natural graph properties – including connectivity, Hamiltonicity, planarity,
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12:2 First-Order Logic with Equicardinality in Random Graphs

k-colorability for a fixed k and containing H as a subgraph for a fixed graph H – hold either
in almost all graphs, or in almost none of them. Formally, let P be a graph property and fix
p ∈ (0, 1). We say that P holds asymptotically almost surely (a.a.s. for short) in G(n, p) if

lim
n→∞

P (G(n, p) satisfies P ) = 1

and that P holds asymptotically almost never (a.a.n. for short) in G(n, p) if

lim
n→∞

P (G(n, p) satisfies P ) = 0.

Then, for example, for every fixed p ∈ (0, 1),
Connectivity holds a.a.s. in G(n, p).
Hamiltonicity holds a.a.s. in G(n, p).
Planarity holds a.a.n. in G(n, p).
For every fixed k ∈ N, k-colorability holds a.a.n. in G(n, p).
For every fixed finite graph H, the property of containing H as a subgraph holds a.a.s. in
G(n, p).

As a reference, see any introductory text in random graphs, e.g. [19].
The observation that many natural graph properties hold either a.a.s. or a.a.n. in G(n, p)

motivates the following definition.

▶ Definition 1. Let A be a set of graph properties. We say that A obeys the zero-one law in
G(n, p) if for every property P ∈ A,

lim
n→∞

P (G(n, p) satisfies P ) ∈ {0, 1} .

With this definition, we may formulate the following informal observation: if A is a set of
natural graph properties then A obeys the zero-one law. This is not a formal statement, due
to the lack of a formal definition of a “natural graph property”.

From a logician’s point of view, a natural class of graph properties is the class FO
of first-order properties. These are properties which can be expressed as a sentence in
the first-order language of graphs, whose signature consists of a single binary relation ∼
representing adjacency.1 Indeed, a classic result, proven independently by Glebskii et al. [13]
and Fagin [11], states that FO obeys the zero-one law in G(n, p).

▶ Theorem 2 (GKLT-Fagin). Fix p ∈ (0, 1). Then the set of first-order graph properties FO
obeys the zero-one law in G(n, p).

The GKLT-Fagin zero-one law pioneered the study of random graphs with tools of
mathematical logic. This point of view has proved to be doubly beneficial, teaching us about
the properties of the underlying random graph, and also about the expressive power of logical
languages. It is therefore considered an important part of finite model theory.

The GKLT-Fagin zero-one law deals with first-order properties. However, many graph
properties which are considered natural – including connectivity, Hamiltonicity and k-
colorability – are not first-order. On the other extreme, the class SO of second-order graph
properties contains all the properties listed above, but fails to obey the zero-one law. For
example, as noted by Fagin [11, p. 55], the property of having an even number of vertices is
second-order, but clearly has no limiting probability.

1 We shall often identify logical sentences with the properties they describe.
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It is therefore natural to ask for extensions of first-order logic which have a stronger
expressive power on the one hand, but still obey the zero-one law on the other hand. This
question was posed by Blass and Harary [2, Section 5]. In their discussion, they suggest
several guiding questions:
1. Is there an extension of first order logic which is strong enough to express Hamiltonicity

and rigidity (asymmetry), but still obeys the zero-one law?
2. What about monadic second-order logic? It cannot express Hamiltonicity, but it is still

an important extension of first-order logic – does it obey the zero-one law?
3. Can something be done with “more exotic languages”, for example with equicardinality

quantifiers?

These questions have been studied in many papers. We dedicate the following sections to
explain the precise meaning of these questions in more detail and review previous results.
Our review is not exhaustive; for a broader survey of results in this field, we refer the reader
to [4] and [29]. For a more focused discussion of results directly related to our work, see [6]
and [16].

Lindström Extensions
Suppose we are interested in an extension of FO which includes a certain graph property P .
One option is to simply take the union FO ∪ {P}. However, this set of properties clearly
lacks a basic notion of closure. To avoid such trivialities, we focus on regular extensions. A
regular logic is a logic that is closed under negation, conjunction, existential quantification,
relativization and substitution (see [7] for more details). We then have the following definition.

▶ Definition 3. Let P be a graph property. The Lindström extension of FO by P , denoted
FO[P ], is the minimal regular extension of FO that includes P .

The term Lindström extension comes from the fact that FO[P ] can be constructed by
adjoining the Lindström quantifier of P , denoted QP and defined as follows [26, 27, 7].

▶ Definition 4. Let P be a graph property. Its Lindström quantifier QP is defined as follows.
Syntactically, given a formula φV (x, z⃗) with x, z⃗ as free variables and a formula φE(x, y, z⃗)
with x, y, z⃗ as free variables, it returns the formula QPx, y (φV (x, z⃗), φE(x, y, z⃗)) in which
x, y are quantified and z⃗ are free.
Semantically, the truth value of this formula is defined as follows. Let G = (V,E)
be a graph and let a⃗ be a vector of vertices, of the same length as z⃗. Let V0 =
{v ∈ V : G |= φV (v, a⃗)} and let E0 be the set of pairs {u, v} with u, v ∈ V0 such that
G |= φ(u, v, a⃗) or G |= φ(v, u, a⃗). Then

G |=z⃗=a⃗ QPx, y (φV (x, z⃗), φE(x, y, z⃗)) ⇐⇒ G0 = (V0, E0) satisfies P.

It can be shown that FO[P ] is the same as the closure of FO under quantification with
QP (see [8] for more details).

We can now suggest a more precise formulation of the first question of Blass and Harary:
do the Lindström extensions of FO by Hamiltonicity and by rigidity obey the zero-one law?
The answer was given by Dawar and Grädel ([6], also in [5]).

▶ Theorem 5 (Dawar-Grädel). Fix p ∈ (0, 1).
1. The Lindström extension FO[Rigidity] obeys the zero-one law in G(n, p).
2. The Lindström extension FO[Hamiltonicity] does not obey the zero-one law in G(n, p).

CSL 2025



12:4 First-Order Logic with Equicardinality in Random Graphs

The latter part of the theorem was demonstrated by encoding Parity – the property
of having an even number of vertices. It is worth noting, however, that Parity still allows
for the possibility of a modular limit law, as shown by Kolaitis and Kopparty [25]. A far
more extreme violation of the zero-one law occurs through the interpretation of a segment of
arithmetic, a concept we will elucidate in the subsequent section.

