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Abstract
Multi-priced timed automata (MPTA) are timed automata with observer variables whose derivatives
can change from one location to another. Observers are read-once variables: they do not affect the
control flow of the automaton and their value is output only at the end of a run. Thus MPTA lie
between timed and hybrid automata in expressiveness. Previous work considered observers with
non-negative slope in every location. In this paper we treat observers that have both positive and
negative rates. Our main result is an algorithm to decide a gap version of the reachability problem
for this variant of MPTA. We translate the gap reachability problem into a gap satisfiability problem
for mixed integer-real systems of nonlinear constraints. Our main technical contribution – a result of
independent interest – is a procedure to solve such contraints via a combination of branch-and-bound
and relaxation-and-rounding.
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1 Introduction

Timed automata [1] are a widely studied model of real-time systems that extend classical
finite state-automata with real-valued variables, called clocks, that evolve with derivative
one and which can be queried and reset along transitions. Multi-Priced Timed Automata
(MPTA) [7, 10, 13, 25] further extend timed automata with variables, called observers, that
have a non-negative slope that can change from one location to another. Such variables can
model the accumulation of costs or the use of resources along a computation, such as energy
and memory consumption in embedded systems, or bandwidth in communication networks.
For this reason MPTA are widely used to model multi-objective real-time optimisation
problems [9].

While observers exhibit richer dynamics than clocks, they may not be queried while
taking edges. Thus MPTA lie between timed automata (for which reachability is decidable)
and linear hybrid automata (for which reachability is undecidable [17]). A natural class of
verification problems for MPTA concerns reachability subject to constraints on the observers.
A simple variant is the Domination Problem, which asks to reach a location subject to upper
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18:2 Reachability for Multi-Priced Timed Automata with Positive and Negative Rates

bounds on each observer. Here one can think of the constraints as representing upper bounds
on accumulated costs or resources. The Domination Problem was shown decidable in [21]
using well-quasi-orders and was later shown to be PSPACE-complete in [12, Theorem 4].

A more expressive version of the Domination Problem partitions the set of observers into
cost variables and reward variables and asks to reach a location subject to upper bounds on
costs and lower bounds on rewards. This variant is, unfortunately, undecidable. However it
is shown in [12, Theorem 6] that a gap version of the problem – called the Gap Domination
Problem – is decidable. In the Gap Domination Problem the input additionally contains a
slack ε > 0. The objective is to distinguish the case that the constraints on the observers can
be satisfied with slack ε from the case in which they cannot be satisfied at all. In general,
gap problems are decision versions of approximation problems [3, Chapter 18.2]. Decidability
of the Gap Domination Problem implies that the Pareto curve of undominated reachable
cost vectors can be computed to arbitrary precision (cf. [11]).

The objective of this paper is to address a more expressive variant of MPTA than hitherto
considered: namely those in which observers can have both positive and negative rates.
Alternatively, and equivalently, one can consider MPTA with nonnegative rates, but in which
one allows reachability specifications to contain constraints on the difference between two
observers rather than just threshold constraints that compare observers to constants. Indeed,
this extension is motivated by the desire to measure net resource use along computations.
In this more general setting, the Domination Problem, of course, remains undecidable; one
moreover loses monotonicity properties on which previous positive decidability results rely,
including the decision procedure for the Gap Domination Problem given in [12, Theorem 15].
The main result of this paper is to establish decidability (in nondeterministic exponential
time) of the Gap Domination Problem in the presence of positive and negative rates via a
new decision procedure.

We start by recalling a result of [12] that characterises the set of all reachable observer
values for a given MPTA via a system of mixed integer-real nonlinear constraints. Our
main technical contribution, which is of independent interest, shows how to solve a gap
version of the satisfiability problem for such systems of constraints. Our method involves a
combination of relaxation-and-rounding and branch-and-bound that relies on Khinchine’s
Flatness Theorem from Diophantine approximation. We formulate a relaxation of the system
of constraints such that a solution to the relaxed version can be rounded to a solution of the
original problem, while unsolvability of the relaxed version permits a branch-and-bound step
that eliminates a variable from the original system of constraints.

Systems of non-linear constraints over integer and real variables appear in many different
domains and are widely studied, although typically not from the point of view of decidability
since most classes of problems with unbounded integer variables are undecidable [16]. Other
than [12], we are not aware of previous work on the gap problem considered here. Kachiyan
and Porkolab [19] showed that it is decidable whether a convex semialgebraic set contains an
integer point; however we work with non-convex sets.

