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Abstract
Counting logics with a bounded number of variables form one of the central concepts in descriptive
complexity theory. Although they restrict the number of variables that a formula can contain, the
variables can be nested within scopes of quantified occurrences of themselves. In other words, the
variables can be requantified. We study the fragments obtained from counting logics by restricting
requantification for some but not necessarily all the variables.

Similar to the logics without limitation on requantification, we develop tools to investigate the
restricted variants. Specifically, we introduce a bijective pebble game in which certain pebbles can
only be placed once and for all, and a corresponding two-parametric family of Weisfeiler-Leman
algorithms. We show close correspondences between the three concepts.

By using a suitable cops-and-robber game and adaptations of the Cai-Fürer-Immerman construc-
tion, we completely clarify the relative expressive power of the new logics.

We show that the restriction of requantification has beneficial algorithmic implications in terms
of graph identification. Indeed, we argue that with regard to space complexity, non-requantifiable
variables only incur an additive polynomial factor when testing for equivalence. In contrast, for all
we know, requantifiable variables incur a multiplicative linear factor.

Finally, we observe that graphs of bounded tree-depth and 3-connected planar graphs can be
identified using no, respectively, only a very limited number of requantifiable variables.
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1 Introduction

Descriptive complexity is a branch of finite model theory that essentially aims at characterizing
how difficult logical expressions need to be in order to capture particular complexity classes.
While we are yet to find or rule out a logic capturing the languages in the complexity class P,
there is an extensive body of work regarding the descriptive complexity of problems within P.
Most notably, there is the work of Cai, Fürer, and Immerman [3] which studies a particular
fragment of first-order logic. This is the fragment Ck in which counting quantifiers are
introduced into the logic, but the number of variables is restricted to being at most k. The
seminal result in [3] shows that this logic fails to define certain graphs up to isomorphism,
which in turn proves that inflationary fixed-point logic with counting IFP+C fails to capture P.
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14:2 Finite Variable Counting Logics with Restricted Requantification

Although the fragment Ck restricts the number of variables, it is common for variables
to be reused within a single logical formula. In particular, variables can be nested within
scopes of quantified occurrences of themselves. In other words, they can be requantified. In
our work, we are interested in understanding what happens if we limit the ability to reuse
variables through requantification. In fact, we may think of reusability as a resource (in
the vein of time, space, communication, proof length, advice etc.) that should be employed
economically.

It turns out that the ability to limit requantification provides us with a more detailed lens
into the landscape of descriptive complexities within P, much in the fashion of fine-grained
complexity theory.

Results and techniques. Let us denote by C(k1,k2) the fragment of first-order logic with
counting quantifiers in which the formulas have at most k1 variables that may be requantified
and at most k2 variables that may not be requantified.

First, we show that many of the traditional techniques of treating counting logics can be
adapted to the setting of limited requantification. Specifically, it is well known that there is
a close ternary correspondence between the logic Ck, the combinatorial bijective k-pebble
game, and the famous (k−1)-dimensional Weisfeiler-Leman algorithm [3, 22, 26]. We develop
versions of the game and the algorithm that also have a limit on the reusability of resources.
For the pebble game, a limit on requantification translates into pebbles that cannot be picked
up anymore, once they have been placed. For the Weisfeiler-Leman algorithm, the limit on
requantification translates into having some dimensions that “cannot be reused”. In fact the
translation to the algorithmic viewpoint is not as straightforward as one might hope at first.
Indeed, we do not know how to define a restricted version of the classical Weisfeiler-Leman
algorithm that corresponds to the logic C(k1,k2). However, we circumvent this problem by
employing the oblivious Weisfeiler-Leman algorithm (OWL). This variant is often used in the
context of machine learning. In fact, Grohe [17] recently showed that k+ 1-dimensional OWL
is in fact exactly as powerful as k-dimensional (classical) WL. We develop a resource-reuse
restricted version of the oblivious algorithm and prove equivalence to our logic. Indeed,
we formally prove precisely matching correspondences between the limited requantification,
limited pebble reusability, and the limited reusable dimensions (Theorem 6).

Next, we conclusively clarify the relation between the logics within the two-parametric
family C(k1,k2). We show that in most cases limiting the requantifiability of a variable strictly
reduces the power of the logic. We argue that no amount of requantification-restricted
variables is sufficient to compensate the loss of an unrestricted variable. However, these
statements are only true if at least some requantifiable variable remains. In fact, exceptionally,
C(1,k2) is strictly less expressive than C(0,k′

2) whenever k′
2 > 2k2 (Theorem 13). To show

the separation results, we adapt a construction of Fürer [13] and develop a cops-and-robber
game similar to those in [12, 19]. In this version, some of the cops may repeatedly change
their location, while others can only choose a location once and for all. Using another graph
construction, we rule out various a priori tempting ideas concerning normal forms in C(k1,k2).
To this end we show that formulas in the logics can essentially become as complicated as
possible, having to repeatedly requantify all of the requantifiable variables an unbounded
number of times, before using a non-requantifiable variable (Corollary 16). In terms of
the pebble game, it seems a priori unclear when an optimal strategy would employ the
non-reusable pebbles. However, the corollary says that in general one has to conserve the
non-reusable pebbles for possibly many moves until a favorable position calls for them.
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Having gone through the technical challenges that come with the introduction of reusability,
puts us into a position to discuss the implications. Indeed, as our main result, we argue that
our finer grained view on counting logics through restricted requantification has beneficial
algorithmic implications. Specifically, we show that equivalence with respect to the logic
C(k1,k2) can be decided in polynomial time with a space complexity of O

(
nk1 logn

)
, hiding

quadratic factors depending only on k1 and k2 (Theorem 24). This shows that while
the requantifiable variables each incur a multiplicative linear factor in required space, the
restricted variables only incur an additive polynomial factor. In particular, equivalence with
respect to the logics C(0,k2) can be decided in logarithmic space. To show these statements, we
leverage the fact that, because non-requantifiable variables cannot simultaneously occur free
and bound, the C(k1,k2)-type of a variable assignment does not depend on the C(k1,k2)-type
of assignments which disagree regarding non-requantifiable variables. Moreover, we use
ideas from an algorithm of Lindell, which computes isomorphism of trees in logarithmic
space [30] to implement the iteration steps of our algorithm. Generally, we believe the new
viewpoint may be of interest in particular for applications in machine learning, where the
WL-hierarchy appears to be too coarse for actual applications with graph neural networks
(see for example [1, 2, 31, 40]). In the process of the space complexity proof, we also show
that the iteration number of the resource-restricted Weisfeiler-Leman algorithm described
above is at most (k2 + 1)nk1 − 1 (Corollary 19).

Justifying the new concepts of restricted reusability, we observe that there are interesting
graph classes that are identified by the logics C(k1,k2). We argue that C(0,d+1) identifies all
graphs of tree-depth at most d (Theorem 27) and that C(2,2) identifies all 3-connected planar
graphs (Theorem 33).

Outline of the paper. After briefly providing necessary preliminaries (Section 2) we
formally introduce the logics C(k1,k2), the pebble game with non-reusable pebbles, the
(k1, k2)-dimensional oblivious Weisfeiler-Leman algorithm, and prove the correspondence
theorem between them (Section 3). We then relate the power of the logics to each other and
rule out certain normal forms (Section 4). We then analyze the space complexity (Section 5)
and finally provide two classes of graphs that are identified by our logics (Section 6).

Further related work. In addition to the references above, let us mention related investiga-
tions. Over time, a large body of work on descriptive complexity has evolved. For insights into
fundamental results regarding bounded variable logics, we refer to classic texts [25, 26, 33, 34].
However, highlighting the importance of the counting logics Ck, let us at least mention the
Immerman-Vardi theorem [24, 39]. It says that on ordered structures, least fixed-point logic
LFP captures P. Since LFP has the same expressive power as IFP+C on ordered structures,
also IFP+C, whose expressive power is closely related to the expressive power of the logics Ck,
captures P. We should also mention the work of Hella [22] introducing the bijective k-pebble
game which forms the basis for our resource restricted versions.
(Counting logics on graph classes) Because of the close correspondence between the logic

Ck and the (k− 1)-dimensional Weisfeiler-Leman algorithm, our investigations are closely
related to the notion of the Weisfeiler-Leman dimension of a graph defined in [15]. Given
a graph G this is the least number of variables k such that Ck+1 identifies G. In particular,
on every graph class of bounded Weisfeiler-Leman dimension, the corresponding finite
variable counting logic captures isomorphism. Graph classes with bounded Weisfeiler-
Leman dimension include graphs with a forbidden minor [14] and graphs of bounded
rank-width (or equivalently clique width) [20], which in both cases is also shown to imply
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that IFP+C captures P on these classes. For a comprehensive survey we refer to [27]. Our
observations for planar graphs follow from techniques bounding the number of variables
required for the identification of planar graphs [28]. Other recent classes not already
captured by the results on excluded minors and rank-width include, for example, some
polyhedral graphs [29], some strongly regular graphs [4], and permutation graphs [21].

