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Abstract
The description complexity of a model is the length of the shortest formula that defines the model.
We study the description complexity of unary structures in first-order logic FO, also drawing links
to semantic complexity in the form of entropy. The class of unary structures provides, e.g., a
simple way to represent tabular Boolean data sets as relational structures. We define structures
with FO-formulas that are strictly linear in the size of the model as opposed to using the naive
quadratic ones, and we use arguments based on formula size games to obtain related lower bounds
for description complexity. For a typical structure the upper and lower bounds in fact match up to
a sublinear term, leading to a precise asymptotic result on the expected description complexity of a
randomly selected structure. We then give bounds on the relationship between Shannon entropy
and description complexity. We extend this relationship also to Boltzmann entropy by establishing
an asymptotic match between the two entropies. Despite the simplicity of unary structures, our
arguments require the use of formula size games, Stirling’s approximation and Chernoff bounds.
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1 Introduction

This paper investigates the resources needed to define finite models with a unary relational
vocabulary. While unary models are very simple, it turns out that proving limits on the
formula sizes for defining them is non-trivial. Furthermore, unary models are important
as they give a direct relational representation of Boolean data sets, consisting simply of
data points and their properties – thereby providing one of the simplest data representation
schemes available. In practice all tabular data can be discretized and modeled via a Boolean
data set. This relates to applications in, e.g., explainability and compression.

Given a logic L and a class M of models, the description complexity C(M) of a model
M is the minimum length of a formula φ ∈ L that defines M with respect to M. In the
main scenario of this paper, M is the class of models with the same domain of a finite size n
and with the same unary vocabulary τ . We mostly study the setting via first-order logic FO.
However, as description complexity links to the themes of compressibility and compression,
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17:2 Description Complexity in FO with Links to Entropy

we also investigate the restricted languages FOd where the quantifier rank of every formula
is limited to a positive integer d. This will lead to dramatically shorter description lengths
(cf. Section 3) via a natural lossy compression phenomenon.

We also investigate how the Shannon entropies of unary structures are linked to their
description complexities, the general trend being that higher entropy relates to higher
description complexity. Shannon entropy is a well-known measure of intrinsic complexity, or
randomness, from information theory. The Shannon entropy of a probability distribution
P : X → [0, 1] over a finite set X is given by −

∑
x∈X P(x) log2 P(x). A relational structure

M of size n over a unary vocabulary τ naturally defines a probability distribution over its
domain. Indeed, let T be the set of unary quantifier-free types over τ , i.e., subsets of τ . A
point a of a model M realizes a type π ⊆ τ if π is the set of relation symbols corresponding to
exactly those unary relations that contain the point a. Now a τ -model M of size n naturally
defines the probability distribution P : T → [0, 1] such that P(π) = |π|

n , where |π| is the
number of points of M realizing the type π. The Shannon entropy of M is then naturally
defined to be equal to the Shannon entropy of the distribution P : T → [0, 1].

While the Shannon entropy of M gives an intrinsic measure of complexity (or randomness)
of M, another entropy measure may perhaps be easier to grasp intuitively. Boltzmann entropy
has its origins in statistical mechanics, and it was originally defined as k ln Ω, where k is
the Boltzmann constant and Ω the number of microstates of a system. In our setting, we
follow [14] and define Boltzmann entropy of a model class A as log2 |A|, thus dropping the
Boltzmann constant k, using binary logarithms and associating models with microstates.
Now, it is natural to then define the Boltzmann entropy of a model M as log2 |M|, where
M is the isomorphism class of M (recall here that in our setting, all models have the same
domain of size n, so M is finite). The reason why the Boltzmann entropy of M is a reasonable
measure of intrinsic complexity of M is now easy to motivate. Firstly, consider a τ -model
M0 of size n where each P ∈ τ is interpreted as the empty relation. This is a very simple
model whose isomorphism class has size 1 and the Boltzmann entropy of M0 is thus very
low: log2 1 = 0. On the other hand, models with the predicates in τ distributed in more
disordered ways have larger isomorphism classes and thus greater Boltzmann entropies.

1.1 Contributions
Concerning upper bounds on description complexity, we show how to define unary structures
via FO-formulas that are linear in model size. This contrasts the standard quadratic formulas
that use equalities for counting cardinalities in a naive way. We also give analogous formulas
for FOd with quantifier rank at most d. Concerning lower bounds, we use formula size games
to provide bounds with a worst case gap of a constant factor of 2 in relation to the upper
bounds. This is done both for full FO and FOd.

For a random structure the upper and lower bounds in fact match up to a sublinear additive
term. Using this, we show that – asymptotically – the expected description complexity of a
random unary structure of size n and over the vocabulary τ is exactly 3n/2|τ | .

We then turn our attention to entropy. We show a close relationship between the Shannon
entropy and Boltzmann entropy of a unary structure. We obtain related upper and lower
bounds and thereby also establish the following asymptotic equivalence for every sequence
Mn of models of increasing size n: HS(Mn) ∼ 1

nHB(Mn). We note that a result bearing a
resemblance to this one has been obtained in a slightly different framework in [15].

Finally, we relate the description complexity of a model to its entropy. We investigate
the general picture of the relationship by giving upper and lower bounds on the description
complexity of a model in terms of its entropy. See Figure 1a for the case of FO and Figure 1b
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for FOd. The bounds allow us to exclude a large portion of the (a priori) possible combinations
of description complexity and entropy. In particular, we see that models with very high
entropy have higher description complexity than models with very low entropy. Moreover,
models with a very low entropy are guaranteed to have a reasonably low description complexity,
while models with very high entropies must have a notable description complexity.

1.2 Related work, techniques and applications
Description complexity is conceptually related to Kolmogorov complexity, and it is also
well known that entropy and Kolmogorov complexity are linked. Indeed, for computable
distributions, Shannon entropy links to Kolmogorov complexity to within a constant. This is
discussed, e.g., in [17, 9, 16]. However, [23] shows that the general link fails for Rényi and
Tsallis entropies. See, e.g., [9, 16, 23] for discussions on Rényi and Tsallis entropies.

Concerning work in the intersection of logic and entropy, the recent article [14] by Jaakkola
et al. provides related results for a graded modal logic GMLU over Kripke-models with the
universal accessibility relation.

They show that the expected Boltzmann entropy of the equivalence classes of GMLU
is asymptotically equivalent to the expected description complexity times the vocabulary
size. While [14] concerns GMLU, the current paper studies (monadic) FO. Because of the
multi-variable nature of FO, this leads to some major differences in the techniques required.
The upper bound formulas of the current paper use some clever tricks that are not possible in
the modal logic GMLU. Indeed, together with the results of [14], our upper bound formulas
show that FO is more succinct than GMLU. Furthermore, the techniques used for the lower
bounds for GMLU do not suffice for FO, necessitating new arguments.

Surprisingly, the relationship to entropy also turns out to be different. Indeed, in the case
of GMLU, models with maximal entropy have maximal description complexity, while in the
case of FO this is no longer the case.

