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Abstract
Recent work by Atserias and Dawar [6] and Tucker-Foltz [26] has established undefinability results
in fixed-point logic with counting (FPC) corresponding to many classical complexity results from the
hardness of approximation. In this line of work, NP-hardness results are turned into unconditional
FPC undefinability results. We extend this work by showing the FPC undefinability of any constant
factor approximation of weighted 2-to-2 games, based on the NP-hardness results of Khot, Minzer
and Safra. Our result shows that the completely satisfiable 2-to-2 games are not FPC-separable from
those that are not ϵ-satisfiable, for arbitrarily small ϵ. The perfect completeness of our inseparability
is an improvement on the complexity result, as the NP-hardness of such a separation is still only
conjectured. This perfect completeness enables us to show the FPC undefinability of other problems
whose NP-hardness is conjectured. In particular, we are able to show that no FPC formula can
separate the 3-colourable graphs from those that are not t-colourable, for any constant t.
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1 Introduction

The study of the hardness of approximation of NP-optimization problems began in earnest
with the PCP theorem in the 1990s. This theorem showed that for many problems (such
as MAX 3SAT), where there are polynomial-time algorithms that can approximate the
optimum solution within a constant factor, there is nonetheless a constant c such that no
efficient algorithm can approximate the optimum value within a factor c unless P = NP.
Indeed, Håstad [17] established tight bounds for MAX 3SAT: there is a trivial algorithm
that achieves an 8

7 approximation, but none that achieves an 8
7 − ϵ approximation for any ϵ,

unless P = NP. Such tight bounds are known for many NP-optimization problems, while
for others there is a gap in the approximation ratio between the best known algorithm
and the strongest known lower bound. An important problem in the latter category is the
minimum vertex cover problem, where the best known polynomial-time algorithms yield an
approximation ratio of 2, while the strongest proved lower bound is

√
2.

Perhaps the most important open question in the field of the hardness of approximation
is the unique games conjecture of Khot. This states that for any ϵ, δ > 0, there is a set of
labels Σ such that it is NP-hard to separate the (1 − ϵ)-satisfiable instances of Σ-unique
games (the precise definitions follow below) from those that are not even δ-satisfiable. The
strongest result obtained so far in this direction shows that there is a Σ for which it is
NP-hard to separate the ( 1

2 − ϵ)-satisfiable instances from the δ-unsatisfiable ones. This
result is a consequence of the 2-to-2 theorem due to Khot, Minzer and Safra [20, 11, 21].
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16:2 Undefinability of Approximation of 2-To-2 Games

The hardness of approximation has also been studied in recent years in the context of
logical definability. In particular, Atserias and Dawar [6] showed that many of the NP-
hardness results can be recast as unconditional undefinability results in fixed-point logic with
counting (FPC). For example, there is an FPC formula which yields an 8

7 approximation of
the value of a MAX 3SAT instance and there is provably no formula that yields an 8

7 − ϵ

approximation for any ϵ > 0. Recall that FPC is a logic whose expressive power is contained
within the complexity class P and which has been characterized as a natural symmetric
fragment of that class [1]. Tucker-Foltz [26] established the first definability gap in FPC of
unique games, by showing that no formula can distinguish the 1

2 -satisfiable instances from
those that are not 1

3 + δ-satisfiable and also showed that no constant factor approximation is
FPC definable.

In the present paper, we consider the FPC definability of 2-to-2 games. The hardness of
approximating the optimum value of such games was established through a series of results
by Khot, Minzer and Safra [20, 25, 11]. At the core of their proof is a reduction from the
problem MAX 3XOR of maximizing the number of satisfied clauses in a 3XOR instance.
We show that the reductions used can be formulated, with some modification, as first-order
definable reductions. As a consequence, we obtain the result that the completely satisfiable
instances of 2-to-2 games cannot be separated by an FPC formula from those that are no
more than δ-satisfiable. This (1, δ) separation is stronger (in terms of approximation ratios)
than the known (1 − ϵ, δ) NP-hardness result due to the fact that the FPC undefinability
of approximating MAX 3XOR was proved with perfect completeness in [6]. A corollary of
our result is the FPC undefinability of a ( 1

2 , δ) separation for (a weighted version of) unique
games. This improves, again in terms of the approximation ratios, the gap obtained by
Tucker-Foltz, though it should be noted that the latter gap is for unweighted games.

A more striking consequence of our result is that no FPC sentence can separate the class
of 3-colourable graphs from those that are not even t-colourable for any constant t ≥ 3.
The NP-hardness of such a separation has only been proved for t at most 5, though it is
conjectured for larger values. Indeed, this is a central open problem in the rapidly growing
study of promise constraint satisfaction problems (PCSP, see [7]).

The result on graph colouring should be compared with a recent result of Atserias and
Dalmau [5] which shows that the promise graph colouring problem cannot be solved by a local
consistency algorithm. In particular, this implies that for any constant t the 3-colourable
graphs cannot be separated from those that are not t-colourable by a class (whose complement
is) definable in Datalog. Since Datalog programs can be translated into sentences of FPC, our
Theorem 5.3 can be seen as strengthening their result. It is worth examining this relationship
more closely. It is known, from results of [4] and [8], that every class of bounded counting
width (and therefore, in particular, any FPC definable class) that is the complement of a
fixed-template constraint satisfaction problem (CSP) is already definable in Datalog. Hence,
we can conclude from the result of Atserias and Dalmau that no FPC definable CSP separates
the 3-colourable graphs from the non-t-colourable ones. However, since it is conceivable that
a separating class for these two CSPs is FPC definable but not itself a CSP, our result is still
a strengthening. But we can say still more. It can be deduced from the proof in [5] that the
3-colourable graphs and the non-t-colourable ones are not separable by any class definable in
an existential positive infinitary logic (∃+,ω). Moreover, it is a consequence of a very recent
proof due to Rossman (published in the present volume [24]) that every class of bounded
counting width that is preserved under homomorphisms is definable in ∃+,ω. Thus, we can
conclude from these results that no homomorphism-closed class of bounded counting width
separates the 3-colourable graphs from the non-t-colourbale ones. Since Theorem 5.3 easily
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applies to all classes of bounded counting width and not just the FPC-definable ones; and it
is conceivable that a separating class is not necessarily closed under homomorphisms, our
result subsumes even this strengthened version of that of Atserias and Dalmau.

In Section 2 we introduce the problems, notation and provide background definitions. An
outline of the steps involved in the reduction of Khot, Minzer and Safra is given in Section 3.
The proof that the reductions involved are definable as first-order interpretations is given in
Section 4 and certain consequences derived in Section 5.

2 Preliminaries

2.1 Hardness of Approximation in Optimization

We are interested in NP-hard optimization problems. A standard example is the problem
MAX 3SAT, where the aim is to find, given a formula in 3CNF, an assignment of values to
its variables that maximizes the number of clauses satisfied. Formally, consider a function
problem M , which associates with every possible input instance I a value M(I). In our
example, MAX 3SAT maps a formula ϕ to the maximum number m of clauses of ϕ that can
be simultaneously satisfied. While, in practice, we might be interested in finding an assignment
that achieves this maximum, for the purpose of proving hardness, it suffices to show that it
is hard to compute the number m. When finding M(I) is hard, we may wish to approximate
it, and we say that an algorithm computes a C-approximation (for a real number C > 1) of
M if it produces a number M ′(I) with the guarantee that M ′(I) ≤ M(I) ≤ C · M ′(I).

For the sake of uniformity, we consider function problems that take values in [0, 1]. Thus,
MAX 3SAT assigns to a 3CNF formula ϕ the maximum fraction of the clauses of ϕ that
can be simultaneously satisfied. For MAX 3SAT, it is known that, unless P = NP, there is
no polynomial-time algorithm that gives a C-approximation for any C < 8/7. Such hardness
of approximation results are usually proved by means of a hardness of separation, which
allows us to frame this in terms of the hardness of decision problems.

