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Abstract
Cost register automata (CRAs) are deterministic automata with registers taking values from a
fixed semiring. A CRA computes a function from words to values from this semiring. CRAs are
tightly related to well-studied weighted automata. Given a CRA, the boundedness problem asks
if there exists a natural number N such that for every word, the value of the CRA on this word
does not exceed N . This problem is known to be undecidable for the class of linear CRAs over
the integer min-plus semiring (Z ∪ {+∞}, min, +), but very little is known about its subclasses. In
this paper, we study boundedness of copyless linear CRAs with resets over the integer min-plus
semiring. We show that it is decidable for such CRAs with at most two registers. More specifically,
we show that it is, respectively, NL-complete and in coNP if the numbers in the input are presented
in unary and binary. We also provide complexity results for two classes with an arbitrary number
of registers. Namely, we show that for CRAs that use the minimum operation only in the output
function, boundedness is PSPACE-complete if transferring values to other registers is allowed, and is
coNP-complete otherwise. Finally, for each fi in the hierarchy of fast-growing functions, we provide
a stateless CRA with i registers whose output exceeds N only on runs longer than fi(N). Our
construction yields a non-elementary lower bound already for four registers.
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1 Introduction

A cost register automaton (CRA), introduced by Alur et al. [3], is a deterministic finite
automaton over finite words equipped with a finite set of registers storing values from a fixed
semiring. When a CRA reads a word, the values of its registers are updated in a write-only
way using the semiring operations, and at the end it outputs a value from the semiring.
Thus, a CRA defines a function from finite words to elements of a semiring. CRAs can hence
be used to model quantitative behaviour of systems, and are tightly related to well-studied
weighted automata (WAs) introduced by Schützenberger in [36], see also surveys [18, 19].
In this context, a fundamental question is, given a CRA or WA, to decide if a certain property
of the function computed by it (or even just a property of the image of this function) holds.

In this paper, we study the boundedness problem, which, given a CRA, asks if there
exists a natural number N such that the output of the CRA on every input is smaller than N .
As discussed in more detail below, very little is known about decidability of this problem
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20:2 Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

compared to other natural problems for WAs and CRAs. Our work thus addresses and
partially closes this gap, by studying it for restricted classes of CRAs. Below we provide an
overview of such classes, and put them in the context of known classes of WAs.

We concentrate on CRAs over the integer min-plus semiring (Z ∪ {+∞}, min, +). All
CRAs are thus assumed to be over this semiring unless stated otherwise. Such CRAs can
be seen as a variant of counter automata, specifically, as an extension of integer vector
addition systems with states [21, 8]. Reachability properties of the latter are characterised by
Presburger arithmetic, the first order theory of integer numbers with addition and order [21],
which has good algorithmic features. For CRAs over the integer min-plus semiring, the
situation changes significantly due to the presence of minimum operations in the updates.
This makes the computed functions highly nonlinear: for example, they can compute iterated
minimums. The results for integer vector addition systems thus cannot be directly used for
CRAs. On the positive side, for subclasses of CRAs with decidable properties, this opens a
possibility of finding new decidable extensions of Presburger arithmetic, by finding logical
characterisation of the functions computed by CRAs from such subclasses.

More generally, many fundamental properties of CRAs and WAs can be defined by simple
formulas in first-order logic, and can thus be considered as model checking CRAs against a
fixed formula. For example, boundedness can be expressed by the formula

∃N ∈ Z ∪ {+∞}. N < +∞∧ ∀v ∈ Z ∪ {+∞}. I(v)→ (v < N),

where I(v) is the predicate that holds true for v ∈ Z∪ {+∞} if and only if the CRA outputs
the value v on some word. Understanding the decidability landscape of natural properties
such as boundedness can thus be seen as a first step towards much more general model
checking algorithms for subclasses of CRAs and WAs.

Relations between CRAs and WAs

In general, CRAs are strictly more expressive than WAs [3]. However, WAs are equally
expressive to linear CRAs, which are CRAs where the updates of the registers are restricted
to affine transformations. Transforming a linear CRA into an equivalent WA and vice versa
can be done in polynomial time [3]. Hence, linear CRAs can be seen as a deterministic model
for inherently nondeterministic WAs. WAs, and thus CRAs, find their applications in the
areas of language and speech processing [34], verification [9], image processing [10], and the
analysis of on-line algorithms [5] and probabilistic systems [39]. Functions computable by
WAs are exactly those that can be defined in weighted monadic second order logic, a natural
extension of monadic second order logic [16, 17]. Functions computed by a subclass of CRAs
were also characterised in [31] by maximal partition logic, a logic with regular quantifiers that
allow to partition words into segments and then aggregate the values computed for them.