For proving bounds on formula sizes, we use formula size games for FO. Indeed, variants
of standard Ehrenfeucht-Fraïssé games would not suffice, as we need to deal with formula
length, and thereby with all logical operators, including connectives. The formula size game
that we use for FO is a slight modification of the game of Hella and Väänänen [10]. The first
formula size game, developed by Razborov in [20], dealt with propositional logic. A later
variant of the game was defined by Adler and Immerman for CTL in [1]. In [11] the formula
size game for modal logic ML was used by Hella and Vilander to establish that bisimulation
invariant FO is non-elementarily more succinct than ML. For a further example, we also
mention the frame validity games of Balbiani et al. [2]. Recently, Fagin et al. in [7, 8] and
Carmosino et al. in [4, 5, 6] have developed and used multi-structural games to prove lower
bounds on the number of quantifiers that are needed for separating two structures in a given
logic. In [8] they have also pointed out that strong lower bounds on the number of quantifiers
would imply new lower bounds in circuit complexity.

Description complexity is relevant in many applications, one interesting link being data
compression. It is natural to consider unary models M as data sets to be compressed into
corresponding FO-sentences. To give a simplified example, let M be the class of models
over the unary alphabet τ = {P,Q} and with domain M = {1, . . . , 10}. Let M1 be the
model where PM1 = QM1 = M and M2 be the model where PM2 = {1, 2, 3} and QM2 is,
say, {3, 4, 5, 6, 7}. Now, the simple formula ∀x(P (x) ∧ Q(x)) fully defines the model M1
with respect to M, while the model M2 clearly requires a more complex formula. Suppose
then that our models are represented as tabular Boolean data, meaning that each model
corresponds to a 0-1-matrix with ten rows (one row for each domain element m ∈ M) and
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17:4 Description Complexity in FO with Links to Entropy

two columns, one column for P and another one for Q. In this framework, when using FO as
a compression language, the Boolean matrix for M1 then compresses nicely into the formula
∀x(P (x) ∧Q(x)), while the matrix for M2 compresses to a notably more complex formula.

Many of the technical goals in explainable artificial intelligence (XAI) relate to com-
pression [22], often revolving around issues of compressing information given by probability
distributions. It is natural to expect representations of distributions with very high values
of Shannon entropy to be more difficult to compress than ones with very low values. Con-
cerning formula length, recent articles on XAI using minimum length formulas of logics as
explanations of longer specifications include, e.g.,[3, 18, 12, 13], and numerous others. For
work on using short Boolean formulas as general explanations of real-life data given in the
form of unary relational structures (i.e., tabular Boolean data sets), see [13]. In that paper,
surprisingly short Boolean formulas are shown to give similar error rates to ones obtained by
more sophisticated classifiers, e.g., neural networks and naive Bayesian classifiers.

Concerning further directions in explainability, minimum size descriptions ψ of unary
relational models M can be useful for finding explanations in the context of the special
explainability problem [12]. The positive case of this problem amounts to finding formulas χ
with a given bound k on length such that M ⊨ χ ⊨ φ, where φ acts as a classifier. In this
context, it often suffices to find a short interpolant χ such that ψ ⊨ χ ⊨ φ, where ψ is a
minimum description of M. In applications, this latter task can often be more efficient than
the first one, especially when ψ is significantly smaller than M. One way to ensure ψ is short
enough is to describe M in a sufficiently incomplete way, such as with FOd with small d.

Finally, in applications, it is typically easy to compute the Shannon entropy of structures,
while description complexity and thereby issues relating to compressibility and explainability
are much more difficult to determine. Therefore, even a rough picture of the links between
entropy and description complexity can be useful.

The plan of the paper is as follows. After the preliminaries in Section 2, we provide upper
bounds for the description complexity of unary structures in Section 3. In Section 4 we
establish related lower bounds using games. In Section 5 we determine asymptotically the
expected description complexity of a random unary structure. In Section 6 we give bounds
on the relationship between entropy and description complexity. In Section 7 we conclude.

2 Preliminaries

Let τ = {P1, . . . , Pk} be a monadic vocabulary and let Var = {x1, x2, . . . } be a countably
infinite set of variables. The syntax of first-order logic FO[τ ] is generated by the grammar:
φ ::= x = y | P (x) | ¬φ | φ ∨ φ | φ ∧ φ | ∃xφ | ∀xφ, where x, y ∈ Var and P ∈ τ . The
quantifier rank of a formula φ ∈ FO[τ ] is the maximum number of nested quantifiers in the
formula. We denote by FOd[τ ] the fragment of FO[τ ] that only includes the formulas with
quantifier rank at most d. A formula φ ∈ FO[τ ] is in negation normal form if negations
are only applied to atomic formulas x = y or P (x). We assume all formulas are in negation
normal form and treat the notation ¬φ as shorthand for the negation normal form formula
obtained from φ by pushing the negation to the level of atomic formulas.

The size of a formula φ ∈ FO[τ ] is defined as the number of atomic formulas, conjunctions,
disjunctions and quantifiers in φ. Note that negations do not contribute to the size of φ.
This choice together with using negation normal form means that positive and negative
atomic information is treated as equal in terms of formula size. In line with this thinking, we
will refer also to x ̸= y and ¬P (x) as atomic formulas in the sequel.
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A formula φ ∈ FO[τ ] is in prenex normal form if it is of the form Q1x1 . . . Qmxmψ,

where Qi ∈ {∃,∀} for i ∈ {1, . . . ,m} and ψ ∈ FO[τ ] has no quantifiers. It is well-known that
every FO-formula can be transformed into an equivalent formula in prenex normal form
which has the same size as the original formula.

A τ -model is a tuple M = (M,PM
1 , . . . , PM

k ), where M = {1, . . . , n} and PM
i ⊆ M for

i ∈ {1, . . . , k}. A model M is a model of size n if |M | = n. A partial function s : Var ⇀M

is called an interpretation. We also call pairs (M, s) models and identify the pair (M, ∅)
with the model M. The truth relation (M, s) ⊨ φ is defined in the usual way for FO[τ ].

Let M = (M,PM
1 , . . . , PM

k ) be a τ -model of size n. We say that a formula φ ∈ FO[τ ]
defines M if for all τ -models M′ of size n we have (M′, ∅) ⊨ φ iff M′ is isomorphic to
M. As first-order logic cannot distinguish between isomorphic structures, we can in some
sense identify the model M with the class of models isomorphic to M. The description
complexity C(M) of M is the size of the smallest formula in FO[τ ] that defines M.

Note that our definition of description complexity concerns separating M only from
other models of the same size n. Requiring separation from all other models would unduly
emphasize the size of the model, making even very simple models have a high description
complexity. For example, the model M = (M,PM) of size n, where PM = M , would already
require a formula with size in the order of n. In our setting, C(M) = 2, because M is defined
by the formula ∀xP (x).

A τ -type π is a subset of τ . A point a ∈ M realizes a τ -type π if for all P ∈ τ we have
a ∈ PM iff P ∈ π. We let |π|M denote the number of points in M realizing π. We often omit
the subscript when the model is clear from the context. Note that two τ -models M and M′

are isomorphic iff each type is realized in the same number of points in both models.
We also consider more coarse ways to divide models into classes than isomorphism. For

each positive integer d we can define an equivalence relation ≡d over τ -models of size n
as follows. Given two τ -models M and M′ of size n, we define that M ≡d M′ iff for each
τ -type π with |π|M < d, we have that |π|M = |π|M′ . In other words, M ≡d M′ iff each
type that is realized in less than d points in M is realized in the same number of points
in both models. It is easy to show that M ≡d M′ iff they satisfy the same sentences of
FOd[τ ]. The d-description complexity Cd(M) of a τ -model M is the size of the smallest
FOd[τ ]-formula that defines the equivalence class of M in ≡d.