Formally, let A and B be two sets (i.e. decision problems) with A ∩ B = ∅. We say that
A and B are NP-hard to separate, if every set C with A ⊆ C ⊆ B is NP-hard, where B

denotes the complement of B. For a function problem M , and a constant c ∈ [0, 1], denote
by c-M the set {I | M(I) ≥ c}. Then, for constants c and s with 0 ≤ s < c ≤ 1, we say that
the gap problem GapM(c, s) is NP-hard if it is NP-hard to separate the sets c-M and s-M .
This implies, in particular, that unless P = NP, there is no polynomial-time algorithm giving
a c

s -approximation of M . The value c in GapM(c, s) is called the completeness parameter
and s the soundness parameter.

The first hardness of approximation results come from the PCP theorem [2, 15, 3]: one
of its direct consequences is the NP-hardness of Gap3SAT(1, η) for some constant η strictly
less than 1. Håstad [17] obtained an optimum inapproximability result for MAX 3SAT.
Namely, he showed that Gap3SAT(1, 7

8 + ϵ) is NP-hard for arbitrarily small ϵ. This is
optimal since there is an easy 8

7 -approximation algorithm. Similarly, he also showed that
Gap3XOR(1 − ϵ, 1

2 + ϵ) is NP-hard for arbitrarily small ϵ. Again, this is optimal. Here,
3XOR is the problem where we are given a Boolean formula as a conjunction of clauses, each
of which is the XOR of three literals and we aim to maximize the number of satisfied clauses.
Note that the completeness parameter must be strictly less than 1, since the problem of
determining whether such a formula is satisfiable or not is polynomial-time decidable. Thus
1-3XOR can be separated in polynomial time from (1 − ϵ)-3XOR for any ϵ.

CSL 2025



16:4 Undefinability of Approximation of 2-To-2 Games

Reductions

A common way of deriving further hardness of approximation results is via gap-reductions:
given function problems A and B, a polynomial-time computable function f taking instances
of A to instances of B is a reduction from GapA(c, s) to GapB(c′, s′) if for all instances I

of A

Completeness: if A(I) ≥ c, then B(f(I)) ≥ c′.
Soundness: if A(I) ≤ s, then B(f(I)) ≤ s′.

It is easily seen that, if such a reduction exists and GapA(c, s) is NP-hard, then so is
GapB(c′, s′).

2.2 Label Cover Games
Versions of label cover problems are ubiquitous in the study of hardness of approximation
(see [13]). A particularly important case are the unique games of Khot [18], defined below.
To arrive at the definition, we first introduce some terminology. For positive integers d and e,
a relation R ⊆ U × V is said to be d-to-e if it relates each element of U to exactly d elements
of V and each element of V to exactly e elements of U .

▶ Definition 2.1 (d-to-d games). A d-to-d game is a tuple (G, Σ, Φ), where G = (V, E) is a
multi-graph1, Σ is a finite alphabet and Φ : E → P(Σ2) assigns to each edge e ∈ E a d-to-d
binary relation.

A colouring χ : V → Σ satisfies an edge (u, v) if (χ(u), χ(v)) ∈ Φ(u, v).
The value of the game (G, Σ, Φ) is the maximum over all colourings of the proportion of

edges in E that are satisfied.

In this paper, we are particularly interested in 2-to-2 games and 1-to-1 games, the latter
also being known as Unique Games. We write UGq for the function problem of determining
the value of an instance of unique games with an alphabet of size q. We can then state
Khot’s unique games conjecture.

▶ Conjecture 2.2 (Unique Games Conjecture (UGC) [18]). For any δ, ϵ > 0, there exists a
positive integer q so that GapUGq(1 − ϵ, δ) is NP-Hard.

The significance of the conjecture is that it has been shown that many optimal hardness
of approximation results follow from it, including Max Cut and Vertex Cover [19, 23, 18].

The best known hardness result for unique games, towards proving Conjecture 2.2 is that
GapUGq( 1

2 − ϵ, δ) is NP-Hard for arbitrarily small δ and ϵ. This is obtained as a consequence
of the hardness of 2-to-2 games established by Khot, Minzer and Safra, which we return to
in Section 3.

▶ Theorem 2.3 (Khot-Minzer-Safra). For any δ, ϵ > 0, there exists a positive integer q so
that Gap2to2q(1 − ϵ, δ) is NP-Hard.

It is conjectured that Theorem 2.3 can be strengthened to make the completeness parameter 1,
but this remains unproved.

In this paper, we are particularly concerned with weighted 2-to-2 and 1-to-1 games,
attaching a weight to each constraint.

1 That is to say, there may be multiple edges between the same pair of vertices. In the sequel we refer
simply to graphs to mean multi-graphs.
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▶ Definition 2.4 (Weighted d-to-d games). A weighted d-to-d game is a tuple (G, Σ, Φ, w),
where (G, Σ, Φ) is a d-to-d game and w : E(G) → R+ is a function assigning a positive real
weight to each constraint.

Let tot =
∑

e∈E(G) w(e) be the total weight. The value of the game (G, Σ, Φ, w) is the
maximum over all colourings χ : V → Σ of the fraction

∑
e∈Sχ

w(e)/tot, where Sχ denotes
the set of edges e = (u, v) for which (χ(u), χ(v)) ∈ Φ(e).

We write WG2:2;q to denote the class of weighted 2-to-2 games with q labels and
Weight2to2q to denote the function taking such a game to its value. Similarly, we write
UGq and WeightUGq for the functions giving the values of unique games and weighted
unique games with q labels respectively.

2.3 Undefinability of Approximation
We assume the reader is familiar with first-order logic and the basics of finite model theory.
A good introduction is to be found in [14]. Our structures are finite structures in a finite
relational vocabulary. Our main inexpressibility results are stated for fixed-point logic with
counting (FPC). We do not need a formal definition here but note that every property
definable in FPC is decidable in polynomial-time and indeed FPC can be understood as a
complexity class defined by symmetric polynomial-time computation. For full definitions,
refer to [10] and references therein.

The two properties of FPC that we do need are that (1) every class of structures definable
in FPC has bounded counting width; and (2) that the class of properties definable in FPC is
closed under first-order interpretations. We elaborate on these below.

For a function problem M , and real numbers c and s with 0 ≤ s < c ≤ 1, we say
that GapM(c, s) is undefinable in FPC if there is no FPC definable class of structures that
separates the sets c-M and s-M . Atserias and Dawar [6] initiated a study of the FPC
undefinability of approximations, showing that many of the NP-hardness results for gap
problems can be reproduced as unconditional undefinability results in FPC. In particular
Gap3SAT(1, 7

8 + ϵ) is not FPC definable. More significantly, they established the following

▶ Theorem 2.5 (Atserias-Dawar [6]). Gap3XOR(1, 1
2 + ϵ) is not FPC definable.

Note the completeness parameter of 1 in the statement, which contrasts with 1 − ϵ in the
case of Theorem 2.3. Perfect completeness cannot be established in the case of NP-hardness
because satisfiability of XOR formulas is decidable in polynomial-time. However, it is not
definable in FPC and this allows the stronger result in the context of undefinability. This is
crucial to the application we make of Theorem 2.5 in Section 5.3

Following up on this work, Tucker-Foltz [26] studied the undefinability of gaps in unique
games. In particular, he established the inapproximability of unique games in FPC by any
constant factor and the FPC-undefinability of GapUGq( 1

2 , 1
3 + δ) for a suitable value of q.

Counting Width

For relational structures A and B in the same vocabulary, and a positive integer k, A ≡k B
denotes that the two structures cannot be distinguished by any sentence of first-order logic
with counting using no more than k distinct variables. For a class C of structures, the counting
width of C is the function ν : N → N such that for any n, ν(n) is the least k such that C,
restricted to structures with at most n elements is a union of ≡k-equivalence classes. Any
class that is definable by a sentence of FPC has counting width bounded by a constant.
Almost all results showing that a class is not definable in FPC proceed by showing that it,
in fact, does not have bounded counting width.