Ambiguity hierarchy of WAs

To make decision problems tractable for WAs, it is usually required to restrict their express-
iveness. The most well-studied way of doing that is by bounding the ambiguity, that is, the
number of accepting runs labelled by a word. A WA is called finitely (respectively, linearly,
polynomially or exponentially) ambiguous if there exists a constant (respectively, a linear,
polynomial or exponential) function f(n) such that for every word w the number of accepting
runs labelled by w is bounded by f(|w|). If f(n) = 1, a WA is called unambiguous. Most
classical decision problems, such as universality, inclusion and equivalence, are undecidable
already for linearly ambiguous WAs over the integer min-plus semiring [28, 1, 12]. For
finitely ambiguous WAs over this semiring, universality, inclusion and equivalence become
decidable [40, 23].
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For the boundedness problem, the situation is very different. A seminal paper [1]
establishes undecidability of several classical decision problems for linearly ambiguous WAs
over the integer min-plus semiring in a uniform fashion. However, it only proves boundedness
to be undecidable for general (that is, exponentially ambiguous) WAs, and provides no classes
with decidable boundedness. This indicates that boundedness is somehow different to other
mentioned decision problems.

We remark that boundedness is PSPACE-complete for WAs over the natural min-plus
semiring (N ∪ {+∞}, min, +) [1, 22, 29, 37], which requires completely different techniques
than the integer case. We also remark that it is decidable for copyless linear CRAs over
the semiring of positive rational numbers with usual addition and multiplication, and is
undecidable for general WAs over the same semiring [11]. Transferring any such results to
the min-plus semiring is unlikely, since these semirings has very different properties.

Restricted classes of CRAs

One useful feature of CRAs is that, by adding syntactic restrictions on them, it is possible to
introduce subclasses whose expressiveness is incomparable to known classes of WAs. This
allows to obtain a finer decidability landscape compared to the case where only the formalism
of WAs is used.

One notable example of that is the class of so called copyless linear CRAs. Informally,
a CRA is called copyless if for every transition, the value of each of its registers can only
be used once in the updates. Copyless linear CRAs are strictly less expressive than linearly
ambiguous WAs, and their expressivity is incomparable to unambiguous WAs [2]. A further
restriction of copyless linear CRAs to the case where the minimum operation is only allowed
in the output function makes them equally expressive to finitely sequential WAs, which are
unions of WAs whose underlying NFAs are deterministic [4, 13].

Restricting the number of registers in a class of CRAs also usually provides a subclass
whose expressivity is incomparable to that of known classes of WAs. For example, there exists
a copyless (but not linear) CRA with only 3 registers that computes a function not computed
by any polynomially ambiguous WA [32]. For copyless linear CRAs restricted to only three
registers universality is undecidable [15]. Moreover, there exist copyless linear CRAs with
only two registers that are not equivalent to any unambiguous WA [2], see Example 6 on
page 6 for one such CRA. All these results indicate that CRAs with few registers are quite
expressive. Results on finding a CRA with the minimum number of registers computing a
given function are presented in [13, 14, 25, 26].

More generally, for many problems the case of automata with two counters or registers often
turns out to be already difficult enough. For example, most decision problems are undecidable
for two-counter automata [33]. For vector addition systems with states, decidability of the
reachability problem in the two-counter case was established in a seminal paper [24] several
years before the proof that it is decidable for arbitrary number of counters was found [30],
and it took over 20 more years to establish the precise computational complexity of the
two-counter case [7].