In this paper we consider MPTA with arbitrarily many observers. There is a significant
literature and mature tool support concerning the special case of MPTA with a single
observer, which are variously called Priced Timed Automata or Weighted Timed Automata.
In this case, the optimal cost to reach a given location is computable [2, 6, 20]. In the case of
one cost and one reward observer, one can also compute the optimal reward-to-cost ratio in
reaching a given location [7]. The preceding results use the so-called corner-point abstraction,
which is insufficient for multi-objective model checking. Instead, the present paper implicitly
relies on the simplex-automaton abstraction, introduced in [12], which underlies the non-linear
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constraint problems that are the subject of our main results. All previously mentioned works
involve observers that evolve linearly with time. Observer variables that vary non-linearly
with time are considered in [4]. In the non-linear setting the optimal cost reachability problem
is undecidable in general. Another variant, this time towards greater simplicity, is to consider
observers that are only updated through discrete transitions [26].

2 Automata and Decision Problems

2.1 Multi-Priced Timed Automata
Let R≥0 denote the set of non-negative real numbers. Given a set X = {x1, . . . , xn} of clocks,
the set Φ(X ) of clock constraints is generated by the grammar

φ ::= true | x ≤ k | x ≥ k | φ ∧ φ ,

where k ∈ N is a natural number and x ∈ X . A clock valuation is a mapping ν : X → R≥0
that assigns to each clock a non-negative real number. We denote by 0 the valuation such
that 0(x) = 0 for all clocks x ∈ X . We write ν |= φ to denote that ν satisfies the constraint φ.
Given t ∈ R≥0, we let ν + t be the clock valuation such that (ν + t)(x) = ν(x) + t for all
clocks x ∈ X . Given λ ⊆ X , let ν[λ← 0] be the clock valuation such that ν[λ← 0](x) = 0
if x ∈ λ, and ν[λ← 0](x) = ν(x) otherwise.

A multi-priced timed automaton (MPTA) A = ⟨L, ℓ0, Lf ,X ,Y, E, R⟩ comprises a finite
set L of locations, an initial location ℓ0 ∈ L, a set Lf ⊆ L of accepting locations, a finite set
X of clock variables, a finite set Y of observers, a set E ⊆ L× Φ(X )× 2X × L of edges, and
a rate function R : L→ ZY . Here R(ℓ)(y) is the derivative of the observer y ∈ Y in location
ℓ. Denote by ∥A∥ the length of the description of A, where all integers are written in binary.

A state of A is a triple (ℓ, ν, t) where ℓ is a location, ν a clock valuation, and t ∈ R≥0 is a
time stamp. A run of A is an alternating sequence of states and edges

ρ = (ℓ0, ν0, t0) e1−→ (ℓ1, ν1, t1) e2−→ . . .
em−→ (ℓm, νm, tm) ,

where t0 = 0, ν0 = 0, ti−1 ≤ ti for all i ∈ {1, . . . , m}, and ei = ⟨ℓi−1, φ, λ, ℓi⟩ ∈ E is such
that νi−1 + (ti − ti−1) |= φ and νi = (νi−1 + (ti − ti−1))[λ ← 0] for i = 1, . . . , m. The
run is accepting if ℓm ∈ Lf . The value of such a run is a vector val(ρ) ∈ RY , defined by
val(ρ) =

∑m−1
i=0 (ti+1 − ti)R(ℓi) . We refer to Figure 1 for an example of an MPTA and its

operational semantics.

2.2 The Gap Domination Problem
The Domination Problem is as follows. Given an MPTA A with set Y of observers and
a target γ ∈ RY , decide whether there is an accepting run ρ of A such that val(ρ) ≤ γ

pointwise.
Our formulation of the Domination Problem involves a conjunction of constraints of the

form y ≤ c, where y ∈ Y and c ∈ Q. However such inequalities can encode more general
linear constraints of the form a1y1 + · · ·+ akyk ∼ c, where y1, . . . , yk ∈ Y, a1, . . . , ak, c ∈ Z
and ∼ ∈ {≤,≥, =}. To do this one introduces a fresh observer to denote each linear
term a1y1 + · · ·+ akyk (two fresh observers are needed for an equality constraint). For this
reduction it is crucial that we allow observers with negative rates.

The Domination Problem is PSPACE-complete for MPTA with positive rates only [12,
Theorem 11], but is undecidable if negative rates are allowed [12, Theorem 3]. This motivates
us to consider the Gap Domination Problem – a variant of the above problem in which
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start ȯ = 1 ė = 1
y := 0
z := 0

x ≥ 1?

x := 0

y ≤ 1?

y := 0

z ≤ 3?