CSL 2025



16:6 Undefinability of Approximation of 2-To-2 Games

Interpretations

A first-order interpretation of a relational vocabulary τ in a vocabulary σ is a sequence of
σ-formulas in first-order logic, which can be seen as mapping σ-structures to τ -structures.
There are many variations of the precise definition in the literature. We use the version
defined in [6] and refer the reader to that for the formal definition. Given a function problem
A whose instances are σ-structures and a function problem B whose instances are τ -structures,
an interpretation Θ of τ in σ is a GapA(c, s) to GapB(c′, s′) reduction if A(A) ≥ c implies
B(Θ(A)) ≥ c′ and A(A) ≤ s, then B(Θ(A)) ≤ s′. Definability in FPC and the property
of having bounded counting width are both closed under first-order reductions. That is to
say, if GapB(c′, s′) is FPC-definable and there is a first-order reduction of GapA(c, s) to
GapB(c′, s′), then GapA(c, s) is FPC-definable as well.

3 The Reduction

The proof of Theorem 2.3 was completed in 2018 and remains to this day the most significant
advance towards establishing the Unique Games Conjecture since the latter was formulated
by Khot in [18]. The proof proceeds by a reduction from Gap3XOR(1 − ϵ, 1

2 + δ) and
was presented in a series of papers [20, 25, 11]. The main difficulty lies in proving the
combinatorial conditions that the soundness analysis relies on. The full reduction and proof
of correctness can be found in [22, Chapter 3].

Our aim in the present paper is to show that the reduction constructed has two crucial
properties. First, it preserves perfect completeness and thus can be seen as a reduction from
Gap3XOR(1, 1

2 + δ). Secondly, with small modifications which do not affect the soundness
or completeness analysis, it can be described as a first-order interpretation. Together these
establish the main theorem.

▶ Theorem 3.1. For every δ > 0, there exists q ∈ N+ for which GapWeight2to2q(1, δ) is
not FPC definable.

In proving this, we do not need to reprise the difficult soundness analysis carried out
by Khot et al. Rather we study the actual construction involved in the reduction. For this
purpose, we describe the reduction in some detail in this section, and take up the two issues
of perfect completeness and first-order definability in the next.

3.1 Regular 3XOR
An instance of 3XOR can be seen as a system of linear equations over the field F2 with
exactly three variables appearing in each equation. We say that such an instance is d-regular
if every variable appears in exactly d equations and no two equations share more than one
variable. It is known that the NP-hardness of Gap3XOR(1 − ϵ, 1

2 + δ) holds even when
restricted to d-regular instances for some fixed value of d (indeed, taking d = 5 suffices,
see [22, Theorem 3.3.1]). In Section 4.3 we show that this is also true of the undefinability in
FPC of Gap3XOR(1, 1

2 + δ) From now on, we restrict attention to d-regular instances for a
suitable fixed value of d, and we call the resulting function problem GapRegular3XOR.

3.2 Reducing to Transitive Games
In the first step of the reduction, we reduce regular 3XOR instances to label cover games
with a mixture of 2-to-2 and 1-to-1 constraints, with an additional transitivity requirement.
We formally define these below.
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▶ Definition 3.2 (Transitive 2-to-2 games). A transitive 2-to-2 game is a tuple (G, Σ, Φ)
where G = (V, E) is a graph, Σ is a finite alphabet and Φ : E → P(Σ2) assigns to each edge
e either a 2-to-2 or a 1-to-1 relation and whenever Φ(u, v) is 1-to-1, then for any edge (v, w),
Φ(u, w) is the composition of Φ(u, v) and Φ(v, w).

Note that the condition on composition only applies when Φ(u, v) is 1-to-1, but Φ(v, w) may
be 1-to-1 or 2-to-2, and this determines whether Φ(u, w) is 1-to-1 or 2-to-2.

Now, fix an instance I of GapRegular3XOR, with X being the set of variables that
appear in I and E the set of equations. Thus, each equation e ∈ E is of the form x+y +z = b

for some b ∈ F2. We refer to x, y and z as the variables occurring in e and b as the right-hand
side of e.

Fix a positive integer k and let U ⊆ Ek be the set of k-tuples U of equations, satisfying
the following properties:

no variable occurs in more than one equation of U ; and
if variables x and y appear in distinct equations of U , there is no equation in E (even
outside U) in which both x and y occur.

For U = (e1, . . . , ek) ∈ U , let XU denote the set of variables occuring in equations in U

and for i ∈ {1, . . . , k} let vi ∈ FX
2 denote the vector which has 1s in the three coordinates

corresponding to the variables occurring in ei and 0s everywhere else. We define the space
of side-conditions corresponding to U to be HU = Span(v1, . . . , vk). We say that a linear
function f : FX

2 → F2 satisfies the equations in U if f(vi) = bi for all i, where bi is the
right-hand side of ei.

Now, fix a parameter l with l ≤ |X|, and we define LU to be the collection of l-dimensional
subspaces of FX

2 which are linearly independent of HU . That is

LU =
{

L ⊆ FX
2 | dim(L) = l, L ∩ HU = {0}

}
.

The trivial intersection ensures that for any subspace L ∈ LU , any linear function f : L → F2
can be uniquely extended to one on L + HU

2 so that f(vi) = bi for all i. Therefore, the
number of linear functions on L + HU satisfying the equations in U is exactly 2l.

We can now define the reduction Θ that takes the instance I to a 2-to-2 transitive game
Θ(I). The reduction depends on the choice of parameters k and l. We omit the details on
how to select the right parameters.

Vertices. The vertices of Θ(I) are pairs (U, L), where U ∈ U and L ∈ LU .

Alphabet. The alphabet is a set of labels of size 2l. As noted above, for each vertex (U, L),
there are exactly 2l linear functions on L + HU satisfying the equations in U . We fix, for
each (U, L), a bijection between the alphabet and this set of linear functions. Henceforth, we
simply treat the functions themselves as labels.

Constraints. Given a pair of vertices u = (U, L) and v = (U ′, L′), the constraint Φ(u, v) is
a 1-to-1 relation if

dim(L + HU + HU ′) = dim(L′ + HU + HU ′) = dim(L + L′ + HU + HU ′)

and a 2-to-2 relation if

dim(L + HU + HU ′) = dim(L′ + HU + HU ′) = dim(L + L′ + HU + HU ′) − 1.

2 Here the sum is to be understood as vector space sum, i.e. L + HU is the space spanned by the union of
L and HU .

CSL 2025



16:8 Undefinability of Approximation of 2-To-2 Games

To define the relation, note that any function f : L + HU → F2 has a unique extension to
L+HU +HU ′ (by the conditions in the definition of U). Then, we relate f to f ′ : L′+HU ′ → F2
if, and only if, f and f ′ agree on the shared space (L + HU + HU ′) ∩ (L′ + HU + HU ′).

It is the case for any pair, that dim(L+HU +HU ′) = dim(L′ +HU +HU ′) [20, Lemma 4.3].
Let us call this dimension D. By [20, Lemma 4.4], any linear function f : L + HU → F2
satisfying the equations of U has a unique extension to (L + HU + HU ′) that also satisfies
the equations of U ′. Then, it is easily seen that if dim(L + L′ + HU + HU ′) = D, then f has
exactly one label of (U ′, L′) that it is consistent with, and if dim(L+L′ +HU +HU ′) = D +1,
there are exactly two such functions, thanks to the “free dimension”. Hence, the constraints
are 1-to-1 or 2-to-2 as required. The transitivity property of these constraints is established
in [20, Appendix A].

3.3 The final (weighted) 2-to-2 game
The final step of the reduction is to transform the transitive game constructed in Section 3.2
into a weighted 2-to-2 game, getting rid of the 1-to-1 constraints. This weighted game is
defined as follows.

Recall the transitive 2-to-2 game Θ(I) constructed in Section 3.2. The transitivity
condition guarantees that the vertices of Θ(I) can be partitioned into cliques C1, . . . , Cm so
that edges in each clique are associated with 1-to-1 constraints. Moreover, these constraints
are consistent in the sense that any colouring of a vertex V in a clique C can be extended
in a unique way to a colouring of all vertices in C so that all edge constraints in C are
satisfied. Also, by the transitivity condition, for distinct cliques Ci and Cj , either all pairs
(u, v) ∈ Ci × Cj are connected by 2-to-2 constraints or none are. Furthermore, these 2-to-2
constraints are consistent in the sense that given a clique-consistent colouring for Ci and Cj ,
either all or none of these 2-to-2 constraints are satisfied.