To characterize model classes, we use tuples with t = 2|τ | numbers. For an isomorphism
class, the tuple is simply (|π1|, . . . , |πt|). For an equivalence class M of ≡d, we only use
numbers up to d. For a tuple m = (m1, . . . ,mt), if mi = d, then there are at least d realizing
points of type πi in models of the class M. If mi < d, then each model has exactly mi

points realizing the type πi. The notation Mm refers to classes of ≡d via these tuples. The
tuples that correspond to some class of ≡d are characterized by the conditions mi ≤ d for
i ∈ {1, . . . , t},

∑t
i=1 mi ≤ n and if

∑t
i=1 mi < n, then mj = d for some j ∈ {1, . . . , t}. If∑t

i=1 mi = n, then Mm is an isomorphism class.
Since τ -types partition the points of a τ -model M, we may consider a natural probability

distribution over the types in M. The probability pπ of a type π is simply |π|/n, that is, the
probability of hitting a point of type π when selecting a point from M randomly. The Shan-
non entropy of M is the quantity HS(M) :=

∑t
i=1 −pπi

log(pπi
) =

∑t
i=1 − |πi|

n log
( |πi|

n

)
.

Here we follow the convention 0 log(0) = 0. Shannon entropy is an information theoretic way
of measuring randomness of probability distributions. Uniform distributions have maximal
Shannon entropy, as the uncertainty of the outcome of choosing a random point is maximized.
Conversely, for a distribution that places all of the probability mass on a single event, Shannon
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17:6 Description Complexity in FO with Links to Entropy

entropy is zero. Hence, a model realizing each type the same number of times (or as close as
possible) has maximal Shannon entropy, while for a model that realizes only a single type
Shannon entropy is zero.

Another way to define entropy of a model M uses the model class M belongs to. Given an
equivalence relation ≡ over models of size n (and thus domain {1, . . . , n}), the Boltzmann
entropy of M with respect to ≡ is HB(M) := log(|M|), where M is the equivalence class
of M. In this paper the equivalence relation ≡ is either isomorphism in the case of full FO
or ≡d for FOd. For isomorphism, we write HB(M) and for ≡d we write Hd

B(M).
Boltzmann entropy originates from statistical mechanics, where it measures the ran-

domness of a macrostate (= a model class) via the number of microstates (= models)
that correspond to it. The idea is that a larger macrostate is “more random” (or “less
specific”) since it is more likely to be hit by a random selection. We show in Section 6 that
HS(M) ∼ 1

nHB(M), where n is the size of the domain of M. Thus the two notions of entropy
are asymptotically equivalent up to normalization. This shows that both entropies indeed
measure the randomness of a model from different points of view.

3 Upper bound formulas

In this section we define arbitrary τ -models via formulas of size linear in the size of the model.
Recall that defining a model means separating it from all non-isomorphic models with the
same domain size. To see why linear size formulas are quite succinct, note that the following

naive formula
∧2|τ|

ℓ=1 ∃x1 . . . ∃x|πℓ|

( ∧|πℓ|
i=1 πℓ(xi) ∧

∧|πℓ|
j=i+1 xi ̸= xj

)
, which expresses that for

each 1 ≤ ℓ ≤ 2|τ | the type πℓ is realized by at least |πℓ| distinct points, is of quadratic size in
the size n of the model.

For clean results on formula size, we define a constant cτ := 15|τ |2|τ |. Note that we
consider cτ to be constant as it only depends on the size of the alphabet τ , which in our
context is constant.

▶ Theorem 1. Let M be a model of size n. Let T = {π1, . . . , πℓ} be the types realized in
M, enumerated in ascending order of numbers of realizing points. Now we have the bound
C(M) ≤ min(3|πℓ| + cτ , 6|πℓ−1| + cτ ).

Proof. We obtain two different upper bound formulas. Due to lack of space, we only give
one of them in full here; see A.1 for details on the second formula.

We begin with an easy formula we use extensively below. For a type π and x ∈ Var , let

π(x) :=
∧

P ∈π

P (x) ∧
∧

P /∈π

¬P (x).

The formula π(x) states that the point x realizes the type π.
Let T = {π1, . . . , πℓ} be a set of τ -types and let m be a sequence of r ≤ ℓ positive integers

with 0 < m1 ≤ · · · ≤ mr. Let M be a model of size n, where exactly the types in T are
realized. We will make sure of this with a separate formula later. The formula φ(T,m) below
is satisfied by such a model M if and only if for every i ∈ {1, . . . , r}, the model M has at
least mi points that realize the type πi. Note that we do not assert anything about the types
πr+1, . . . , πℓ, but we still need to mention them in the formula. We define

ψmr
:= y ̸= xmr−1 ∧

∨
j∈{1,...,r}

mj=mr

(πj(x1) ∧ πj(y))
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ψi := y ̸= xi−1 ∧ ψi+1, if mj ̸= i for all j ∈ {1, . . . , r}, and

ψi := y ̸= xi−1 ∧ (
∨

j∈{1,...,r}
mj=i

(πj(x1) ∧ πj(y)) ∨ ψi+1), otherwise.

ψ1 := ψ2, if mj ̸= 1 for all j ∈ {1, . . . , r}, and

ψ1 :=
∨

j∈{1,...,r}
mj=1

πj(x1) ∨ ψ2, otherwise.

φ(T,m) := ∀x1 . . . ∀xmr−1∃y(
∨

j∈{r+1,...,ℓ}

πj(x1) ∨ ψ1)

We proceed with an explanation of how the formula φ(T,m) works. We assume that precisely
the types in T are realized in the model M to be evaluated, so we know that the first universal
variable x1 is always attached to a point that realizes one of the types in T . The formula first
checks if x1 realizes one of the types πr+1, . . . , πℓ that we wish to ignore. The recursion then
handles the rest of the types, starting with the smallest ones. If the type πj of x1 has mj = 1,
nothing further is stated as we already know the type is realized in M by our assumption.

Now, consider a type πj with, say, mj = 5. Up to the subformula ψ5, the recursion of our
formula has insisted that y ̸= xi for i ∈ {1, 2, 3, 4}. Note that the formula does not contain
any atomic formulas xi1 ̸= xi2 . The crucial point is that since the variables x1, . . . , x4 are
universally quantified, the existence of y must hold also in the case, where x1, . . . x4 happen
to all be different points of the same type πj . If the evaluated model M has at least 5 points
that realize πj , then the formula holds as another point y that realizes πj can be found. If,
however, M has only 4 points that realize πj , then one of the universally quantified tuples
includes precisely those 4 points and another y of the same type cannot be found.

We adopt the notation k = |τ | and compute the size of φ(T,m). The formula has mr

quantifiers. For each type π ∈ T , there are at most two occurrences of the subformula π(x)
(with different variables x). Each subformula π(x) contains k atomic formulas. Thus there
are at most 2k|T | atomic formulas of the form P (x) or ¬P (x). Each inequality y ̸= xi for
1 ≤ i ≤ mr − 1 occurs exactly once, so there are mr − 1 atomic formulas that are equalities
or inequalities. Finally we multiply the number of atomic formulas by two and subtract one
to also account for the binary connectives. The size of φ(T,m) is thus at most

mr + 2(mr − 1 + 2k|T |) − 1 = 3mr + 4k|T | − 3.

