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Abstract
We prove optimal upper bounds on the Vapnik–Chervonenkis density of formulas in the extensions
of first-order logic with counting (FOC1) and with weight aggregation (FOWA1) on nowhere dense
classes of (vertex- and edge-)weighted finite graphs. This lifts a result of Pilipczuk, Siebertz, and
Toruńczyk [14] from first-order logic on ordinary finite graphs to substantially more expressive logics
on weighted finite graphs. Moreover, this proves that every FOC1 formula and every FOWA1 formula
has bounded Vapnik–Chervonenkis dimension on nowhere dense classes of weighted finite graphs;
thereby, it lifts a result of Adler and Adler [1] from first-order logic to FOC1 and FOWA1.

Generalising another result of Pilipczuk, Siebertz, and Toruńczyk [14], we also provide an explicit
upper bound on the ladder index of FOC1 and FOWA1 formulas on nowhere dense classes. This
shows that nowhere dense classes of weighted finite graphs are FOC1-stable and FOWA1-stable.
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1 Introduction

The Vapnik–Chervonenkis dimension (for short: VC dimension) is a measure for the com-
plexity of set systems; it was introduced in the 1970s [19, 17, 16] and has been widely studied
since then. It is formally defined as follows. Let X be a set and let F ⊆ 2X be a family of
subsets of X. A set Y ⊆ X is shattered by F if every subset of Y can be obtained as the
intersection of Y with some F ∈ F , i. e., {Y ∩ F : F ∈ F} = 2Y . The VC dimension of F is
the maximum size of a set Y ⊆ X that is shattered by F (or ∞, if this maximum does not
exist).

Given a logical formula φ(x̄, ȳ) with its free variables partitioned into a k-tuple x̄ and an
ℓ-tuple ȳ, the VC dimension of φ(x̄, ȳ) on a graph G = (V (G), E(G)) is defined as the VC
dimension of the family Sφ(G/V (G)) := SφG(V (G)/V (G)), where for V,W ⊆ V (G) we let

SφG(V/W ) := {tpφG(v̄/W ) : v̄ ∈ V k}, where tpφG(v̄/W ) := {w̄ ∈ W ℓ : G |= φ[v̄, w̄]}.

We say that φ(x̄, ȳ) has bounded VC dimension on a class C of graphs if there is a number c
such that for every G ∈ C the VC dimension of φ(x̄, ȳ) on G is at most c. In the following,
all graphs considered in this paper are finite.
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15:2 On the VC Dimension of FOC and FOWA

Motivated by applications on the learnability of concept classes in the model of Probably
Approximately Correct (PAC) learning, Grohe and Turán [9] showed that every first-order
formula φ(x̄, ȳ) has bounded VC dimension on classes of graphs of bounded local clique-width
(this, in particular, includes planar graphs). Adler and Adler [1] generalised this to all nowhere
dense classes of graphs. The notion of nowhere dense classes was introduced by Nešetřil and
Ossona de Mendez [12, 11] as a formalisation of classes of “sparse” graphs. It subsumes and
extends many well-known classes of sparse graphs, including planar graphs, trees, classes
of graphs of bounded tree-width or bounded degree, and all classes that exclude a fixed
topological minor. It is a robust notion that has numerous equivalent characterisations; for
details we refer to the book [13].

The goal of the present paper is to lift Adler and Adler’s result [1] from first-order logic
FO to the substantially more expressive logics FOC1 and FOWA1 (introduced in [8, 5]) that
enrich FO by mechanisms for counting and for weight aggregation. An obstacle in achieving
this is that the proof in [1] relies on model-theoretic results of [15] based on the compactness
of FO – and these are not available for FOC1 or FOWA1. Fortunately, Pilipczuk, Siebertz and
Toruńczyk [14] presented a different, constructive proof of Adler and Adler’s result. Their
proof is based on Gaifman locality and Feferman–Vaught decompositions of FO. Similar
locality results and decompositions were achieved for FOC1 and FOWA1 in [8, 5].

The logic FOC (first-order logic with counting terms) was introduced in [10] and further
studied in [8, 3]. This logic extends FO by the ability to formulate counting terms that
evaluate to integers, and by numerical predicates that allow to compare counting terms. If φ
is a formula with free variables x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yℓ), then #ȳ.φ is a counting
term with free variables x̄ that specifies the number of tuples ȳ that satisfy the formula φ.
Apart from this, every fixed integer is a counting term; and if t1 and t2 are counting terms,
then so are (t1 + t2) and (t1 · t2). The results of terms can be combined into a formula by
means of numerical predicates: an m-ary numerical predicate P is an m-ary relation on the
integers (e. g. P⩽ is the binary relation consisting of all pairs (i, j) of integers where i ⩽ j).
The logic FOC allows formulas of the form P(t1, . . . , tm) that evaluate to “true” if and only
if the m-tuple of integers obtained by evaluating the counting terms t1, . . . , tm belongs to
the relation P.

The logic FOWA (first-order logic with weight aggregation) was introduced in [5]. Formulas
and terms of this logic are evaluated on weighted graphs, which extend ordinary undirected
graphs by assigning weights (i. e., elements from particular rings or abelian groups) to vertices
or edges present in the graph. Pairs that do not occur as edges of the graph receive the
weight 0, i. e., the neutral element of the ring or abelian group. FOWA extends FO by the
ability to formulate (weight aggregation) terms that evaluate to elements in the given ring
(or abelian group), and by predicates that allow to compare these terms. Every fixed element
of the ring or abelian group is a term, as well as every expression of the form w(x) or w(x, y);
the latter yields the weight of vertex x and edge (x, y), respectively. If φ is a formula with
free variables x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yℓ), then

∑
w(ȳ).φ is a (weight aggregation)

term with free variables x̄ that specifies the sum (w.r.t. the ring or abelian group) of the
weights of all tuples ȳ for which the formula φ is satisfied. More generally, instead of a
single expression w(ȳ), the term may also refer to a product (w.r.t. the given ring) of such
expressions and fixed elements of the ring. Analogously as for FOC, terms can be combined
using the operations present in the ring or abelian group; and the results of terms can be
combined into a formula by means of predicates on the ring or abelian group: a formula of
the form P(t1, . . . , tm) expresses that the m-tuple of elements in the ring or abelian group
obtained by evaluating the terms t1, . . . , tm belongs to the relation P.
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FOC can be viewed as a special case of FOWA where the ring is the ring of integers, and
every vertex of the graph is equipped with the weight 1. Thus, all results that are available
for (fragments of) FOWA immediately translate into analogous results on (the corresponding
fragment of) FOC (but not necessarily vice versa).

For each number n, the fragments FOCn and FOWAn of FOC and FOWA restrict subfor-
mulas of the form P(t1, . . . , tm) to have at most n free variables.

In this paper, we follow the approach of Pilipczuk, Siebertz and Toruńczyk [14] and
extend it to FOC and FOWA by utilising results of van Bergerem and Schweikardt [5] and
Grohe and Schweikardt [8]. Our main results are as follows.
(1) There is a formula φ(x, y) of FOC2 that has unbounded VC dimension on the class T3 of

unranked trees of height ⩽ 3 (note that T3 is nowhere dense). (Theorem 3.1)
(2) Every formula φ(x̄, ȳ) of FOC1 or FOWA1 has bounded VC dimension on every nowhere

dense class C of weighted graphs. (Corollary 5.3)
Result (1) is obtained by representing arbitrary graphs G via unranked trees TG of height 3
in the same way as in [8]. Then, arbitrary FO formulas on G can be translated into
corresponding FOC2 formulas on TG. By applying this translation to the formula E(x, y),
which has unbounded VC dimension on the class of all graphs, one obtains Result (1).

For obtaining Result (2), we combine the approach of [14] with the locality results of
[8, 5]. This allows us to lift the following key result of [14] from FO to FOC1 and FOWA1.
(3) For every nowhere dense class C of weighted graphs, for every formula φ(x̄, ȳ) of FOWA1

or FOC1, and for and every ε > 0, there exists a number c such that for every G ∈ C and
every non-empty W ⊆ V (G), we have |Sφ(G/W )| ⩽ c · |W ||x̄|+ε, where Sφ(G/W ) :=
SφG(V (G),W ). (Theorem 5.1)

As an immediate consequence of this, by definition, we obtain the following result.
(4) Every formula φ(x̄, ȳ) of FOWA1 or FOC1 has VC density at most |x̄| on every nowhere

dense class C of weighted graphs. (Corollary 5.2)
Here, the VC density of φ(x̄, ȳ) on C is defined as the infimum of all reals α > 0 such
that |Sφ(G/W )| ∈ O(|W |α), for all G ∈ C and all W ⊆ V (G) (where constants hidden in
the O-notation may depend on α). We want to remark that Result (4) implies Result (2),
because the VC dimension is finite if and only if the VC density is finite (see, e. g., [2]).