Our contributions

The main technical contribution of the paper, Theorem 17, states that boundedness is
decidable for copyless linear CRAs with resets with at most two registers. Namely, we show
that it is NL-complete if the numbers in the updates are presented in unary, and is in coNP is
they are presented in binary. Functions computed by CRAs, even when they have only two
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registers, are highly nonlinear and complex, mainly due to the presence of nested minimum
operations. We illustrate this by providing in Section 6 a series of CRAs with very long
shortest runs outputting a given value. To show that the two-register case is decidable, we
identify several possible shapes of small witnesses of unboundedness (Section 4.2). The main
challenge is then showing that if a CRA is unbounded, it contains one of these witnesses,
which we do by carefully analysing the growth of the output value for a run providing a
large enough value, and showing how to rearrange the cycles of this run to obtain a witness
(Section 4.3). This requires in particular some geometrical arguments on the cones generated
by the weight vectors of the cycles.

Our second contribution is establishing the complexity of boundedness for copyless linear
CRAs with resets where the number of registers is arbitrary, but the minimum operation
only occurs in the output function. As mentioned above, such CRAs compute the same class
of functions as finitely sequential WAs. We show that boundedness is PSPACE-complete if
registers are allowed to transfer values to other registers (Theorem 33), and is coNP-complete
otherwise (Theorem 32). For upper bounds on the complexity, our techniques again rely on
the combinatorial and geometrical analysis of cycles.

2 Main definitions

Symbols N and Z stand for natural and integer numbers respectively. Let N+ := N \ {0}. We
assume that the reader is familiar with the basic concepts in the area of formal languages
and automata, see e.g. [38]. The Kleene star is denoted as ( ·)∗. In regular expressions, we
write ∪ for the sum and ε for the empty string. The language of a nondeterministic finite
automaton (NFA) A is denoted as L(A). When speaking of underlying digraphs of NFAs, we
use standard terms like simple cycle, reachability and backwards-reachability. We emphasise
that by a simple cycle we mean a cycle that does not visit the same vertex more than once,
except for its first and last vertex. General cycles do not have this restriction.

In this paper, we focus on CRAs over the integer min-plus semiring (Z ∪ {+∞}, min, +).
Hence, in what follows, we fix K := (Z∪ {+∞}, min, +). For the proofs we present, the main
focus lies on the operations on registers performed by CRAs, so we look at them in depth in
Section 2.1. Then, in Section 2.2, we define CRAs and the boundedness problem.

2.1 Expressions, valuations and substitutions
Fix a finite set of variables X. By Expr(X) we denote the set of expressions constructed
using operations min{· , ·} and +, variables from X and constants from K. Expressions can
be seen as polynomials over K. Due to associativity, we allow arbitrary arity of the semiring
operations in the expression notation. For an expression e ∈ Expr(∅) ⊆ Expr(X) without
variables, we denote by eval(e) ∈ K its value.

A substitution over X is a function ν : X → Expr(X). We denote the set of all sub-
stitutions over X by Sub(X). When defining substitutions, we often treat them as sets
of “argument ← value” pairs. When X is clear from the context, we implicitly extend
partial substitutions with the identity mapping for the omitted arguments. For example,
if X ′ = {x1, x2} ⊊ X, then ν = {x1 ← e1, x2 ← e2} denotes a substitution satisfying
ν(xi) = ei for xi ∈ X ′ and ν(x) = x for x ∈ X \X ′. A valuation over X is a substitution
µ : X → K. We denote by Val(X) ⊂ Sub(X) the set of all valuations over X. We write
0 ∈ Val(X) for the valuation with 0(x) = 0 for every x ∈ X. We assume that there is a
fixed order on the set of registers, and thus in particular consider valuations equivalently as
vectors.
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▶ Example 1 (An expression, a substitution and a valuation). Fix X := {x, y, z}.

e := min{10, x + 5, y + z} ∈ Expr(X) (an expression)
ν := {x← 2 + min{x, y}, y ← 3} ∈ Sub(X) (a substitution)
µ := {x← 2, y ← 5, z ← 10} ∈ Val(X) (a valuation)

Substitutions can be applied to expressions: given e ∈ Expr(X) and ν ∈ Sub(X), by e[ν]
we denote the result of simultaneously replacing each occurrence of x with ν(x) for every
x ∈ X. Substitutions can be composed: for ν, ν′ ∈ Sub(X), we define the composition
(ν; ν′) ∈ Sub(X) as (ν; ν′)(x) = ν′(x)[ν]. Applying a valuation µ to an expression e yields
an expression without variables – thus, with a defined value from K. We hence define
evalµ(e) := eval(e[µ]). For a valuation µ and a substitution ν, we let evalµ(ν) := eval(µ; ν).