We proceed to define our first complete upper bound formula that defines an isomorphism
class of models. Let M be a τ -model with domain M = {1, . . . , n}. Let T = {π1, . . . , πℓ}
be the set of τ -types realized in M and let m = (|π1|, . . . , |πℓ|). Assume further that m is
increasing. The full formula φ(M) is based on bounding the size of every type in T from
below, thus separating it from all non-isomorphic models with the same domain size.

φ(M) :=
ℓ∧

i=1
∃xπi(x) ∧ ∀x

ℓ∨
i=1

πi(x) ∧ φ(T,m)

In addition to the size of φ(T,m) computed above, φ(M) includes |T | + 1 quantifiers and
two occurrences of π(x) for each type π ∈ T , resulting in 2k|T | atomic formulas. Accounting
for the added binary connectives, the size of φ(M) is thus at most

|T | + 1 + 2 · 2k|T | + 3|πℓ| + 4k|T | − 3 = 3|πℓ| + 8k|T | + |T | − 2 ≤ 3|πℓ| + cτ .
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17:8 Description Complexity in FO with Links to Entropy

The second formula ψ(M) of size at most 6|πℓ−1| + cτ states that each type πi with i ≠ ℓ

has exactly |πi| points. See A.1 for details. Both formulas define any model M so we can
always use whichever is smaller, thus proving the claim. ◀

▶ Corollary 2. Let M be a model of size n. Now C(M) ≤ 2n+ cτ .

Proof. A model M corresponding to the tuple (0, . . . , 0, n/3, 2n/3) maximises the value of
the expression min(3|πℓ| + cτ , 6|πℓ−1| + cτ ), getting the value 2n+ cτ . ◀

We now consider defining equivalence classes of ≡d. Recall that an equivalence class of
≡d corresponds to a tuple m = (m1, . . . ,mt), where t = 2|τ |, mi ≤ d for all i ∈ {1, . . . , t},∑t

i=1 mi ≤ n and if
∑t

i=1 mi < n, then mj = d for some j ∈ {1, . . . , t}.

▶ Theorem 3. Let M be a τ -model of size n. Let Mm be the equivalence class of M in
≡d, where m = (m1, . . . ,mt) is the corresponding tuple with the numbers in ascending order.
Let mr be the highest number in m below d. Now Cd(M) ≤ 3d+ 3mr + cτ . Additionally, if
mt−1 < d, then Cd(M) ≤ 6mt−1 + cτ .

Proof. We use the same subformulas from Theorem 1 to obtain two linear size formulas. See
A.2 for details. The first formula of size 3d+ 3mr + cτ works for any tuple m and states that
each type πi has exactly mi points if mi < d and at least d points if mi = d. The second
formula of size 6mt−1 + cτ states that each type πi with i ̸= t has exactly mi points and
works only if all types except possibly πt have less than d points. ◀

Note that since mr < d, we have 6mr < 3d+ 3mr so the bound for the special case is
tighter than the general one. While we must use the more general bound for any m with at
least two instances of d, the tighter bound is significantly better for small classes with only
one instance of d in their tuple. For example, the class with the tuple (0, . . . , 0, 1, d) gets an
upper bound of 6 + cτ regardless of the number d. At the other extreme, the class with the
tuple (0, . . . , 0, d− 1, d, d) gets an upper bound of 3d+ 3(d− 1) + cτ = 6d− 3 + cτ .

We again directly obtain a global upper bound on description complexity.

▶ Corollary 4. Let M be a τ -model of size n. Now Cd(M) ≤ 6d− 3 + cτ .

4 Lower bounds via formula size games

In this section, we show lower bounds that match the upper bounds of Section 3 up to a
factor of 2. We use the formula size game for first-order logic defined in [10]. We modify
the game slightly to correspond to formulas in prenex normal form as this form does not
affect the size of the formula. In addition, we introduce a second resource parameter q that
corresponds to the number of quantifiers in the separating formula. The game consists of
two phases: a quantifier phase, where only ∃-moves and ∀-moves can be made by S, and an
atomic phase, where only ∨-moves, ∧-moves and atomic moves can be made. Before the
definition of the game, we define some notation.

Let A be a set of τ -models and let φ ∈ FO[τ ]. We denote A ⊨ φ to mean (M, s) ⊨ φ for
all (M, s) ∈ A. Similarly, we denote A ⊨ ¬φ to mean (M, s) ⊭ φ for all (M, s) ∈ A.

For an interpretation s, a point a ∈ M and a variable x ∈ Var , we denote by s[a/x] the
interpretation s′ such that s′(x) = a and s′(y) = s(y) for all y ∈ dom(s), y ̸= x. Let A be
a set of τ -models with the same domain M and let f : A → M be a function. We denote
by A[f/x] the set {(M, s[f(M, s)/x]) | (M, s) ∈ A}. Intuitively, the function f gives the
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new interpretation of the variable x for each model (M, s) ∈ A. Additionally, we denote
A[M/x] := {(M, s[a/x]) | (M, s) ∈ A, a ∈ M}. Here the variable x is given all possible
interpretations, usually leading to a larger set of models. We next define the game.

Let A0 and B0 be sets of τ -models and let r0, q0 ∈ N with r0 > q0. The FO prenex
formula size game FSτ (r0, q0,A0,B0) has two players: Samson (S) and Delilah (D).
Positions of the game are of the form (r, q,A,B), where r, q ∈ N and A and B are sets of
τ -models. The starting position is (r0, q0,A0,B0). In a position (r, q,A,B), if r = 0, then
the game ends and D wins. Otherwise, if q > 0, the game is said to be in the quantifier
phase and S can choose from the following three moves:

∃-move: S chooses f : A → M and xi ∈ Var . The new position is
(r − 1, q − 1,A[f/xi],B[M/xi]).
∀-move: The same as the ∃-move with the roles of A and B switched.
Phase change: S moves on to the atomic phase and the new position is (r, 0,A,B).

In a position (r, q,A,B), if q = 0, the game is said to be in the atomic phase and S can
choose from the following three moves:

∧-move: S chooses r1, r2 ∈ N and B1,B2 ⊆ B such that r1 + r2 + 1 = r and B1 ∪ B2 = B.
Then D chooses the next position from the options (r1, 0,A,B1) and (r2, 0,A,B2).
∨-move: The same as the ∧-move with the roles of A and B switched.
Atomic move: S chooses an atomic formula α. The game ends. If A ⊨ α and B ⊨ ¬α,
then S wins. Otherwise, D wins.

The prenex formula size game characterizes separation of model classes with formulas of
limited size in the following way.

▶ Theorem 5. Let A0 and B0 be sets of τ -models and let r0, q0 ∈ N with r0 > q0. The
following are equivalent
1. S has a winning strategy in the game FSτ (r0, q0,A0,B0),
2. there is an FO[τ ]-formula φ in prenex normal form with size at most r0 and at most q0

quantifiers such that A0 ⊨ φ and B0 ⊨ ¬φ,
3. there is an FO[τ ]-formula φ with size at most r0 and at most q0 quantifiers such that

A0 ⊨ φ and B0 ⊨ ¬φ.