For proving Result (3), we rely on a technical main lemma (see Lemma 4.1). The same
statement was proven in [14] for FO instead of FOWA1. Lifting this from FO to FOWA1 (and
FOC1) was one of the main technical obstacles we had to overcome in this paper.

From [14], we know that the bounds provided by Results (3) and (4) are optimal (since FO
is included in FOC1 and FOWA1) and, furthermore, that Results (2)–(4) cannot be extended
to classes that are not nowhere dense but closed under taking subgraphs.

As another application of our main technical lemma (Lemma 4.1), we provide upper
bounds (Theorem 6.1) on the ladder index, which is defined as follows. For a FOWA1 formula
φ(x̄, ȳ), a φ-ladder of length L in a weighted graph G is a sequence v̄1, . . . , v̄L, w̄1, . . . , w̄L
such that v̄i ∈

(
V (G)

)|x̄| and w̄i ∈
(
V (G)

)|ȳ| for all i ∈ [L], and, for all i, j ∈ [L], it holds
that G |= φ[v̄i, w̄j ] if and only if i ⩽ j. The smallest L for which there is no φ-ladder of
length L in G is called the ladder index of φ in G.

A class C of graphs is called stable if the ladder index of every first-order formula φ in
every graph from C is bounded by a constant depending only on φ and C [18]. Adler and
Adler [1] showed that every nowhere dense class of graphs is stable. Using our bound on the
ladder index (Theorem 6.1), we obtain the following result, which also implies Result (2).
(5) Every nowhere dense class C of weighted graphs is FOC1-stable and FOWA1-stable, that

is, the ladder index of every FOWA1 formula (and therefore also of every FOC1 formula)
φ in every weighted graph from C is bounded by a constant depending only on φ and C.
(Corollary 6.2)

CSL 2025
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The remainder of the paper is structured as follows. Section 2 provides the necessary
background on graphs, nowhere dense classes, the logics FOC and FOWA, and the locality
results that are known for these logics and used in our proofs. Section 3 presents the proof
of Result (1). Section 4 is devoted to the main technical lemma (Lemma 4.1). In Section 5,
we utilise this lemma to prove our Results (2)–(4). Section 6 proves Result (5) based on
Lemma 4.1. We conclude in Section 7.

2 Preliminaries

We let Z, N, N⩾1, Q>0 denote the sets of integers, non-negative integers, positive integers,
and positive rationals, respectively. For m,n ∈ Z, we let [m,n] := {ℓ ∈ Z : m ⩽ ℓ ⩽ n} and
[n] := [1, n]. For a k-tuple v̄ = (v1, . . . , vk), we write |v̄| to denote its length k. We denote
the power set of a set S by 2S .

A group (G, ◦) is a set G equipped with a binary operator ◦ : G × G → G that is
associative (i. e. (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G) and has a neutral element eG ∈ G

(i. e. a ◦ eG = eG ◦ a = a for all a ∈ G) such that each a ∈ G has an inverse a′ ∈ G (i. e.
a ◦ a′ = a′ ◦ a = eG); we write a−1 for this a′. A group is abelian if ◦ is commutative (i. e.
a ◦ b = b ◦ a for all a, b ∈ G). A ring (R,+, ·) is a set R equipped with two binary operators
+ (addition) and · (multiplication) such that (R,+) is an abelian group with neutral element
0R ∈ R, · is associative and has a neutral element 1R ∈ R, and multiplication is distributive
with respect to addition, i. e. a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c) for all
a, b, c ∈ R. A ring is commutative if · is commutative.

When referring to an abelian group (or ring), we will usually write (S,+S) (or (S,+S , ·S)),
we denote the neutral element of the group by 0S , and −a denotes the inverse of an element
a in (S,+S) (and we denote the neutral element of the ring for (S, ·S) by 1S).

σ-Graphs

A (simple, undirected and finite) graph G = (V (G), E(G)) consists of a finite set V (G) (the
vertices of G) and a set E(G) of subsets of V (G) of size 2 (the edges of G).

A graph signature σ is a finite set consisting of a symbol E and a finite number of further
symbols. The symbol E as arity ar(E) = 2, while all other symbols R ∈ σ \ {E} have arity
ar(R) ∈ {0, 1}. Let σ be a graph signature. A σ-graph G consists of a graph (V (G), E(G)),
and a relation R(G) ⊆

(
V (G)

)ar(R) for every R ∈ σ \ {E}. Note that relations of arity 1 are
subsets of V (G), and since S0 = {()} for every set S, there exist only two relations of arity
0, namely ∅ and {()}. We identify the latter with true and the former with false.

The order of a σ-graph G is |G| := |V (G)|.

Weighted σ-Graphs

Let σ be a graph signature. Let S be a collection of rings and/or abelian groups. Let W be
a finite set of weight symbols such that each w ∈ W has an associated arity ar(w) ∈ {1, 2}
and a type type(w) ∈ S. A (σ,W)-graph (or, W-weighted σ-graph) is a σ-graph G that is
enriched, for every w ∈ W, by an interpretation wG :

(
V (G)

)ar(w) → type(w), which satisfies
the following edge condition for all w ∈ W with ar(w) = 2: if wG(v1, v2) ̸= 0S for S := type(w),
and v1, v2 ∈ V (G), then {v1, v2} ∈ E(G).

Standard notions used for graphs are defined for (W, σ)-graphs G by referring to their
Gaifman graph (V (G), E(G)). In particular, a path between two vertices u and v in G is
a path between u and v in the graph (V (G), E(G)), and the distance distG(u, v) between
vertices u and v is their distance in the graph (V (G), E(G)). The degree deg(G) is the
maximum degree of (V (G), E(G)).
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For a set X ⊆ V (G), the induced subgraph of G on X is the (σ,W)-graph G[X] with
vertex set V (G[X]) = X, edge set E(G[X]) = {e ∈ E(G) : e ⊆ X}, relations R(G[X]) =
R(G) ∩Xar(R) for every R ∈ σ \ {E}, and weights wG[X](v̄) = wG(v̄) for every w ∈ W and
every v̄ ∈ Xar(w). For a (σ,W)-graph G and a set S ⊆ V (G), we let G \ S := G[V (G) \ S].

For a number r ⩾ 0, the r-ball around a vertex v ∈ V (G) is NG
r (v) := {u ∈ V (G) :

distG(v, u) ⩽ r}, and the r-ball around a set S ⊆ V (G) is NG
r (S) :=

⋃
v∈S N

G
r (v). The

r-neighbourhood around S is the (σ,W)-graph NG
r (S) := G[NG

r (S)]. For a tuple ā =
(a1, . . . , ak) ∈ V (G)k we let NG

r (ā) := NG
r (S) and NG

r (ā) := NG
r (S) for S := {a1, . . . , ak}.

Let σ′ be a graph signature with σ′ ⊇ σ, and let W′ be a finite set of weight symbols with
W′ ⊇ W. A (σ′,W′)-graph G′ is a (σ′,W′)-expansion of a (σ,W)-graph G if V (G′) = V (G),
R(G′) = R(G) for all R ∈ σ, and wG

′ = wG for every w ∈ W. If G′ is a (σ′,W′)-expansion of
the (σ,W)-graph G, then G is the (σ,W)-reduct of G′.

Let G and H be two (σ,W)-graphs with V (G) ∩ V (H) = ∅. The disjoint union of
G and H is the (σ,W)-graph G ⊎ H with vertex set V (G ⊎ H) = V (G) ∪ V (H), and
R(G⊎H) = R(G)∪R(H) for all R ∈ σ, and weight functions as follows: For all unary w ∈ W
we have wG⊎H(v) = wG(v) for all v ∈ V (G) and wG⊎H(v) = wH(v) for all v ∈ V (H). For all
binary w ∈ W we have wG⊎H(u, v) = wG(u, v) for all (u, v) ∈ V (G)2, wG⊎H(u, v) = wH(u, v)
for all (u, v) ∈ V (H)2, and wG⊎H(u, v) = 0S for all (u, v) ∈ (V (G) ×V (H)) ∪ (V (H) ×V (G)),
where S = type(w).

Nowhere Dense Classes

For n ∈ N, we write Kn for the complete graph on n vertices. A depth-n minor of a graph
G = (V (G), E(G)) is a subgraph of a graph obtained from G by contracting mutually
vertex-disjoint connected subgraphs of radius at most n to single vertices.

As mentioned in Section 1, the notion of nowhere dense classes of graphs is a robust notion
that has numerous equivalent characterisations; for an overview we refer to the introduction
of [14]; details can be found in the book [13]. For the purpose of this paper, the following
characterisation serves as our definition of the notion.

▶ Definition 2.1. A class C of graphs is nowhere dense if there is a function t : N → N such
that for every r ∈ N, no graph G ∈ C contains the complete graph Kt(r) as a depth-r minor.
A class C of (σ,W)-graphs is nowhere dense if and only if the class {(V (G), E(G)) : G ∈ C}
is nowhere dense.