The final (weighted) 2-to-2 instance Iw
2:2 we construct from Θ(I) has as vertices the

vertices of Θ(I) and as edges all edges (u, v) of Θ(I) where u and v are in distinct cliques.
For each such edge, with u ∈ Ci and v ∈ Cj , we associate the constraint Φ(u, v) which is as
in Θ(I). The weight w(u, v) is the probability assigned to (u, v) by the following sampling
process:

Choose U ∈ U , uniformly at random.
Choose a random pair L, L′ so that (U, L) and (U, L′) are connected by a 2-to-2 edge.
Let Ci be the clique containing (U, L) and Cj be the clique containing (U ′, L′)
Choose uniformly at random a pair of vertices (u, v) ∈ Ci × Cj .

3.4 Irregular soundness case
For the result in Section 5.3, we need the FPC-undefinability of a different gap problem
based on 2-to-2 games. Specifically, we define the value of a game to be, not the fraction of
constraints that can be satisfied, but the fraction of the vertices formed by the largest set X

so that all constraints between nodes in X are satisfied. Moreover, we relax the notion of
colouring to allow vertices to be coloured by multiple colours.

▶ Definition 3.3. For a 2-to-2 game ((V, E), Σ, Φ), a colouring c : V →
(Σ

j

)
satisfies a set

X ⊆ V if ∀(u, v) ∈ E ∩ X2.∃a ∈ c(u), b ∈ c(v).(a, b) ∈ Φ(u, v).

That is to say, a j-colouring, i.e., one that assigns a set of j colours to each vertex satisfies
a set X if each constraint between vertices in X is satisfied by some choice among the colours
assigned to the vertices.
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▶ Definition 3.4 (Irregular Values). For constants j and q define the function Irreg2to2j,q

to take a 2-to-2 game ((V, E), Σ, Φ) to the fraction |X|/|V | where X is the largest subset of
V that is satisfied by some j-colouring c : V →

(Σ
j

)
.

We can now state the theorem below, which is a consequence of Theorem 3.1.

▶ Theorem 3.5 (Definable 2-to-2 Games Theorem with irregular soundness). For every δ with
0 < δ < 1 and j ∈ N+, there exists q ∈ N+ so that GapIrreg2to2j,q(1, δ) is not FPC
definable.

It is not hard to see that this is a consequence of Theorem 3.1, and the corresponding
claim for NP-hardness appears in e.g. [20]. For completeness, we give a short proof.

▶ Lemma 3.6. For a weighted 2-to-2 game I = ((V, E), Σ, Φ, w) with
q = |Σ|, if Irreg2to2j,q((V, E), Σ, Φ) = δ, then Weight2to2(I) = Ω( δ2

j2 ).

Proof. Let c be a j-colouring of V that satisfies a set X with |X|/|V | ≥ δ. By [22,
Remark 3.4.9], there is a Ω(δ2) (weighted) fraction of the edges E which are satisfied by c, in
the sense that for each such edge (u, v) there are colours a and b in c(u) and c(v) respectively
such that (a, b) ∈ Φ(u, v). We now construct a standard colouring by a random process.
That is, for each vertex v ∈ V , independently choose a colour χ(v) from c(v) uniformly
at random. For an edge (u, v), let Ξ(u, v) be the indicator variable indicating whether
(χ(u), χ(v)) ∈ Φ(u, v) and let Ξ be the overall value of the colouring χ. If (u, v) ∈ X2, the
probability that χ satisfies the constraint Φ(u, v) is at least 1

j2 , as by definition, among the
j2 pairs in c(u) × c(v), at least one satisfies the constraint. Then

E[Ξ] = E[
∑

(u,v)∈E

w(u, v)Ξ(u, v)] =
∑

(u,v)∈E

w(u, v)E[Ξ(u, v)]

≥
∑

(u,v)∈E∩X2

w(u, v)E[Ξ(u, v)] ≥
∑

(u,v)∈E∩X2

w(u, v) 1
j2 ≥ Ω(δ2) 1

j2

Thus, there is a colouring that satisfies at least Ω( δ2

j2 ) (weighted) fraction of the constraints.
◀

From Lemma 3.6, we can conclude Theorem 3.5. For any fixed δ and j, the proof of
Theorem 3.1 gives us a q and an FO reduction that takes satisfiable 3XOR instances to
satisfiable 2-to-2 games and instances that are at most η-satisfiable to 2-to-2 games with value
at most Ω( δ2

j2 ). Then, by Lemma 3.6, this same reduction also maps at most η-satisfiable
3XOR instances to 2-to-2 games I for which Irreg2to2j,q(I) < δ.

3.5 2 ↔ 2 games
The definition of 2-to-2 games, Definition 2.4 only requires each constraint Φ(u, .v) to be
a 2-to-2 relation, meaning that each element on the left is related to exactly two elements
on the right and vice versa. However, the reductions yield games of a more restricted kind
and this will be useful in Section 5.3. Say that a binary relation R ⊆ A × B is 2 ↔ 2 if it is
the disjoint union of bipartite graphs K2,2. That is to say A and B can be each partitioned
into sets A =

⋃
i Ai and B =

⋃
i Bi so that each Ai and Bi has exactly two elements and

R =
⋃

i Ai × Bi.
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We claim that the reductions in the proof of Thereom 3.1 yield games in which all
constraint relations are 2 ↔ 2. Specifically, given linear functions f ̸= f ′ : L + HU → F2 so
that their unique extension to the domain L + HU + HU ′ only differ in their “free dimension”,
i.e. they agree in values on (L+HU +HU ′)∩(L′ +HU +HU ′), f and f ′ are related to the same
two linear functions on L′ +HU ′ (uniquely extensible to L′ +HU +HU ′) in Φ((U, L), (U ′, L′)).
Thus, the constraint relations constructed are 2 ↔ 2.

4 Definability

The aim in this section is to show that the reduction outlined in Section 3 can, with
minor modifications, be implemented as a first-order interpretation, preserving perfect
completeness. Thus, it gives a first-order definable reduction from Gap3XOR(1, 1

2 + δ) to
GapWeight2to2q(1, δ′) for a suitable choice of parameters. This establishes Theorem 3.1.

4.1 Perfect completeness
To show that the reduction from Section 3 preserves perfect completeness, it suffices to verify
that instances of 3XOR that are satisfiable (i.e. have value 1) are mapped by the reduction
to instances of WG2:2 which also have value 1.

Assume I is an 3XOR instance on a set of variables X that is satisfiable, and let
s : X → F2 be an assignment of values to the variables that satisfies it. Let Iw

2:2 denote the
weighted 2-to-2 game that I maps to under the reduction. Then, for each vertex (U, L) of
Iw

2:2 the restriction of s to L + HU is a valid label since all equations are satisfied, and it is
easily seen that this labelling satisfies all constraints.

4.2 Vocabularies
An instance of 3XOR is defined as a structure over the vocabulary τ3XOR = ⟨Eq0, Eq1⟩ with
two ternary relations. We think of the universe of a τ3XOR-structure A as a set of variables.
For b ∈ {0, 1}, a triple (x, y, z) ∈ Eqb is understood as representing the equation x+y +z = b,
where addition is modulo 2.

For each positive integer q, we define a vocabulary τ(T) 2-to-2q
such that structures in this

vocabulary represent instances of transitive 2-to-2 games over a label alphabet of size q. Let
Sq denote the collection of permutations of [q] = {1, . . . , q}. Note that there is a natural
bijective correspondence between Sq and the 1-to-1 relations on [q]. Now, let S#2

q denote the
set of pairs of permutations (π1, π2) ∈ Sq × Sq such that for all i ∈ [q], π1(i) ̸= π2(i). Then,
it is easily seen that each 2-to-2 relation on [q] can be seen as the union of such a pair of
permutations. Our vocabulary τ(T) 2-to-2q

contains a binary relation for each element of Sq

and one for each element of S#2
q :

τ(T) 2-to-2q
= ⟨(Cπ)π∈Sq , (Cπ1,π2)(π1,π2)∈S#2

q
⟩.