(Logic and tree decompositions) In [9] and independently [8] it was shown that Ck-
equivalence is characterized by homomorphism counts from graphs of tree-width at
most k−1. Likewise, homomorphism counts from bounded tree-depth graphs characterize
equivalence in counting logic of bounded quantifier-rank [16]. Recently, these results were
unified to characterize logical equivalence in finite variable counting logics with bounded
quantifier-rank in terms of homomorphism counts [12].

(Space complexity) Ideas underlying Lindell’s logspace algorithm for tree isomorphism have
also been used in the context of planar graphs [6] and more generally bounded genus
graphs [10]. Similar results exist for classes of bounded tree-width [5, 11].

(Further recent results) Let us mention some quite recent results in the vicinity of our work
that cannot be found in the surveys mentioned above. Regarding the quantifier-rank
within counting logics, there is a recent superlinear lower bound [19] improving Fürer’s
linear lower bound construction [13]. Further, very recent work on logics with counting
includes results on rooted unranked trees [23] and inapproximability of questions on
unique games [35]. Finally, there has been a surge in research on descriptive complexity
within the context of machine learning (see [17, 36, 37]).

2 Preliminaries

General notation. For n ∈ N+ we use [n] to denote the n-element set {1, . . . , n}. We use
the notation {{v1, . . . , vn}} for multisets. For k1, k2 ∈ N+, we fix the variable sets [xk1 ] :=
{x1, . . . , xk1}, [yk2 ] := {y1, . . . , yk2}, and [xk1 , yk2 ] := {x1, . . . , xk1 , y1, . . . , yk2}. Given a set
V , a partial function α : [xk1 , yk2 ] ⇀ V assigns to every variable z ∈ [xk1 , yk2 ] at most one
element α(z) ∈ V . If α does not assign an element to z, we write α(z) = ⊥. Also, we write
im(α) for the image of α. With a finite set V and α : [xk1 , yk2 ] ⇀ V we associate the total
function α : [xk1 , yk2 ] → V ∪̇ {⊥}, which we also view as a [xk1 , yk2 ]-indexed (k1 + k2)-tuple.
For z ∈ [xk1 , yk2 ] and v ∈ V , the function α[z/v] is defined as α but with α(z) replaced by v.

Graphs. A graph is a pair G = (V (G), E(G)) consisting of a finite set V (G) of vertices and
a set E(G) ⊆

(
V (G)

2
)

of edges. We write |G| for the number of vertices, called the order of G.
For a vertex v ∈ V (G) we define the neighborhood NG(v) := {w ∈ V (G) : {v, w} ∈ E(G)}
and the degree dG(v) := |NG(v)| of v in G. We call v universal in G if NG(v) = V (G) \ {v}.
A colored graph consists of a graph G and a coloring function χ : V (G) → C with a finite,
ordered set C of colors. For a colored graph G and vertices v1, . . . , vn ∈ V (G) the graph
G(v1,...,vn) is obtained by assigning new and distinct colors to the vertices v1, . . . , vn in G.
The vertices v1, . . . , vn are then called individualized. An isomorphism of (colored) graphs G
and H is a bijection φ : V (G) → V (H) that preserves edges, non-edges, and vertex-colors.

We denote the complete graph on n vertices by Kn, that is, the graph with vertex set
[n] and all possible edges included. A star of degree n is a graph consisting of one universal
vertex of degree n and its neighbors of degree 1.

First-order logic with counting. First-order logic with counting C is an extension of first-
order logic by counting quantifiers ∃≥k for all k ∈ N. These intuitively state that there exist
at least k distinct vertices satisfying the formula that follows.
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Over the language of colored graphs with variable set V, formulas are inductively built
up from atomic formulas (for stating equality or adjacency of vertices as well as for stating
that a vertex has a given vertex color) via negation (¬), conjunction (∧), disjunction (∨),
implication (→), and quantification over vertices via ∀, ∃ and the counting quantifiers ∃≥k.
For a colored graph G, a variable assignment α : V → V (G), and a formula φ ∈ C, we write
G,α |= φ if the graph G together with the variable assignment α satisfies the formula φ.

The quantifier-rank qr(φ) of a formula φ is the maximum depth of nested quantifiers
in the formula. The set of free variables free(φ) of a formula φ is defined as the set of all
variables that occur outside the scope of a corresponding quantifier in φ. If free(φ) = ∅ the
formula φ is called a sentence. The set of bound variables bound(φ) is the set of all variables
that occur quantified in φ. If we restrict to a finite set of k ∈ N+ variables, the resulting
logic is called k-variable counting logic and denoted by Ck. For r ∈ N the quantifier-rank-r
counting logic Cr is obtained by restricting formulas in C to quantifier-rank at most r. The
k-variable quantifier-rank-r counting logic is defined as Ck

r := Ck ∩ Cr.
As a general reference on finite variable logics, we refer to [33].

The Weisfeiler-Leman algorithm. Let k ≥ 1 and G be a colored graph. The k-dimensional
Weisfeiler-Leman algorithm (short k-WL) iteratively computes a coloring of the k-tuples of
vertices of G. We also view the k-tuples as total functions α : {x1, . . . , xk} → V (G). Initially,
each tuple α ∈ V (G)k is colored by wl(0)

k (G,α) := atpk(G,α). Here, atpk(G,α) is the atomic
type of α in G, i.e., the set of all atomic formulas with variables in {x1, . . . , xk} satisfied
by the colored graph G[im(α)] together with the assignment α. For every r ∈ N, we then
inductively set

wl(r+1)
k (G,α) := (wl(r)

k (G,α); {{(wl(r)
k (G,α[xi/u]))i∈[k] : u ∈ V (G)}})

whenever k ≥ 2, but for the case k = 1 we set

wl(r+1)
k (G,α) := (wl(r)

k (G,α); {{wl(r)
k (G, u) : u ∈ NG(α)}}).

We write wl(r)
k (G) for the coloring of all k-tuples of vertices of G assigning wl(r+1)

k (G,α) to α.
Since the definition of wl(r+1)

k (G,α) includes the color wl(r)
k (G,α) of the previous iteration,

the coloring wl(r+1)
k (G) refines the coloring wl(r)

k (G). That is, whenever wl(r+1)
k (G,α1) =

wl(r+1)
k (G,α2) for α1, α2 ∈ V (G)k, then we also have wl(r)

k (G,α1) = wl(r)
k (G,α2). Since there

are exactly |V (G)|k-many k-tuples of vertices, there exists an r < |V (G)|k such that wl(r)
k (G)

induces the same partition of color classes as wl(r+1)
k (G). It follows from the definition of the

refinement that this implies wl(r)
k (G) induces the same partition as wl(r′)

k (G) for all r′ ≥ r. In
this case we say that k-WL stabilizes after at most r iterations on the graph G. If r is minimal
with this property, we write wl(∞)

k (G) := wl(r+1)
k (G) and call wl(∞)

k (G) the stable coloring. For
a second colored graph H, we say that k-WL distinguishes G and H after r iterations if there
exists a color c such that |{α ∈ V (G)k : wl(r)

k (G,α) = c}| ≠ |{β ∈ V (H)k : wl(r)
k (H,β) = c}|.

Besides the classical k-dimensional Weisfeiler-Leman algorithm, there also exists a vari-
ant, called the (k + 1)-dimensional oblivious Weisfeiler-Leman algorithm (short (k + 1)-
OWL). This variant colors (k + 1)-tuples of vertices, which we again view as total func-
tions α : {x1, . . . , xk+1} → V (G). Initially, all tuples are colored by their atomic type:
owl(0)

k+1(G,α) := atpk+1(G,α). Then, this coloring is iteratively refined by setting

owl(r+1)
k+1 (G,α) := (owl(r)

k+1(G,α); {{owl(r)
k+1(G,α[xi/u]) : u ∈ V (G)}}i∈[k+1]).

The stable coloring owl(∞)
k+1(G) and the notion of distinguishing graphs is defined as for k-WL.

CSL 2025
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It turns out that k-WL and (k + 1)-OWL have the same distinguishing power.

▶ Lemma 1 ([17, Lemma A.1, Corollary V.7]). Let G and H be graphs, α ∈ V (G)k+1 and
β ∈ V (H)k+1. Then the following are equivalent for every r ∈ N:
1. owl(r)

k+1(G,α) = owl(r)
k+1(H,β),

2. atpk+1(G,α) = atpk+1(H,β) and for all i ∈ [k+1], we have wl(r)
k (G,α ̸=i) = wl(r)

k (H,β ̸=i),
where α ̸=i is the k-tuple obtained from α by deleting the i-th entry.