Arithmetization
The second question of Blass and Harary, regarding monadic second order logic MSO, was
answered much earlier than the first. The answer was given by Kaufmann and Shelah [23],
who proved that MSO disobeys the zero-one law in a very strong sense. Their main result is
that MSO can interpret arithmetic in G(n, p), which roughly means that there are sentences
in MSO that define an arithmetic structure on (a subset of) the vertex set. If a language L
can interpret a segment of arithmetic then it is, in a sense, the farthest possible from obeying
the zero-one law. Indeed, in such a case, it is possible to construct sentences φ ∈ L whose
probability sequence {P (G(n, p) |= φ)}∞

n=1 exhibits different kinds of complex behaviors. We
shall demonstrate this fact shortly by constructing a sentence φ ∈ L whose probability
sequence alternates between near-zero values and near-one values, and hence has no limit.

The definition of interpreting arithmetic given below is somewhat weaker than what
Kaufmann and Shelah prove for MSO, but describes a more general and more common type
of arithmetization results (see review below). In particular, it includes the main result of
this paper, Theorem 14).

Recall that for n ∈ N we denote [n] = {1, 2, . . . , n}. We begin by defining the language
SO[Arith] as the second-order language of arithmetic, where:

Addition + and multiplication × are defined as ternary relations (so, for example, we
write +(a, b, c) instead of a+ b = c). This is a convenient choice when working with finite
models such as [n], where addition and multiplication are restricted.
Second order quantification is done only over unary and binary relations.

▶ Example 6. We can construct a formula in SO[Arith] with free variables x, y expressing
the property y = 2x by the following steps.

Begin by asserting the existence of a binary relation: ∃Exp2.
Require that it is single-valued:

∀a∀b∀b′ (Exp(a, b) ∧ Exp(a, b′) → b = b′) .

Define the relation inductively:

Exp(0, 1) ∧ ∀a∀b∀a′∀b′ (Exp(a, b) ∧ +(a, 1, a′) ∧ ×(b, 2, b′) → Exp(a′, b′)) .

Finally, require Exp(x, y).

For every n ∈ N, the set [n] admits an arithmetic structure with the standard addition and
multiplication (restricted to [n]). Given an interval [a, b] ⊆ R and a sentence φ ∈ SO[Arith],
we say that:
1. φ holds in [a, b] if [n] |= φ for every n ∈ [a, b] ∩ N.
2. φ is constant on [a, b] if φ holds in [a, b] or ¬φ holds in [a, b].

Finally, let us say that a function f : N → N is finite-to-one if for every m ∈ N, the inverse
image f−1(m) is a non-empty finite set. Note that if f is finite-to-one then f is onto and
limn→∞ f(n) = ∞. Examples include f(n) = ⌊

√
n⌋ and f(n) = ⌊log logn⌋.
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▶ Definition 7 (Arithmetization). Let L be a logical language whose signature includes the
binary relation symbol ∼, representing adjacency. Fix a parameter p ∈ (0, 1), constants
0 < c1 ≤ c2 and a finite-to-one function f : N → N. We say that L can interpret a segment
of arithmetic in G(n, p) with constants c1, c2 and a scaling function f(n) if the following
holds. For every sentence φ ∈ SO[Arith] there exists a sentence φ∗ ∈ L such that, given
a sequence {nk}∞

k=1 with limk→∞ nk = ∞ such that φ is constant on [c1f(nk), c2f(nk)] for
every k, we have

lim
k→∞

P (G(nk, p) |= φ∗ ⇐⇒ φ holds in [c1f(nk), c2f(nk)]) = 1.

To motivate the definition, we remark that it reflects a general strategy of encoding
arithmetic in random graphs, which can be roughly summarized as follows:

Restrict to a certain L-definable subset S ⊆ [n] of size |S| ∈ [c1f(n), c2f(n)].
Use the structure of the random graph to encode unary and binary relations and an
arithmetic structure on S.
Given a sentence φ ∈ SO[Arith], use the encoded structure to convert it into a sentence
φ∗ ∈ L asserting that φ is satisfied in S.

▶ Proposition 8. Let L be a language that can interpret a segment of arithmetic in G(n, p).
Then there exists a sentence ψ ∈ L such that the limit limn→∞ P (G(n, p) |= ψ) does not exist.
In particular, L disobeys the zero-one law.

Proof. Let 0 < c1 ≤ c2 and f(n) be the constants and the scaling function for L, as in
Definition 7. Let N = ⌈max {|log2 c1| , |log2 c2|}⌉ + 1. It is straightforward to construct a
sentence φ ∈ SO[Arith] such that for every m ∈ N, [m] |= φ if and only if

⌊log2 m⌋ ≡ k mod 8N for k ∈ {−N,−N + 1, . . . , N − 1, N} .

Let {nk}∞
k=1 be a sequence satisfying f(nk) = 24Nk for every k. Such a sequence exists

and approaches ∞, because f is finite-to-one. We claim that φ is constant on each interval
[c1f(nk), c2f(nk)]. Indeed, for every m ∈ [c1f(nk), c2f(nk)] ∩ N we have

log2 m ∈ [log2 c1 + 4Nk, log2 c2 + 4Nk] ,
⌊log2 m⌋ ∈ [4Nk −N, 4Nk +N ] (1)

where (1) follows from our choice of N . When k is even, (1) implies [m] |= φ. When k is
odd, (1) implies [m] ̸|= φ.

Now let φ∗ ∈ L as in Definition 7. Then the probabilities sequence {P (G(nk, p) |= φ∗)}∞
k=1

converges to 1 on even values of k and converges to 0 on odd values of k. This implies that
the limit limn→∞ P (G(n, p) |= φ∗) does not exist. ◀

Going back to Kaufmann and Shelah, we can now formulate the following consequence
of [23] (which follows from Theorem 1 and the closing remark).

▶ Theorem 9 (Kaufmann-Shelah). Fix p ∈ (0, 1). Then MSO can interpret a segment of
arithmetic in G(n, p) (with constants c1 = c2 = 1 and scaling function f(n) = ⌊

√
n⌋).