Proof. For the simple inductive proof on how the game works, see [10]. The slight modifica-
tions of the separate parameter q for quantifiers and prenex normal form do not change the
proof in any meaningful way so we omit it. For the equivalence between the second and third
item, note that transforming a formula into prenex form and renaming variables as needed,
does not increase its size in full FO with no restrictions on, say, the number of variables. ◀

We take a moment to build some intuition on the formula size game. The role of player
S is to show that the model sets A0 and B0 can be separated by some FO formula with
restrictions on size and number of quantifiers. To achieve this, S starts building the supposedly
separating formula, starting from the quantifiers.

Each move of the game corresponds to an operator or atomic formula. When making
a move, S makes choices for each model that reflect how that particular model is going to
satisfy the formula, in the case of models in A, or not satisfy it, in the case of models in B.
For example, for an ∃-move, S must choose for each model in A the point to quantify. This
is done via the function f . For a ∧-move, S chooses for each model in B one of the conjuncts,
asserting that the model will not satisfy that conjunct.

The resources r0 and q0 restrict the moves of S. He can only make at most q0 quantifier
moves in the quantifier phase of the game. The resource r0 limits the size of the entire
separating formula, including the quantifiers. In the atomic phase, for ∧-moves, S must
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divide the remaining resource r between the two conjuncts. It is then the role of D to choose
the conjunct she thinks cannot be completed in such a way that the models present are
separated. Once D has chosen a conjunct, the other conjunct not chosen is discarded for the
rest of the game. Thus, the entire separating formula need not be constructed.

We move on to our lower bounds. Let M be a τ -model with domain M = {1, . . . , n} and
let T = {π1, . . . , πℓ} be the types realized in M, enumerated in ascending order of numbers
of realizing points, like in the previous section. We assume that ℓ ≥ 2 as a model, where all
points are of the same type, is easily defined by a constant-sized formula. We use the formula
size game to show a lower bound of the order 3|πℓ−1| for the description complexity of M.

Let M′ be the model obtained from M by changing the type of one point from πℓ−1 to
πℓ. We define A0 = {(M, ∅)} and B0 = {(M′, ∅)}. We will show that separating the sets A0
and B0 requires a formula of size at least 3|πℓ−1| − 3. We begin with an easy lemma on the
number of quantifiers required to separate A0 from B0.

▶ Lemma 6. If φ separates A0 from B0, then φ has at least |πℓ−1| quantifiers.

Proof. Let r0 > |πℓ−1| − 1. We show that D has a winning strategy for the formula size
game FSτ (r0, |πℓ−1| − 1,A0,B0). By Theorem 5, this proves the claim.

We show that in any position of such a game, there is a pair (M, s) ∈ A and (M′, s′) ∈ B
of models that cannot be separated by any atomic formula. At the starting position, the
single models in A0 and B0 are such a pair as no variables have been quantified. We proceed
to show that D can maintain this pair of models through any move of S. We only treat one
of each pair of dual moves as the other is handled the same way.
∃-move: S chooses a function f : A → M . We focus on the point a = f(M, s) chosen for

the model (M, s) ∈ A. On the other side, copies of (M′, s′) ∈ B are generated for each
point b ∈ M , but we restrict attention to only one as follows. If there is a previously
quantified variable x with s(x) = a, then we choose b = s′(x). Otherwise we choose a
new point b of the same type as a. If the type of a is πi with i < ℓ− 1, then M and M′

have the same points of type πi so we may choose b = a. If i ∈ {ℓ− 1, ℓ}, then both M

and M′ have at least |πℓ−1| − 1 points of the type πi so we may choose a fresh b of the
same type. The new pair of models found in this manner is clearly atomic-equivalent.

Phase change: With no changes to the sets of models A and B, the important pair of models
is still clearly present in the next position.

∧-move: S chooses splits r1 + r2 + 1 = r and B1 ∪ B2 = B. Now the model (M′, s′) ∈ B
is in B1 or B2 and A remains unchanged. Thus our model pair is present in one of the
positions (r1, 0,A,B1) and (r2, 0,A,B2). By choosing such a position, D maintains the
pair of models.

Atomic move: The model pair is atomic-equivalent, so D wins after any atomic move. ◀

The next lemma concerns the atomic phase. We show that if the number of different
atomic formulas required to separate the model sets A and B is too large, D wins the game.

▶ Lemma 7. In a game FSτ (r0, q0,A0,B0), let (r, 0,A,B) be the first position of the atomic
phase and let Γ be a minimum size set of atomic formulas such that for every (M, s) ∈ A
and (M′, s′) ∈ B, there is α ∈ Γ with (M, s) ⊨ α and (M′, s′) ⊭ α. If r < 2|Γ| − 1, then D
has a winning strategy from the position (r, 0,A,B).

Proof. We show that every move of S either ends the game in a win for D, or maintains the
condition r < 2|Γ| − 1. Assume this condition holds in position (r, 0,A,B).
Atomic move: S chooses an atomic formula α. Since 1 ≤ r < 2|Γ| − 1, we have |Γ| ≥ 2 so

the single atomic formula α does not separate A from B and D wins.
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∧-move: S chooses splits r1 + r2 + 1 = r and B1 ∪ B2 = B. Assume for contradiction
that there are sets Γ1 and Γ2 of atomic formulas such that Γi separates A from Bi and
ri ≥ 2|Γi| − 1. Now for every pair of models (M, s) ∈ A and (M′, s′) ∈ B we have
(M′, s′) ∈ B1 or (M′, s′) ∈ B2 so the set Γ1 ∪ Γ2 separates A from B. Recalling that Γ is
a separating set of minimum size and r < 2|Γ| − 1, we also have r < 2|Γ1 ∪ Γ2| − 1 ≤
2(|Γ1| + |Γ2|) − 1 ≤ r1 + r2 + 1 = r, which is a contradiction. Thus we have r1 < 2|Γ1| − 1
or r2 < 2|Γ2| − 1. By choosing the correct position D can maintain the required condition.

∨-move: Identical to the ∧-move with the roles of A and B switched. ◀

We are now ready for the main theorem of this section.

▶ Theorem 8. Let M be a model of size n. Let T = {π1, . . . , πℓ} be the types realized
in M, enumerated in ascending order of numbers of realizing points, where ℓ ≥ 2. Now
C(M) ≥ 3|πℓ−1| − 3.

Proof. We begin with a definition. Let Γ be a set of atomic FO-formulas. We denote the
set of variables occurring in formulas of Γ by V (Γ). We define the variable graph of Γ as
G(Γ) = (V (Γ), E(Γ)), where (x, y) ∈ E(Γ) iff x = y ∈ Γ or x ̸= y ∈ Γ. We say that ∆ ⊆ Γ is
a connected component of Γ if G(∆) is a maximal connected subgraph of G(Γ).

For convenience, we denote here m := |πℓ−1|. Consider a formula size game FSτ (3m−
4, q0,A0,B0). We show that D has a winning strategy for this game, thus proving the claim
by Theorem 5. By Lemma 6 we see that to have a chance of winning, S must begin the game
with at least m quantifiers. We then move on to the first position (r, 0,A,B) of the atomic
phase, where r ≤ 2m− 4. Let Γ be a set of atomic formulas such that for every (M, s) ∈ A
and (M′, s′) ∈ B, there is α ∈ Γ such that (M, s) ⊨ α and (M′, s′) ⊭ α. If |Γ| ≥ m − 1 for
every such Γ, then r ≤ 2m− 4 = 2(m− 1) − 2 < 2|Γ| − 1 so D has a winning strategy by
Lemma 7. We now assume for contradiction that there exists such a Γ with |Γ| ≤ m− 2.