Moreover, two graphs are distinguished by k-WL if and only if they are distinguished by
(k + 1)-OWL.

3 Finite Variable Counting Logics with Restricted Requantification

When working in the logic Ck, it is often necessary to requantify variables in order to express
certain properties. We introduce finite variable first-order logic with counting quantifiers and
restricted requantification to study this issue. We then define an Ehrenfeucht-Fraïssé-style
game as an important tool for the analysis of the newly introduced logic by game-theoretic
arguments. Finally, we devise a variant of k-OWL that precisely captures the expressive
power of the logic and game and prove a characterization that closely ties the reusable
and non-reusable resources among these objects. First, we give a precise definition of
requantification.

▶ Definition 2. Consider the counting logic C over a set of variables V. A variable x ∈ V is
said to be requantified in a formula φ ∈ C if either x ∈ free(φ) ∩ bound(φ) or if there exist a
subformula Qxψ of φ and in turn a subformula Q′xχ of ψ with Q,Q′ ∈ {∀,∃}∪{∃≥n : n ∈ N}.
We define the logic C(k1,k2) as the fragment of C over the fixed variable set V = [xk1 , yk2 ]
consisting of those formulas in which the variables from {y1, . . . , yk2} are not requantified.
The fragment of C(k1,k2) with quantifier-rank at most r ∈ N is denoted by C(k1,k2)

r .

▶ Example 3. Consider the following C(2,1)
3 formula:(

∃y1¬E(x2, y1)
)
∧∃≥4x1

(
E(x2, x1)∧∃y1

(
¬E(x1, y1)

)
∧∀x2

(
¬E(x2, x1) → ∃≥3x1E(x1, x2)

))
expressing that the vertex x2 is not universal and has at least four non-universal neighbors
such that every non-neighbor of those has degree at least three. The variable x2 is requantified
in this formula since it occurs free and bound. The variable x1 is requantified because the
subformula ∃≥3x1E(x1, x2) occurs within the scope of the outermost quantification ∃≥4x1.
The variable y1 however is not requantified since neither of its quantifications occurs in the
scope of the other.

The central question we will investigate in the following is how the non-requantifiability
restriction affects the expressive power of the logic C(k1,k2). To this end, we use the notation
C(k1,k2) ⪯ C(k′

1,k′
2) if every pair of graphs distinguished by C(k1,k2) is also distinguished by

C(k′
1,k′

2). We also write C(k1,k2) ≡ C(k′
1,k′

2) if the two logics distinguish exactly the same
pairs of graphs and C(k1,k2) ≺ C(k′

1,k′
2) if the relation is strict. In the case of unrestricted

requantification (i.e. k2 = 0) it is clear that C(k1,0) ⪯ C(k1+1,0). In this terminology, the
central result of [3] is that this relation is strict for all k1 ∈ N. For the case of restricted
requantification we make the simple observation that having more variables is at least as
expressive as having fewer variables (independent of their ability to be requantified). We also
observe that requantifiable variables are at least as expressive as non-requantifiable variables.
That is, for all k1, k2 ∈ N with k1 + k2 ≥ 1 it holds that C(k1,k2) ⪯ C(k1,k2+1) ⪯ C(k1+1,k2).
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Also, observe that having only non-requantifiable variables (i.e. k1 = 0) bounds the
quantifier-rank to at most k2 and in turn every sentence of quantifier-rank at most k2 can be
rewritten using at most k2 non-requantifiable variables. More precisely, we have C(0,k2) ≡ Ck2 .

Next, we establish an Ehrenfeucht-Fraïssé-style game which closely corresponds to the
power of the previously defined logics with respect to distinguishing graphs. The game is a
variant of the bijective pebble game introduced in [22] with the additional restriction that
some pebbles may not be picked up again once placed.

▶ Definition 4. Suppose k1, k2 ∈ N and k1 + k2 ≥ 1. For colored graphs G and H, we define
the bijective (k1, k2)-pebble game BP(k1,k2)(G,H) as follows:

The game is played by the players Spoiler, denoted by (S), and Duplicator, denoted by
(D), with one pair of pebbles for each variable in [xk1 , yk2 ]. The pebble pairs in [xk1 ] are
called reusable and the pebble pairs in [yk2 ] are called non-reusable.

The game proceeds in rounds, each of which is associated with a pair of partial functions
α : [xk1 , yk2 ] ⇀ V (G), β : [xk1 , yk2 ] ⇀ V (H) with dom(α) = dom(β). We call such a pair
of partial functions a (k1, k2)-configuration on the pair G,H. These functions indicate the
placement of the pebble pairs on the graphs. For a pebble pair z ∈ [xk1 , yk2 ] and vertices
v ∈ V (G), w ∈ V (H) we have α(z) = v, β(z) = w whenever the two pebbles of the pair z
are placed on v and w, respectively. If not specified otherwise, both games start from the
empty configuration given by dom(α) = dom(β) = ∅. One round of the game with current
configuration (α, β) consists of the following steps:
1. (S) picks up a pebble pair z ∈ [xk1 , yk2 ] such that z ∈ [xk1 ] or α(z) is undefined. If no

such z exists, the winning condition is checked directly.
2. (D) chooses a bijection f : V (G) → V (H).
3. (S) chooses w ∈ V (G) and f(w) ∈ V (H) to be pebbled with the pair z.
4. The new configuration is given by (α[z/w], β[z/f(w)]).

The winning conditions are as follows:
(S) wins immediately, if the initial configuration (α, β) does not induce a partial isomor-
phism. That is, the function h : im(α) → im(β), α(z) 7→ β(z) is not a graph isomorphism
from G[im(α)] to H[im(β)].
(S) wins if (D) cannot choose a bijection f , i.e., if |G| ≠ |H|.
(S) wins after the current round if the configuration (α, β) does not induce a partial
isomorphism. Otherwise, the game continues and (D) wins the game if (S) never wins a
round.

For r ∈ N+ we define the game variant BPr
(k1,k2), which has the additional winning condition

that (D) wins the game if (S) does not win after r rounds.

We now turn to devise an algorithmic counterpart of the logic C(k1,k2) and the game
BP(k1,k2). It is an adaptation of the oblivious Weisfeiler-Leman algorithm k-OWL.

Indeed, to capture C(k1,k2)-equivalence, we iteratively color (partial) (k1 + k2)-tuples of
vertices of a given graph with the previous color, and a sequence of multisets corresponding to
variables as in k1-OWL. We deviate from the classical oblivious Weisfeiler-Leman algorithm
by treating some entries of the tuple as non-reusable: For y ∈ [yk2 ] with α(y) ̸= ⊥, the
variable y is already assigned in the logic, respectively the non-reusable pebble is already
placed in the game. Thus, the entry in α corresponding to this variable should not be
replaced by other vertices, but be kept fixed. For this reason we utilize the advantage of
oblivious Weisfeiler-Leman that each multiset corresponds to exactly one variable and pebble
pair respectively.

CSL 2025
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Recall that we can view a variable assignment α : [xk1 , yk2 ] ⇀ V (G) for a graph G as a
[xk1 , yk2 ]-indexed (k1 + k2)-tuple over V (G) ∪̇ {⊥}, which we denote by α. For a variable
assignment α, we set J(α) := {j ∈ [k2] : α(yj) = ⊥}.

▶ Definition 5. Let G be a graph and k1, k2 ∈ N with k1 + k2 ≥ 1. The (k1, k2)-dimensional
oblivious Weisfeiler-Leman algorithm (short (k1, k2)-OWL) iteratively computes a coloring
of [xk1 , yk2 ]-indexed (k1 + k2)-tuples over V (G) ∪̇ {⊥}.

Initially, each tuple α is colored by its atomic type in G: owl(0)
(k1,k2)(G,α) := atpk1+k2(G,α).

This coloring is then refined recursively: for every r ∈ N, we define

owl(r+1)
(k1,k2)(G,α) := (owl(r)

(k1,k2)(G,α),{{owl(r)
(k1,k2)(G,α[xi/w]) : w ∈ V (G)}}i∈[k1],

{{owl(r)
(k1,k2)(G,α[yj/w]) : w ∈ V (G)}}j∈J(α))

Just as in the classical case, the coloring owl(r+1)
(k1,k2)(G) refines owl(r)

(k1,k2)(G) and eventually
stabilizes. We denote the stable coloring by owl(∞)

(k1,k2)(G).
The correspondence of counting logic, pebble game, and algorithm for restricted reusability

now is as follows:

▶ Theorem 6. Let G,H be colored graphs and k1, k2 ∈ N with k1 + k2 ≥ 1. Then for all
(k1, k2)-configurations (α, β) and r ∈ N the following are equivalent:
1. For every φ ∈ C(k1,k2)

r with free(φ) ⊆ dom(α) and free(φ) ∩ [yk2 ] = dom(α) ∩ [yk2 ] it holds
that G,α |= φ ⇔ H,β |= φ.