Figure 1 The figure shows an MTPA with three clocks x, y, z and two observer variables o, e,
respectively standing for odd and even. The observer variables have slope 0 unless otherwise indicated;
thus o aggregates the total dwell time in the odd state and e aggregates the total dwell time in the
even state. An accepting run is completely determined by a sequence of nonnegative real numbers
d0, . . . , d2k, giving the respective delays between successive transitions. Suppose we wish to reach
the accepting state subject to the two objectives e ≥ 2 and o ≥ 1. This is achieved, among others,
by the run with sequence of time delays 2

3 , 1
3 , 2

3 , 1
3 , 2

3 , 1
3 , 2

3 and the run with integer sequence of
delays 1, 0, 1, 0, 1, 1, 0 (and any convex combination of the two runs). If the inequalities in the
guards on x and y are replaced by equalities then the first run is the unique one realising the two
given objectives. In the case of so-called pure reachability objectives, i.e., exclusively upper bound
constraints or exclusively lower bound constraints on the observers, there is an explicit upper bound
on the granularity of the delays in a run witnessing that the objective is realisable ( 1

3 in the present
example) [12, Section 6]. This no longer holds in the case of reachability objectives that contain
both upper and lower bounds on observers.

the input additionally includes a slack parameter ε > 0. If there is some run ρ such
that val(ρ) ≤ γ − ε then the output should be “dominated” and if there is no run ρ such
that val(ρ) ≤ γ then the output should be “not dominated”. In case neither of these
alternatives hold (i.e., γ is dominated but not with slack ε) then there is no requirement on
the output. The Gap Domination Problem is the decision version of the task of computing
ε-approximate Pareto curve in the sense of [11].

The following proposition and (a generalisation of [12, Propositions 6 and 7]), concerning
the structure of the set of reachable vectors of observer values, allows us to reduce the Gap
Domination Problem to a Diophantine problem. Geometrically the proposition says that
the set of reachable observer vectors consists of a countable union of simplexes, where each
simplex is specified by its vertices – a tuple of integer vectors – and the set of such tuples
is semilinear. The proposition is based on the fact that if there are d observers then any
reachable observer valuation is a convex combination of d + 1 valuations that are respectively
reached along d + 1 runs, all taking the same sequence of edges, in which all transitions occur
at integer time points (see [12] for details).

▶ Proposition 1. Let A be an MPTA with set of observers Y having cardinality d. Then
there is a semilinear set SA ⊆ (ZY)d+1 such that for every accepting run ρ of A there exists
(γ1, . . . , γd+1) ∈ SA for which cost(ρ) lies in the convex hull of {γ1, . . . , γd+1}. Moreover
SA can be written as a union of a collection of linear sets that can be computed in time
exponential in ∥A∥ and each of which has a description length polynomial in ∥A∥.

Proof. The proposition was proved in [12] under the assumption that observers have
nonnegative slope. The general case follows easily. Indeed, given an arbitrary MPTA
A = ⟨L, ℓ0, Lf ,X ,Y, E, R⟩, we define a new MPTA A′, differing from A only in its set of
observers and rate function, such that all observers in A′ have non-negative rates. The set of
observers of A′ is Y ′ := {y+, y− : y ∈ Y} and the rate function R′ is given by

R′(y+)(ℓ) := max(R(y)(ℓ), 0) and R′(y−)(ℓ) := max(−R(y)(ℓ), 0)

for all y ∈ Y and all ℓ ∈ L.
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Define Φ : ZY′ → ZY by Φ(γ)(y) = γ(y+) − γ(y−). If a run ρ of A′ has cost vector γ

then ρ has cost vector Φ(γ) considered as a run of A. Thus if we define SA := Φ(SA′), where
Φ has been lifted pointwise to a linear map Φ : (ZY′)d+1 → (ZY)d+1, then SA satisfies the
requirements of the proposition. ◀

The following is immediate from Proposition 1.

▶ Corollary 2. Given γ ∈ RY , there exists a run ρ with val(ρ) ≤ γ if and only if the following
mixed integer-real system of non-linear inequalities has a solution.

λ1γ1 + · · ·+ λd+1γd+1 ≤ γ 1 = λ1 + · · ·+ λd+1
(γ1, . . . , γd+1) ∈ SA 0 ≤ λ1, . . . , λd+1
γ1, . . . , γd+1 ∈ ZY λ1, . . . , λd+1 ∈ R

(1)

In the following two sections we analyse systems of constraints of the above form, obtaining
a general result that allows us to solve the Gap Domination Problem.

3 Mixed Integer Bilinear Systems

3.1 The Satisfiability Problem
A mixed-integer bilinear (MIB) system is a collection of constraints in integer variables x

and real variables y of the form:

x⊤Aiy ≤ bi (i = 1, . . . , ℓ)
Cx ≤ d

Ey ≤ f

x ∈ Zm, y ∈ Rn .