The following theorem was proved in [14] (there, it was formulated for classes of graphs;
here we adapted the formulation to classes of (σ,W)-graphs). We will use this result for
proving our results on VC density in Section 5. The result uses the following notion. Let G
be a (σ,W)-graph, let r ∈ N, and let V,W, S ⊆ V (G). We say that V and W are r-separated
by S (in G) if every path of length at most r in G from a vertex in V to a vertex in W

contains a vertex from S. This notion naturally extends to tuples v̄ = (v1, . . . , vk) and
w̄ = (w1, . . . , wℓ) for any k, ℓ ∈ N⩾1 by considering the sets {v1, . . . , vk} and {w1, . . . , wℓ},
and it thereby also naturally extends to sets of tuples V and W .

▶ Theorem 2.2 (Uniform quasi-wideness for tuples [14, Theorem 2.9]). Let r, t ∈ N, and let
C be a class of (σ,W)-graphs G whose Gaifman graph (V (G), E(G)) does not include Kt

as a depth-18r minor. For every d ∈ N, there is a number s and a polynomial N : N → N
computable from r, t, and d with the following property.

For every G ∈ C, every m ∈ N, and every set X ⊆ (V (G))d with |X| ⩾ N(m), there are
sets S ⊆ V (G) and Y ⊆ X with |S| ⩽ s and |Y | ⩾ m such that all distinct v̄, v̄′ ∈ Y are
r-separated by S in G.

CSL 2025
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The Weight Aggregation Logic FOWA

Fix a countably infinite set vars of variables. A (σ,W)-interpretation I = (G, β) con-
sists of a (σ,W)-graph G and an assignment β : vars → V (G). For k ∈ N⩾1, elements
a1, . . . , ak ∈ V (G), and k distinct variables y1, . . . , yk, we write I a1,...,ak

y1,...,yk
for the interpret-

ation (G, β a1,...,ak
y1,...,yk

), where β a1,...,ak
y1,...,yk

is the assignment β′ with β′(yi) = ai for every i ∈ [k]
and β′(z) = β(z) for all z ∈ vars \ {y1, . . . , yk}.

Recall that S is a collection of rings and/or abelian groups. An S-predicate collection is a
4-tuple (P, ar, type, J·K), where P is a countable set of predicate names and, to each P ∈ P, ar
assigns an arity ar(P) ∈ N⩾1, type assigns a type type(P) ∈ Sar(P), and J·K assigns a semantics
JPK ⊆ type(P). For the remainder of this paper, fix an S-predicate collection (P, ar, type, J·K).

For every S ∈ S that is not a ring but just an abelian group, a W-product of type S is
either an element in S or an expression of the form w(z̄), where w ∈ W is of type S and either
ar(w) = 1 and z̄ is a single variable, or ar(w) = 2 and z̄ = (z1, z2) for distinct variables z1, z2.

For every ring S ∈ S, a W-product of type S is an expression of the form t1· · · · ·tℓ, where
ℓ ∈ N⩾1, and for each i ∈ [ℓ], either ti ∈ S or there exists a w ∈ W with type(w) = S and
either ar(w) = 1 and ti is of the form w(z) for a variable z or ar(w) = 2 and ti is of the form
w(z1, z2) for distinct variables z1, z2. By vars(p), we denote the set of all variables that occur
in a W-product p. The syntax and semantics of first-order logic with weight aggregation
FOWA is defined as follows.

▶ Definition 2.3. For FOWA(P)[σ, S,W], the set of formulas and S-terms is built according
to the following rules.
(1) x1=x2 and R(x1, . . . , xk) are formulas for x1, . . . , xk ∈ vars and R ∈ σ with ar(R) = k.
(2) If w ∈ W, S = type(w), s ∈ S, k = ar(w), and x̄ = (x1, . . . , xk) is a tuple of k pairwise

distinct variables, then
(
s = w(x̄)

)
is a formula.

(3) If φ and ψ are formulas, then ¬φ and (φ ∨ ψ) are also formulas.
(4) If φ is a formula and x ∈ vars, then ∃xφ is a formula.
(5) If φ is a formula, w ∈ W, S = type(w), s ∈ S, k = ar(w), and x̄ = (x1, . . . , xk) is a tuple

of k pairwise distinct variables, then
(
s =

∑
w(x̄).φ

)
is a formula.

(6) If P ∈ P, m = ar(P), and t1, . . . , tm are S-terms with type(P) =
(
type(t1), . . . , type(tm)

)
,

then P(t1, . . . , tm) is a formula.
(7) For every S ∈ S and every s ∈ S, s is an S-term of type S.
(8) For every S ∈ S, every w ∈ W of type S, and every tuple (x1, . . . , xk) of k := ar(w)

pairwise distinct variables in vars, w(x1, . . . , xk) is an S-term of type S.
(9) If t1 and t2 are S-terms of the same type S, then (t1 + t2) and (t1 − t2) are also S-terms

of type S; furthermore, if S is a ring (and not just an abelian group), then also (t1·t2) is
an S-term of type S.

(10) If φ is a formula, S ∈ S, and p is a W-product of type S, then
∑
p.φ is an S-term of

type S.
Let I = (G, β) be a (σ,W)-interpretation. For a formula or S-term ξ from FOWA(P)[σ, S,W],
the semantics JξKI is defined as follows.
(1) Jx1=x2K

I = 1 if β(x1) = β(x2), and Jx1=x2K
I = 0 otherwise; JE(x1, x2)KI = 1 if

{β(x1), β(x2)} ∈ E(G), and JE(x1, x2)KI = 0 otherwise; for all R ∈ σ with ar(R) = 1,
we have JR(x1)KI = 1 if β(x1) ∈ R(G), and JR(x1)KI = 0 otherwise; for all R ∈ σ with
ar(R) = 0, we have JR()KI = 1 if () ∈ R(G), and JR()KI = 0 otherwise.

(2)
q(
s = w(x̄)

)y I = 1 if s = wG
(
β(x1), . . . , β(xk)

)
, and

q(
s = w(x̄)

)y I = 0 otherwise.
(3) J¬φKI = 1 − JφKI and J(φ ∨ ψ)K = max

{
JφKI

, JψKI}
.

(4) J∃xφKI = max
{
JφKI vx : v ∈ V (G)

}
.
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(5)
q(
s =

∑
w(x̄).φ

)yI = 1 if s =
∑
S

{
wG(v̄) : v̄ = (v1, . . . , vk) ∈

(V (G))k with JφKI v1,...,vk
x1,...,xk = 1

}
, and

q(
s =

∑
w(x̄).φ

)yI = 0 otherwise. As usual,∑
S X = 0S if X = ∅.

(6) JP(t1, . . . , tm)KI = 1 if
(
Jt1K

I
, . . . , JtmKI)

∈ JPK, and JP(t1, . . . , tm)KI = 0 otherwise.
(7) JsKI = s for s ∈ S for some S ∈ S.
(8) Jw(x1, . . . , xk)KI = wG

(
β(x1), . . . , β(xk)

)
.

(9) J(t1 ∗ t2)KI = Jt1K
I ∗S Jt2K

I , for ∗ ∈ {+,−, ·}.
(10) J

∑
p.φKI =

∑
S

{
JpKI v1,...,vk

x1,...,xk : v1, . . . , vk ∈ V (G), JφKI v1,...,vk
x1,...,xk = 1

}
, where vars(p) =

{x1, . . . , xk}, k = |vars(p)| and JpKI = Jt1K
I ·S · · · ·S JtℓK

I if p = t1· · · · ·tℓ is of type S.

An expression is a formula or an S-term. The set vars(ξ) of an expression ξ is defined as
the set of all variables in vars that occur in ξ. The free variables free(ξ) of ξ are inductively
defined as follows.
(1) free(x1=x2) = {x1, x2} and free

(
R(x1, . . . , xk)

)
= {x1, . . . , xk} for R ∈ σ.

(2) free
((
s = w(x1, . . . , xk)

))
= {x1, . . . , xk}.

(3) free(¬φ) = free(φ) and free(φ ∨ ψ) = free(φ) ∪ free(ψ).
(4) free(∃xφ) = free(φ) \ {x}.
(5) free

((
s =

∑
w(x1, . . . , xk).φ

))
= free(φ) \ {x1, . . . , xk},

(6) free
(
P(t1, . . . , tm)

)
=

⋃m
i=1 free(ti).

(7) free(s) = ∅ for s ∈ S for some S ∈ S.
(8) free

(
w(x1, . . . , xk)

)
= {x1, . . . , xk}.

(9) free
(
(t1 ∗ t2)

)
= free(t1) ∪ free(t2) for ∗ ∈ {+,−, ·}.

(10) free(
∑
p.φ) = free(φ) \ vars(p).

We write ξ(x1, . . . , xk) to indicate that free(ξ) ⊆ {x1, . . . , xk}. A sentence is a formula
without free variables, and a ground S-term is an S-term without free variables.