2. (D) has a winning strategy for BPr
(k1,k2)(G,H) with initial configuration (α, β).

3. It holds that owl(r)
(k1,k2)(G,α) = owl(r)

(k1,k2)(H,β).

The theorem can be proved by carefully adapting the proof of [3, Theorem 5.2] by treating
non-requantifiable variables separately.

4 The Role of Reusability

We investigate the interplay of requantifiable and non-requantifiable variables in C(k1,k2)

using the game-theoretic characterization provided by Theorem 6. To this end, we utilize
the CFI construction from [3] in the variant employed in [13]. The construction starts from
a so-called base graph, that is, a connected and colored graph such that every vertex receives
a unique natural number as color. By our convention, the coloring induces a linear ordering
on the vertices of the base graph. The vertices and edges of the base graph are called
base vertices and base edges, respectively. From a base graph G the CFI graph X(G) is
constructed by replacing each base vertex in G by a gadget consisting of gadget vertices but
not edges. Gadgets corresponding to adjacent base vertices are then connected by adding
edges between gadget vertices. To twist a base edge {u, v} ∈ E in X(G) means to replace
every edge between the corresponding gadgets by a non-edge and every non-edge by an edge.
The twisted CFI graph X̃(G) is obtained by twisting an arbitrary base edge e ∈ E(G) in
X(G).

We introduce a variant of the cops-and-robber game used in [19] to simulate the game
BP(k1,k2) on CFI graphs via a game played only on the base graph. Our variant involves
non-reusable cops as a way of restricting reusability of resources.
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▶ Definition 7. The cops-and-robber game CR(k1,k2)(G) is played on a base graph G between
a group of k1 +k2 cops and one robber. The cops are denoted by the elements of [xk1 , yk2 ] and
a cop xi is called reusable while a cop yj is called non-reusable. Each round of the game is
associated with a partial function γ : [xk1 , yk2 ] ⇀ V (G) and an edge e ∈ E(G). The function
γ encodes the current positions of the cops while the edge e is the position of the robber.
Initially, there are no cops on the vertices and the robber is placed on some edge of the base
graph. One round of the game with current position (γ, e) consists of the following steps:
1. The cops choose z ∈ [xk1 , yk2 ] such that z ∈ [xk1 ] or γ(z) is undefined. If no such z exists,

the winning condition is checked directly. Then a destination w ∈ V (G) for z is declared.
2. The robber chooses an edge e′ in the connected component of e in G− im(γ[z/⊥]).
3. The cop z is placed on the vertex w.
4. The new position of the game is given by (γ[z/w], e′).

The winning condition is as follows:
The cops win the game if at the end of the current round both vertices incident to the
robber edge e′ hold cops. The robber wins if the cops never win.

We also introduce the game CRr
(k1,k2)(G) with the additional winning condition that the robber

wins if the cops do not win in r rounds.

Intuitively, in the game BP(k1,k2)(X(G), X̃(G)) Spoiler has to catch the twist in X̃(G)
with pebbles to show the difference of the graphs. This corresponds to moving the cops
(according to the reusability of the used pebbles) in CR(k1,k2)(G). Duplicator, however,
moves the twist in X̃(G) using automorphisms of the graph to hide the difference, which
corresponds to moving the robber in CR(k1,k2)(G). Following similar arguments from [7, 13],
this yields the following lemma, stating that the bijective pebble game on CFI graphs can be
simulated appropriately.

▶ Lemma 8. Let k1 + k2 ≥ 2 and r ∈ N. Then the robber has a winning strategy in
CRr

(k1,k2)(G) if and only if (D) has a winning strategy in BPr
(k1,k2)(X(G), X̃(G)).

We now prove a strict hierarchy for the logics C(k1,k2) by providing, for every pair of
logics we want to separate, two CFI graphs X(G), X̃(G) that are distinguished by one of the
logics, but not the other. To show this, it now suffices to provide strategies for the game
CR(k1,k2)(G) by Lemma 8 and Theorem 6. The idea for the choice of the base graphs G is
inspired by [13] where grid graphs were chosen as base graphs.

▶ Definition 9. The graph

Gh×ℓ := ({vi,j : i ∈ [h], j ∈ [ℓ]}, {{vi,j , vr,s} : |i− r| + |j − s| = 1})

is called the grid graph with h rows and ℓ columns. We also call h the height and ℓ the length
of the grid. We say that the cops build a barrier in the game CR(k1,k2) played on a graph
G containing a grid if they are placed on a separator of the graph G disconnecting the first
column from the last column of the grid.

First, we show the advantages of reusability: When the cops-and-robber game is played
on the grid graph Gh×ℓ with at least h+ 1 cops, the cops can be placed on a column to form
a barrier and move it through the grid maintaining this formation by using the additional
cop. To show the separation, we choose the base graph as a grid of sufficient length such that
the cops are required to move or build a barrier repeatedly. This makes reusability necessary
as all non-reusable cops are placed at some point and cannot be used to move a barrier any
further.
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▶ Lemma 10. For all k1, k2, k
′
1, k

′
2 ≥ 0, if k1 > max(k′

1, 1), then C(k1,k2) ̸⪯ C(k′
1,k′

2).

Proof. First, consider the game CR(k1,k2)(G(k1−1)×(k122k′
2 +1)

). The cops can build a barrier
in the middle of the grid and move it towards the robber only using reusable cops. This
is a winning strategy for the cops since the size of the component containing the robber
is decreased by a constant in each round and eventually vanishes. On the other hand, we
show that the robber has a winning strategy in the game CR(k′

1,k′
2)(G(k1−1)×(k122k′

2 +1)
) by

induction on k′
2. The base case for k′

2 = 0 is the game CR(k′
1,0)(G(k1−1)×(k1+1)), for which

the robber has a winning strategy as a barrier can be built, but not moved. For the inductive
step assume k′

2 > 0 and consider the game CR(k′
1,k′

2+1)(G(k1−1)×(k122k′
2+2+1)

). Using only
reusable cops, the cops can reduce the size of the robber component with a barrier. However,
the size remains at least (k1 − 1) · (k122k′

2+1 + 1), since the robber can choose the larger
induced component. When a reusable cop is reused before a non-reusable cop was used
to build another barrier, the reusable barrier breaks down and the robber as an escape
strategy. Using non-reusable cops, the cops can build another wall to reduce the size of the
robber component to (k1 − 1) · (k122k′

2 + 1). Again, the robber chooses the larger induced
component. But now the remaining game is CR(k′

1,k′
2−k1+2)(G(k1−1)×(k122k′

2 +1)
) and we have

k′
2 ≥ k′

2 − k1 + 2. Thus, by the inductive hypothesis the robber has a winning strategy for
the remaining game. ◀

Second, we show the advantages of mere capacity: When the base graph is chosen as a
complete graph, the robber can choose any edge independently of the choice of vertices by
the cops and the only possibility to win for the cops is to have sufficient capacity. In this
case, capacity is more valuable than reusability.

▶ Lemma 11. For all k1, k2, k
′
1, k

′
2 ≥ 0, if k1 + k2 > k′

1 + k′
2, then C(k1,k2) ̸⪯ C(k′

1,k′
2).

Proof. In the game CR(k1,k2)(Kk1+k2), the cops have a winning strategy just by covering all
base vertices. In contrast, in the game CR(k′

1,k′
2)(Kk1+k2) the robber has a winning strategy.

Whenever a cop is picked up there is one edge that is not incident to a cop and thus yields a
safe escape for the robber. ◀

Third, we treat the special case of a single requantifiable variable: Intuitively, at least
two reusable cops are needed to move a barrier for an arbitrarily large distance in a base
graph. When only one single reusable cop is available, the distance that can be covered by
a barrier of cops is bounded by 2k1 + 1 because for every other move a non-reusable cop
must be used. The perfect binary tree of depth d is the binary tree Bd such that all interior
vertices have two children and all leaves have the same depth.

▶ Lemma 12. For all k2, k
′
2 ≥ 1 it holds that C(1,k2) ̸⪯ C(0,k′

2) if and only if k′
2 ≤ 2k2.