As explained, this result provides a strongly negative answer to the second question of
Blass and Harary.

In [16], Haber and Shelah prove an arithmetization result for the Lindström extension of
Hamiltonicity, thus strengthening Part 2 of Theorem 5.

CSL 2025



12:6 First-Order Logic with Equicardinality in Random Graphs

▶ Theorem 10 (Haber-Shelah). Fix p ∈ (0, 1). Then FO[Hamiltonicity] can interpret a
segment of arithmetic in G(n, p) (with scaling function f(n) = Ω(log log logn)).

As for other graph properties, Haber and Shelah also proved in [16] that the zero-one
law holds for the Lindström extensions FO[Connectivity] and FO[k−colorability] for every
fixed k. These results also follow from a more general theorem by Dawar and Grädel [6],
which also implies that the zero-one law holds for FO[Planarity]. On the other hand, there
are additional graph properties P for which it is known that FO[P ] can interpret a segment
of arithmetic. These include regularity, the existence of a perfect matching [15] and the
existence of a C4-factor [14]. It is noteworthy that Haber and Shelah [16] employed a strategy
to encode the Rescher plurality quantifier [28], resulting in a more expressive logic. In
contrast, our finding that equicardinality alone suffices to interpret a segment of arithmetic
is unexpected and significantly stronger.

Equicardinality Quantifiers
Common to all the Lindström extensions of FO which are known to be able to interpret a
segment of arithmetic is the ability to express the equicardinality quantifier, also known as
the Härtig quantifier [17], which we denote by Q=. This quantifier allows for testing if two
definable sets are of the same size.

▶ Definition 11. The Härtig quantifier Q= is defined as follows.
Syntactically, given formulas φ(x, z⃗) and ψ(x, z⃗) with free variables x, z⃗, it returns a
formula Q=x (φ(x, z⃗), ψ(x, z⃗)) in which x is quantified and z⃗ are free.
Semantically, the truth value of this formula is defined as follows. Let G = (V,E) be a
finite graph and let a⃗ be a vector of vertices, of the same length as z⃗. Then

G |=z⃗=a⃗ Q=x (φ(x, z⃗), ψ(x, z⃗)) ⇐⇒ |{v ∈ V : G |= φ(v, a⃗)}| = |{v ∈ V : G |= ψ(v, a⃗)}| .

The following proposition shows that Q= is indeed expressible in FO[Hamiltonicity].
Similar arguments show that Q= is also expressible in the other Lindström extensions of FO
listed above that are known to be able to interpret a segment of arithmetic.

▶ Proposition 12. Let φ(x, z⃗) and ψ(x, z⃗) be formulas in FO[Hamiltonicity] with free vari-
ables x, z⃗. Then the formula Q=x (φ(x, z⃗), ψ(x, z⃗)) is also expressible in FO[Hamiltonicity].

Proof. Fix a graph G = (V,E) and a vector a⃗ of vertices. Let A = {x ∈ V : G |= φ(x, a⃗)}
and B = {x ∈ V : G |= ψ(x, a⃗)}. Also let φ′(x, z⃗) = φ(x, z⃗) ∧ ¬ψ(x, z⃗) (which defines
the set A \ B) and ψ′(x, z⃗) = ψ(x, z⃗) ∧ ¬φ(x, z⃗) (which defines the set B \ A). Define
φV (x, z⃗) = φ′(x, z⃗) ∨ ψ′(x, z⃗) and φE(x, y, z⃗) = φ′(x, z⃗) ∧ ψ′(y, z⃗). Consider the graph
G0 = (V0, E0) defined by these formulas, as in Definition 4. Note that G0 is the complete
bipartite graph with sides A \ B and B \ A. Recall that a complete bipartite graph is
Hamiltonian if and only if its sides are of the same size. Therefore

G |=z⃗=a⃗ QHamx, y (φV (x, z⃗), φE(x, y, z⃗)) ⇐⇒ |A \B| = |B \A|
⇐⇒ |A| = |B| ⇐⇒ G |=z⃗=a⃗ Q=x (φ(x, z⃗), ψ(x, z⃗)) .

◀

Let FO[Q=] denote the closure of FO under quantification with Q=. This is a natural
extension of first-order logic which has been studied quite extensively. For a survey on
equicardinality quantifiers in the context of general model theory and abstract logic, see [18].
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Equicardinality quantifiers have also been studied in the context of zero-one laws and
convergence laws. In [12], Fayolle, Grumbach and Tollu studied zero-one laws for first-
order logic enriched by generalized quantifiers, including Härtig quantifiers (equicardinality
quantifiers) and Rescher quantifiers (expressing inequalities of cardinalities). Their results
show that the zero-one law does hold for FO∗[Q=], defined in the same way as FO[Q=] but
with the restriction that free variables are not allowed in the scope of Q=-quantification.
▶ Remark 13. A simple argument, also mentioned in [12], proves that FO[Q=] can express
parity in the special case of G

(
n, 1

2
)
. Indeed, consider the sentence ∃zQ=x (x ∼ z,¬(x ∼ z)),

asserting the existence of a vertex with the same number of neighbors as non-neighbors.
This sentence holds in G

(
n, 1

2
)

with probability 0 when n is even, and with probability
approaching 1 when n is odd. In particular, FO[Q=] does not satisfy the zero-one law in
G

(
n, 1

2
)
. As we shall soon see, much more can be said: FO[Q=] can express not only parity,

but a segment of arithmetic, and for every p ∈ (0, 1) (Theorem 14).
Finally, we mention that in addition to Lindström quantifiers and equicardinality quan-

tifiers, other generalized quantifiers have also been studied in the context of zero-one laws
and convergence laws. In a sequence of three papers [20, 21, 22], Kalia studied almost sure
quantifier elimination, providing a method for proving convergence laws for logics with gen-
eralized quantifiers. In [24], Keisler and Lotfallah proved almost sure quantifier elimination
logics with probability quantifiers.

1.2 Our Results
The main result of the paper is the following theorem.

▶ Theorem 14 (Main Theorem). Fix p ∈ (0, 1). Then FO[Q=] can interpret a segment of
arithmetic in G(n, p) (with scaling function f(n) =

⌊√
lnn

⌋
).