We write C1 for the collection of relation symbols (Cπ)π∈Sq and C2 for the collection of
relation symbols (Cπ1,π2)(π1,π2)∈S#2

q
. Note that the vocabulary itself does not enforce the

transitivity property, only a subset of the structures with this vocabulary are transitive 2-to-2
games.

For weighted 2-to-2 games, we construct a vocabulary that allows us to code instances
with positive integer weights. This is more limiting than allowing rational weights, but as we
show below in Section 4.6, it suffices for our purpose. Specifically,

τ(w) 2-to-2q
= ⟨C, (Φπ1,π2)(π1,π2)∈S#2

q
⟩,
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where C is unary, and the relations Φπ1,π2 are all ternary. A τ(w) 2-to-2q
-structure A is to be

understood as an instance Iw
2:2 = (G, Σ, Φ) of Gw

2:2 with integer weights. The universe of A
is the disjoint union of the set V of vertices of Iw

2:2, and the set C of constraints, with the
unary relation C picking out this set. For each (π1, π2) ∈ S#2

q , the relation Φπ1,π2 ⊆ V 2 × C

contains those triples (u, v, c) where Φ(u, v) is a pair (R, w) with R being the 2-to-2 relation
associated with the pair (π1, π2). The integer weight w is given by the number of elements c

for which (u, v, c) is in the relation. We assume our structures satisfy the (first-order) axiom
that ensures that there is at most one relation Φπ1,π2 in which triples (u, v, c) appear, for
each choice of u and v.

4.3 Undefinability of Regular 3XOR
The reduction in Section 3 starts from regular games. In contrast, the undefinability result
in Theorem 2.5 is stated for general 3XOR. Thus, we begin by arguing that the pfoof of
Theorem 2.5 can actually be used to show the undefinability of GapRegular3XOR(1, η)
for some η strictly smaller than 1.

We first note that the Gap3XOR(1, 1
2 + δ) is FPC undefinable even for “half-regular”

3XOR instances. That is, 3XOR instances where each variable appears in the same number of
equations. To see this, note that Lemma 5 in [6] uses a bipartite unique-neighbour expander
graph with r|X| nodes on the left and |X| nodes on the right. Thus the graph is 3-left-regular
and is an (α|X|, β) expander. Such graph exists for every X by [27, Chapter 4]. By a
variation shown for Theorem 4.4 in [27], we laim the existence of such a graph with the
extra condition that the graph is right-regular. Using this extra assumption on the graph in
Lemma 5 in [6] the proof establishes that Gap3XOR(1, 1

2 + δ) is FPC undefinable even for
“half-regular” 3XOR instances.

A half-regular instance can be converted into a regular one by ensuring that any two
equations share at most one variable.

First, by the unique-neighbour expander property of the graph in Lemma 5 in [6], we can
assume that the half-regular 3XOR instance has no repeated equations or repeated variables
within an equation. This half-regular instance (X, Eq) can be converted into a regular one
(call it (X∗, Eq∗)) by replacing every equation e : x + y + z = b with three equations (as done
in [22]): x + ye + ze = b, xe + y + ze = b, xe + ye + z = b, where xe, ye, and ze are new
variables only used for these equations.

As shown in [22], if X is fully satisfiable then so is X∗ and if X is no more than 1
2 + δ-

satisfiable, then X∗ is at most η-satisfiable for some η < 1 (for example, taking η = 0.9
suffices).

The reduction can be easily defined by a first-order interpretation.

4.4 Shuffling variables
One issue that arises with the games constructed in the reduction from Section 3 is that we
have a fixed alphabet of size q = 2l and we associate with each vertex (U, L) an arbitrary
bijection between this and the 2l distinct linear functions on the space L+HU that satisfy the
equations in U . The consistency across different vertices is then enforced by the constraint
relations. In order to turn this into a first-order reduction, we want to choose these bijections
in a symmetry-preserving fashion.

Let I be our starting instance of 3XOR and IT
2:2 = Θ(I) the transitive 2-to-2 game

obtained from the first step of the reduction of Section 3, and let X be the set of variables of
I. Let ρ ∈ SymX be a permutation of X. This permutation has a natural action on other
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16:12 Undefinability of Approximation of 2-To-2 Games

objects constructed from X. In particular, for an equation e of the form x + y + z = b, we
write ρ(e) for the equation ρ(x) + ρ(y) + ρ(z) = b. When U is a tuple of such equations, we
write ρ(U) for the tuple obtained by applying ρ componentwise to each element of the tuple.
Similarly, for other objects obtained by set and tuple constructions from X, we apply the
permutation ρ to denote the natural induced action without defining it formally.

Furthermore, we also use ρ to denote the invertible linear map on FX
2 obtained by applying

ρ to the basis (ex)x∈X , and extending linearly to all of FX
2 . Thus, in particular, for a subspace

L ⊆ FX
2 , ρ(L) denotes the image of this space under this map.

The following is now straightforward.

▶ Lemma 4.1 (Shuffling Variables 1). For any permutation ρ ∈ SymX , if U and ρ(U) are
both in U , and (U, L) ∈ V (IT

2:2), then ρ(U, L) ∈ V (IT
2:2).

Proof. Since ρ maps the basis of HU formed by the left-hand sides of the equations in U to
the corresponding basis of Hρ(U), we have ρ(HU ) = Hρ(U). By invertibility of ρ, a space L is
then linearly independent of HU if, and only if, ρ(L) is linearly independent of Hρ(U). ◀

Now, we want to choose the bijections between our set of 2l labels and the linear functions
associated with a vertex (U, L) in such a way that whenever (U, L) and ρ(U, L) are both
vertices in IT

2:2, then they commute with ρ. For this, fix a canonical space F3k
2 of dimension

3k. For each U ∈ U , we write XU ⊆ X for the set of variables that appear in U . Since U

is a sequence of k equations with pairwise disjoint sets of variables, we can fix a bijection
between XU and [3k] which induces an isomorphism µU : FU

2 → F3k
2 . These isomorphisms

are easily seen to be ρ-invariant (for all ρ), that is,

∀S ∈ FXU
2 . µρ(XU )(ρ(S)) = µU (S).

Under this map, there is a fixed subspace H ⊆ F3k
2 of dimension k such that µU (HU ) = H for

all U . Similarly, there is a fixed collection L of l-dimensional spaces such that µU (LU ) = L.
Thus, we can identify the vertices of IT

2:2 uniquely with pairs (U, L∗) where U ∈ U and
L∗ ∈ L. This is to be understood as the representation of the vertex (U, µ−1

U (L∗)).
Similarly, for linear functions f over L ∈ LU , we can define

(ρ(f))(x) = f(ρ−1(x)) : ρ(L) → F2 and

(µU (f))(x) = f(µ−1
U (x)) : µU (L) → F2.

Then, a linear function f on L+HU satisfies the equations in U if, and only if, µU (f) satisfies
the equations in µU (U). Hence, we can interpret in a canonical way the label of a node
(U, µ−1

U (L∗)) as a linear function with domain H + L∗ satisfying the equations in µU (U).
We now show that this can be consistently applied to the constraints of the game.