(2)

We assume that all constants in (2) are integer; thus if the system is satisfiable then there is
a satisfying assignment in which y is a rational vector. We say that a satisfying assignment
has slack ε > 0 if x⊤Aiy ≤ bi − ε, for i = 1, . . . , ℓ. Note that the slack requirement refers
only to the nonlinear constraints.

We say that the system (2) is bounded if the polyhedron {y ∈ Rn : Ey ≤ f} is bounded,
i.e., is a polytope. Crucially, the MIB systems arising from multi-priced timed automata in
Corollary 2 are bounded. Unfortunately, however, the satisfiability problem for MIB systems
is undecidable, even in the bounded case.

▶ Proposition 3. The satisfiability problem for bounded mixed-integer bilinear systems is
undecidable.

Proof. We reduce from the following version of Hilbert’s 10th Problem (see [12, Proposi-
tion 1]): given a finite system S of equations in variables x1, . . . , xn, with each equation
either having the form xi = xj + xk or xi = xjxk, determine whether S has a solution in the
set of strictly positive integers.

The reduction involves transforming the system S into an equisatisfiable MIB system S ′

over a set of integer variables x0, . . . , xn ≥ 0 (i.e, the variables of S plus a new variable x0)
and real variables y1, . . . , yn ≥ 0. The construction is such that every solution of S extends
to a solution of S ′ and, conversely, every solution of S ′ restricts to a solution of S.

The system S ′ includes equations x0 = 1 and xiyi = 1 for i = 1, . . . , n. The linear
equations xi = xj + xk from S are carried over to S ′ and, for each equation xi = xjxk

in S, we include an equation (xj + xk)yi = x0(yj + yk) in S. The latter is equivalent to

CSL 2025
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xj+xk

xi
= 1

xj
+ 1

xk
in the presence of the equations xiyi = xjyj = xkyk = 1 and x0 = 1, which

in turn is clearly equivalent to xi = xjxk. By adding constraints 0 ≤ yi ≤ 1 for i = 1, . . . , n

we furthermore make S ′ bounded without affecting the integrity of the reduction. ◀

3.2 The Gap Satisfiability Problem

In light of Proposition 3, we introduce the following gap version of the satisfiability problem
for MIB systems. In this variant we seek a procedure that inputs ε > 0 and a MIB system S
in the form (2) and returns either “UNSAT” or “SAT” subject to the following requirements:
1. If S has a satisfying assignment with slack ε then the output must be “SAT”.
2. If S is not satisfiable then the output must be ”UNSAT”.
Note that we place no restriction on the output in the case that S is satisfiable but with no
satisfying assignment having slack ε.

In Section 4 we will show that the Gap Satisfiability Problem is decidable for bounded
MIB systems. The following proposition shows the necessity of the boundedness hypothesis.

▶ Proposition 4. The Gap Satisfiability Problem is undecidable for (unbounded) MIB systems.

Proof. The proof is by reduction from the same variant of Hilbert’s Tenth Problem as in
the proof of Proposition 3. Recall that an instance of this problem comprises a system S of
equations in positive-integer variables x1, . . . , xn, with each equation having the form either
xi = xj + xk or xi = xjxk, where i, j, k ∈ {1, . . . , n}. Given such a system, we construct an
MIB system S ′ over integer variables x0, . . . , xn+1 and real variables y0, . . . , yn+1 such that
every satisfying assignment of S extends to a satisfying assignment of S ′ with slack 1

2 and
every satisfying assignment of S ′ restricts to a satisfying assignment of S.

We include the equations x0 = 1 and y0 = 1 in S ′. Each linear equation xi = xj + xk

in S is carried over to S ′. For each equation xi = xjxk in S we include the inequality
|xiy0 − xjyk| ≤ 1

2 in S ′. We then add the following collection of constraints to S ′ for all
i ∈ {1, . . . , n + 1} that intuitively force xi and yi to be very close together:
1. |xiy0 − x0yi| ≤ 1;
2. |xn+1yi − xiyn+1| ≤ 1;
3. xn+1y0 ≥ 4(x0 + xi)(y0 + yi) + 1.

A satisfying valuation of S can be extended to a valuation that satisfies S ′ with slack 1
2

by setting x0 := 1, xn+1 := 4 maxi∈{1,...,n}(1 + xi)2 + 1, and yi := xi for i = 0, . . . , n + 1.
Conversely, we claim that every satisfying valuation of S ′ (with no assumption on the

slack) restricts to a satisfying valuation of S. Indeed, by Item 2, above, for all k ∈ {1, . . . , n}
we have

|xn+1(xk − yk)− xk(xn+1 − yn+1)| = |xn+1yk − xkyn+1|
(2)
≤ 1.