In particular, from Proposition 8 we get the following corollary.

▶ Corollary 15. Fix p ∈ (0, 1). Then there exists a sentence ψ ∈ FO[Q=] such that the limit
limn→∞ P (G(n, p) |= ψ) does not exist.

This answers the third question of Blass and Harary [2, Section 5], and provides a general
result which immediately implies all known cases of Lindström extensions of FO which are
able to express arithmetic. As mentioned above, these include the Lindström quantifier of
Hamiltonicity, regularity, the existence of a perfect matching and the existence of a C4-factor.

The rest of the paper is dedicated to the proof of Theorem 14. The proof strategy is
roughly as follows. Given a sentence φ ∈ SO[Arith], first apply Theorem 9 to convert it into
a sentence φ∗ ∈ MSO which expresses φ on a set of size ⌊

√
n⌋. Then, the crux of the proof

is to convert a sentence φ∗ ∈ MSO into a sentence ψ ∈ FO[Q=] which expresses φ∗ on a set
of size Θ(lnn). To do that, we need to show that FO[Q=] can define subsets of logarithmic
size, and can also interpret monadic second-order logic on such sets. The proof is divided
between Sections 2 and 3. In Section 2 we develop the necessary probabilistic tools, and in
Section 3 we put them together in order to complete the proof.

Notation and Conventions
We denote FO= := FO[Q=] for short. Given a list of variable symbols x1, . . . , xn, let
FO(x1, . . . , xn) denote the set of first-order formulas (in the language of graphs) with
x1, . . . , xn as free variables. Similarly define FO=(x1, . . . , xn) and MSO(x1, . . . , xn).

CSL 2025



12:8 First-Order Logic with Equicardinality in Random Graphs

Throughout the text we maintain the convention of denoting random variables with a
boldface font.

For n ∈ N and p ∈ (0, 1), we write Gn ∼ G(n, p) to indicate that Gn is a random graph
with distribution G(n, p). For two vertices u, v ∈ [n], let u ∼ v denote that they are adjacent
in Gn. For a subset S ⊆ [n], let Gn[S] denote the subgraph of Gn induced by S.

We shall use the following notions of asymptotic probabilities. Let (En)∞
n=1 be a sequence

of events, taken from a sequence of probability spaces.
1. We say that En holds with high probability (as n → ∞) if

P (En) = 1 − o(1).

2. We say that En holds with exponentially high probability (as n → ∞) if

P (En) = 1 − exp
(

−nΩ(1)
)
.

In addition, let (Xn)∞
n=1, (Yn)∞

n=1 be two sequences of positive random variables. We
say that Xn = (1 + o(1)) Yn with (exponentially) high probability if there exists a sequence
εn = o(1) such that the event |Xn/Yn − 1| ≤ εn holds with (exponentially) high probability.

For notational convenience, we sometimes omit dependency on n from our notation. The
underlying assumption throughout the text is that all quantities implicitly depend on n

(unless it is explicitly stated that they are constant or fixed) and n → ∞. We explicitly refer
to the dependency on n in cases where this convention may cause ambiguity.

Finally, recall the following tail bounds on binomial and Poisson variables, following from
Chernoff’s inequality (e.g. see [1, Appendix A]).

Let X ∼ Bin(n, p) and µ = EX. Then for every 0 < δ < 1,

P (|X − µ| ≥ δµ) ≤ 2 exp
(

−δ2

3 µ
)
. (2)

Let X ∼ Pois(λ) and µ = EX. Then for every 0 < δ < 1,

P (|X − µ| ≥ δµ) ≤ 2 exp
(

−δ2

4 µ
)
. (3)

2 Some Probabilistic Results

From now fix a constant p ∈ (0, 1) and consider a binomially distributed random graph
Gn ∼ G(n, p).

We begin by fixing, for every n, two arbitrary vertices u1, u2 ∈ [n]. Let V ′ = [n]\{u1, u2}.
Define the following (random) vertex sets:

A = {v ∈ V ′ : v ∼ u1 ∧ v ∼ u2} ,
B = {v ∈ V ′ : v ∼ u1 ∧ v ̸∼ u2} ,
C = {v ∈ V ′ : v ̸∼ u1 ∧ v ∼ u2} .

Note that the statements v ∈ A, v ∈ B, v ∈ C are all expressible as formulas in FO(u1, u2, v).
From (2), with exponentially high probability we have

|A| = (1 + o(1))p2n,

|B| , |C| = (1 + o(1))p(1 − p)n.
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That is, there exists a sequence δn = o(1) such that the event (which we denote by Q)

|A|
p2n

,
|B|

p(1 − p)n,
|C|

p(1 − p)n ∈ [1 − δn, 1 + δn] (4)

holds with exponentially high probability. It will be convenient to condition on the val-
ues of the variables A,B,C; that is, to condition on an event of the form QA,B,C =
{A = A,B = B,C = C} where A,B,C are possible values of A,B,C. Note that condition-
ing on QA,B,C does not affect the distribution of Gn[V ′].

The rest of the section is as follows. In Section 2.1 we show how to define sets S ⊆ [n] of
logarithmic size in FO[Q=] . In Section 2.2 we show how to express unary relations (subsets)
on such sets S in FO[Q=]. In both sections, all the probabilities and expected values are
assumed to be conditioned on QA,B,C , where we assume that A,B,C satisfy Equation (4)
(that is, we assume QA,B,C ⊆ Q). Finally, in Section 2.3 we apply the law of total probability
to obtain non-conditioned results.

2.1 Defining Sets of Logarithmic Size
Recall that A, B are the fixed values of the random sets A, B defined above. We construct
subsets of A in terms of the edges between A and B.

▶ Definition 16.
1. For every vertex x ∈ A, let dB(x) denote the B-degree of x, which is the number of edges

between x and B.
2. For every 0 ≤ k ≤ |B|, let Sk = {v ∈ A : dB(v) = k}. That is, Sk is the set of vertices

from A with B-degree k.
3. For every x ∈ A, let S[x] = SdB(x) = {v ∈ A : dB(v) = dB(x)} . That is, S[x] is the set

of vertices from A with the same B-degree as x.