▶ Lemma 4.2 (Shuffling Variables 2). Suppose (U, L), (U ′, L′) ∈ E(IT
2:2) and ρ(U), ρ(U ′) are

both in U . Then
(ρ(U, L), ρ(U ′, L′)) ∈ E(IT

2:2)
Φ((U, L), (U ′, L′)) = Φ(ρ(U, L), ρ(U ′, L′))

Proof. By Lemma 4.1, ρ(U, L), ρ(U ′, L′) ∈ V (IT
2:2). Also

dim(ρ(L) + Hρ(U) + Hρ(U ′)) =dim(ρ(L + HU + HU ′)) = dim(L + HU + HU ′)

The equalities hold because the mapping ρ is an automorphism of FX
2 . The analogous

dimensionality property holds with the mapping of subspaces (L′ + HU + HU ′) and (L + L′ +
HU + HU ′). Therefore, the dimensionality constraint for drawing edges is invariant under
the action of ρ. This proves the first bullet point.
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Then if (f, f ′) ∈ Φ((U, L), (U ′, L′)), it means µ−1
U (f) and µ−1

U ′ (f ′) are consistent on the
intersection of their domains. Then µ−1

ρ(U)(f) = ρ(µ−1
U (f)) and µ−1

ρ(U ′)(f
′) = ρ(µ−1

U ′ (f ′))
are consistent too, meaning (f, f ′) ∈ Φ(ρ(U, L), ρ(U ′, L′)). Hence Φ((U, L), (U ′, L′)) ⊆
Φ(ρ(U, L), ρ(U ′, L′)). Applying the same argument to ρ−1 yields the other direction. ◀

4.5 The reduction to the transitive game
We now describe how the reduction Θ from Section 3.2 can be given as a first-order inter-
pretation. Fix positive integers k and l, which are the parameters to the reduction. Given
a (regular) 3XOR instance A = (X, EqA

0 , EqA
1 ), our interpretation maps it to the following

(transitive) 2-to-2 game (with alphabet size 2l) B.

Universe. The universe of B consists of tuples of elements of X of length 4k + 23k. These
tuples can be seen as broken up into three parts.

The first 3k elements (u1,1, . . . , uk,3) are the 3k variables in some U ∈ U . To define this,
we need to say that they are, in order, the collection of variables of a k-tuple of equations,
that no variable appears more than once, and that when two variables appear in distinct
equations, they do not occur together in some other equation in A.
The next k elements r1, . . . , rk define the right-hand sides of the k equations in U . To
encode these as binary values, we use ri = u1,1 to encode the value 0 and ri = u1,2 to
encode the value 1. Since u1,1 and u1,2 are distinct, this works and can be specified by a
first-order formula.
The next 23k elements also encode bits, using the values of u1,1 and u1,2 as 0 and 1.
Think of these as specifying a subset of F3k

2 . We can write a first-order formula that says
that this subset is a subspace L∗ of dimension l (since l and k are fixed, the formula
is simply a big disjunction over all subspaces). Finally, we can also write a first-order
formula that checks that L∗ is in L.

For completeness, here is the first-order sentence checking all these conditions.

πU =
k∧

i=1
[Eq0(ui,1, ui,2, ui,3) ∧ ri = 0] ∨ [Eq1(ui,1, ui,2, ui,3) ∧ ri = 1]

∧
∧

(a,i) ̸=(b,j)

ua,i ̸= ub,j

∧
∧

a̸=b,i,j

¬

∃x
∨

(α,β,γ)∈Perm(ua,i,ub,j ,x)

Eq0(α, β, γ) ∨ Eq1(α, β, γ)


∧

∨
L∗∈L

23k−1∧
i=0

bi = L∗
i


Where Perm(x, y, z) describes the set of permutations of x, y, z.

We can thus, as required, identify the elements of B with pairs (U, L) which are the
vertices of Θ(A).

Relations. Given two vertices (U, L) and (U ′, L′) of B, the type of constraint between them
(1-to-1, 2-to-2 or no constraint at all) only depends on µU (L), µU ′(L′), r, r′ and I(U, U ′),
where r,r′ are the vectors of the right-hand sides of the equations and

I(U, U ′) ≜ {((a, i), (b, j)) ∈ ({1, . . . , k} × {1, 2, 3})2 | ua,i = u′
b,j}
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If two pairs of vertices agree on all five of these values, there is a permutation ρ of the
variables that will take one to the other and then by Lemma 4.2, they must have the same
constraint between them.

Note that each of these five parameters can take only a constant number of different
values, so for each constraint C ∈ C1 ∪ C2, there is a (constant) finite set SC containing
such 5-tuples so that (U, L) and (U ′, L′) are connected by a constraint C if, and only if,
(µU (L), µU ′(L′), r, r′, I(U, U ′)) ∈ SC . The formula πC defining the relation C in B simply
states that the 5-tuple corresponding to a pair of vertices is in SC . This translates to a
disjunction of a finite number of cases and is clearly FO-definable. This concludes the
reduction to the transitive game.

4.6 Weight approximation

We now show how to get a weighted 2-to-2 game, that is an approximation of the instance
Iw

2:2 constructed in Section 3.3. The vertices of the game are exactly those in the structure B
above. The main task is to define the weights, by defining a suitable set C of constraints.
Recall that the vertices of Iw

2:2 are partitioned into cliques C1, . . . , Cm based on the 1-to-1
constraints. Suppose (U1, L1) ∈ Ci and (U2, L2) ∈ Cj are two vertices connected by a 2-to-2
constraint. Then, the weight of the constraint is∑

U,L,L′

L,L′∈LU

dim(L∩L′)=l−1

1(U,L)∈Ci∧(U,L′)∈Cj

1
|U|

1
|{L, L′ ∈ LU | dim(L ∩ L′) = l − 1}|

1
|Ci||Cj |

.

Each of the three factors (apart from the indicator variable) describes the probability of a
certain choice in the steps of the random process which define the weights.

Of course, 1
|U| is constant for all pairs (U1, L1), (U2, L2). Similarly,

1
|{L,L′∈LU |dim(L∩L′)=l−1}| is constant by the symmetry argument presented in Sec-
tion 4.4. Thus, removing them from the expression does not change the relative weights
of the constraints. Also, the clique size only depends on (U1, L1), (U2, L2), so the weight
expression (without the normalising factors) simplifies to

|{(U, L, L′) | (U, L) ∈ Ci, (U, L′) ∈ Cj}|
|Ci||Cj |

. (1)

These weights are rational, so we cannot express them directly in structures over τ(w) 2-to-2q
,

which is our vocabulary for describing integer-weighted games. One potential way to handle
rational weights would be to multiply all weights with a common denominator. This is not
a viable option since the number of different-sized cliques grows with the size of the input,
making the common denominator too large. However, we have a workaround: instead of
these weights, we give an approximation that does not change the soundness parameter
significantly but makes the common denominator of the weights small enough (polynomial
as a function of the input size) to be definable.

▶ Lemma 4.3. Given a weighted 2-to-2 game G = (V, Σ, Φ, w), whose value is at most δ,
any game G′ = (V, Σ, Φ, w′) where ∀ϕ ∈ Φ. 1

γ < w(ϕ)
w′(ϕ) < γ has value at most δγ2.

Proof (sketch). The sum of weights drops at most by a factor γ, and the sum of the weights
of the satisfied constraints increases by at most a factor of γ. ◀
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So, the idea is to approximate clique sizes so that the number of possible denominators is
constant and their product grows only polynomially with the input size, while bounding the
change with a suitable multiplicative factor γ.

Fix a vertex (U, L) in a clique Ci. Recall that (U ′, L′) ∈ Ci if, and only if, there is a
one-to-one constraint between (U, L) and (U ′, L′) in B. First, let us split the equations in U ′

into two groups: “useful” and “useless” ones. An equation in U ′ is useful (for U) if it shares
at least one variable with U and useless otherwise. Note that the number of useful equations
of (U ′, L′) only depends on U ′, not on L′.

Next, we define an equivalence relation ≡U on the vertices of the game as follows:
(U1, L1) ≡U (U2, L2) iff

µU1(L1) = µU2(L2).
U1 and U2 have the same useful equations (for U), and these equations are in the same
positions within the k-tuple.
The right-hand sides of the equations in U1 and U2 are the same.

It is easily seen that this is, indeed, an equivalence relation.
Note that the clique Ci is invariant under the equivalence relation ≡U : each equivalence

class is either contained in Ci or disjoint with it, by Lemma 4.2 (choosing ρ to be a permutation
that fixes the variables of U and any useful equations).

Now, for any f with 0 ≤ f ≤ k, we can establish an upper bound on the number of
equivalence classes with f useful equations. Recall that any node (U ′, L′) can be uniquely
represented by U ′ and the subspace µU ′(L′) = L∗ ∈ L:

The number of possible subspaces L∗ ⊆ F3k
2 is at most 223k , as that is an upper bound

for |L| (in fact, it is much smaller, but for our purposes, this upper bound suffices).
The number of ways to choose the positions of the useful equations is

(
k
f

)
≤ 2k.