For a formula φ and a (σ,W)-interpretation I, we write I |= φ to indicate that JφKI = 1.
Likewise, I ̸|= φ indicates that JφKI = 0. For a formula φ, a (σ,W)-graph G, and a tuple
v̄ = (v1, . . . , vk) ∈

(
V (G)

)
k, we write G |= φ[v̄] or (G, v̄) |= φ to indicate that (G, β) |= φ

for one (and hence every) assignment β with β(xi) = vi for all i ∈ [k]. Furthermore, we set
Jφ(v̄)KG := 1 if G |= φ[v̄], and Jφ(v̄)KG := 0 otherwise. Similarly, for an S-term t(x̄), we write
tG[v̄] to denote JtKI . The fragments FOWAn and FOW1 of FOWA are defined as follows.

▶ Definition 2.4. For every n ∈ N, the set of expressions of FOWAn(P)[σ, S,W] is built
according to the same rules as for the logic FOWA(P)[σ, S,W], with the following restrictions:

rule (5) can only be applied if S is finite,
rule (6) can only be applied if |free(t1) ∪ · · · ∪ free(tm)| ⩽ n.

FOW1(P)[σ, S,W] is the restriction of FOWA1(P)[σ, S,W] where rule (10) cannot be applied.

As pointed out in [5], FOW1 can be viewed as an extension of first-order logic with
modulo-counting quantifiers, and FOWA and FOWA1 can be viewed as extensions of the
counting logics FOC and FOC1 of [10] and [8]. In fact, every formula in FOC can be viewed
as a formula in FOWA.

Note that first-order logic FO is the restriction of FOW1 where only rules (1), (3), and
(4) can be applied. As usual, we write (φ ∧ ψ) and ∀xφ as shorthands for ¬(¬φ ∨ ¬ψ) and
¬∃x¬φ. The quantifier rank qr(ξ) of an FOWA(P)[σ, S,W] expression ξ is defined as the
maximum nesting depth of constructs using rules (4) and (5) in order to construct ξ. The
aggregation depth dag(ξ) of ξ is defined as the maximum nesting depth of term constructions
using rule (10) in order to construct ξ.
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▶ Example 2.5. Consider the following setting. S consists of a single ring, the ring (Z,+, ·)
of integers with the natural addition and multiplication. P consists of a single predicate, the
binary equality predicate P= with JP=K = {(i, i) : i ∈ Z}. W consists of a single weight symbol
w, and ar(w) = 2. Furthermore, σ = {E}. We interpret a (σ,W)-graph G = (V (G), E(G), wG)
as a flow network, where wG(u, v) indicates the flow through edge {u, v} in the direction
from u to v, and wG(v, u) indicates the flow through edge {u, v} in the direction from v to u.

The fact that a node x is a source node, i.e., all edges incident with x have weight 0
in the direction into x, can be described by the FOW1(P)[σ, S,W] formula source(x) :=
∀z (0 = w(z, x)). Similarly, target(y) := ∀z (0 = w(y, z)) is an FOW1(P)[σ, S,W] formula
expressing that node y is a target node, i.e., all edges incident with y have weight 0 in the
direction outgoing from y. Furthermore, tin(z) :=

∑
w(u, z′).(z′=z ∧ E(u, z′)) is a term

of FOWA1(P)[σ, S,W] which specifies the total flow through edges incoming into node z.
Moreover, tout(z) :=

∑
w(z′, u).(z′=z ∧ E(z′, u)) is a term of FOWA1(P)[σ, S,W] which

specifies the total flow through edges going out of node z. Thus, ψ(z) := P=(tin(z), tout(z))
is a FOWA1(P)[σ, S,W] formula expressing that for node z, the incoming flow is equal to
its outgoing flow. Finally, φ(x, y) := ((source(x) ∧ target(y)) ∧ ∀z ((z=x ∨ z=y) ∨ ψ(z))) is
a FOWA1(P)[σ, S,W] formula expressing the following: G |= φ[s, t] for nodes s, t ∈ V (G) if
and only if wG is a feasible flow for the flow network G with source and sink nodes s and t,
i.e., for all vertices v ∈ V (G) \ {s, t} the incoming flow is equal to its outgoing flow.

Locality Results

For proving the main results (2)–(5) stated in Section 1, we heavily rely on the following two
locality results achieved in [5].

▶ Theorem 2.6 (Feferman–Vaught decompositions for FOW1 [5, Theorem 4.3]). Let k, ℓ ∈ N,
and let x̄ = (x1, . . . , xk), ȳ = (y1, . . . , yℓ) be tuples of k + ℓ pairwise distinct variables. For
every FOW1(P)[σ, S,W] formula φ with free variables among {x1, . . . , xk, y1, . . . , yℓ}, there
is a finite, non-empty set ∆ of pairs (α, β) of FOW1(P)[σ, S,W] formulas with free(α) ⊆
{x1, . . . , xk} and free(β) ⊆ {y1, . . . , yℓ} such that the following holds. For all (σ,W)-graphs G
and H with V (G)∩V (H) = ∅ and all v̄ ∈ (V (G))k and w̄ ∈ (V (H))ℓ, we have G⊎H |= φ[v̄, w̄]
if and only if there is a pair (α, β) ∈ ∆ with G |= α[v̄] and H |= β[w̄].

Furthermore, all formulas occurring in ∆ have quantifier rank at most qr(φ), and they
only use those P ∈ P and S ∈ S that occur in φ and only those S-terms that occur in φ or
that are of the form s for an s ∈ S with S ∈ S where S is finite and occurs in φ.

Moreover, there is an algorithm that computes ∆ upon input of φ, x̄, and ȳ.

For stating the second locality result, we need the following notation of local formulas.
Let r ∈ N. A FOWA formula φ(x̄) with free variables x̄ = (x1, . . . , xd) is r-local (around x̄) if
for every (σ,W)-graph G and all ā ∈ V (G)d, we have G |= φ[ā] ⇐⇒ NG

r (ā) |= φ[ā] . A
formula is local if it is r-local for some r ∈ N.

▶ Theorem 2.7 (Localisation Theorem for FOWA1 [5, Theorem 4.7]). Let d ∈ N. For every
formula φ(x1, . . . , xd) of FOWA1(P)[σ, S,W], there is an r ∈ N, an extension σ′ of σ with
relation symbols of arity ⩽ 1, and an FOW1(P)[σ′,S,W] formula φ′(x1, . . . , xd) that is a
Boolean combination of r-local formulas and statements of the form R() for a 0-ary relation
symbol R ∈ σ′ such that the following holds. There is an algorithm that, upon input of a
(σ,W)-graph G, computes in time |V (G)| · (deg(G))O(1) a (σ′,W)-expansion G′ of G such
that, for all v̄ ∈ V (G)d, it holds that G′ |= φ′[v̄] if and only if G |= φ[v̄]. Furthermore, r, σ′,
and φ′ are computable from φ.
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3 FOC2 has Unbounded VC Dimension

This section proves main result (1) stated in Section 1. Let σ := {E}. Let S consist of
the integer ring (Z,+, ·), and let W consist of a unary weight symbol one. We identify
a graph G = (V (G), E(G)) with a (σ,W)-graph by letting oneG(v) = 1 for all v ∈ V (G).
For a formula φ, we write #(y1, . . . , yj).φ for the weight aggregation term

∑
p.φ for p :=

one(y1) · · · one(yj). Note that this term evaluates to the number of tuples (a1, . . . , aj) ∈
V (G)j for which the formula φ is satisfied when assigning the variables y1, . . . , yj the vertices
a1, . . . , aj . Let P be the predicate collection consisting only of the equality predicate P=,
where JP=K = {(i, i) : i ∈ Z}. The logic FOC(P)[σ] considered in [8] precisely corresponds to
the logic FOWA(P)[σ, S,W], and FOCn(P)[σ] corresponds to FOWAn(P)[σ, S,W], for n ∈ N.

▶ Theorem 3.1. Let T3 be the class of undirected, unranked trees of height at most 3.
There is an FOC2(P)[σ] formula ψ(x, y) such that, for every n ∈ N, there exist H ∈ T3 and
W ′ ⊆ V (H) with |W ′| = n and |SφH(V (H)/W ′)| = 2|W ′|. In particular, this implies that
ψ(x, y) has unbounded VC dimension on T3.

Proof. Recall the notions introduced at the beginning of Section 1. In particular, we write
Sφ(G/W ) as a shorthand for SφG(V (G)/W ).