▶ Remark 17. Given a vertex x ∈ A, the statement v ∈ S[x] is expressible as a formula in
FO= (u1, u2, x, v):

v ∈ A ∧Q=y (y ∈ B ∧ y ∼ v, y ∈ B ∧ y ∼ x)

where x ∈ A means x ∼ u1 ∧ x ∼ u2 and y ∈ B means y ∼ u1 ∧ ¬(y ∼ u2).
Importantly, note that the B-degrees (dB(x))x∈A are i.i.d. with distribution Bin (|B| , p).

▶ Theorem 18. Let c > 0 be a constant. Then, with exponentially high probability, there
exists k = k(n) such that 0 ≤ k ≤ |B| and |Sk| = (1 + o(1))c lnn.

We can reformulate the statement of theorem more explicitly by recalling the definition
of exponentially high probability (see Notation and conventions above). Given a positive
constant c, the statement is that there exists a sequence (εn)∞

n=1 such that, as n → ∞, we
have εn = o(1) and

P
(

∃0 ≤ k ≤ |B| :
∣∣∣∣ |Sk|
c lnn − 1

∣∣∣∣ ≥ εn

)
= exp

(
−nΩ(1)

)
.

For the proof of Theorem 18 we use the following normal approximations of binomial
probabilities (see [3, Theorems 1.2 and 1.5]).

▷ Claim 19. Let p ∈ (0, 1) and n ∈ N. Let µ = np and σ =
√
p(1 − p)n be the mean and

standard deviation of the binomial distribution Bin(n, p). Let 0 ≤ k ≤ n be an integer and
let b(k;n, p) = P (Bin (n, p) = k). Write k = µ+ h.
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1. Assume µ ≥ 1 and h(1−p)n
3 ≥ 1. Then

b(k;n, p) ≤ 1√
2πσ

exp
(

− h2

2σ2 + h

(1 − p)n + h3

p2n2

)
.

2. Assume µ ≥ 1, h > 0 and k < n. Then

b(k;n, p) ≥ 1√
2πσ

exp
(

− h2

2σ2 − h3

2(1 − p)2n2 − h4

3p3n3 − h

2pn − 1
12k − 1

12(n− k)

)
.

In the proof of Theorem 18 we shall use the following notation:
1. nA = |A| and nB = |B|.
2. µ = pnB and σ =

√
p(1 − p)nB .

3. pk = P (Bin (nB , p) = k) for every 0 ≤ k ≤ nB .

▶ Lemma 20. Let c > 0 be a constant. For every n ∈ N let t0 ∈ R be the unique positive
solution of

1√
2πσ

exp
(

− t20
2

)
= c lnn

n

and let k0 = µ + t0σ. Then, for every integer k ∈
[
k0 − n1/4, k0 + n1/4

]
we have pk =

(1 + o(1)) c ln n
n (where the asymptotic term o(1) is uniform with respect to k).

Proof of Lemma 20. First note that nB = Θ(n), µ = Θ(n), σ = Θ
(
n1/2

)
and t0 = (1 +

o(1))
√

lnn. For a given integer k ∈
[
k0 − n1/4, k0 + n1/4

]
, we can write k = µ + tσ for

t = t0 +O(n−1/4). Applying Part 1 of Claim 19 (with h = tσ and n = nB),

pk ≤ 1√
2πσ

exp
(

− t2

2

)
· exp

(
tσ

(1 − p)nB
+ t3σ3

p2n2
B

)
= 1√

2πσ
exp

(
− t20

2

)
· exp

(
O(t0n−1/4)

)
· exp

(
O(t0n−1/2)

)
= (1 + o(1))c lnn

n
.

Applying Part 2 of Claim 19 (with h = tσ and n = nB),

pk ≥ 1√
2πσ

exp
(

− t2

2

)
· exp

(
− t3σ3

2(1 − p)2b2 − t4σ4

3p3b3 − tσ

2pb − 1
12k − 1

12(n− k)

)
= 1√

2πσ
exp

(
− t20

2

)
· exp

(
O(t0n−1/4)

)
· exp

(
O(t0n−1/2)

)
= (1 + o(1))c lnn

n
.

Overall we have pk = (1+o(1))c ln n
n , where the o(1) term can be taken to be O

(
(lnn)1/2n−1/4

)
and uniform with respect to k. ◀

Proof of Theorem 18. Note that sk := |Sk| ∼ Bin (nA, pk) for every 0 ≤ k ≤ nB. The
variables {sk}nB

k=0 are not independent, since
∑nB

k=0 sk = nA. However, we can replace them
with independent variables by introducing a Poisson process.

Let {di}∞
i=1 be i.i.d. variables with distribution Bin (nB , p) and let N ∼ Pois(nA) be

independent of {di}∞
i=1. These variables define the Poisson process d1,d2, . . . ,dN. For every

0 ≤ k ≤ nB let s̃k count the number of times the value k appears in the process; that is,
s̃k = |{0 ≤ i ≤ N : di = k}|. Then the variables {s̃k}nB

k=0 satisfy the following two properties:
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1. The distribution of {s̃k}nB

k=0 given N = nA is identical to the distribution of {sk}nB

k=0.
2. {s̃k}nB

k=0 are independent and s̃k ∼ Pois(nApk) for every k.
We now apply Lemma 20 with c

p2 as the constant. For every integer k ∈
[
k0 − n1/4, k0 + n1/4

]
we then have

E (s̃k) = nApk = (1 + o(1))p2n · c
p2 lnn = (1 + o(1))c lnn.

From Equation (3) we deduce that there exists a sequence εn = o(1) such that for every
integer k ∈

[
k0 − n1/4, k0 + n1/4

]
,

P (s̃k ̸∈ [(1 − εn)c lnn, (1 + εn)c lnn]) ≤ 1
2 .

Write

I = [(1 − εn)c lnn, (1 + εn)c lnn] ,

K =
[
k0 − n

1/4, k0 + n
1/4

]
∩ Z

for short. Then, from independence,

P (s̃k ̸∈ I ∀k ∈ K) ≤
(

1
2

)|K|

= exp
(

−Θ(n1/4)
)
.