By Items 1 and 3, this entails that for all j ∈ {1, . . . , n},

|xk − yk| ≤
xk|xn+1 − yn+1|+ 1

xn+1

(1)
≤ xk + 1

xn+1

(3)
≤ 1

4(yj + 1)
(1)
≤ 1

4xj

and hence |xjxk−xjyk| ≤ 1
4 . Combined with |xi−xjyk| ≤ 1

2 we conclude that |xi−xjxk| ≤ 3
4

and hence xi = xjxk. ◀
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It is shown in [12, Theorem 6] how to solve the Gap Satisfiabililty Problem for a subclass
of MIB systems, which we here call positive. A positive MIB system has the form

x⊤Aiy ≤ bi (i = 1, . . . , ℓ1)
x⊤Aiy ≥ bi (i = ℓ1 + 1, . . . , ℓ2)
Cx ≤ f , x ≥ 0
Ey ≤ f , y ≥ 0
x ∈ Zm, y ∈ Rn .

with all coefficients of Ai being non-negative rational for i = 1, . . . , ℓ2. This variant can be
solved by a naive relaxing and rounding procedure, which does not require the boundedness
assumption. However, while suffiicent to handle MPTA with non-negative rates, positive
MIB appear insufficient for the case of MPTA with both positive and negative rates.

4 Decidability in the Bounded Case

4.1 Preliminaries
The following proposition on semilinear sets of integers [23, Corollary 1] will be used on
several occasions below:

▶ Proposition 5. Consider a set S := {x ∈ Zm : Ax ≤ b}, where the entries of A and b are
integers of absolute value at most H and the affine hull of S has dimension d. Then there
exists a finite set B ⊆ Zm and a matrix P ∈ Zm×d such that

S = L(B, P ) := {w + Pz : w ∈ B, z ∈ Zd, z ≥ 0}

and the entries of P and w have absolute value at most (2 + (m + 1)H)m.

We will also need the following result [24, Corollary 3.1] on semialgebraic sets of real
numbers. We assume that polynomials are written as lists of monomials with all integers,
including exponents, written in binary.

▶ Proposition 6. Let {fi}i∈I be a family of polynomials in n variables whose representation
has total bit length at most L. Then the set S := {x ∈ Rn :

∧
i∈I fi ∼i 0}, where ∼i ∈ {<, =},

is either empty or contains a point of distance at most 2L8n to the origin.

For further analysis it will be useful to transform the MIB problem to a standard form,
shown in (3) below. In standard form the only linear constraints on the integer variables
are that they be nonnegative. Correspondingly we enrich the nonlinear constraints, allowing
them to contain an extra linear term in y.

x⊤Aiy + b⊤
i y ≤ ci (i = 1, . . . , ℓ)

Dy ≤ e

x ≥ 0
x ∈ Zm, y ∈ Rn .

(3)

The transformation of (2) to standard form is based on writing S := {x ∈ Zm : Cx ≤ d}
as a semi-linear set L(B, P ), following Proposition 5, where B ⊆ Zm and P ∈ Zm×d with d

the dimension of the affine hull of S. For each vector w ∈ B we can apply the change of
variables x = Pz + w to (2) to obtain a problem in standard form: Thus we obtain a finite
collection of problems in standard form, whose solutions are in one-one correspondence with
the solutions of the original system (2).

CSL 2025
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4.2 Relaxation and Rounding
In this section we introduce a relaxed version of a bounded MIB system, in which all variables
range over the reals. The relaxation is such that a satisfying assignment to the relaxed
problem can be rounded to an integer solution of the original system, while unsatisfiability of
the relaxed version permits a branch-and-bound step which leads to an equisatisfiable finite
collection of MIB instances in one fewer integer variable.

The rounding is based on an application of the Flatness Theorem in Diophantine approx-
imation – Theorem 7, below. To state this result we first recall some standard terminology
related to this. Let K ⊆ Rn be a convex set and let u ∈ Zn. Define the width of K with
respect to u to be

widthu(K) := sup{u⊤(x− y) : x, y ∈ K} .

The lattice width of K is the minimum width in all directions:

width(K) := min{widthu(K) : u ∈ Zn \ {0}} .

▶ Theorem 7 (Flatness Theorem). There exists a constant ω(n), depending only on n, such
that every convex polyhedron K ⊆ Rn with width(K) > ω(n) contains an integer point.