Let Call be the class of all graphs. The proof of [8, Theorem 4.1] associates with every
G ∈ Call a tree HG ∈ T3 and an injective mapping πG from V (G) to V (HG). Furthermore,
the construction presented there allows associating with every FO[σ] formula φ(x, y) an
FOC2(P)[σ] formula φ̂(x, y) such that the following is true for every G ∈ Call:
1. For all v, w ∈ V (G), we have: G |= φ[v, w] ⇐⇒ HG |= φ̂[πG(v), πG(w)].
2. For all v′, w′ ∈ V (HG) with v′ ̸∈ img(πG) or w′ ̸∈ img(πG), we have: HG ̸|= φ̂[v′, w′].
This implies that for all W ⊆ V (G) and all v ∈ V (G) we have:
πG(tpφG(v/W )) = {w′ ∈ πG(W ) : HG |= φ̂[πG(v), w′]} = tpφ̂HG(πG(v)/πG(W )).
Hence, πG(Sφ(G/W )) ⊆ Sφ̂(HG/πG(W )), and thus

|Sφ(G/W ) | ⩽ |Sφ̂(HG/πG(W )) |. (1)

Consider the FO formula φ(x, y) := E(x, y). For every n ∈ N, there is a graph G ∈ Call
and a set W ⊆ V (G) with |W | = n and |Sφ(G/W )| = 2|W |. For example, we could use the
graph G with V (G) := [n] ⊎ {0, 1}n, E(G) :=

{
{i, w̄} : i ∈ N, w̄ ∈ {0, 1}n, wi = 1

}
, and

W := [n]. Let W ′ := πG(W ), and note that |W ′| = |W | = n. From Equation (1), we obtain
that 2|W | = |Sφ(G/W )| ⩽ |Sφ̂(HG/W

′)| ⩽ 2|W ′| = 2|W |. Therefore, |Sφ̂(HG/W
′)| = 2|W ′|.

Choosing ψ(x, y) to be the formula φ̂(x, y) thus proves the first statement of Theorem 3.1.
The second statement of the theorem is an immediate consequence of its first statement and
the definition of the notion of VC dimension. ◀

4 Bound on the Number of Types

In this section, we prove the main technical tool for this paper. For that, we use the following
notation. For every k ∈ N, I = {i1, . . . , iℓ} ⊆ [k] with i1 < i2 < · · · < iℓ, and for a tuple
v̄ = (v1, . . . , vk), we let v̄I := (vi1 , vi2 , . . . , viℓ) be the tuple obtained from v̄ by keeping only
entries at positions contained in I.

▶ Lemma 4.1. There are computable functions T : FOWA1(P)[σ, S,W] × N → N and
r : FOWA1(P)[σ, S,W] → N such that, for every FOWA1(P)[σ, S,W] formula φ(x̄, ȳ), every
m ∈ N, every (σ,W)-graph G, and all V,W ⊆ V (G) that are r(φ)-separated by a set of size
at most m, we have |SφG(V/W )| ⩽ T (φ,m).
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Proof. Let φ(x̄, ȳ) ∈ FOWA1(P)[σ, S,W], k := |x̄|, and ℓ := |ȳ|. W.l.o.g., we assume that
P, σ, S, and W only contain elements that occur in φ. Using Theorem 2.7, from φ, we
can compute an r′ ∈ N, an extension σ′ of σ with relation symbols of arity ⩽ 1, and an
FOW1(P)[σ′,S,W] formula φ′(x̄, ȳ) that is a Boolean combination of r′-local formulas and
statements of the form R() for a 0-ary relation symbol R ∈ σ′ such that the following
holds. For every (σ,W)-graph G, there is a (σ′,W)-expansion G′ of G such that for all
v̄ ∈

(
V (G)

)
k and w̄ ∈

(
V (G)

)
ℓ, it holds that G |= φ[v̄, w̄] if and only if G′ |= φ′[v̄, w̄]. We

set r(φ) := 2r′ + 1. Note that, for all V,W ⊆ V (G), we have that SGφ (V/W ) = SG
′

φ′ (V/W ).
Let m ∈ N. We extend σ′ and W to be able to remove a set of vertices of size at most

m from G′ and encode the missing information in the remaining graph. For that, for every
i, j ∈ [m], we introduce a new 0-ary relation symbol Ri for every unary relation symbol
R ∈ σ′, we introduce the new unary relation symbol Ei, and we introduce the new 0-ary
relation symbol Ei,j . Analogously, for every i ∈ [m], we introduce two new unary weight
symbols wi,1, wi,2 for every binary weight symbol w ∈ W. In addition, for all i, j ∈ [m], for
all weight symbols w ∈ W, for all s ∈ type(w) that occur in φ′ (and type(w) may be infinite)
and all s ∈ type(w) if type(w) is finite, we add the new 0-ary relation symbol Rw,i,s if w is
a unary weight symbol, and we add the new 0-ary relation symbol Rw,i,j,s if w is a binary
weight symbol. Let σm and Wm denote the resulting signature and the resulting set of
weight symbols, respectively. Note that both σm and Wm are finite.

▷ Claim 4.2. Let H be a (σ′,W)-graph, let z1, . . . , zt ∈ V (H) be pairwise distinct vertices
with t ⩽ m, let Z := {z1, . . . , zt}, and let ψ(x′

1, . . . , x
′
p) ∈ FOW1(P)[σ′,S,W] for some p ∈ N.

There is a (σm,Wm)-expansion Hz̄,ψ of H \Z such that for every mapping f : [p] → [0, t],
there is a FOW1(P)[σm,S,Wm] formula ψH,z̄,f (x̄′′), where x̄′′ is obtained from x̄′ by dropping
all variables x′

i with f(i) ̸= 0, with the following properties.
For all v̄ ∈ (V (H))p, we have that H |= ψ[v̄] if and only if Hz̄,ψ |= ψH,z̄,f [v̄′], where v̄′ is

obtained from v̄ by dropping all elements that are contained in Z, and f : [p] → [0, t] maps
i ∈ [p] to j ∈ [t] if vi = zj , and it maps i ∈ [p] to 0 if vi ̸∈ Z.

Further, for a fixed formula ψ and a fixed mapping f , the formulas ψH,z̄,f are structurally
identical. That is, the syntax trees of all the formulas ψH,z̄,f have the same inner nodes, and
the leaf nodes that do not represent constants from rule (7) coincide. Hence, the dependence
on H and z̄ is only reflected in the use of different constants for rule (7).

Proof. Let H be a (σ′,W)-graph, let z1, . . . , zt ∈ V (H) be pairwise distinct vertices with
t ⩽ m, let Z := {z1, . . . , zt}, and let ψ(x′

1, . . . , x
′
p) ∈ FOWA1(P)[σ, S,W] for some p ∈ N.

We use the new relation symbols Ri and Ei,j to encode whether zi ∈ R(H) and {zi, zj} ∈
E(H), and we let Ei include all vertices v such that {zi, v} ∈ E(H). The relation symbols
Rw,i,s and Rw′,i,j,s are used to encode whether wH(zi) = s and (w′)H(zi, zj) = s. Finally, the
unary weight symbols wi,1 and wi,2 are used to encode the weights wH(zi, v) and wH(v, zi) for
all v ∈ V (H) \ Z. Formally, we let Hz̄,ψ be the (σm,Wm)-expansion of H \ Z with

Ri(Hz̄,ψ) := ⊤ if and only if i ∈ [t] and zi ∈ R, for all unary R ∈ σ′ and i ∈ [m],
Ei(Hz̄,ψ) := NH

1 (zi), for all i ∈ [t],
Ei(Hz̄,ψ) := ∅, for all i ∈ [m] \ [t],
Ei,j(Hz̄,ψ) := ⊤ if and only if i, j ∈ [t] and {zi, zj} ∈ E(H), for all i, j ∈ [m],
Rw,i,s(Hz̄,ψ) := ⊤ if and only if i ∈ [t] and wH(zi) = s, for all unary w ∈ W and all
s ∈ type(w) that occur in ψ and all s ∈ type(w) if type(w) is finite,
Rw,i,j,s(Hz̄,ψ) := ⊤ if and only if i, j ∈ [t] and wH(zi, zj) = s, for all binary w ∈ W and
all s ∈ type(w) that occur in ψ and all s ∈ type(w) if type(w) is finite,



S. van Bergerem and N. Schweikardt 15:11

wHz̄,ψi,1 : V (Hz̄,ψ) → type(w), v 7→ wH(zi, v), for all binary w ∈ W and i ∈ [t],
wHz̄,ψi,2 : V (Hz̄,ψ) → type(w), v 7→ wH(v, zi), for all binary w ∈ W and i ∈ [t], and
wHz̄,ψi,j : V (Hz̄,ψ) → type(w), v 7→ 0, for all binary w ∈ W, j ∈ [2], and i ∈ [m] \ [t].