Proof. In the game CR(1,k2)(B2k2), the cops have a winning strategy by alternately using
non-reusable cops and the reusable cop. In the game CR(0,2k2)(B2k2) the robber has a
winning strategy as the non-reusable cops are exhausted before the robber is caught. This
yields C(1,k2) ̸⪯ C(0,2k2). For k′

2 ≤ 2k2 we get C(1,k2) ̸⪯ C(0,k′
2) since the robber wins with

the same strategy in CR(0,k′
2)(B2k2). For k′

2 > 2k2, let (S) have a winning strategy for
BP(1,k2)(G,H). Then (S) has a winning strategy for BP2k2+1

(1,k2) (G,H) since consecutive moves
involving the pebble pair x1 can be replaced by a single move instead. The winning strategy
for (S) in BP2k2+1

(1,k2) (G,H) directly yields a winning strategy for (S) in BP(0,k′
2)(G,H): For

every pebble pair played by (S) in BP2k2+1
(1,k2) (G,H), the player (S) can use a new pair in

BP(0,k′
2)(G,H). ◀
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With the previous lemmas we can determine the relation of the logics C(k1,k2) and C(k′
1,k′

2)

for any given combination of parameters.

▶ Theorem 13. For all k1, k2 ∈ N and k′
1, k

′
2 ∈ N with k1 + k2, k

′
1 + k′

2 ≥ 2 it holds that
C(k1,k2) ≺ C(k′

1,k′
2) if and only if one of the following assertions holds:

1. k1 < k′
1 and k1 + k2 ≤ k′

1 + k′
2,

2. k1 ≤ k′
1 and k1 + k2 < k′

1 + k′
2, or

3. k1 = 1, k′
1 = 0, and k′

2 > 2k2.
Furthermore, it holds that C(k1,k2) ≡ C(k′

1,k′
2) if and only if (k1, k2) = (k′

1, k
′
2).

This settles the question of how the use of non-requantifiable variables affects the expressive
power of the logic. For the investigation of the logic C(k1,k2) for fixed parameters, it is also of
interest how the non-requantifiable variables behave in concrete formulas of the logic. This
relates closely to asking whether there are normal forms for the logic C(k1,k2) with respect to
reusability. We give a precise answer to this question that rules out many such normal forms.
The idea is to construct a new family of base graphs that allow the use of non-reusable cops
only after all reusable cops have been used a certain number of times.

▶ Definition 14. We construct the graph Ġh×ℓ from the grid graph Gh×ℓ by adding one
additional vertex b, which we call bridge vertex, and the edges {{vi,⌊ ℓ

2 ⌋, b} : i ∈ [h]} ∪
{{b, vi,⌊ ℓ

2 +1⌋} : i ∈ [h]} to Gh×ℓ. Using this modified grid, we define the following base graph:
For ℓ ≥ 2, h ≥ 1 and d ≥ 1 we obtain the graph Bd

h×ℓ by replacing every vertex of a
perfect binary tree Bd of depth d by a grid Ġh×ℓ and connect adjacent grids row-wise (see
Figure 1).

▶ Theorem 15. For all k1, k2 ≥ 1 and r ≥ 1 there exist graphs G and H such that (S) has
a winning strategy for BP(k1,k2)(G,H) and in every winning strategy (S) must reuse every
reusable pebble pair at least r times (once if k1 = 1) before using a new non-reusable pebble
pair.

Proof. For k1 > 1, we consider the game CR(k1,k2)(Bk2+1
(k1−1)×2r), see Figure 1. The cops

have the following winning strategy: First, they build a barrier in the root grid (behind the
bridge vertex) by occupying one full column using k1 reusable cops. The barrier can then
be moved towards the robber using the additional reusable cop. When the barrier reaches
the last column, the two subtrees induced by the children of the root grid are disconnected
components with respect to the cops. Thus, the robber has to choose an edge in one of these
components to escape to. The cops move the barrier into the corresponding subtree, which
essentially results in the game CR(k1,k2)(Bk2

(k1−1)×2r). In every grid of the tree, the cops
encounter a bridge vertex that can be covered by one of the k2 non-reusable cops. The game
continues inductively for Ω(rk2) rounds, until the cops use the last remaining non-reusable
cop to cover the bridge vertex in a leaf grid. The barrier can be moved to the end of the grid
and the robber will be caught. Now assume a new non-reusable cop y has been used before
all reusable cops have been (re)used r times at some point of the game. Then the barrier was
not moved out of the current grid at this point, since all reusable cops have to be moved at
least r times to achieve this. Hence, the robber has not chosen a new subtree so far and can
pick an edge in a subtree that does not contain y. The cops need to move the barrier into
that subtree and use non-reusable cops for the bridge vertices. Since y was used in another
subtree, at some point there will be no non-reusable cops left to cover a bridge vertex and
the barrier cannot be moved further without breaking down. Thus, the robber can escape
indefinitely. For k1 = 1 we consider the game CR(1,k2)(B2k2). The cops have the following
winning strategy: First, the reusable cop x1 is placed in the root node. This disconnects

CSL 2025



14:12 Finite Variable Counting Logics with Restricted Requantification

Figure 1 A drawing of the base graph B3
3×4 for Theorem 15.

the subtrees induced by the two children of the root node for the robber, and the robber
has to choose an edge in one of the subtrees of depth 2k2 − 1. Accordingly, a non-reusable
cop y1 is placed on the node inducing that subtree, which again disconnects two subtrees
of depth 2k2 − 2. The cop x1 can be picked up again from the root node to be placed on
the corresponding subtree. Inductively, the cops alternately use non-reusable cops yj and
the reusable cop x1 to cover the next child node. After 2k2 moves, the induced subtree is of
depth 0 and the robber is caught in the edge to a leaf node. If two non-reusable cops are
used consecutively, similar to the case k1 > 1, there are no non-reusable cops left at depth
2k2 − 1 and the remaining reusable cop does not suffice to catch the robber. ◀

Again using Theorem 6 this result translates into the language of logic as follows:

▶ Corollary 16. For all k1, k2 ≥ 1 and r ≥ 1 there exist graphs G,H such that G and
H are not C(k1,k2)-equivalent and for every formula φ ∈ C(k1,k2) that distinguishes G and
H the following holds: There exists a sequence of subformulas ∃≥n1yj1ψ1, . . . ,∃≥nk2 yjk2

ψk2

of φ such that qr(ψk2) = k1 and for ℓ ∈ [k2 − 1] the formula ψℓ+1 is a subformula of ψℓ

with qr(ψℓ) ≥ qr(ψℓ+1) + k1r if k1 > 1 and qr(ψℓ) ≥ qr(ψℓ+1) + 1 if k1 = 1. Moreover,
between the quantifications ∃≥nℓyjℓ

ψℓ and ∃≥nℓ+1yjℓ+1ψℓ+1 all requantifiable variables have
to be requantified r times (once if k1 = 1) in ψℓ.

The necessity of this pattern of (re)quantification rules out various normal forms with
respect to requantification for C(k1,k2) one might have hoped to have. In particular, it is not
sufficient to quantify all non-requantifiable variables directly one after the other.

Regarding classical logics without restricted requantification, Theorem 13 and Corollary 16
yield that for k1, k2 ≥ 1 the power of C(k1,k2) to distinguish graphs is not identical to that of
Ck,Cr, or Ck

r for all k, r ∈ N.

5 Space Complexity

In this section we investigate the space complexity of deciding whether two given graphs are
C(k1,k2)-equivalent. In principle, this can be achieved by testing owl(∞)

(k1,k2)(G) = owl(∞)
(k1,k2)(H)

by Theorem 6. However, a naive implementation of (k1, k2)-OWL requires space Ω(nk1+k2)
and hence provides no improvement compared to the situation with unrestricted reusability.
We seek to improve the space complexity to O

(
nk1 logn

)
when both requantifiable and

non-requantifiable variables are involved. Here the O notation hides factors depending on k1
and k2 but not on n.
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To achieve this, we observe that the color owl(r)
(k1,k2)(G,α) only depends on the colors

owl(s)
(k1,k2)(G, β) with s < r where β|[yk2 ] is an extension of α|[yk2 ]. This allows us to compute

these colorings, while only ever remembering colors of assignments with a few distinct [yk2 ]-
parts. Moreover, we show that the (k1, k2)-dimensional oblivious Weisfeiler-Leman algorithm
can equivalently be implemented by alternatingly refining with respect to the reusable
dimensions until the coloring stabilizes, and refining with respect to the first unassigned
non-requantifiable variable. We use this to show that the iteration number of (k1, k2)-OWL
is at most (k2 + 1)nk1 − 1.

▶ Definition 17. For colorings χ and χ′ on a set S, we say that χ refines χ′, written χ ⪯ χ′,
if every χ′-color class is a union of χ-color classes. If χ ⪯ χ′ and χ ⪰ χ′, we write χ ≡ χ′.

In the context of colorings, it is natural to understand the oblivious Weisfeiler-Leman
algorithm as a refinement operator, i.e., a function that maps every coloring to a refined
coloring. To make this formal, we define for every coloring χ on assignments α : [xk1 , yk2 ] ⇀
V (G) the OWL-refinement

owl-ref(k1,k2)(χ)(α) :=
(
χ(α),{{χ(α[xi/w]) : w ∈ V (G)}}i∈[k1],

{{χ(α[yj/w]) : w ∈ V (G)}}j∈J(α)

)
.