The constant ω(n) in Theorem 7 is called the flatness constant. The best-known upper bound
on ω(n) = O(n3/2) [5], although a linear upper bound was conjectured in [18].

We will need the following proposition about definability of lattice width for classes of
polyhedral sets.

▶ Proposition 8. There is a quantifier-free formula in the theory of real closed fields, whose
free variables respectively represent a matrix A ∈ Rn×m, vector b ∈ Rn, and scalar c > 0,
that expresses the property widthu(P ) ≥ c where P := {x ∈ Rm : Ax ≥ b, x ≥ 0}.

Proof. A necessary condition that widthu(P ) ≥ c is that P be non-empty and hence, since it
lies in the positive orthant, contain a vertex. Now each vertex of P , being the intersection of
n linearly independent bounding hyperplanes, has the form B−1b′, where B is a non-singular

n× n sub-matrix of
(

A

In

)
, where In denotes the identity matrix of dimension n, and b′ is a

corresponding sub-vector of
(

b

0

)
. Hence the vertices of P are definable by quantifier-free

formulas.
Assume that P contains a vertex. Then widthu(P ) is infinite if and only if either u

or −u lie in the recession cone of P , for which a sufficient and necessary condition is that
Au ≥ 0 or Au ≤ 0. If widthu(P ) is finite then there exist two vertices x0, x1 of P such that
widthu(P ) = u⊤(x0−x1). The proposition follows by combining the above observations. ◀

We now commence the detailed description of the relaxation construction. The input is
a bounded MIB program S in standard form (3) and a slack ε > 0. Assume that S has at
least one non-linear constraint. We start with the observation that for a given y ∈ Rn the
system (3) admits a solution x ∈ Zm if and only if the polyhedral set

P (y) := {x ∈ Rm : x ≥ 0, x⊤Aiy + b⊤
i y ≤ ci, i = 1, . . . , ℓ} , (4)

contains an integer point.
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Let H be an upper bound of the absolute value of the integer constants in the system (3).
Since S is bounded, by [14, Lemma 3.1.25] the set {y ∈ Rn : Dy ≤ e} is contained in the
ball of radius κ1 := m1/2H(m2+m) centred at the origin.

For a matrix A, let ∥A∥ denote the spectral norm. Recall that if A has entries of absolute
value at most H and has m columns then ∥A∥ ≤

√
mH. Now write

δ := min(δ0, 1), where δ0 := min
{

ε

∥Ai∥κ1
: i = 1, . . . , ℓ

}
≥ ε

m1/2Hκ1
(5)

and define U := {u ∈ Zm \ {0} : 2δ∥u∥ < ω(m)}, where ω(m) is as in Theorem 7.
Write U = {u1, . . . , us} and consider the following relaxed system S ′ of linear and bilinear
constraints in exclusively real variables (where the notation P (y) is as in (4) and we use
Proposition 8 to formulate the constraint widthuj (P (y)) ≥ ω(m)):

x⊤Aiy + b⊤
i y ≤ ci − ε (i = 1, . . . , ℓ)

widthuj
(P (y)) ≥ ω(m) (j = 1, . . . , s)

Dy ≤ e, x ≥ 1
x ∈ Rm, y ∈ Rn

(6)

▶ Proposition 9. If the relaxed system S ′ is satisfiable, then so is the original system S.

Proof. Let x∗, y∗ be a solution of the system S ′, as shown in (6). Consider the set P (y∗) as
defined in (4). By construction we have

min
u∈U

widthu(P (y∗)) ≥ ω(m) . (7)

But from the fact x∗ satisfies each constraint x⊤Aiy
∗ + b⊤

i y∗ ≤ ci with slack ε and that
x∗ ≥ 1, we see that the ball Bδ(x∗) is contained in P (y∗), for δ as defined in (5). It follows
that

widthu(P (y∗)) ≥ 2δ∥u∥
≥ ω(m)

for all u ̸∈ U . Together with (7), we have that width(P (y∗)) ≥ ω(m) and hence, by
Theorem 7, P (y∗) contains an integer point. This entails that the original system S is
satisfiable. ◀

▶ Proposition 10. If the relaxed system S ′ has no solution then every solution x∗ ∈ Zm of
the original system S that has slack ε either has some component equal to zero or satisfies
|u⊤x∗| ≤ κ2 for some u ∈ U , where κ2 is an explicit constant depending only on S and ε.