▶ Example 2 (Application and composition of substitutions). Continuing Example 1, we have

e[ν] = min{10, (2 + min{x, y}) + 5, (3) + (z)} ∈ Expr(X) (e with ν applied to it)
e[µ] = min{10, (2) + 5, (5) + (10)} ∈ Expr(∅) (e with µ applied to it)

evalµ(e) = eval(e[µ]) = 7 ∈ K (the value of e[µ])

For e, e′ ∈ Expr(X), we write e ≡ e′ if evalµ(e) = evalµ(e′) for every µ ∈ Val(X).
Additionally, for ν, ν′ ∈ Sub(X), we write ν ≡ ν′ whenever ν(x) ≡ ν′(x) for every x ∈ X.
For an expression e, by maxc(e) we denote the maximal absolute value of constants different
to +∞ appearing in e, and 0 if there are none. We extend maxc naturally to substitutions.

Copyless linear substitution with resets

In this paper, our main focus is on a special family of substitutions which are copyless and
linear with resets. An expression e is in a canonical linear form if

e = min{x1 + c1, x2 + c2, . . . , xk + ck}

for some pairwise-different x1, . . . , xk ∈ X, c1, . . . , ck ∈ K, and k ∈ N. Any expression e′ such
that e′ ≡ e for an expression e in a canonical linear form is called linear. A substitution ν is
linear with resets if for every x ∈ X, ν(x) is either linear or 0 (a reset). A linear substitution
with resets is in a canonical form if all its linear expressions are in a canonical linear form.
We remark that the only reason why we use linear substitutions with resets instead of
affine substitutions (that is, substitutions whose expressions are sums of linear and constant
expressions) is to simplify the presentation of our techniques. Clearly, by adding more
registers one can transform an affine CRA into a linear CRA with resets.

A substitution ν is copyless if for all pairs x, x′ ∈ X such that x ̸= x′ the expressions ν(x)
and ν(x′) feature disjoint sets of variables. By Exprlin(X) and Subclr(X) we denote the sets
of linear expressions and copyless linear substitutions with resets, respectively.

▶ Example 3 (Copyless linear substitutions with resets). Consider the substitutions ν and ν′:

ν :=

x← y + 5
y ← min{x, z − 2}
z ← 5− 5

≡

x← min{y + 5}
y ← min{x + 0, z + (−2)}
z ← 0

, ν′ :=
{

x← min{x}
y ← min{x, y}

We have that ν ∈ Subclr({x, y, z}) because it is equivalent to a linear substitution with resets
in a canonical form, and variables x, y, z occur at most once in its expressions. In contrast, ν′

is linear, but not copyless, because x occurs in both ν′(x) and ν′(y).

CSL 2025
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p

min{x, y}

q

0

a,

{
x← x + 1
y ← y

#,

{
x← 0
y ← min{x, y}

a,

{
x← x + 1
y ← y

#,

{
x← 0
y ← min{x, y}

Figure 1 An example of a CRA over the semiring K.

2.2 Cost register automata
▶ Definition 4 (CRA). A copyless linear CRA with resets over K is a tuple

C = (X, Q, Σ, δ, qini, out)

consisting of a finite set X of registers, a finite alphabet Σ, a finite set Q of control states,
an initial state qini ∈ Q, and two functions:

a transition rule function δ : Q× Σ→ Q× Subclr(X),
an output function out : Q→ Exprlin(X).

We also make the following assumptions that clearly preserve the property of being bounded
or unbounded. We assume that all substitutions and expressions in C are in a canonical
form. Furthermore, we assume that +∞ never occurs as a constant in a substitution, since
every such transition can be replaced with a transition leading to a new state, a self-loop
incrementing the value of the corresponding register in this new state, and then a transition
back.

In this paper, we consider only copyless linear CRAs with resets, hence for the rest of the
paper we simply call them CRAs.