This refinement is precisely the refinement that is applied by OWL in each iteration. In
particular, applying it r times to the initial coloring by atomic types yields precisely the
r-round OWL-coloring. That is,

owl-ref(r)
(k1,k2)(atpk1+k2(G)) = owl(r)

(k1,k2)(G).

Note that OWL-refinement is monotone in the sense that for all colorings χ and χ′ with the
property χ ⪯ χ′ it also holds that owl-ref(k1,k2)(χ) ⪯ owl-ref(k1,k2)(χ′).

In order to space-efficiently deal with these refinements, we want to separate the refine-
ments with respect to reusable dimensions from those with respect to non-reusable dimensions.
To do this, note that the definition of owl-ref(k1,k2) still makes sense for colorings assignments
α : [xk′

1
, yk′

2
] ⇀ V (G) for k′

1 ≥ k1 or k′
2 ≥ k2, where the refinement just refines with respect

to some but not all of the dimensions.
Moreover, in order to handle the distinguishing power of (k1, k2)-OWL on two different

graphs, we note that we can also simultaneously apply these refinement operators to colorings
on assignments over two different graphs.

With this terminology at hand, we can clarify the intuition we may gain from Section 4
regarding the employment of non-reusability. That is, in order to distinguish graphs, it suffices
to alternatingly refine with respect to all requantifiable variables and a non-requantifiable
variable.

▶ Lemma 18. For all k1 + k2 ≥ 1, we have

owl(∞)
(k1,k2)(G) ≡ (owl-ref(∞)

(k1,0) ◦ owl-ref(0,k2))(k2)(owl(∞)
(k1,0)(G))

Proof. Because owl(k1,k2) is a finer refinement than owl-ref(k1,0) and than owl-ref(0,k2), the
direction ⪯ is immediate. For the other direction, set

χr :=
(

owl-ref(∞)
(k1,0) ◦ owl-ref(0,k2)

)(r) (
owl(∞)

(k1,0)(G)
)
.
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We use the bijective pebble game and show, by induction on r, that for every (k1, k2)-
configuration (α, β) over G with |dom(α) ∩ [yk2 ]| = k2 − r such that α and β have equal
χr-colors, (D) has a winning strategy in the game BP(k1,k2)(G,G) with initial position (α, β).
This then implies the equality of owl-ref(∞)

(k1,k2)(χ)-colors.
For r = 0, the colors are precisely the colors computed by (k1, k2)-OWL. Thus, (D) has a

winning strategy by Theorem 6.
Now, assume the claim is true for some r and let (α, β) be a (k1, k2)-configuration with

|dom(α)∩ [yk2 ]| = k2 − (r+1) such that α and β have equal χr+1-colors. By the construction
of (k1, 0)-OWL refinement, (D) can preserve the equality of χr+1-colors as long as (S) picks
up reusable pebble pairs. When (S) picks up a non-reusable pebble pair, (D) can play such
that the resulting positions have the same χr-colors. But then, (D) has a winning strategy
by the induction hypothesis. ◀

Because classical owl(k1,0)-refinement stabilizes after at most nk1 − 1 rounds, this scheme
yields an upper bound on the iteration number of the oblivious Weisfeiler-Leman algorithm.

▶ Corollary 19. The sequence of colorings owl(r)
(k1,k2) computed on a graph G stabilizes after

at most (k2 + 1)nk1 − 1 rounds.

We will now turn to the computation of the OWL-colorings. Because the names of the
OWL-colors consist of nested multisets, they can become exponentially long. The usual
way to deal with this is to either replace after each iteration round all color names by
numbers of logarithmic length, or to not compute the colors at all but only consider the
order on the variable assignments induced by the lexicographic ordering of their OWL-colors.
We will switch between these two viewpoints depending on suitability to the task at hand.
Accordingly, we use two different encodings of the colorings we deal with. Consider a coloring
χ : M → C and an order ≤ on the set of colors C. We say that an algorithm is given
oracle access to the ordering of χ-colors if the algorithm has access to a function that, given
two elements m,m′ ∈ M , returns whether χ(m) ≤ χ(m′). For the second way that our
algorithms interact with colorings, we call a coloring χ′ : M → [|M |] a normalization of χ if
for all m,m′ ∈ M we have χ(m) ≤ χ(m′) if and only if χ′(m) ≤ χ′(m′). Now, we say that
an algorithm is given a function table for χ if for some normalization χ′ of χ the algorithm
is given an array A with A[m] = χ′(m) for all m ∈ M suitably encoded as numbers in [|M |].
Similarly, we say that an algorithm computes a function table for χ if it outputs such an
array. Note that a function table can be stored in space |M | · ⌈log2 |M |⌉ ∈ O(|M | log |M |).

The main technical tool needed for the implementation of owl-ref(k1,k2)-refinements, is
the ability to compare multisets of previously computed colors when given oracle access to a
function comparing these previous colors.

▶ Lemma 20. Given a natural number n in unary, oracle access to a total order ⪯ on [n],
and two multisets M and M ′ on [n] of order at most n, the lexicographic order of M and
M ′ can be decided in logarithmic space using quadratic time. Also, the lexicographical order
of tuples of colors can be computed in logarithmic space.

Proof. Consider two multisets M = {{s1, . . . , sn}} and M ′ = {{s′
1, . . . , s

′
n}}. Note that we

have enough space to store a constant number of elements of [n].
For a number i ∈ [n], we denote the number of occurrences of i in M or M ′ by M(i)

and M ′(i) respectively. Note that these numbers can be computed in logarithmic space and
linear time by simply comparing i to all elements in either set.

We start by finding the minimal element m1 of M and m′
1 of M ′. If m1 ̸= m′

1, we return
their order. Otherwise, if M(m1) ̸= M ′(m1), we return this order.
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Thus, assume m1 = m′
1 and that they occur in both multisets the same number of times.

Next, we find the second-smallest elements m2 and m′
2 of both sets, and can now forget

about m1 and m′
1. We again compare m2 and m′

2 and their number of occurrences and
possibly return the order accordingly. Iteratively, we only need to remember the i-th smallest
elements to find the (i+ 1)-th smallest elements, and we iteratively compare these elements
and their number of occurrences. ◀

This allows us to compute the order of owl-ref(k1,k2)(χ)-colors in logarithmic space when
we are given oracle access to the order of χ-colors. Using the bound on the iteration number
of (k1, k2)-OWL from Corollary 19, and the fact that we can perform one iteration using
only logarithmic additional space, we immediately obtain an algorithm that can compare
owl(∞)

(k1,k2)-colors using space at most O(nk1 logn), where we again dropped multiplicative
factors depending on k1 and k2. However, this naive implementation will not run in polynomial
time. Indeed, because there are already nk1+k2 many variable assignments, we do not have
enough space to store even the (order of) colors computed in the previous round. Instead,
this naive algorithm recomputes polynomially many previous colors in every step, which
leads to a polynomially branching algorithm with exponential running time.

To remedy this, we make full use of the scheme from Lemma 18. While performing
owl(k1,0)-refinements, we are able to store a function table with the previously computed
colors for all assignments with the same [yk2 ]-part. This allows us to perform a full owl(∞)

(k1,0)-
refinement in polynomial time and the required space. Only when performing one of the k2
many owl(0,k2)-refinement steps do we need to consider variable assignments with different
[yk2 ]-parts. In this latter case, we cannot circumvent needing to compute colors for these
assignments polynomially many times. While this does again lead to a polynomially branching
algorithm, the depth of this branching is bounded by k2, which leads to a polynomial running
time increase of nk2 .

For a fixed assignment η : [yk2 ] ⇀ V (G), we denote by [[xk1 , yk2 ] ⇀ V (G)]η the set
of assignments α : [xk1 , yk2 ] ⇀ V (G) whose [yk2 ]-part is η. Because we only ever need to
compare the colors of two assignments at a time, it will always be sufficient to compute the
OWL-coloring on sets of the form

[[xk1 , yk2 ] ⇀ V (G)]ηG
∪̇ [[xk1 , yk2 ] ⇀ V (H)]ηH

for a (0, k2)-configuration (ηG, ηH) over G and H. When restricting ourselves to assignments
in such a set, the coloring computed by (k1, 0)-OWL can be computed as usual:

▶ Lemma 21. Let k1 + k2 ≥ 1, G,H be graphs and (ηG, ηH) be a (0, k2)-configuration
over G,H. Given a function table for a coloring χ on [[xk1 , yk2 ] ⇀ V (G)]ηG

∪̇ [[xk1 , yk2 ] ⇀
V (H)]ηH

, a function table for owl-ref(k1,0)(χ) can be computed in time nO(k1) and space
O(k1n

k1 logn).