Proof. Assume that S ′ has no solution. Let x∗ ∈ Zm and y∗ ∈ Rn be a solution of S with
slack ε. If some component of x∗ is zero then we are done, so we may suppose that x∗ ≥ 1.
By assumption, x∗, y∗ is not a solution of S ′ and so it must hold that

min
u∈U

widthu(P (y∗)) < ω(m) , (8)

where P (y∗) is as defined in (4).
Let u ∈ U be the vector achieving the minimum on the left-hand side of (8). We will

exhibit an upper bound on |u⊤x∗| that does not depend on y∗.
Assume first that P (y∗) contains the origin. Then by (8),

|u⊤x∗| = |u⊤(x∗ − 0)| ≤ ω(m) .
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Assume now that P (y∗) does not contain the origin. Let L be the line segment connecting
the origin to x∗, and denote by x the point at which L intersects the boundary of P (y∗).
Then we have x∗ − x = λx for some λ > 0. Moreover, since x lies on the boundary of P (y∗)
there exists i0 ∈ {1, . . . , ℓ} such that

x⊤Ai0y∗ + b⊤
i0

y∗ = ci0 , (9)

i.e., one of inequalities that define P (y∗) is tight at x. But since x∗, y∗ satisfies S with
slack ε, we also have that (x∗)⊤Ai0y∗ + b⊤

i0
y∗ ≤ ci0 − ε. Subtracting Equation (9) from the

previous inequality gives

−ε ≥ (x∗ − x)⊤Ai0y∗

= λ(x⊤Ai0y∗)
= λ(ci0 − b⊤

i0
y∗) .

Since ε, λ > 0 this entails that ci0 − b⊤
i0

y∗ < 0 and hence

λ−1 ≤ ε−1|ci0 − b⊤
i0

y∗|
≤ ε−1 (|ci0 |+ ∥bi0∥κ1) (10)

We deduce that

|u⊤x∗| ≤ |u⊤(x∗ − x)|+ |u⊤x|
= |u⊤(x∗ − x)| (1 + λ−1)
≤ ω(m)

(
1 + ε−1(|ci0 |+ ∥bi0∥κ1)

)
by (8) and (10).

Thus, defining

κ2 := ω(m) (1 + Hε−1(1 + m1/2κ1)) , (11)

we have |u⊤x∗| ≤ κ2.
In summary, we have that |u⊤x∗| ≤ κ2 for every integer point x∗ of P (y∗), as required

in the proposition. ◀

4.3 Decision Procedure
In this section we describe a decision procedure for the Gap Satisfiability Problem for bounded
MIB systems. This is a recursive procedure based on the relaxation construction in the
preceding section. We first present a conceptually simple version of the procedure, with
no complexity bound, and then give a more detailed treatment from which bounds can be
extracted.

▶ Theorem 11. The Gap Satisfiability Problem is decidable for bounded MIB systems.

Proof. The procedure to solve the Gap Satisfiability Problem is as follows. Consider an
instance of the problem, consisting of an MIB system in the form (3) and slack ε > 0. If there
are no non-linear constraints then the problem instance is just a system of linear inequalities
in real and integer variables, whose satisfiability is straightforward to discern. Thus we may
assume that there is at least one non-linear constraint. We construct the associated relaxed
system S ′, which has the form (6). Using a decision procedure for the existential theory of
real-closed fields we determine whether the system S ′ is satisfiable.
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If S ′ is satisfiable then Proposition 9 guarantees that the original MIB system S is also
satisfiable. We can then find a satisfying assignment of S by enumerating over all values
x∗ ∈ Zm and solving a linear program to decide whether there exists y∗ ∈ Rn such that
x∗, y∗ satisfies S.

If the relaxed problem has no satisfying assignment then Proposition 10 furnishes a finite
set E of linear equations of the form u⊤x = b, with coefficients u ∈ Zm and b ∈ Z, such that
for any solution x∗ ∈ Zm, y∗ ∈ Rn of (2) that has slack ε, the integer part x∗ satisfies an
equation in E . We iterate through all such equations u⊤x = b and in each case we apply
Proposition 5 to write

{x ∈ Zm : u⊤x = b, x ≥ 0}

as a linear set L(B, P ) for some finite set B ⊆ Zm and matrix P ∈ Zm×m−1. Then for each
vector w ∈ B, we apply the change of variables x = w + Pz to obtain a MIB system in
one fewer integer variable to which we can recursively apply the procedure to determine
satisfiability. ◀

In the following result we retrace the proof of Theorem 11, this time keeping track of the
size of the integers involved. We thereby obtain an upper bound on the smallest satisfying
assignment, showing that the gap satisfiability problem can be solved in nondeterministic
exponential time.