Therefore there exists k such that s̃k ∈ I with exponentially high probability.
Finally, we condition on the event N = nA. By Stirling’s approximation, P (N = nA) =

Θ
(
n

−1/2
A

)
= Θ

(
n−1/2

)
. Overall

P (sk ̸∈ I ∀k ∈ K) ≤ P (s̃k ̸∈ I ∀k ∈ K)
P (N = nA) =

exp
(
−Θ(n1/4)

)
Θ

(
n−1/2

) = exp
(

−Θ(n1/4)
)
.

We conclude that, with exponentially high probability, there exists k such that sk ∈ I, and
so sk = (1 + o(1))c lnn as we wanted. ◀

▶ Corollary 21. Let c > 0 be a constant. Then, with exponentially high probability, there
exists x ∈ A such that |S[x]| = (1 + o(1))c lnn.

Proof. Given k such that |Sk| = (1 + o(1))c lnn, pick any x ∈ Sk and then Sk = S[x]. ◀

2.2 Expressing Unary Relations
To express subsets of a given set S ⊆ A, we use the edges between S and C.

▶ Definition 22. For a set S ⊆ A and a vertex z ∈ C let Sz = {s ∈ S : s ∼ z}. We say that
Sz is the subset of S defined by z.

▶ Proposition 23. There exists a positive constant c1 <
1
2 such that the following holds with

exponentially high probability. For every x ∈ A, if |S[x]| ≤ 2c1 lnn then for every subset
T ⊆ S[x] there exists z ∈ C such that T = S[x]z.

The purpose of the condition c1 <
1
2 will become apparent in Section 3 (see Lemma 30).
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Proof. Let p1 = min {p, 1 − p} and choose c1 to be a sufficiently small constant such that
c1 <

1
2 and γ1 := −2c1 ln p1 < 1. For this proof only, let us say that a subset S ⊆ A is good

if for every subset T ⊆ S there exists z ∈ C such that T = Sz.
First, fix S ⊆ A of size |S| ≤ 2c1 lnn and a subset T ⊆ S. For every z ∈ C,

P (T = Sz) = p|T |(1 − p)|S|−|T | ≥ p
|S|
1 ≥ p2c1 ln n

1 = n−γ1 .

Crucially, the subsets of S defined by different vertices z ∈ C are independently distributed.
Thus

P (∀z ∈ C. T ̸= Sz) =
(

1 − p|T |(1 − p)|S|−|T |
)|C|

≤
(
1 − n−γ

)|C| = exp
(
−Θ(n1−γ1)

)
.

Taking a union bound over 2|S| = 2Θ(ln n) possible choices of the subset T , we deduce
P (S is not good) = exp

(
−nΩ(1)).

Finally, for every x ∈ A we can apply the law of total probability with respect to the
possible values of S[x], and deduce that, with exponentially high probability, |S[x]| ≤ 2c1 lnn
implies that S[x] is good. Taking a union bound over Θ(n) possible choices of x, we get the
desired result. ◀

We will also need the following analogous proposition, which will be used to control the
upper bound on the size of the definable sets.

▶ Proposition 24. There exists a positive constant c2 such that c2 ≥ 2c1 and the following
holds with probability 1 − o

(
n−2)

. For every x ∈ A, if |S[x]| ≥ c2 log2 n then for every
z1, z2 ∈ C, if z1 ̸= z2 then S[x]z1 ̸= S[x]z2 .

Again, the purpose of the condition c2 ≥ 2c1 will become apparent in Section 3.

Proof. Let p2 = max {p, 1 − p} and choose c2 to be a sufficiently large constant such that
c2 ≥ 2c1 and γ2 := −c2 ln p1 > 5. For this proof only, let us say that a subset S ⊆ A is good
if for every z1, z2 ∈ C, if z1 ̸= z2 then Sz1 ̸= Sz2 .

First, fix S ⊆ A of size |S| ≥ c2 lnn. For every pair of distinct vertices z1, z2 ∈ C,

P (Sz1 = Sz2) ≤ p
|S|
2 ≤ pc2 ln n

2 = nc2 ln p2 = n−γ2 .

Taking a union bound over Θ(n2) choices of z1 ̸= z2, we get

P (S is not good) = O(n2−γ2).

Finally, for every x ∈ A we can apply the law of total probability with respect to the possible
values of S[x] and deduce that, with probability 1 −O(n2−γ2), |S[x]| ≥ c2 lnn implies that
S[x] is good. Taking a union bound over Θ(n) possible choices of x, and recalling that
n3−γ2 = o(n−2) by definition, we get the desired result. ◀

2.3 Non-Conditioned Results
Finally, we lose the conditioning on the events QA,B,C which fix the values of A,B,C. Note
that we still have dependency on the choice of u1, u2; we will quantify over u1, u2 in the next
section. The following theorem summarizes all the probabilistic results proved in this section.

▶ Theorem 25. There exist positive constants c1, c2 with c1 <
1
2 and c2 ≥ 2c1 and sequences

δn = o(1) and εn = o(1) such that P(Γ(u1, u2)) = 1 − o(n−2), where Γ(u1, u2) is the event
that:
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1. |A|
p2n

,
|B|

p(1 − p)n,
|C|

p(1 − p)n ∈ [1 − δn, 1 + δn] (we denote this event by Q);

2. There exists x ∈ A such that

|S[x]| ∈
[
(1 − εn)3

2c1 lnn, (1 + εn)3
2c1 lnn

]
;

3. For every x ∈ A, if |S[x]| ≤ 2c1 lnn then for every T ⊆ S[x] there exists z ∈ C such that
T = S[x]z; and

4. For every x ∈ A, if |S[x]| ≥ c2 lnn then for every z1, z2 ∈ C, if z1 ̸= z2 then S[x]z1 ̸=
S[x]z2 .

Proof. Let δn = o(1) be the sequence from Equation (4). In the previous sections, we
conditioned all probabilities on QA,B,C where QA,B,C ⊆ Q. However, note that the proofs of
Theorem 18 and Propositions 23, 24 do not depend on the specific values A,B,C, but only
on the fact that they satisfy Equation (4). Therefore, they also hold when the conditioning
is on the event Q.

Now, let c1, c2 be the constants from Propositions 23 and 24 (respectively) and let (εn)∞
n=1

be the sequence from Theorem 18 for c = 3
2c1. Define Γ(u1, u2) as above. Then

P (Γ(u1, u2)) = P
(
Γ(u1, u2)

∣∣ Q
)
P (Q)

≥
(
1 − o(n−2)

) (
1 − exp

(
−nΩ(1)

))
= 1 − o(n−2).