Proof. Note that
∣∣[[xk1 , yk2 ] ⇀ V (G)]ηG

∪̇ [[xk1 , yk2 ] ⇀ V (H)]ηH

∣∣ = 2(n+ 1)k1 , which means
that we can store a function tables for χ and owl-ref(k1,0)(χ) in space

O
(
2(n+ 1)k1 · log

(
2(n+ 1)k1

))
= O

(
k1n

k1 logn
)
.

In addition to these two function tables, we will only need logarithmic space.
In order to compute the function table for owl-ref(k1,0)(χ), we need to refine the coloring

χ with respect to the multisets

{{χ(α[xi/w]) : w ∈ V (G)}} or {{χ(α[xi/w]) : w ∈ V (H)}}

for all i ∈ [k1]. By using the function table for χ as an oracle, we can compare these multisets
in logarithmic additional space using Lemma 20.
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This allows us to compare owl-ref(k1,0)(χ)-colors in the required space. Now, we simply
start to compare each variable assignment α with all other assignments and count the number
of assignments whose color is less than or equal to α. Then, we use this count as the new
color of α and insert it into our function table. ◀

By applying Lemma 21 repeatedly until the coloring stabilizes, and only ever storing the
function table from the previous and current iteration round we get the following:

▶ Corollary 22. Let k1 + k2 ≥ 1, G and H be graphs, and (ηG, ηH) be a (0, k2)-configuration
over G and H. Given a function table for a coloring χ on [[xk1 , yk2 ] ⇀ V (G)]ηG

∪̇
[[xk1 , yk2 ] ⇀ V (H)]ηH

, a function table for owl-ref(∞)
(k1,0)(χ) can be computed in time nO(k1)

space O(k1n
k1 logn).

Now, we turn to refinements with respect to non-requantifiable variables.

▶ Lemma 23. Let k1 + k2 ≥ 1, G and H be graphs, and χ a coloring on [[xk1 , yk2 ] ⇀
V (G)] ∪̇ [[xk1 , yk2 ] ⇀ V (H)].

Given oracle access to the order of χ-colors, we can compute for every (0, k2)-configuration
(ηG, ηH) the function table of owl-ref(0,k2)(χ) on [[xk1 , yk2 ] ⇀ V (G)]ηG

∪̇ [[xk1 , yk2 ] ⇀
V (H)]ηH

using space O(k1n
k1 logn+ k2 logn) and time nO(k1).

Proof. Note that we have enough space to hold the function table. In addition, we will only
need logarithmic space.

Using Lemma 20, we can compute the lexicographic ordering of owl-ref(0,k2)(χ)-colors
with logarithmic additional space. We can then compute the function table by assigning to
each assignment α as the new color the number of assignments β in [[xk1 , yk2 ] ⇀ V (G)]ηG

∪̇
[[xk1 , yk2 ] ⇀ V (H)]ηH

such that

owl-ref(0,k2)(χ)(β) ≤lex owl-ref(0,k2)(χ)(α),

which is a number in [2(n+ 1)k1 ]. ◀

Together, these two statements allow us to compare the colors computed by the (k1, k2)-
dimensional oblivious Weisfeiler-Leman algorithm in a time- and space-efficient manner.

▶ Theorem 24. Let k1 + k2 ≥ 1 be fixed. For all (k1, k2)-configurations (α, β) over graphs
G and H, we can decide whether G,α1 ≡C(k1,k2) H,α2 using space O

(
k1(k2 + 1)nk1 logn+

(k2)2 logn
)

and polynomial time.

Proof. By Lemma 18, we have

owl(∞)
(k1,k2)(G) ≡

(
owl-ref(∞)

(k1,0) ◦ owl-ref(0,k2)

)(k2) (
owl(∞)

(k1,0)(G)
)
.

and similarly for H. We show by induction on r that we can compute for every pair of graphs
G1, G2 ∈ {G,H} and every (0, k2)-configuration (η1, η2) over G1 and G2, a function table of

χr :=
(

owl-ref(∞)
(k1,0) ◦ owl-ref(0,k2)

)(r) (
owl(∞)

(k1,0)

)
on [[xk1 , yk2 ] ⇀ V (G1)]|η1 ∪̇ [[xk1 , yk2 ] ⇀ V (G2)]|η2 using time nO((k1+1)(r+1)) and space
O

(
k1(r + 1)nk1 logn + k2(r + 1) logn

)
, where owl(∞)

(k1,0)(G1, G2) is the common coloring
computed by (k1, k2)-OWL on both G1 and G2.
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If r = 0, we only need to compute the classical OWL-coloring. To do this, we first note
that we can compute a function table listing the atomic types of assignments, each encoded
as numbers in [2(n+ 1)k1 ]. Then, the claim follows from Corollary 22.

For the induction step, assume we can compute function tables for (restrictions of) the
coloring χr for every fixed (0, k2)-configuration (η1, η2) over G1 and G2 in the required time
and space. This in particular implies that we can compute the order of χr-colors of arbitrary
assignments in time nO((k1+1)(r+1)) and space O

(
(r + 1)(k1n

k1 logn+ k2 logn)
)
.

For every fixed (0, k2)-configuration (η1, η2), we can thus compute a function table
for the refined coloring owl-ref(0,k2)(χr) on [[xk1 , yk2 ] ⇀ V (G)]η1,η2 using space O

(
(r +

2)(k1n
k1 logn + k2 logn)

)
by Lemma 23. Because the algorithm from Lemma 23 runs in

time nO(k1), it can make at most nO(k1) comparisons of previously computed colors, which
means that this step takes time at most nO(k1) · nO((k1+1)r) = nO((k1+1)(r+2)).

Using Corollary 22, we can refine this to a function table of

χr+1 = owl-ref(∞)
(k1,0) ◦ owl-ref(0,k2)(χr)

For r = k2, this yields the claim. ◀

6 Graphs Identified by Logics with Restricted Requantification

We finally give two classes of graphs where very few reusable variables already suffice for
identification. We say that a logic identifies a graph G if it distinguishes G from every
non-isomorphic graph.

First, we show that the logic C(0,d+1) identifies all graphs of tree-depth at most d. Second,
we refine previous work in which it was shown that C(4,0) identifies all planar graphs [28].
By closely inspecting the arguments, we show that already C(2,2) suffices to identify all
3-connected planar graphs.

Graphs of bounded tree-depth
Tree-depth is a graph parameter that intuitively measures how close a graph is to a star [32].
Let G be a graph and let G1, . . . , Gp be the connected components of G. Then the tree-depth
of G is inductively defined as

td(G) :=


1 if |G| = 1
1 + minv∈V (G) td(G− v) if p = 1 and |G| > 1
maxi∈[p] td(Gi) otherwise.

Note that a graph has tree-depth 1 if and only if it is an independent set, and tree-depth 2 if
and only if it is a disjoint union of isolated vertices and stars. Intuitively, graphs of bounded
tree-depth are those which, by repeatedly deleting one vertex in each connected component,
can be eliminated in a bounded number of rounds. We start by showing how to simulate
this deletion of vertices by pebbling them instead.

▶ Definition 25. Let G be a graph with vertex coloring χG and let v ∈ V (G). We define the
colored graph G ≀ v as the graph G− v with the new coloring χG≀v defined by setting

χG≀v(w) :=
{

(χG(w), 1) if {v, w} ∈ E(G)
(χG(w), 0) if {v, w} /∈ E(G)

for all w ∈ V (G) \ {v}.
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▶ Lemma 26 ([16, Lemma 4.5]). Let k2 ≥ 2, G,H be graphs with |G| = |H| ≥ 2 and
v ∈ V (G), w ∈ V (H) with χG(v) = χH(w). Then the following are equivalent:
1. (D) has a winning strategy for BP(0,k2)(G,H) with initial position given by α(y1) =

v, β(y1) = w and dom(α) = dom(β) = {y1}.
2. (D) has a winning strategy for BP(0,k2−1)(G ≀ v,H ≀ w).

We can now prove our result on identification of graphs of bounded tree-depth:

▶ Theorem 27. For all d ≥ 1, the logic C(0,d+1) identifies all colored graphs of tree-depth at
most d.

Proof. For two graphs G and C, denote by noc(G,C) the number of connected components
of G that are isomorphic to C. Using the equivalence of the logic and bijective pebble game,
it suffices to prove the following claim, which lends itself better to an inductive proof:

▷ Claim 28. Let G and H be colored graphs, and C a connected, colored graph of tree-
depth at most k2. If noc(G,C) ̸= noc(H,C), then (S) has a winning strategy for the game
BP(0,k2+1)(G,H).

Proof. We argue by induction on k2. If k2 = 1, then C is a single vertex. Thus, G and H

differ in the number of isolated vertices of some specific color, which allows (S) to win in 2
rounds.