The number of choices for the right-hand sides of the equations is 2k.
Since the 3XOR instance is regular (each variable appears in at most d equations), the
number of equations sharing a variable with U is at most 3kd, so the number of ways of
choosing the useful equations is bounded by (3kd)k.

These bounds are all constants, so the number of equivalence classes within the clique, with
f useful equations (call it νf

U,L) is bounded by a constant Ψ for all f, U, L.
The number of elements in an equivalence class with f useful equations is simply the

number of ways to set the remaining k − f equations. This can be approximated by |Eq|k−f .
Given f useful equations, the probability of a random set of k − f equations having common
variables with U , the set of useful equations or each other, or making the k-tuple invalid
by having two variables from different equations which have a common equation in the
3XOR instance, converges to zero (O

(
k2

|X|

)
) as the instance size grows, due to the regularity

condition. By adding all the approximate sizes of the equivalence classes within Ci, we can
conclude that the approximation

χ(νU,L) ≜ χ(ν0
U,L, ν1

U,L, . . . , νk
U,L) ≜

k∑
f=0

νf
U,L|Eq|k−f ≈ |Ci|

is accurate within an arbitrarily small factor as the input size grows. Using this approximation
in the weight expression (1), we see that

∏
v∈{0,...,Ψ}k+1 χ(v)2 is a common denominator of

all weights. Multiplying all weights by this number, we get the expression

w((U1,L1), (U2, L2)) = |{(U, L, L′) | (U, L) ∈ Ci, (U, L′) ∈ Cj}|

·
∏

v∈{0,...,Ψ}k+1

{
χ(v) if v ̸= ν(U1,L1)

1 if v = ν(U1,L1)
·

∏
v∈{0,...,Ψ}k+1

{
χ(v) if v ̸= ν(U2,L2)

1 if v = ν(U2,L2)
(2)
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As we see next, we can define a reduction in FO to weighted 2-to-2 games using these
approximate weights.

4.7 Defining the weighted game

Finally, we are ready to show that the construction of a weighted 2-to-2 game with approximate
weights as above can be given by an FO interpretation.

Universe. We need to define the set of vertices, and the set of constraints. The elements of
the universe are tuples of elements of X (the set of variables of the 3XOR instance I) of
length 8k + 1 + 23k+1 + Q, where Q is a parameter we define below.

A vertex (U, L) is coded by the first 4k + 23k elements of this tuple, as before, followed
by a sequence of 0s. Recall that we code bits 0 and 1 by the first and second elements of the
tuple. The first of these 0s is to be interpreted as an indicator that the tuple is a vertex (it
will be 1 for a constraint), and the rest are padding to make the length of the tuples match.

A constraint c is coded by a tuple where the first 4k + 23k elements represent a vertex
(U, L), this is followed by a 1 (i.e. a repeat of the second element of the tuple) and then the
next 4k+23k represent a second vertex (U ′, L′). The rest of the tuple codes a unique identifier
of the constraint, ID. We construct the interpretation so that for all fixed (U, L), (U ′, L′),
there are w((U, L), (U ′, L′)) different identifiers where w is the approximate weight described
above. We show that for this weight function, there is a formula W which defines a set of
exactly w((U, L), (U ′, L′)) tuples extending the description of (U, L) and (U ′, L′).

▶ Lemma 4.4. There exists Q ∈ N+ and a first-order formula W which defines a set T of
tuples coding pairs (U, L), (U ′, L′) together with a Q-element unique identifier and such that
for each fixed (U, L), (U ′, L′), T contains exactly w((U, L), (U ′, L′)) many tuples extending
(U, L), (U ′, L′).

The proof of this lemma, constructing the formula W is in Section 4.8 below.
Thus, we can define the formulas defining the set of vertices and constraints. For simplicity,

we use U, L, U ′, L′, ID to describe the sub-tuple of variables in their corresponding parts of
the N -tuple, where N = 8k + 1 + 23k+1 + Q.

Node(U, L, IsConstraint, U ′, L′, ID) ≡IsConstraint = 0 ∧ πU (U, L) ∧ ∧
x∈(U ′,L′,ID)

x = 0

To check if it is a valid constraint, we need

Constraint(U, L, IsConstraint, U ′, L′, ID) ≡ IsConstraint = 1 ∧ πU (U, L) ∧ πU (U ′, L′)
∧ ∨

C∈C2
πC((U, L), (U ′, L′)) ∧ W ((U, L), (U ′, L′), ID)

Constraints. For each Cπ1,π2 ∈ C2, we can construct the formula that defines the set of
triples (x, y, c) where x = (U, L, 0, . . . , 0) y = (U ′, L′, 0 . . . , 0) and c = (U, L, 1, U ′, L′, ID),
such that there is a constraint of type C between x and y and ID is a valid id of a constraint
between them.

Φπ1,π2(x, y, c) ≡ πCπ1,π2 (x, y) ∧ (U, L) = (U1, L1) ∧ (U ′, L′) = (U2, L2).

This completes the proof of Theorem 3.1.
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4.8 Defining W
To prove Lemma 4.4 we define a first-order formula W (x, y, z) in the vocabulary τ3XOR,
where x, y and z are tuples of free variables. The formula is such that if x and y are
interepreted by the elements coding the nodes (U, L) and (U ′, L′) respectively, then there
are exactly w((U, L)(U ′, L′)) assignments of values to the tuple z that make W true. Here
w(U, L)(U ′, L′) is the expression given in Equation 2.

To define W , we construct formulas defining various elements of Equation 2. More
precisely, for various numerical expressions e(x, y), which depend on the values assigned to x

and y, we construct formulas we denote wq,e(x, y, z), where q is the length of the tuple of
variables z. These formulas have the property that when x and y are interepreted by the
elements coding the nodes (U, L) and (U ′, L′) the number of q-tuples that can be assigned to
z to make ωq,e true is exactly e(x, y). As before, we use 0 and 1 to denote the first and second
elements of the tuple. Also, for a first-order formula ϕ(x, y), let 1ϕ denote the indicator
variable that ϕ is true (under an assignment of values to x and y).
e = 1: ω1,e(x, y, z) ≡ (z = 0)
e = 1ϕ: ω1,e(x, y, z) ≡ (z = 0) ∧ ϕ(x, y)
e = e1 × e2: Given ωq1,e1 and ωq2,e2 , we can define

ωq1+q2,e(x, y, z1, . . . , zq1 , zq1+1, . . . , zq2) ≡ ωq1,e1(z1, . . . , zq1) ∧ ωq2,e2(zq1+1, . . . , zq2)

e = e1 + e2: Given ωq1,e1 and ωq2,e2 , (assuming without loss of generality that q2 ≥ q1, we
can define

ω1+q2,e(x, y, z1, z2, . . . , zq2+1) ≡

z1 = 0
∧

ωq1,e1(z2, . . . , zq1+1)
∧ q2+1∧

i=q1+2
zi = 0


∨ [

z1 = 1
∧

ωq2,e2(z2, . . . , zq2+1)
]

e = |Eq|: It suffices to take a formula defining the disjoint union of the relations Eq0
and Eq1.

ω4,e(x, y, z1, z2, z3, z4) ≡ (z1 = 0 ∧ Eq0(z2, z3, z4)) ∨ (z1 = 1 ∧ Eq1(z2, z3, z4))

e = |{(U1, L1, L2) | (U1, L1) ∈ Ci, (U1, L2) ∈ Cj}|: The numerator in Equation 1 (and
a term in Equation 2) is e = |{(U1, L1, L2) | (U1, L1) ∈ Ci, (U1, L2) ∈ Cj}|. We can get
a formula for this by defining exactly this set of tuples. Here z is a tuple of variables
composed of three tuples z1, z2 and z3 where z1 has length 4k and each of z2 and z3 is of
length 23k.