Next, for every mapping f : [p] → [0, t], we recursively construct a FOW1(P)[σm,S,Wm]
formula ψH,z̄,f (x̄′′), where x̄′′ is obtained from x̄′ by dropping all variables x′

i with f(i) ̸= 0.
Intuitively, if f(i) ̸= 0, then this indicates that the variable x′

i should be replaced by the
vertex zf(i). For all i ∈ [p] and j ∈ [0, t], we let fi→j : [p] → [0, t] be the mapping with
fi→j(i′) := f(i′) for all i′ ̸= i and fi→j(i) := j. Moreover, for i, i′ ∈ [p] and j, j′ ∈ [0, t], we
analogously define fi→j,i′→j′ : [p] → [0, t].
(1) If ψ is of the form x′

i=x′
j , then we let ψH,z̄,f := ψ if f(i) = f(j) = 0, ψH,z̄,f := ⊤ if

f(i) = f(j) ̸= 0, and ψH,z̄,f := ⊥ else. If ψ is of the form R(), or ψ is of the form R(x′
i)

and f(i) = 0, or ψ is of the form E(x′
i, x

′
j) and f(i) = f(j) = 0, then we let ψH,z̄,f := ψ.

If ψ is of the form R(x′
i) and f(i) ̸= 0, then we let ψH,z̄,f := Rf(i)(). If ψ is of the form

E(x′
i, x

′
j) and f(i) ̸= 0 and f(j) = 0, then we let ψH,z̄,f := Ef(i)(x′

j). If ψ is of the form
E(x′

i, x
′
j) and f(i) = 0 and f(j) ̸= 0, then we let ψH,z̄,f := Ef(j)(x′

i). If ψ is of the form
E(x′

i, x
′
j) and f(i), f(j) ̸= 0, then we let ψH,z̄,f := Ef(i),f(j)().

(2) If ψ is of the form
(
s=w(x′

i)
)

and f(i) = 0, or ψ is of the form
(
s=w(x′

i, x
′
j)

)
and

f(i) = f(j) = 0, then we let ψH,z̄,f := ψ. If ψ is of the form
(
s=w(x′

i)
)

and f(i) ̸= 0,
then we let ψH,z̄,f := Rw,f(i),s. If ψ is of the form

(
s=w(x′

i, x
′
j)

)
and f(i), f(j) ̸= 0, then

we let ψH,z̄,f := Rw,f(i),f(j),s. If ψ is of the form
(
s=w(x′

i, x
′
j)

)
and f(i) ̸= 0 and f(j) = 0,

then we let ψH,z̄,f :=
(
s=wf(i),1(x′

j)
)
. If ψ is of the form

(
s=w(x′

i, x
′
j)

)
and f(i) = 0 and

f(j) ̸= 0, then we let ψH,z̄,f :=
(
s=wf(j),2(x′

i)
)
.

(3) If ψ is of the form (ψ′ ∨ψ′′), then we recursively construct ψ′
H,z̄,f and ψ′′

H,z̄,f , and we let
ψH,z̄,f := (ψ′

H,z̄,f ∨ψ′′
H,z̄,f ). If ψ is of the form ¬ψ′, then we recursively construct ψ′

H,z̄,f ,
and we let ψH,z̄,f := ¬ψ′

H,z̄,f .
(4) If ψ is of the form ∃x′

i ψ
′, then we recursively construct ψ′

H,z̄,fi→j
for all j ∈ [0, t]. We

let ψH,z̄,f := (∃x′
i ψ

′
H,z̄,fi→0

∨
∨t
j=1 ψ

′
H,z̄,fi→j

).
(5) If ψ is of the form

(
s=

∑
w(x′

i).ψ′) for a unary weight symbol w ∈ W of finite type
S := type(w), then we recursively construct ψ′

H,z̄,fi→j
for all j ∈ [0, t]. We let

ψH,z̄,f :=
∨

s0,s1,...,st∈S
s0+s1+···+st=s

(
s0=

∑
w(x′

i).
(
ψ′
H,z̄,fi→0

∧
t∧

j=1
(Rw,j,sj ∧ ψ′

H,z̄,fi→j
)
))
.

If ψ is of the form
(
s=

∑
w(x′

i, x
′
i′).ψ′) for a binary weight symbol w ∈ W of finite type

S := type(w), then we recursively construct ψ′
H,z̄,fi→j,i′→j′ for all j, j′ ∈ [0, t]. We let

ψH,z̄,f :=
∨

s0,0,s0,1,...,s0,t,s10 ,...,st,t∈S
s00 +s0,1+···+st,t=s

(
s0=

∑
w(x′

i, x
′
i′).

(
ψ′
H,z̄,fi→0,i′→0

∧
t∧

j=1

t∧
j′=1

(Rw,j,j′,sj,j′ ∧ ψ′
H,z̄,fi→j,i′→j′ )

))
.

(6) Finally, if ψ is of the form P(t1, . . . , tj), then t1, . . . , tj are terms according to rules (7)–
(9), and they have at most one free variable, say x′

i. If f(i) = 0, then we let ψH,z̄,f := ψ.
Otherwise, we let t′1, . . . , t′j be the terms obtained from t1, . . . , tj by replacing every
occurrence of a term of the form w(x′

i) by the constant wH(zf(i)) and every occurrence of
a term of the form w(x′

i, x
′
i) by the constant wH(zf(i), zf(i)). We set ψH,z̄,f := P(t′1, . . . , t′j).
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It follows from the construction that, for all v̄ ∈ (V (H))p, we have H |= ψ[v̄] if and only
if Hz̄,ψ |= ψH,z̄,f [v̄′], where v̄′ is obtained from v̄ by dropping all elements that are contained
in Z, and f : [p] → [0, t] maps i ∈ [p] to j ∈ [t] if vi = zj , and it maps i ∈ [p] to 0 if vi ̸∈ Z.

Moreover, for a fixed formula ψ and a fixed mapping f , the formulas ψH,z̄,f are structurally
identical. That is, the syntax trees of all the formulas ψH,z̄,f have the same inner nodes,
and even the leaf nodes that do not represent constants from some abelian group or ring
(rule (7)) coincide. Hence, the dependence on H and z̄ is only reflected in the use of different
constants for rule (7). ◁

Let V,W ⊆ V (G), let z1, . . . , zt ∈ V (G) be pairwise distinct vertices with t ⩽ m such
that V and W are r(φ)-separated in G (and thus also in G′) by the set Z := {z1, . . . , zt},
and let z̄ := (z1, . . . , zt). W.l.o.g., we may assume that every vertex from Z is contained in
some path from V to W in G of length at most r(φ) = 2r′ + 1, so Z ⊆ V

(
NG′

r′ (V ∪W )
)
.

By applying Claim 4.2 to H := NG′

r′ (V ∪W ), z1, . . . , zt, and φ′, we obtain a (σm,Wm)-
expansion Hz̄,φ′ of H \ Z and, for every mapping f : [k + ℓ] → [0, t], a FOW1(P)[σm,S,Wm]
formula φ′

H,z̄,f . Since V is (2r′ + 1)-separated from W by Z, there is no path from V \ Z to
W \ Z in H \ Z = NG′

r′ (V ∪W ) \ Z. Hence, there are (σm,Wm)-graphs HV and HW such
that V \ Z ⊆ V (HV ), W \ Z ⊆ V (HW ), and Hz̄,φ′ = HV ⊎HW .

Let v̄ ∈ V k and w̄ ∈ W ℓ. We have G |= φ[v̄, w̄] if and only if G′ |= φ′[v̄, w̄]. Moreover,
since φ′ is a Boolean combination of r′-local formulas and statements of the form R() for a
0-ary relation symbol R ∈ σ′, we have that G′ |= φ′[v̄, w̄] if and only if NG′

r′ (v̄w̄) |= φ′[v̄, w̄] if
and only if NG′

r′ (V ∪W ) |= φ′[v̄, w̄]. Furthermore, by Claim 4.2, it holds that NG′

r′ (V ∪W ) |=
φ′[v̄, w̄] if and only if Hz̄,φ′ |= φ′

H,z̄,f [v̄′, w̄′], where v̄′ and w̄′ are obtained from v̄ and w̄,
respectively, by dropping all entries that are contained in Z, and f : [k + ℓ] → [0, t] is defined
by f(i) := j if i ⩽ k and vi = zj or i > k and wi−k = zj , and f(i) := 0 if i ⩽ k and vi ̸∈ Z or
i > k and wi−k ̸∈ Z. Let x̄′ and ȳ′ be the tuples of variables obtained analogously from x̄

and ȳ, respectively.
Using Theorem 2.6, we obtain a Feferman–Vaught decomposition ∆φ′

H,z̄,f
of φ′

H,z̄,f (x̄′, ȳ′)
w.r.t. (x̄′; ȳ′), that is, a set of pairs

(
α(x̄′), β(ȳ′)

)
of FOW1(P)[σm,S,Wm] formulas such

that Hz̄,φ′ |= φ′
H,z̄,f [v̄′, w̄′] if and only if there is a pair

(
α(x̄′), β(ȳ′)

)
in ∆φ′

H,z̄,f
such that

HV |= α[v̄′] and HW |= β[w̄′]. Since the structure of φ′
H,z̄,f is independent of H and z̄, and

only the used constants might differ, it is easy to see from the proof of Theorem 2.6 (see [5]
for details) that the size of ∆φ′

H,z̄,f
only depends on φ and f , and that it is independent of

H and z̄. Furthermore, the number of mappings f : [k + ℓ] → [0, t] only depends on φ and m
(recall that t ⩽ m), so we can let T ′(φ,m) : FOWA1(P)[σ, S,W] × N → N be an upper bound
on the number of pairs in the decomposition ∆φ′

H,z̄,f
for all H, z̄, and f .