That concludes the proof. ◀

▶ Remark 26. Note that, due to symmetry considerations, P (Γ(u1, u2)) does not depend on
the choice of u1, u2.

3 Proof of the Main Theorem

In this section we complete the proof of Theorem 14. We begin with a sequence of short
lemmas, which build upon our previous results. Once again, we fix a constant p ∈ (0, 1) and
consider a binomial random graph Gn ∼ G(n, p). Probabilities are now non-conditioned.

We begin with a refinement of Theorem 9.

▶ Lemma 27 (Kaufmann-Shelah). There exists a sentence Encode∗ ∈ MSO such that:
1. limn→∞ P (Gn |= Encode∗) = 1.
2. For every sentence φ ∈ SO[Arith] there exists a sentence φ∗ ∈ MSO such that, for every

n ∈ N and graph G = ([n], E) with G |= Encode∗, we have G |= φ∗ ⇐⇒ [
√
n] |= φ.

Proof. This follows from Theorem 1 and the closing remark of [23]. ◀

Intuitively, the sentence Encode∗ asserts the existence of MSO-formulas expressing a struc-
ture of addition and multiplication on the vertices, a necessary ingredient for converting any
φ ∈ SO[Arith] into φ∗ ∈ MSO. The basic structure of the sentence Encode∗ is given in
Theorem 1 of [23].

▶ Lemma 28. For every sentence φ∗ ∈ MSO there exists a formula φ∗∗(u1, u2, x) ∈
FO= (u1, u2, x) such that the following holds. Given the event Γ(u1, u2), for every x ∈ A
with |S[x]| ≤ 2c1 lnn we have

Gn |= φ∗∗(u1, u2, x) ⇐⇒ Gn[S[x]] |= φ∗.
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Proof. Given φ∗, define φ∗∗(u1, u2, x) as follows:
Restrict quantification to S[x]: replace every ∀v (θ) with ∀v (v ∈ S[x] → θ) and every
∃v (θ) with ∃v (v ∈ S[x] ∧ θ). Recall that the statement v ∈ S[x] is expressible as a
formula in FO= (u1, u2, x, v) (see Remark 17).
Convert unary relations: for every unary relation R introduced by ψ, replace ∃R (θ) with
∃zR(zR ∈ C ∧ θ) where zR is a new variable symbol, and also replace every R(v) with
v ∼ zR. Similarly handle ∀R (θ). Recall that the statement z ∈ C is expressible the
formula z ̸∼ u1 ∧ z ∼ u2, which is in FO(u1, u2, z)

Given the event Γ(u1, u2), for every x ∈ A with |S[x]| ≤ 2c1 lnn, we know that every subset
of S[x] is defined by some z ∈ C (see Part 3 of Theorem 25). Therefore

Gn |= φ∗∗(u1, u2, x) ⇐⇒ Gn[S[x]] |= φ∗

as we wanted. ◀

Next, we introduce a formula for upper-bounding the size of definable sets.

▶ Definition 29. Given a choice of u1, u2 ∈ [n] and x ∈ A, we say that S[x] is pseudo-
logarithmic if there exist z1, z2 ∈ C such that z1 ̸= z2 but S[x]z1 = S[x]z2 .

Note that this property is expressible as a formula in FO=(u1, u2, x), given by

∃z1∃z2 (z1 ∈ C ∧ z2 ∈ C ∧ z1 ̸= z2 ∧ S[x]z1 = S[x]z2) ,

where S[x]z1 = S[x]z2 is the formula ∀y (y ∈ S[x] → (y ∼ z1 ↔ y ∼ z2)).

▶ Lemma 30. Given the event Γ(u1, u2), for every x ∈ A,
1. If S[x] is pseudo-logarithmic then |S[x]| ≤ c2 lnn.
2. If |S[x]| ≤ 2c1 lnn then S[x] is pseudo-logarithmic.

Proof. Part 1 follows directly from the definition of Γ(u1, u2) (see part 4 of Theorem 25 ).
Part 2 follows from the pigeonhole principle. Indeed, let S = S[x] and assume |S| ≤ 2c1 lnn.
Then the number of subsets of S is 2|S| ≤ 22c1 ln n = n2c1 ln 2. Recall that c1 < 1

2 , so
2|S| ≤ nln 2 = o(n). However, given Γ(u1, u2) we have |C| = Θ(n). From the pigeonhole
principle there must exist z1, z2 ∈ C such that z1 ̸= z2 but Sz1 = Sz2 , hence S is pseudo-
logarithmic. ◀

Finally, we introduce a formula for comparing sizes of definable sets.

▶ Definition 31. Given a choice of u1, u2 ∈ [n] and two vertices x, x′ ∈ A, we say that S[x]
is pseudo-smaller than S[x′] if there exists z ∈ C such that |S[x′]z| = |S[x]|.

Note that this property is expressible as a formula in FO=(u1, u2, x, x
′), since belonging

to S[x] and to S[x′]z and the equicardinality condition |S[x′]z| = |S[x]| are all expressible in
FO=.

▶ Lemma 32. Given the event Γ(u1, u2), for every x, x′ ∈ A,
1. If S[x] is pseudo-smaller than S[x′] then |S[x]| ≤ |S[x′]|.
2. If |S[x]| ≤ |S[x′]| ≤ 2c1 lnn then S[x] is pseudo-smaller than S[x′] .