Consider the connected components ∆ of Γ. Since a connected graph with k edges has at
most k + 1 vertices, for every ∆ at most m− 1 variables occur in the formulas of ∆.

We now explain why there is a single pair of models (M, s) ∈ A and (M′, s′) ∈ B such
that they are atomic equivalent with respect to the variables in V (∆) for every connected
component ∆ of Γ. We consider the quantifier moves S made in the quantifier phase in the
order the moves were made. For every variable x used in a ∃-move, we consider ∆ such that
x ∈ V (∆). We proceed as in the proof of Lemma 6, with respect to only the variables in
V (∆). That is, if there is a previously quantified variable y ∈ V (∆) such that s(y) = s(x),
we choose the opposing model where s′(x) = s′(y). Otherwise, we choose a point with no
variables of V (∆) attached. Each ∆ uses at most m− 1 variables so we do not run out of
fresh points of any type. The same protocol works for ∀-moves as well.

Note that the choices of models are made based on the connected component ∆ of x,
completely independently of other components. Since every variable x is in exactly one
component ∆, this means that the resulting pair of models is simultaneously atomic equivalent
with regards to each component separately. Thus this model pair cannot be separated by
any atomic formula in Γ. This contradiction with the definition of Γ proves the claim. ◀

We now consider lower bounds in the setting of FOd. Recall that an equivalence class
of ≡d is characterized by a tuple (m1, . . . ,mt), where t = 2|τ |, mi ≤ d,

∑t
i=1 mi ≤ n and if∑t

i=1 mi < n, then mj = d for some j. Let m = (m1, . . . ,mt) be such a tuple in ascending
order of the numbers mi. If

∑t
i=1 mi = n, then m corresponds to an isomorphism class and

the lower bounds above work as is. Thus we assume that
∑t

i=1 mi < n and consequently
mt = d. By taking a model M in the equivalence class Mm with a maximal number of

CSL 2025



17:12 Description Complexity in FO with Links to Entropy

points of the type πt, we can directly obtain the model M′ as above and get a lower bound
on defining the class Mm in full FO. This bound directly extends also to FOd, as limiting
quantifier rank gives no advantage in terms of formula size.

▶ Corollary 9. Let Mm be an equivalence class of ≡d, where m = (m1, . . . ,mt) is the
corresponding tuple with the numbers in ascending order. Now C(Mm) ≥ 3mt−1 − 3.

5 Expected description complexity

Using Theorems 1 and 8, we can determine asymptotically the expected description complexity
of a random τ -model. Here by random we mean that the model is sampled uniformly at
random from the set of all τ -models of size n. That is, we determine the asymptotic behavior
of the quantity En[C] := 1

2|τ|n

∑
M C(M) as n → ∞, where the sum is taken over all the

τ -models M of size n.
We say that a τ -model M is balanced, if for every τ -type π, we have ||π|M − n

2|τ| | = o(n).
In other words, a model is balanced if every type is realized roughly the same number of
times, allowing for a sublinear discrepancy. We use the well-known Chernoff bounds to
establish that a random model is very likely balanced.

▶ Proposition 10 (Multiplicative Chernoff bound). Let X :=
∑n

i=1 Xi be a sum of independent
0-1-valued random variables, where Xi = 1 with probability p and Xi = 0 with probability
1 − p. Let µ := E[X]. Now, for every 0 ≤ δ < 1 we have that Pr[|X − µ| ≥ δµ] ≤ 2e−δ2µ/3

Proof. See for example Corollary 4.6 in [19]. ◀

▶ Lemma 11. The probability that a random τ -model of size n is balanced is at least
1 − 2|τ |+1/n.

Proof. A routine calculation using Proposition 10. See A.3 for details. ◀

The previous lemma gives a rough characterization of random τ -models. Using this
characterization together with Theorem 8 we can determine asymptotically the expected
description complexity of a random τ -model.

▶ Theorem 12. En[C] ∼ 3n
2|τ|

Proof. To give an upper bound on En[C] we first rewrite it as follows:

En[C] = 1
2|τ |n

∑
M balanced

C(M) + 1
2|τ |n

∑
M not balanced

C(M) (1)

Using Corollary 2 and Lemma 11 we see that

1
2|τ |n

∑
M not balanced

C(M) ≤ 1
2|τ |n

∑
M not balanced

2n+ cτ = Pr[M is not balanced] · (2n+ cτ )

≤ 2|τ |+1

n
· (2n+ cτ ) = 2|τ |+2 + cτ 2|τ |+1

n
= O(1).

Since we are interested in the asymptotic behavior of En[C], the above shows that we can
safely concentrate on the first sum in Equation (1). Using Theorems 1 and 8 we see that if
M is balanced, then 3n

2|τ| − o(n) ≤ C(M) ≤ 3n
2|τ| + o(n). Hence

Pr[M is balanced]·
(

3n
2|τ | −o(n)

)
≤ 1

2|τ |n

∑
M balanced

C(M) ≤ Pr[M is balanced]·
(

3n
2|τ | +o(n)

)
.
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Since Pr[M is balanced] goes to one as n → ∞, we see that 1
2|τ |n

∑
M balanced

C(M) ∼ 3n
2|τ | , which

is what we wanted to show. ◀

6 Entropy and description complexity

In this section we establish results that illustrate how entropy and description complexity relate
to each other. As one can already imagine after seeing our results on description complexity,
there can be models with very close entropies and quite different description complexities. We
can nevertheless use our results to exclude many a priori possible combinations of description
complexity and entropy. For notational simplicity, we adopt the notation t := 2|τ |.

We begin by showing that the Boltzmann and Shannon entropies of a single model
are essentially the same up to normalization. This underlines the fact that both entropies
measure the same thing: the randomness of a model.

▶ Theorem 13. Let M be a τ -model of size n. Now

HS(M) − 1
n
HB(M) < (t− 1) log(

√
2πn)

n
− log(e)

12n2 + t log(e)
12n2 + n

.

Proof. Using the quantitative version of Stirling’s approximation given in [21], we obtain

HB(M) = log
(

n

n1 . . . nt

)
= log n!

n1! . . . nt!
= log(n!) −

t∑
i=1

log(ni!)

< log
(√

2πn
(
n

e

)n

e
1

12n

)
−

t∑
i=1

log
(√

2πni

(
ni

e

)ni

e
1

12n+1

)
= log(

√
2πn) + n log(n) − n log(e) + log(e)

12n

−
t∑

i=1

(
log(

√
2πni) + ni log(ni) − ni log(e) + log(e)

12n+ 1

)

≤ n log(n) −
t∑

i=1
ni log(ni) − (t− 1) log(

√
2πn) + log(e)

12n − t log(e)
12n+ 1 .

Note that the term n log(e) is cancelled out above because n1 + · · · + nt = n. Using this
same fact we also easily see that

HS(M) =
t∑

i=1
−ni

n
log ni

n
=

t∑
i=1

ni

n
log(n) −

t∑
i=1

ni

n
log(ni) = log(n) −

t∑
i=1

ni

n
log(ni).