All in all, we have G |= φ[v̄, w̄] if and only if there is a pair
(
α(x̄′), β(ȳ′)

)
in ∆φ′

H,z̄,f
such

that HV |= α[v̄′] and HW |= β[w̄′]. Hence, for every v̄ ∈ V k, tpφG(v̄/W ) only depends on
which vertices of v̄ are contained in Z and
which formulas α of pairs (α, β) in any of the ∆φ′

H,z̄,f
are satisfied by v̄′, where v̄′ is

obtained from v̄ by dropping all entries that are contained in Z, and f ranges over all
mappings f : [k+ ℓ] → [0, t] with, for all i ∈ [k], f(i) = j if vi = zj , and f(i) = 0 if vi ̸∈ Z.

Since the number of possibilities for both can be bounded in terms of φ and m, there is a
function T : FOWA1(P)[σ, S,W] × N → N such that |SφG(V/W )| =

∣∣{tpφG(v̄/W ) : v̄ ∈ V k}
∣∣ ⩽

T (φ,m). This is the statement of Lemma 4.1. ◀
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5 VC Density and VC Dimension

In this section, we prove Results (2)–(4) stated in Section 1. Our main result of this section
is the following.

▶ Theorem 5.1. Let C be a nowhere dense class of (σ,W)-graphs, and let φ(x̄, ȳ) be a
FOWA1(P)[σ, S,W] formula. For every ε > 0, there exists a constant c ∈ N such that for
every G ∈ C and every non-empty W ⊆ V (G), we have |Sφ(G/W )| ⩽ c · |W ||x̄|+ε.

As discussed in the introduction, this immediately implies the following bound on the
VC density of FOWA1 formulas.

▶ Corollary 5.2. Let C be a nowhere dense class of (σ,W)-graphs, and let φ(x̄, ȳ) be a
FOWA1(P)[σ, S,W] formula. The VC density of φ(x̄, ȳ) on C is at most |x̄|.

Moreover, this implies that the VC dimension of FOWA1 formulas on nowhere dense
classes is bounded.

▶ Corollary 5.3. Let C be a nowhere dense class of (σ,W)-graphs, and let φ(x̄, ȳ) be a
FOWA1(P)[σ, S,W] formula. It holds that φ(x̄, ȳ) has bounded VC dimension on C.

Proof. As described in the introduction, Corollary 5.2 already implies Corollary 5.3, since
the VC dimension is finite if and only if the VC density is finite (see, e. g., [2]). However, since
we find it short and instructive, we also give a proof of Corollary 5.3 based on Theorem 5.1.

Let k := |x̄|, ℓ := |ȳ|, let ε > 0, and let c ∈ N be the constant from Theorem 5.1 applied
to C, φ(x̄, ȳ), and ε. Moreover, let m0 ∈ N be such that c · (ℓm)k+ε < 2m for all m ⩾ m0.

Let G ∈ C and Y ⊆
(
V (G)

)ℓ such that |Y | =: m ⩾ m0. Let W ⊆ V (G) be the
set of vertices appearing in any tuple in Y . We have |W | ⩽ ℓ · |Y | = ℓm. Moreover,
we have {Y ∩ F : F ∈ Sφ(G/V (G))} ⊆ Sφ(G/W ). Hence, by Theorem 5.1, we have
|{Y ∩ F : F ∈ Sφ(G/V (G))}| ⩽ |Sφ(G/W )| ⩽ c · (ℓm)k+ε < 2m. This shows that {Y ∩ F :
F ∈ Sφ(G/V (G))} ≠ 2Y , so Y is not shattered by Sφ(G/V (G)). Thus, the VC dimension of
Sφ(G/V (G)) is less than m0. Since m0 does not depend on G, this proves that φ(x̄, ȳ) has
bounded VC dimension on C. ◀

For the proof of Theorem 5.1, we rely on the following lemma on the neighbourhood
complexity in nowhere dense graph classes. Let G be a (σ,W)-graph, and let X ⊆ V (G).
For vertices v ∈ X and w ∈ V (G), a path P from v to w in G is called X-avoiding if all
vertices on the path except for v are not contained in X. For an r ∈ N and w ∈ V (G),
the r-projection of w on X, denoted by MG

r (w,X), is the set of all vertices v ∈ X that are
connected to w by an X-avoiding path of length at most r.

▶ Lemma 5.4 ([6, Lemmas 21 and 22]). Let C be a nowhere dense class of graphs. There is a
function fcl : N × Q>0 → N and an algorithm1 that, given a graph G ∈ C, X ⊆ V (G), r ∈ N,
and δ ∈ Q>0, computes a set clr,δ(X), called the r-closure of X w.r.t. δ, with the following
properties.
1. X ⊆ clr,δ(X) ⊆ V (G),
2. |clr,δ(X)| ⩽ fcl(r, δ) · |X|1+δ, and
3.

∣∣MG
r

(
u, clr,δ(X)

)∣∣ ⩽ fcl(r, δ) · |X|δ for all u ∈ V (G) \ clr,δ(X).
Moreover, for all X ⊆ V (G), it holds that
4.

∣∣{MG
r (u,X) : u ∈ V (G)

}∣∣ ⩽ fcl(r, δ) · |X|1+δ.

1 In [6], the authors even show that this can be computed by a polynomial-time algorithm. However,
running-time bounds are not relevant for our purposes.
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We can now prove Theorem 5.1.

Proof of Theorem 5.1. The proof is similar to the proof of the analogous result for first-order
logic in [14], using Lemma 4.1 instead of the corresponding result for FO.

Let C be a nowhere dense class of (σ,W)-graphs, let φ(x̄, ȳ) be a FOWA1 formula, and
let ε > 0. Let k := |x̄|, ℓ := |ȳ|, let r : FOWA1 → N and T : FOWA1 ×N → N be the functions
from Lemma 4.1, let t : N → N be the function from Definition 2.1, and let r := r(φ) and
t := t(36r). We have that no graph G ∈ C contains Kt as a depth-36r minor.

By Theorem 2.2, there is a number s ∈ N and a polynomial N : N → N such that, for
every graph G ∈ C, every m ∈ N, and every set X ⊆ (V (G))k with |X| ⩾ N(m), there are
sets S ⊆ V (G) and Y ⊆ X with |S| ⩽ s and |Y | ⩾ m such that all distinct v̄, v̄′ ∈ Y are
2r-separated by S in G. Let d be the degree of N .

Let G ∈ C, and let W ⊆ V (G) be a non-empty set of vertices. We set δ := ε
4k+4d , and we

let W ′ := clr,δ(W ) be the r-closure of W w.r.t. δ, obtained via Lemma 5.4. We shall prove
that

|Sφ(G/W ′)| ∈ Oε,φ

(
|W ′|k+ε′)

for ε′ := ε/2 > 0, (⋆)

where Oε,φ(·) omits factors depending only on ε and φ. Since W ⊆ W ′, we have |Sφ(G/W )| ⩽
|Sφ(G/W ′)|. Moreover, by Lemma 5.4, we have |W ′| = |clr,δ(W )| ⩽ fcl(r, δ) · |W |1+δ, and
we have (1 + δ)(k + ε′) = (1 + δ)(k + ε/2) ⩽ k + ε by the choice of δ, so

|Sφ(G/W )| ∈ Oε,φ

((
fcl(r, δ) · |W |1+δ)k+ε′)

⊆ Oε,φ

(
|W |k+ε)

,

which is the statement of Theorem 5.1.
It remains to prove (⋆). Recall that Sφ(G/W ′) =

{
tpφG(v̄/W ′) : v̄ ∈

(
V (G)

)k}
. We

partition the tuples v̄ = (v1, . . . , vk) ∈
(
V (G)

)k based on their projection MG
r (v̄,W ′) :=⋃k

i=1 Mr(vi,W ′) into sets V1, . . . , Vp. That is, two tuples v̄, v̄′ ∈
(
V (G)

)k are contained in
the same set Vj for some j ∈ [p] if and only if MG

r (v̄,W ′) = MG
r (v̄′,W ′). By Item 4 of

Lemma 5.4, there are at most fcl(r, δ) · |W ′|1+δ different projections of vertices in V (G) on
W ′, so we have p ∈ Oε,φ

(
|W ′|(1+δ)k)

. Hence, to prove (⋆), it suffices to show that∣∣{tpφG(v̄/W ′) : v̄ ∈ Vj
}∣∣ ∈ Oε,φ

(
|W ′|ε

′′)
for ε′′ := ε′ − kδ > 0, (⋆⋆)

for all j ∈ [p], since then |Sφ(G/W ′)| ∈ Oε,φ

(
|W ′|(1+δ)k |W ′|ε

′−kδ) = Oε,φ

(
|W ′|k+ε′)

.
Let j ∈ [p], and let X := MG

r (v̄,W ′) be the r-projection of v̄ on W ′ for any (and, due to
the definition of Vj , for all) v̄ ∈ Vj . By Item 3 of Lemma 5.4, we have |X| ⩽ k ·fcl(r, δ)·|W |δ ∈
Oε,φ

(
|W |δ

)
.