▶ Definition 5 (Semantics of a CRA). A CRA C = (X, Q, Σ, δ, qini, out) naturally induces a
(possibly infinite) deterministic labelled transition system JCK := (ConfC , Σ, ∆C , cini), where
ConfC := Q×Val(X) is the set of configurations, cini := (qini, 0) is the initial configuration
and ∆C : ConfC×Σ→ ConfC is a transition function defined as ∆C((q, µ), σ) := (q′, evalµ(ν)),
where (q′, ν) = δ(q, σ). We extend ∆C to words as usually: for a configuration t, a letter
σ ∈ Σ and a word w ∈ Σ∗, ∆C(t, σw) := ∆C(∆(t, σ), w) and ∆C(t, ε) := t. We further define
the function C : Σ∗ → K calculated by C as C(w) = evalµ(out(q)), where (q, µ) = ∆(cini, w).
Note that since we are only interested in the boundedness problem, the assumption that the
initial value of each register is zero does not restrict the expressiveness of CRAs.

▶ Example 6. In Figure 1, we give an example of a CRA over the semiring K and alphabet
Σ = {a, #}. It has two states p and q, where p is the initial state, and two registers x and y.
The output function for state p (words ending with a and the empty word) is min{x, y} and
for state q (words ending with #) is 0. Both registers are initialised with value 0. If the
input word ends with # or is empty, this CRA outputs 0. Call a sequence of consecutive a’s
a block. A block is maximal if it is not contained in a longer block. If the input word ends
with a, the CRA outputs the length of the shortest maximal block. Register x stores the
number of a’s read in the current block, and y stores the minimum length of maximal blocks
read so far. This CRA is a copyless linear CRA with resets.

We say that a CRA C is bounded if there is N ∈ N such that C(w) < N for all w ∈ Σ∗.
We are now ready to state the main decision problem we are interested in.

▶ Problem 7 (CRA boundedness).
Input CRA C.

Question Is C bounded?
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3 Regular substitution languages

3.1 Substitution languages associated to CRAs
In the boundedness problem, the input alphabet of a CRA is redundant, since the formulation
is existentially quantified for the word and the underlying finite automaton is deterministic.
For this reason, in this paper we focus on sequences of substitutions that a CRA can perform.

A language of substitutions is an arbitrary subset of Subclr(X)∗. Every word w ∈ Σ∗
read by a CRA C induces a sequence of substitutions that C performs when reading w. Fix
a CRA C = (X, Σ, Q, qini, δ, out). We define the language of substitutions Lx(C) induced by
it. Observe that the set of substitutions that occur in the transitions and output expressions
of C is finite. We denote it by ΓC,x. The regular language Lx(C) is then formally defined as
the language of the following automaton NFAx(C). To simplify the presentation, we assume
that the last substitution in the sequence corresponding to a word saves the output into a
designated output register x ∈ X.

▶ Definition 8 (NFAx(C)). Given a CRA C = (X, Q, Σ, δ, qini, out), define a nondeterministic
finite automaton NFAx(C) := (Q′, ΓC,x, δ′, qini, {qfin}) where Q′ := Q∪{qfin} and the transition
relation δ′ ⊆ Q′ × Γx,A ×Q′ contains transitions:

(q, ν, q′) ∈ δ′ for every q, q′ ∈ Q, and ν, σ such that δ(q, σ) = (q′, ν),
(q, {x← out(q)}, qfin) ∈ δ′ for every q ∈ Q.

Fix an NFA A = (Q, S, δ, qini, Qfin) and a set of registers X = {x1, . . . , xd} for the rest of
this subsection. An alternating sequence π = q0

ν1−→ q1
ν2−→ q2 → · · · → qn−1

νn−→ qn of states
from Q and letters from S is called a run in A labelled by the word w = ν1ν2 · · · νn. We write
q0

π,w−−→→ qn to denote the fact that π is a run labelled by w that begins in q0 and ends in qn.
For such a run and µ ∈ Val(X), we define evalµ(π) := evalµ(w). We identify words with
compositions of the corresponding sequences of substitutions. The set of runs of A is denoted
by Runs(A). A run π is accepting if qini

π−→→ qfin. An NFA A accepts w ∈ S∗ whenever there
exists an accepting run of A labelled by w. The language of A, denoted L(A), is the set of
words accepted by A.

To be able to refer to segments of runs, we combine the notation for single transitions
p

ν−→ q and runs q
π,w−−→→ r. For example, we may consider a run π = p

ν−→ q
π′,w−−−→→ r labelled

by a word ν · w. When the labelling is not important, we write q
π−→→ r.