Finally, by dividing HB(M) with n we obtain

HS(M) − 1
n
HB(M) < (t− 1) log(

√
2πn)

n
− log(e)

12n2 + t log(e)
12n2 + n

. ◀

The above quantitative result readily implies that the Boltzmann and Shannon entropies
of a single model are asymptotically the same up to normalization. A connection that bears
a similarity to the one pointed out here has also been noted briefly in [15].

▶ Corollary 14. Let (Mn)n∈Z+ be a sequence of τ -models where each Mn has size n. Now
HS(Mn) ∼ 1

nHB(Mn) as n → ∞.
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The above results show that for the connections to description complexity, we could use
either of the two notions of entropy. We opt for Shannon entropy here.

We will next use results from Sections 3 and 4 to prove two theorems that give bounds
on description complexity in terms of Shannon entropy. Recall from Section 3 the constant
cτ := 15|τ |2|τ |. The first of our two theorems gives global upper and lower bounds on
description complexity based on the same edge case distributions.

▶ Theorem 15. Let p ∈ [0, 1
t [. If HS(M) > ((t− 1)p− 1) log(1 − (t− 1)p) − (t− 1)p log(p),

then 3np− 3 < C(M) < 3n(1 − (t− 1)p) + cτ .

Proof. Let f(p) := ((t− 1)p− 1) log(1 − (t− 1)p) − (t− 1)p log(p). The function f(p) gives
the entropy of a τ -model M′ corresponding to the tuple (np, . . . , np, n(1 − (t− 1)p)), where
n(1 − (t − 1)p) > np for the given values of p. Since all types but the largest are evenly
distributed, any model, where the largest type has at least n(1 − (t− 1)p) realizing points has
entropy at most HS(M′) = f(p). Therefore if HS(M) > f(p), then the largest type of M has
less than n(1−(t−1)p) realizing points. By Theorem 1, we obtain C(M) < 3n(1−(t−1)p)+cτ .
On the other hand, since the largest type of M has less realizing points than in M′, those
points realize some other type. Therefore the second largest type of M has more than np

realizing points. By Theorem 8, we obtain C(M) > 3np− 3. ◀

The next theorem uses low entropy models with only two realized types to show a better
upper bound on description complexity for low entropy models than the above global one.

▶ Theorem 16. Let p ∈ [0, 1
2 ]. If HS(M) < (p−1) log(1−p)−p log(p), then C(M) < 6np+cτ .

Proof. Let h(p) := (p − 1) log(1 − p) − p log(p). The function h(p) gives the entropy of a
τ -model M corresponding to the tuple (0, . . . , 0, np, n(1 − p)). If HS(M) < h(p), then the
second largest type of M must be smaller than np. Thus, by Theorem 1, C(M) < 6np+cτ . ◀

HS(M)

C(M)

1 2

cτ

3n/4

3n/2

2n+ cτ

(a)

Hd
B(M)

Cd(M)

60

30

100 200

(b)

Figure 1 Figure 1a on the left shows an area that encapsulates all combinations of Shannon
entropy and FO-description complexity for the values |τ | = 2 and n = 1000. Figure 1b on the
right concerns the case of FOd and shows bounds on description complexity in terms of Boltzmann
entropy for values |τ | = 2, n = 100 and d = 10 with the constants −3 and cτ omitted.
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Figure 1a incorporates both of the above theorems as well as Corollary 2 to show an area,
where all possible combinations of Shannon entropy and description complexity must fall.
First, comparing the left side of the plot to the right, we can see that models with very high
entropy have significantly higher description complexity than models with very low entropy.

We can also see from Figure 1a that the gap between our upper bounds and lower bounds
is only constant at both extremes of entropy. For models with middling entropy, the gap is
at its largest. This is because middling values of entropy can be realized by models with
very different distributions of types, leading to different description complexity.

We conjecture that the upper bound given by Theorem 1 is in reality tight up to the
constant cτ . Now, recall that for any single model, our upper and lower bounds have a worst
case gap of a factor of 2. Therefore, assuming that our conjecture is true, the lower bound
would only rise to at most double its current height. In other words, the general picture
illustrated by Figure 1a would not be significantly different under our conjecture.

We proceed to show that similar relationships between description complexity and entropy
hold also in the case of limited quantifier rank. As the classes of ≡d contain multiple different
isomorphism types of models, it is not clear how to define Shannon entropy. Boltzmann
entropy, however, is still straightforward so we use Boltzmann entropy here. We formulate
similar theorems to those above for full FO.

▶ Theorem 17. Let h ∈ {1, ..., d−1}. If Hd
B(M) > log

(
n

h...h n−(t−1)h

)
, then Cd(M) > 3h−3.

Proof. Let f(n, h) = log
(

n
h...h n−(t−1)h

)
. The function f(n, h) gives the Boltzmann entropy

of the class of models Mm, where m = (h, . . . , h, d). Any class of models obtained from this
one by lowering any of the numbers in the tuple is clearly smaller than Mm and thus has
lower Boltzmann entropy. Thus, for any larger class of models the second largest number in
its tuple must be greater than h. By Corollary 9, we obtain Cd(M) > 3h− 3. ◀

▶ Theorem 18. Let h ∈ {1, . . . , d− 1}. If Hd
B(M) < log

(
n
h

)
, then Cd(M) < 6h+ cτ .

Proof. The function g(n, h) = log
(

n
h

)
gives the Boltzmann entropy of a class Mm of models,

where m = (0, . . . , 0, h, d). Now every class of models, where the second largest number
in the tuple is at least h, is larger than or equal to Mm. Thus if Hd

B(M) < g(n, h), then
the class of M is smaller and the second largest number in its tuple is smaller than h. By
Theorem 3 we obtain Cd(M) < 6h+ cτ . ◀

We again have a plot in Figure 1b, where the possible combinations of entropy and
description complexity lie between the two chopped lines. This time, we plotted from the
above theorems 3h for the lower bound and 6h for the upper bound, omitting the constants
−3 and cτ . For these low values of n and d, the constants would have warped the picture in
a significant way. With high enough n and d, the constants are clearly negligible, but for
such values, the Boltzmann entropy quickly becomes impractical to calculate as the model
class sizes explode. We provide a plot of the leading terms for the values n = 100 and d = 10
without the constants to illustrate the trends one would see for higher values of n and d.

We see that the first observation we made for full FO still holds. The models with
very high entropy have significantly higher description complexity than those with very low
entropy. Concerning the gap between the upper and lower bounds, it is again constant at
the extremes. The largest gap can now be found significantly before the halfway point of
entropy, unlike for full FO. This is because the limit d of quantifier rank quite quickly cuts
short the growth of the upper bound while the lower bound grows slower.
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7 Conclusion

We have studied the description complexity of unary models, obtaining bounds for FO and
FOd. We have found the asymptotic description complexity of a random unary structure and
studied the relation between Shannon entropy and description complexity – also observing
a connection between Boltzmann and Shannon entropy. Links to entropy can be useful as
computing entropy is significantly easier than determining description complexity.

An obvious future goal would be to close the gaps between the upper and lower bounds.
Generalizing to full relational vocabularies is also interesting, although this seems to require
highly involved arguments. The part on entropy would there relate to Boltzmann entropy, as
there is no obvious unique definition for Shannon entropy in the k-ary scenario.
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A Appendix

A.1 Proof of Theorem 1 continued
We define here the second upper bound formula ψ(M) of size at most 6|πℓ−1| + cτ , along
with required subformulas.