Let V ′
j be a maximal subset of Vj such that all pairwise distinct tuples v̄, v̄′ from V ′

j have
different types tpφG(v̄/W ′) ̸= tpφG(v̄′/W ′). Note that

∣∣{tpφG(v̄/W ′) : v̄ ∈ Vj
}∣∣ =

∣∣V ′
j

∣∣. Now
let m ∈ N be the maximum number with

∣∣V ′
j

∣∣ ⩾ N(m). Then
∣∣V ′
j

∣∣ < N(m+ 1) ∈ Oε,φ(md).
By Theorem 2.2, as described above, there are sets S ⊆ V (G) and Y ⊆ V ′

j with |S| ⩽ s

and |Y | ⩾ m such that all distinct v̄, v̄′ ∈ Y are 2r-separated by S in G.
We partition Y into two sets Y1 ⊎ Y2, where Y1 contains all tuples that are r-separated

by S from W ′, and Y2 contains the remaining tuples. By Lemma 4.1, since all tuples in
Y1 are r-separated by S from W ′, and all tuples in Y1 have distinct types, we know that
|Y1| ⩽ T (φ, s) ∈ Oε,φ(1). Moreover, for every tuple v̄ ∈ Y2, there is a vertex w ∈ W ′ such
that v̄ and w are not r-separated by S in G. Note that we can choose w to be contained
in X. Moreover, since all tuples in Y2 are mutually 2r-separated by S in G, we know that
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for two distinct tuples v̄, v̄′ ∈ Y2, the vertices in C connected to them by paths of length at
most r avoiding S must also be distinct. This shows that |Y2| ⩽ |X|. Combined, we obtain
that |Y | ∈ Oε,δ(|X|). Furthermore, since |Y | ⩾ m, we have∣∣V ′

j

∣∣ ∈ Oε,φ(md) ⊆ Oε,φ(|Y |d) ⊆ Oε,φ(|X|d) ⊆ Oε,φ(|W ′|dδ) ⊆ Oε,φ(|W ′|ε
′′

),

where the last inclusion holds because ε′′ = ε/2 − kδ ⩽ ε/4 ⩽ dδ by the choice of δ. This
proves (⋆⋆), which, as discussed above, implies the statement of Theorem 5.1. ◀

6 Stability

In this section, we provide the following bound on the ladder index of FOC1 formulas and
FOWA1 formulas on nowhere dense classes of weighted graphs. Based on this, we prove
Result (5) stated in Section 1.

▶ Theorem 6.1. There are computable functions f : FOWA1(P)[σ, S,W] × N → N and
g : FOWA1(P)[σ, S,W] → N such that, for every FOWA1(P)[σ, S,W] formula φ, for every
t ∈ N, and for every (σ,W)-graph G excluding Kt as a depth-g(φ) minor, the ladder index
of φ in G is at most f(φ, t).

Proof. The proof is similar to the proof of the analogous statement in [14] for first-order
formulas. Let r : FOWA1(P)[σ, S,W] → N and T : FOWA1(P)[σ, S,W] × N → N be the
functions from Lemma 4.1. We set g : FOWA1(P)[σ, S,W] → N, φ 7→ 18r(φ).

Let φ(x̄, ȳ) be a FOWA1(P)[σ, S,W] formula, let t ∈ N, and let C be the class of (σ,W)-
graphs excluding Kt as a depth-g(φ) minor. Let d := |x̄| + |ȳ|, and let s ∈ N be the number
and N : N → N be the polynomial computed from r(φ), t, and d using Theorem 2.2. Moreover,
let L := f(φ, t) := N

(
2T (φ, s) + 1

)
. (Note that N and s can be computed from φ and t.)

We show that every φ-ladder in every graph G ∈ C has length less than L.
Towards a contradiction, suppose there are a graph G ∈ C and tuples v̄1, . . . , v̄L ∈(

V (G)
)|x| and w̄1, . . . , w̄L ∈

(
V (G)

)|y| that form a φ-ladder in G, that is, G |= φ[v̄i, w̄j ] if
and only if i ⩽ j. In particular, the tuples v̄1, . . . , v̄L are pairwise distinct, and the same
holds for the tuples w̄1, . . . , w̄L. Let X := {v̄iw̄i : i ∈ [L]} ⊆

(
V (G)

)d. By Theorem 2.2,
for m := 2T (φ, s) + 1, since |X| ⩾ N(m), there are sets S ⊆ V (G) and Y ⊆ X with
|S| ⩽ s and |Y | ⩾ m such that all distinct ū, ū′ ∈ Y are r(φ)-separated by S in G. Let
I := {i ∈ [ℓ] : v̄iw̄i ∈ Y }. Let I1, I2 be an alternating partition of I, that is, for all successive
i, j ∈ I1, there is exactly one k ∈ I2 with i < k < j. Note that |I1| ⩾ T (φ, s) + 1. Let
V ⊆ V (G) be the set of vertices appearing in a tuple v̄iw̄i with i ∈ I1, and let W ⊆ V (G)
be the set of vertices appearing in a tuple v̄iw̄i with i ∈ I2. Since all distinct ū, ū′ ∈ Y are
r(φ)-separated by S in G, it also holds that the sets V and W are r(φ)-separated by S in G.

Now we can apply Lemma 4.1 to V and W , and we obtain |SφG(V/W )| ⩽ T (φ, s) < |I1|.
Hence, there are two indices i, j ∈ I1 with i < j such that tpφG(v̄i/W ) = tpφG(v̄j/W ).
Let k ∈ I2 with i < k < j. Then w̄k ∈ tpφG(v̄i/W ) if and only if w̄k ∈ tpφG(v̄j/W ),
so G |= φ[v̄i, w̄k] if and only if G |= φ[v̄j , w̄k]. However, this contradicts v̄1, . . . , v̄ℓ and
w̄1, . . . , w̄ℓ being a φ-ladder, because we need to have G |= φ[v̄i, w̄k] (since i < k) and
G ̸|= φ[v̄j , w̄k] (since j > k). This shows that there is no φ-ladder in G of size at least
L = f(φ, t), so the ladder index of φ in G is at most f(φ, t). ◀

We call a class C of weighted graphs FOWA1-stable (FOC1-stable) if the ladder index of
every FOWA1 (FOC1) formula φ in every weighted graph from C is bounded by a constant
depending only on φ and C.
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▶ Corollary 6.2. Every nowhere dense class of weighted graphs is FOC1-stable and FOWA1-
stable.

Proof. Let C be a nowhere dense class of (σ,W)-graphs, let φ(x̄, ȳ) be a formula in
FOWA1(P)[σ, S,W], and let k := |x̄| and ℓ := |ȳ|. By Definition 2.1, there is a func-
tion t : N → N such that for all r ∈ N and G ∈ C, it holds that G does not contain Kt(r) as a
depth-r minor.

Let f : FOWA1(P)[σ, S,W] × N → N and g : FOWA1(P)[σ, S,W] → N be the functions
from Theorem 6.1. For all G ∈ C, we have that G does not contain Kt(g(φ)) as a depth-g(φ)
minor. Thus, by Theorem 6.1, for every G ∈ C, the ladder index of φ in G is at most
L := f

(
φ, t(g(φ))

)
, which only depends on φ and C. ◀

7 Final Remarks

In this paper, we have presented upper bounds on the VC dimension and the ladder index as
well as optimal bounds on the VC density of formulas in the first-order logic with counting
FOC1 and the first-order logic with weight aggregation FOWA1 on nowhere dense classes of
vertex- and edge-weighted graphs. This lifts results of Adler and Adler [1] and results of
Pilipczuk, Siebertz, and Toruńczyk [14] from first-order logic to substantially more expressive
logics.

In [4], van Bergerem, Grohe, and Ritzert combined the result by Adler and Adler with
the fixed-parameter tractable (fpt) model-checking result for FO on nowhere dense graph
classes [7] to prove learnability results for FO on nowhere dense graph classes in the Probably
Approximately Correct (PAC) learning framework. We remark that, by combining our results
on the VC dimension for FOC1 formulas with the fpt model-checking result for FOC1 by
Grohe and Schweikardt [8], we also obtain fpt PAC learnability for FOC1-definable concepts
over nowhere dense graph classes. We are currently working on lifting these model-checking
and learnability results from FOC1 to FOWA1.
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