▶ Theorem 12. Consider a MIB system (3) in which the integer constants have absolute
value at most H. If such a system is satisfiable with slack ε then there is a satisfying
assignment under which the integer variables have absolute value at most 2κ3

O(m3(m+n)) , where
κ3 :=

(
mHm2

ε

)
.

Proof. We first analyse the effect of a single variable-elimination step on the size of the integers
in the system (3). Recall that to eliminate an integer variable we assert a linear equation
u⊤x = b, where ∥u∥ ≤ 2w(m)

δ and |b| ≤ κ2. Combining the lower bound δ ≥ ε
m1/2Hκ1

from (5), the definition κ1 := m1/2H(m2+m), the definition of κ2 in (11), and the bound
ω(m) = O(m3/2), we obtain that ∥u∥, |b| = κ

O(1)
3 , for κ3 :=

(
mHm2

ε

)
.

Employing Proposition 5, the equation u⊤x = b, x ≥ 0, determines a substitution
x = Pz + w in which the elements of P and w have absolute value at most κ

O(m)
3 . Since

there are m integer variables, the constants appearing over all MIB instances arising through
the process of variable elimination have absolute value at most κ

O(m2)
3 .

Consider a version of the relaxed system (6) in which the integer constants have magnitude
at most κ

O(m2)
3 . For the purposes of our complexity analysis we augment the system with a

new variable r and constraints r ≥ ∥x∥+ 1 and r ≥ ∥w ± w(m)u∥ for each vertex w of the
polyhedron P (y) (as defined in (4)) and u ∈ U . The integer constants in the resulting system
have absolute value at most κ

O(m3)
3 by Hadamard’s determinant inequality. By construction,

if x∗, y∗ is a satisfying assignment of (6) then the convex set {x ∈ P (y∗) : ∥x∥ ≤ r} has
lattice width at most w(m) and hence contains an integer point. By Proposition 6 an upper
bound for r is 2κ

O(m3(m+n))
3 , which concludes the proof. ◀

▶ Remark 13. It is evident that the double exponential dependence of the magnitude of the
smallest satisfying assignment on the number of variables in Theorem 12 is unavoidable.
Indeed, consider the following MIB system:
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xiyi ≤ 1 (i = 1, . . . , n)
xi+1yi ≥ xiy0 (i = 1, . . . , n− 1)
x1 = 2, y0 = 1
x1, . . . , xn ∈ Z≥0, y0, . . . , yn ∈ R≥0

Then any satisfying assignment satisfies xi+1 ≥ xi

yi
≥ x2

i for I = 1, . . . , n − 1, whence
xn ≥ 22n−1 . The system moreover has a satisfying assignment with slack ε for any ε > 0,
obtained by successively setting yi := 1+ε

xi
and xi+1 := ⌊xi+ε

yi
⌋ for i = 1, . . . , n− 1.

Proposition 1 and Corollary 2 give an exponential-time Turing reduction of the Gap
Domination Problem for MPTA to the Gap Satisfiability Problem for bounded MIB systems,
such that resulting instances of the Gap Satisfiability Problem have size polynomial in that
of the input MPTA. We thus obtain our second main result.

▶ Theorem 14. The Gap Domination Problem for MPTA is decidable in non-deterministic
exponential time.

5 Conclusion

Our main result shows that pareto curve of undominated reachable observer values of a given
MPTA can be approximated to arbitrary precision. This is in contrast with the situation for
weighted timed games, where it was recently shown that the optimal value of a weighted
timed game with positive and negative rates cannot be computed to arbitrary precision [15].

Throughout this paper we have worked with MPTA with clock guards defined by con-
junctions of non-strict inequalities. However, we claim that for an MPTA A with guards
comprising conjunctions of both strict and non-strict inequalities, there exists an MPTA A′

with exclusively closed guards over the same set Y of observers, such that every observer
valuation γ ∈ RY reachable in A is also reachable in A′ and, conversely, for every valuation
γ′ ∈ RY reachable in A′ and every ε > 0 there exists a valuation γ ∈ RY reachable in A
such that |γ(c)− γ′(c)| < ε for all c ∈ Y. Indeed, such an MPTA A′ is obtained by directly
applying the closure construction for timed automata in [22, Section 4] to MPTA. Then
the ability to compute the pareto curve of undominated reachable observer values of A′ to
arbitrary precision allows one to achieve the same end for A.

A direction for future work is to consider the feasibility of approximate pareto analysis
over infinite runs of MPTA. For double-priced timed automata, that is, MPTA with a single
cost and reward observer, it is known how to compute the optimal reward-to-cost ratio over
infinite computations using the corner-point abstraction [8]. For more general MPTA it is
natural to consider specifications that refer to multiple reward-to-cost ratios.
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