Proof. Part 1 follows from the definition of pseudo-smaller (in fact, it is true deterministically).
Part 2 follows from the definition of Γ(u1, u2) (see Part 3 of Theorem 25 ). ◀

We are now ready to prove the main theorem. In the proof, we use the notation E(X,Y )
for the set of edges in Gn between two disjoint sets of vertices X,Y ⊆ [n].
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Proof of Theorem 14. We prove that FO= can interpret a segment of arithmetic with
constants √

c1,
√
c2 and scaling function f(n) =

⌊√
lnn

⌋
, where c1, c2 are the constants from

Theorem 25. That is, for every sentence φ ∈ SO[Arith] we construct a sentence ψ ∈ FO=
such that the following holds. Given a sequence {nk}∞

k=1 with limk→∞ nk = ∞ such that φ
is constant on

[√
c1 lnnk,

√
c2 lnnk

]
for every k, we have

lim
k→∞

P
(
G(nk, p) |= ψ ⇐⇒ φ holds in

[√
c1 lnnk,

√
c2 lnnk

])
= 1. (5)

From now on we fix a sentence φ ∈ SO[Arith]. First, we apply Lemma 27 to obtain a
sentence φ∗ ∈ MSO such that, for every graph G = ([n], E) with G |= Encode∗, we have
G |= φ∗ ⇐⇒ [

√
n] |= φ. Second, we apply Lemma 28 to the MSO-sentences φ∗ and Encode∗

(from Lemma 27) to obtain formulas φ∗∗(u1, u2, x),Encode∗∗(u1, u2, x) ∈ FO= (u1, u2, x)
such that, given the event Γ(u1, u2), for every x ∈ A with |S[x]| ≤ 2c1 lnn we have

Gn |= φ∗∗ (u1, u2, x) ⇐⇒ Gn [S[x]] |= φ∗, (6)
Gn |= Encode∗∗ (u1, u2, x) ⇐⇒ Gn [S[x]] |= Encode∗. (7)

Now define ψ as the sentence claiming the existence of two vertices u1, u2 and a vertex
x ∈ A such that:
1. S[x] is pseudo-logarithmic and Gn[S[x]] |= Encode∗.
2. If x′ ∈ A is another vertex such that S[x′] is pseudo-logarithmic and Gn[S[x]] |= Encode∗,

then S[x] is not pseudo-smaller than S[x′].
3. Gn[S[x]] |= φ∗.
From Lemmas 30, 32 and (6), (7) above, ψ is indeed expressible as a sentence in FO=. It
remains to verify (5).

Let {nk}∞
k=1 with limk→∞ nk = ∞ such that φ is constant on

[√
c1 lnnk,

√
c2 lnnk

]
for

every k. There are two cases to consider.

Case 1: φ holds in
[√

c1 ln nk,
√

c2 ln nk

]
. Fix two vertices u1, u2 arbitrarily. We show

that, with high probability, there exists a vertex x ∈ A which satisfies the three parts of ψ
(along with u1, u2).

First, we know that P (Γ(u1, u2)) = 1−o(1), so from now on we may assume that Γ(u1, u2)
holds. Recall that the event Γ(u1, u2) guarantees a vertex x′ ∈ A such that

|S[x′]| ∈
[
(1 − εn)3

2c1 lnnk, (1 + εn)3
2c1 lnnk

]
.

Fix such a vertex x′. Since c2 ≥ 2c1 ≥ (1 + εn) 3
2c1, Lemma 32 implies that S[x′] is

pseudo-logarithmic. Let us show that Gnk
[S[x′]] |= Encode∗ with high probability.

Condition on the values A,B,C of the sets A,B,C and on the edge sets E(A,B) and
E(A,C). These values determine the value S of the set S[x′]. Crucially, the induced subgraph
Gnk

[S] depends only on the edge set E(A), and so, given the last conditioning, Gnk
[S] is

still binomially distributed with vertex set S and edge probability p. From Lemma 27 we
get that, given the last conditioning, Gnk

[S] |= Encode∗ with high probability. Now apply
the law of total probability over the possible values of A,B,C,E(A,B),E(A,C) to conclude
that Gnk

[S[x]] |= φ∗ with high probability.
Next, among all vertices x ∈ A such that S[x] is pseudo-logarithmic and Gnk

[S[x]] |=
Encode∗, pick x such that |S[x]| is maximal. By definition, x satisfies Part 1 and Part 2 of
ψ. We show that it also satisfies Part 3. Since S[x] is pseudo-logarithmic, Lemma 30 implies
|S[x]| ≤ c2 lnnk. We also know that

|S[x]| ≥ |S[x′]| ≥ (1 − εn)3
2c1 lnnk ≥ c1 lnnk + 1.
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Letting s = |S[x]|, we deduce ⌊
√

s⌋ ∈
[√
c1 lnnk,

√
c2 lnnk

]
. From the assumption of Case 1,

[⌊
√

s⌋] |= φ. Since Gnk
[S[x′]] |= Encode∗, Lemma 27 implies Gnk

[S[x′]] |= φ∗ as we wanted.

Case 2: ¬φ holds in
[√

c1 ln nk,
√

c2 ln nk

]
. We need to prove that with high probability,

for every u1, u2, there is no vertex x that satisfies all three parts of ψ. Let Γ =
⋂

u1,u2
Γ(u1, u2).

Theorem 25 shows that P (Γ(u1, u2)) = 1 − o(n−2) for every u1, u2. Taking a union bound
the over Θ(n2) pairs u1, u2 we get P (Γ) = 1 − o(1). So from now on we may assume that Γ
holds.

Assume that u1, u2, x are vertices such that Part 1 and Part 2 of ψ hold and let us show
that Part 3 does not hold. Again, Γ guarantees a vertex x′ ∈ A such that

|S[x′]| ∈
[
(1 − εn)3

2c1 lnnk, (1 + εn)3
2c1 lnnk

]
.

We prove |S[x]| ≥ |S[x′]| by contradiction. Indeed, otherwise we have

|S[x]| ≤ |S[x′]| ≤ (1 + εn)3
2c1 lnnk ≤ 2c1 lnnk,

and from Lemma 30 we get that S[x] is pseudo-smaller than S[x′]. But that contradicts
Part 2 of ψ. Therefore

|S[x]| ≥ |S[x′]| ≥ (1 − εn)3
2c1 lnnk ≥ c1 lnnk + 1.

Moreover, S[x] is pseudo-logarithmic, so Lemma 30 implies |S[x]| ≤ c2 lnn. As before, letting
s = |S[x]|, we get ⌊

√
s⌋ ∈

[√
c1 lnnk,

√
c2 lnnk

]
. From the assumption of Case 2, [⌊

√
s⌋] ̸|= φ.

Since Gnk
[S[x′]] |= Encode∗, Lemma 27 implies Gnk

[S[x′]] ̸|= φ∗, as we wanted. ◀
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