Let T , m and M be as in the proof so far. We define another formula χ(T,m) below.
Now the model M satisfies χ(T,m) if and only if for every i ∈ {1, . . . , r}, the model M has
at most mi points that realize the type πi. We again do not assert anything about the types
πj with no corresponding mj .
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θmr := y = xmr ∨
∨

j∈{1,...,r}
mj=mr

(πj(x1) ∧ ¬πj(y))

θi := y = xi ∨ θi+1, if mj ̸= i for all j ∈ {1, . . . , r}, and

θi := y = xi ∨ (
∨

j∈{1,...,r}
mj=i

(πj(x1) ∧ ¬πj(y)) ∨ (
∧

j∈{1,...,r}
mj=i

¬πj(x1) ∧ θi+1), otherwise.

χ(T,m) := ∀x1∃x2 . . . ∃xmr
∀y(

∨
j∈{r+1,...,ℓ}

πj(x1) ∨ θ1)

We again explain how the above formula works. Note that directly taking the negation
of the formula φ(T,m) would not work as we are dealing with all types at once. We instead
again start with a universally quantified variable x1 that is attached to a point realizing a
type πj ∈ T . We first check if πj is one of the types we can safely ignore. Assume then that
mj = 5. The existentially quantified variables x2, . . . , x5 are then chosen to be of the same
type πj as x1 in such a way that every point of the type πj has at least one xi attached to
it. Since mj = 5, the first step of the recursion insists that either y is the same as x1 or
the recursion continues. When the recursion arrives at θ5, we cannot go any further, as to
continue, we would need mj ̸= 5. We are instead left with the two options of either y = x5
or y realizes a different type than x1. This amounts to saying that there are no more than 5
points that realize the type πj .

The crucial point of the formula χ(T,m) is that the first universally quantified variable
x1 allows us to use the same existential quantifiers to count all types at once. To ensure that
we do not require all of the types to be the same size, we restrict the type realized by x1
before continuing with the recursion.

We compute the size of χ(T,m). The formula has mr + 1 quantifiers. For each type π,
the subformula π(x) occurs at most three times and for at least one type with |π| = mr, only
two times. This results in 3k|T | − k atomic formulas of the form P (x) or ¬P (x). For the
equalities and inequalities, each equality y = xi for 1 ≤ i ≤ mr occurs exactly once, for a
total of mr such atomic formulas. Accounting for the binary connectives, the size of χ(T,m)
is thus at most

mr + 1 + 2(mr + 3k|T | − k) − 1 = 3mr + 6k|T | − 2k.

Our second complete upper bound formula ψ(M) avoids counting the type πℓ with the
most realizing points by bounding the size of all other types from above and from below.
For this formula we denote by m \ |πℓ| the sequence (|π1|, . . . , |πℓ−1|). We define

ψ(M) :=
ℓ∧

i=1
∃xπi(x) ∧ ∀x

ℓ∨
i=1

πi(x) ∧ φ(T,m \ |πℓ|) ∧ χ(T,m \ |πℓ|).

The numbers of new quantifiers and atomic formulas are the same as for φ(M). Accounting
for the binary connectives, including the one connecting φ(T,m \ |πℓ|) and χ(T,m \ |πℓ|),
the size of ψ(M) is now at most

|T | + 1 + 2(k|T | + k|T |) + 3|πℓ−1| + 4k|T | − 3 + 3|πℓ−1| + 6k|T | − 2k + 1
= 6|πℓ−1| + 14k|T | + |T | − 2k − 1 ≤ 6|πℓ−1| + cτ .
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A.2 Proof of Theorem 3
Let m = (m1, . . . ,mt) be a tuple corresponding to a class of ≡d, ordered in the following way.
The first numbers m1, . . . ,mr are the ones greater than 0 and smaller than d in ascending
order. The numbers mr+1, . . . ,mℓ are all equal to d, and finally the numbers mℓ+1, . . . ,mt

are all equal to 0.
Using this order for the types, the set T = {π1, . . . , πℓ} is now the set of types realized in

models of the class and the first r types are each realized exactly mi < d times. This is in
line with the notation of the formulas for full FO above.

Our first formula works for any m. The formula states that each type πj is realized at
least mj times and furthermore, the ones with mj < d are realized at most mj times.

φd(m) :=
ℓ∧

i=1
∃xπi(x) ∧ ∀x

ℓ∨
i=1

πi(x) ∧ φ(T, (m1, . . . ,mℓ)) ∧ χ(T, (m1, . . . ,mr))

In the same way as for ψ(M) in the proof of Theorem 1, the size of φd(m) is at most

|T | + 1 + 2(k|T | + k|T |) + 3d+ 4k|T | − 3 + 3mr + 6k|T | − 2k + 1
= 3d+ 3mr + 14k|T | + |T | − 2k − 1 ≤ 3d+ 3mr + cτ .

Our second formula is only for the special case, where there is exactly one mj equal to d.
In this case, as with full FO, we can avoid counting the type with the most realizing points.
The rest of the types πj have mj < d and the formula states that each πj is realized at least
and at most mj times.

ψd(m) :=
ℓ∧

i=1
∃xπi(x) ∧ ∀x

ℓ∨
i=1

πi(x) ∧ φ(T, (m1, . . . ,mr)) ∧ χ(T, (m1, . . . ,mr))

Again in the same way as for ψ(M) in the proof of Theorem 1, the size of ψd(m) is at most

|T | + 1 + 2(k|T | + k|T |) + 3mr + 4k|T | − 3 + 3mr + 6k|T | − 2k + 1
= 6mr + 14k|T | + |T | − 2k − 1 ≤ 6mr + cτ .

The upper bounds of the claim follow.

A.3 Proof of Lemma 11
We will use Proposition 10. For every type π and 1 ≤ i ≤ n we associate a 0-1-valued
random variable Xπ,i such that Xπ,i = 1 with probability 2−|τ | and Xπ,i = 0 with probability
1 − 2−|τ |. Intuitively this is an indicator random variable for the event “the ith element
received the type π”. Now Xπ =

∑n
i=1 Xπ,i is a random variable that counts the number of

times π is realized. Clearly E[Xπ] = n/2|τ |, which also holds for every type π. Set µ := n/2|τ |

and δ(n) :=
√

3
2|τ|

ln(n)
n . Now

2e−δ(n)2µ/3 = 2n−1

and

δ(n)µ =
√

3
2|τ |

√
2|τ |

√
ln(n)n.
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Thus, by Proposition 10, we know that

Pr
[
|Xπ − µ| ≥

√
3

2|τ |
√

2|τ |

√
ln(n)n

]
≤ 2n−1

Applying the union bound, we also see that

Pr
(

∃π : |Xπ − µ| ≥
√

3
2|τ |

√
2|τ |

√
ln(n)n

)
≤

∑
π

Pr
[
|Xπ − µ| ≥

√
3

2|τ |
√

2|τ |

√
ln(n)n

]
≤ 2|τ |+1n−1

Thus, with probability at least 1 − 2|τ |+1/n in a random model M of size n we have for every
type π that∣∣∣∣|π|M − n

2|τ |

∣∣∣∣ ≤
√

3
2|τ |

√
2|τ |

√
ln(n)n.

Hence, with probability at least 1 − 2|τ |+1/n a random model of size n is balanced.
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