ω4k+2∗23k,e(x, y, z) = πU (z1, z2) ∧ πU (z1, z3) ∧
∨

C∈C2

C((z1, z2), (z1, z3)

∧
∨

C∈C1

C((z1, z2), x) ∧
∨

C∈C1

C((z1, z3), y)

Defining the size of the equivalence classes. Another element of Equation 2 are conditions
of the form νf

U,L = r for various values of r. We now construct a formula νf,≥r(x) with
4k + 23k free variables that expresses the condition νf

U,L ≥ r when x is interpreted by the
tuple coding (U, L). In the following, lower case letters u, l, possibly with subscript indices
always denote tuples of variables of length 4k and 23k respectively. Recall that two elements
in the clique are in the equivalence relation ≡(U,L) if, and only if, their L values are the same
and share the same useful equations with the same positions.
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We begin with defining a couple of auxiliary formulas. For any j ∈ {1, . . . , k}, the formula
usefulj(x, u) says of a tuple u that the jth equation it represents is useful and the formula
diffj(u1, u2) asserts that the two tuples u1 and u2 differ in the jth equation:

usefulj(x, u) ≡
∨

i∈{1,...,3k}

(
u3(j−1)+1 = xi ∨ u3(j−1)+2 = xi ∨ u3(j−1)+3 = xi

)
; and

diffj(u1, u2) ≡(u1)3(j−1)+1 ̸= (u2)3(j−1)+1 ∨ (u1)3(j−1)+2 ̸= (u2)3(j−1)+2∨
(u1)3(j−1)+3 ̸= (u2)3(j−1)+3 ∨ (u1)3k+j ̸= (u2)3k+j .

With these, we can define νf,≥r(x) as a formula whiuch asserts the existence of r nodes

∃u1, l1, . . . , ur, lr
∧

i

πU (ui, li);

which are are in the same clique as the node coded by x∧
i

∨
C∈C1

C(x, ui, li);

all have f useful equations

∧
i∈{1,...,r}

 ∨
S⊆{1,...,k},|S|=f

 ∧
j∈{1,...,k}

usefulj(x, ui) ↔ j ∈ S

 ;

and such that no two nodes are ≡(U,L) equivalent when x is interpreted as (U, L)∧
i ̸=j∈{1,...,r}

li ̸= lj ∨
∨

o∈{1,...,k}

(usefulo(ui) ∧ diffo(ui, uj)) .

Then, as usual, νf,r(x) ≡ νf,≥r(x) ∧ ¬νf,≥(r+1)(x). To give an expression for ωq(νf
U,L) for

some q, we can rewrite it as
∑Ψ

r=1 1νf,r
U,L

·r and construct the expression using the composition
rules (constants can be constructed via repeated addition of ones, addition, multiplication
and indicator variables are defined above)

Putting it all together. For each term in Equation 2, we have described how to define a
corresponding formula. Case splits can be handled via indicator variables and constants by
repeatedly adding 1s. By a repeated application of the addition and multiplication rules, W

can be constructed.

5 Consequences

5.1 Unique Games
An immediate corollary of the definable 2-to-2 games theorem is the inapproximability of
unique games by any constant factors:

Given a (weighted) 2-to-2 game I, we can map it to a Unique Game I ′ by splitting
every constraint into two: given a constraint of type Cπ1,π2 , we can replace them with two
1-to-1 constraints of type Cπ1 and Cπ2 . A colouring of the nodes then satisfies the constraint
Cπ1,π2 in I if, and only if, exactly one of thee two constraints is satisfied in I ′. Note that a
colouring can only satisfy at most one of the two constraints. This gives a reduction from
GapWeight2-to-2q(1, δ) to GapWeightUGq( 1

2 , δ
2 ) for any δ > 0.
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This reduction is clearly FO-definable: the universe remains the same; then, for a 1-to-1
constraint Cπ, we can determine if (x, y, c) represents a constraint of this type with the
sentence Φπ(x, y, c) ≡

∨
π2

Φπ,π2(x, y, c).

▶ Theorem 5.1. For every δ > 0, there exists q ∈ N+ so that GapWeightUGq
1
2 , δ) is FPC

undefinable.

This undefinability gap is stronger, at least in terms of the completeness and soundness para-
meters, than the gaps proved by Tucker-Foltz [26], the only previously known undefinability
gaps for Unique Games. However, our construction uses weighted instances, so we can only
conclude the undefinability gap over the domain of weighted unique games. Since the gaps
in [26] are proved for unweighted games, they are incomparable to Theorem 5.1.

5.2 Vertex Cover

Another consequence of Theorem 2.3 is the NP-Hardness of approximating the Vertex
Cover problem by a factor better than

√
2. The Unique Games Conjecture implies that

nothing better than a factor 2 approximation is possible. This is tight, since polynomial-
time algorithms achieving a 2-approximation are known. Before the results of Khot et
al. establishing Theorem 2.3 the best known inapproximability result, conditional only on
P ̸= NP, was ≈ 1.36. Atserias and Dawar [6] showed a corresponding unconditional FPC
undefinabiity result. We improve on this with the following.

▶ Theorem 5.2 (FPC-IS). For every ϵ, δ > 0, GapIS(1 − 1√
2 − δ, ϵ) is not definable in FPC.

Here IS is the function problem giving the size of a maximal independent set in a graph
as a proportion of the total number of vertices. This is equivalent to the FPC undefinability
of GapVertexCover( 1

1−ϵ,
√

2 + δ), implying the FPC-inapproximability of vertex cover by a
factor smaller than

√
2. The theorem follows from the reduction presented in [22, Chapter 5]

which can be defined in First-Order Logic using standard methods.

5.3 Graph Colouring

Perhaps the most striking consequence of our result is the following.

▶ Theorem 5.3. For every t ≥ 3, the class of 3-colourable graphs are not FPC separable
from those that are not t-colourable.

Theorem 5.3 should be contrasted with what is known about the NP-hardness of promise
graph colouring. It is known that it is NP-hard to separate the 3-colourable graphs from
those that are not 5-colourable [7]. It is conjectured that it is NP-hard to separate the
3-colourable graphs from those that are not t-colourable for all t ≥ 3, but this is open even
for t = 6. Thus, Theorem 5.3 provides the first significant example of an FPC hardness of
approximation result that is open in the classical setting of NP-hardness.

Guruswami and Sandeep [16] show a reduction from GapIrreg2to2j,q(1, δ) to the
problem of separating 3-colourable graphs from non-t-colourable ones [12]. The reduction is
easily definable in first-order logic, proving Theorem 5.3.
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6 Conclusion

We have shown that the reductions involved in the proof of the celebrated proof by Khot,
Minzer and Safra of the 2-to-2 games theorem can all be implemented as interpretations
in first-order logic. This means that the NP-hardness they establish of separating nearly
satisfiable instances from highly unsatisfiable ones can be turned into an unconditional
inseparability result in FPC. Moreover, the result is achieved with perfect completeness: it is
impossible to separate with an FPC sentence the fully satisfiable 2-to-2 games from those
that are highly unsatisfiable.

From this result we are able to derive a number of consequences, the most striking
of which is that it is impossible to separate with an FPC sentence the graphs that are
3-colourable from those that are not t-colourable for any constant t. The NP-hardness of
such a separation is only conjectured for values t larger than 5. We also obtain strong FPC
undefinability results for approximation of unique games. In terms of approximation ratios
these are an improvement over those of Tucker-Foltz [26]. However, the latter results were
obtained for unwieghted games while ours are for weighted games.

This work suggests a number of further directions to pursue. One is an investigation of
the FPC definability of promise constraint satisfaction problems (PCSP). The t-colouring
of 3-colourble graphs is one such example, but PCSP are a very active current area of
investigation. Our results could also be tightened by showing them for unweighted instances
rather than with weights. Indeed, we believe that Theorem 5.1 could be improved to apply
to unweighted games as well, making it a direct improvement of the results of [26]. For this
improvement, it would be sufficient to prove the FPC analogue for the result of Crescenzi et
al. [9] showing a gap reduction from weighted CSP instances to unweighted ones. The proof
of Khot, Minzer and Safra applies this reduction to establish Theorem 2.3 on unweighted
games. This merits further study.
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