For the induction step, assume that the claim is true for k2. Now, consider a graph C

with td(C) ≤ k2 + 1 and assume w.l.o.g. that noc(G,C) > noc(H,C). By the definition of
tree-depth, C contains a vertex c such that td(C − c) ≤ k2. Let s be the number of such
vertices.

We call a vertex v in either G or H C-shrinking if it is contained in a connected component
Cv isomorphic to C, and td(Cv − v) ≤ k2. The number of C-shrinking vertices in G and H

is s · noc(G,C) and s · noc(H,C) respectively. In particular, G contains more C-shrinking
vertices than H.

Now, we describe the winning strategy for (S) in the game BP(0,k2+2)(G,H). First, (S)
picks up the (unused) pebble pair y1, and (D) picks a bijection f : V (G) → V (H). Then there
exist some C-shrinking vertex v ∈ V (G) such that its image f(v) is not C-shrinking in H.
Then (S) places the pebble pair on these two vertices. By Lemma 26, it now suffices to argue
that (D) has a winning strategy for the game BP(0,k2+1)(G ≀ v,H ≀ f(v)). For this, let Cv be
the connected component of v in G, and consider the connected components C(1)

v , . . . , C
(ℓ)
v of

Cv ≀ v ⊆ G ≀ v. If for some i ∈ [ℓ], we have noc(G ≀ v, C(i)
v ) ̸= noc(H ≀ f(v), C(i)

v ), then we are
done by the induction hypothesis. Thus, we are left with the case that noc(G ≀ v, C(i)

v ) =
noc(H ≀ f(v), C(i)

v ). Note that the vertex-colorings of G ≀ v and H ≀ f(v) ensure that all
connected components isomorphic to C(i)

v for some i are incident to v or f(v) respectively.
Thus, all copies of C(i)

v in G lie in Cv.
In this case, there is an isomorphism φ between the subgraphs induced by G ≀ v and

H ≀ f(v) on the union of connected components isomorphic to C
(i)
v for some i ∈ [ℓ]. The

vertex-colorings of G ≀ v and H ≀ f(v) further ensure that φ can be extended by φ(v) := f(v),
so that its domain is all of Cv. Thus, φ now embeds Cv into the connected component of
f(v), which might, however, have additional vertices attached to f(v). If the image of Cv

under φ was the whole connected component of f(v), then f(v) would be C-shrinking, which
contradicts our assumption. Thus, there are additional vertices attached to f(v). Thus, v
and f(v) have distinct degrees, which allows (S) to win in one further round. ◁

The theorem now follows by applying the claim to all connected components of G. ◀
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Note that using Theorem 24 on the space complexity of C(k1,k2)-equivalence, the theorem in
particular reproves the statement that isomorphism of graphs of bounded tree-depth can be
decided in logarithmic space [5].

Note moreover that because C(1,1) can count the number of connected components
isomorphic to a fixed colored star, the above inductive proof also shows that for d ≥ 2, the
logic C(1,d−1) identifies all colored graphs of tree-depth at most d.

3-connected planar graphs
The next class of graphs we consider are 3-connected planar graphs. These naturally appear
in the proof that C4 identifies all planar graphs, which starts by reducing the claim for
arbitrary planar graphs to 3-connected planar graphs via the decomposition into triconnected
components [28]. We recall their proof that C4 identifies every 3-connected planar graph and
show that it actually already yields that C(2,2) suffices.

The underlying technical lemma is the following:

▶ Lemma 29 ([28, Lemma 23]). Let G be a 3-connected planar graph and let v1, v2, v3 ∈ V (G).
If v1, v2, v3 lie on a common face of G, then wl(∞)

1 (G(v1,v2,v3)) is a discrete coloring.

In the classical setting, from this lemma one can obtain that 4-WL, i.e., C5 identifies all
3-connected planar graphs. We make use of our framework and show that instead it suffices
to use non-reusable resources to cover the individualized vertices.

▶ Corollary 30 (compare [28, Corollary 24]). The logic C(2,3) identifies all 3-connected planar
graphs.

Proof. Let G be a 3-connected planar graph. By Lemma 29, there are v1, v2, v3 ∈ V (G) such
that wl(∞)

1 (G(v1,v2,v3)) is a discrete coloring. Then by Lemma 1, also owl(∞)
(2,0)(G(v1,v2,v3)) is

a discrete coloring, which implies that G(v1,v2,v3) is identified by C(2,0). Thus, there exists a
formula φ(y1, y2, y3) ∈ C(2,3) which defines the graph G with three individualized vertices
represented by y1, y2 and y3 up to isomorphism. But then, the formula ∃y1∃y2∃y3φ(y1, y2, y3)
identifies G. ◀

In order to improve the identification result from C5 to C4 and from C(2,3) to C(2,2), one
observes that for almost all 3-connected graphs, the individualization of just 2 vertices already
suffices for the above claim, and the exceptions, where indeed, 3 vertices are necessary are
somewhat rare.

▶ Definition 31. A 3-connected planar graph is called an exception if there are no two
vertices v1, v2 ∈ V (G) such that wl(∞)

1 (G(v1,v2)) is discrete.

The crucial tool in lowering the number of variables needed is an explicit classification of all
exceptions [28]. This allows to prove the following:

▶ Lemma 32. All exceptions are identified by C(2,2).

Proof. The exceptions are the following:
all bipyramids, i.e., cycles with two additional non-adjacent but otherwise universal
vertices,
all platonic solids besides the dodecahedron, and the rhombic dodecahedron,
the triakis tetrahedron, the tetrakis hexahedron and the triakis octahedron, i.e., the
graphs obtained from the tetrahedron, the hexahedron and the octahedron by adding
one vertex per face, whose neighborhood consists of the vertices on that face.
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Because even color refinement identifies every graph with at most 5 vertices, and the bipyramid
of order 6 is the octahedron, we start with bipyramids of order at least 7. We individualize
two adjacent vertices of the cycle. Then, color refinement computes a discrete coloring on the
underlying cycle, while the two pyramid tips get the same color, which is, however, distinct
from all other colors. This graph is identified by color refinement.

Next, consider the platonic solids and the rhombic dodecahedron. All of these are
distance-regular graphs of diameter at most 4, with at most 14 vertices. Note that for every
d ∈ N, there exists a formula φd(y1, y2) ∈ C(2,2) stating that y1 and y2 have distance d.
This implies that in C(2,2) we can express that a graph G is distance-regular with a given
parameter set. Because every distance-regular graph of order at most 14 is determined by its
parameters [38], C(2,2) identifies all platonic solids and the rhombic dodecahedron.

For the last case, note that the vertices of the platonic solid and the added vertices
for every face have distinct degrees. As moreover, adding these vertices does not change
the distance between any two original vertices, C(2,2) can still express that the underlying
platonic solid is of the correct type. Additionally, we can express that the neighborhood of
each added face vertex is a cycle of the correct length, and that no two face vertices share
more than 2 common neighbors. This identifies the last class of exceptions. ◀

This finally allows us to prove identification by C(2,2):

▶ Theorem 33. Every 3-connected planar graph is identified by C(2,2).

Proof. Let G be a 3-connected planar graph. If G is an exception, this follows from Lemma 32.
If G is not an exception, the claim can be proven as in Corollary 30, where we instead only
need to individualize 2 instead of 3 vertices. ◀

It is unclear how precisely this result generalizes to all planar graphs. Moreover, it is
known that all graphs of Euler genus g are identified by C4g+4 [18], and we would expect
that also here, for sufficiently connected graphs only a very small number of the variables
must be requantified.

7 Outlook

In this work, we establish a refined framework for the logical description of graphs by means
of the requantification of variables. We indicate some open questions for future work in
vastly different directions.

Towards structural graph theory, the newly defined cops-and-robber game CR(k1,k2)

defines a two-parametric family of graph classes, which contain the tree-width and tree-depth
graphs as subclasses. It will be interesting to obtain graph-theoretic characterizations for
these classes and to study them from an algorithmic and logical point of view.

From a practical viewpoint, the space complexity is generally the roadblock to a use
of higher-dimensional Weisfeiler-Leman in isomorphism testing and graph neural networks.
The introduction of non-requantifiable variables is a technique to limit space complexity, so
it needs to be investigated whether problems that arise in practice can be solved by this
technique.

In another direction, it will be interesting to investigate other classes of graphs that are
known to have bounded Weisfeiler-Leman dimension. Using the new variant with restricted
reusability, it may be possible to obtain a more fine-grained complexity measure and more
space-efficient algorithms for such graph classes. In particular, it seems highly plausible that
(sufficiently connected) bounded genus graphs require only a limited number of requantifiable
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variables. This might allow to design easier fixed-parameter tractable results for graph
isomorphism, for example on bounded genus graphs (see [18]). However, for this there are
further restrictions, as non-reusable variables must be choosable from FPT-size bounded
sets.
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