There is an obvious correspondence between runs in JCK and in NFAx(C). In particular,
for k ∈ K, there exists w ∈ Σ∗ such that C(w) = k if, and only if, there exists u ∈ L(A)
such that eval0(u)(x) = k. This allows us to restate the boundedness problems in terms
of languages of substitutions. We say that a regular language L ⊆ Subclr(X)∗ has bounded
output in x ∈ X if there exists N ∈ N such that for every w ∈ L we have eval0(s)(x) < N .

▶ Problem 9 (Boundedness of regular d-register substitution languages).
Input NFA A over a finite set S ⊂ Subclr(X), |X| = d, output register x ∈ X.

Question Does L(A) have bounded output in x?

Note that boundedness for CRAs (Problem 7) easily reduces to this problem in determ-
inistic logarithmic space. Indeed, it suffices to compute NFA(A) for a given CRA with
Definition 8. This reformulation allows us to use a rich framework of regular languages,
which streamlines the proofs presented in later sections.

CSL 2025
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▶ Definition 10 (Elementary substitutions). We say that a substitution ν ∈ Subclr(X) is
elementary if it has one of the following forms for some x, y ∈ X, c ∈ K:

{x← x + c} (additive sub.) {x← y, y ← x} (transposition)
{x← min{x, y}, y ← 0} (minimum sub.) {x← 0} (reset sub.)

Let Subelem(X) ⊆ Subclr(X) be the set of elementary substitutions, and let TX ∪ RX ∪
AX ∪MX be its partition into sets of transpositions, and reset, additive, and minimum
substitutions.

▶ Lemma 11. For every ν ∈ Subclr(X) in a canonical form, there exists a word of substitu-
tions u ∈ Subelem(X)∗ of length O(d2) such that u ≡ ν.

Note that the statement of the above lemma is not true in the general setting of Sub(X),
as its proof relies on copylessness. Note also that Lemma 11 implies the existence of a
homomorphism to-elem : Subclr(X)∗ → Subelem(X)∗ such that ν ≡ to-elem(ν) for every
ν ∈ Subclr(X). For a finite set S ⊂ Sub(X), we define maxc(S) := max{maxc(ν) | ν ∈ S}.
The following two claims are not difficult to prove.

▷ Claim 12 (Maximal constant grows linearly w.r.t. length). Fix a finite S ⊂ Subelem(X). For
every w ∈ S∗, we have maxc(w) ≤ |w| ·maxc(S).

▷ Claim 13 (Elementary substitutions assumption). We may assume w.l.o.g. that the alphabet
S of A consists only of elementary substitutions, i.e., S ⊂ Subelem(X).

3.2 The structure of witnesses with additive and reset substitutions only
In this subsection, we show how to simplify and decompose runs that do not contain any
minimum substitutions or transpositions. We then use these results in the complexity upper
bounds and to analyse runs with a more complex structure.

For the rest of this subsection, fix a set of registers X = {x1, . . . , xd}, an output register
x ∈ X, and an NFA A over a finite alphabet S ⊂ AX ∪ RX ⊂ Subelem(X) of elementary
additive and reset substitutions. Similarly to Claim 13, this covers a more general case
where the alphabet of A consists of substitutions adding integer values to some registers and
resetting other registers.

Let w ∈ A∗X be such that w ≡ {x1 ← x1 + c1, . . . , xd ← xd + cd} for some c1, . . . , cd ∈ K.
We define eff(w) := (c1, . . . , cd) ∈ KX , and we call it the effect of w. The integer conic hull
ConeN(V ) of a set of vectors V is the set of linear combinations of vectors from V with
nonnegative integer coefficients. The following theorem is a direct consequence of a classical
result by Carathédory, see, e.g., [35].

▶ Theorem 14 (Only d vectors are sufficient to represent a positive point). Let V ⊆ Zd. If all
components of a vector b⃗ are strictly positive and b⃗ ∈ ConeN(V ), then there exists V ′ ⊆ V

with |V ′| ≤ d and a constant λ > 0 such that λ⃗b ∈ ConeN(V ′).

We now state two important lemmas describing the shape of runs labelled by words over
AX and AX ∪RX , respectively.

▶ Lemma 15 (Decomposition lemma for additive runs). For every run q
π,w−−→→ q′ of A such

that w ∈ A∗X , there exist n ∈ N, words w1, . . . , wn, , w′, z1, . . . , zn+1 ∈ A∗X , and integers
a1, . . . , an ∈ N such that

for every word z ∈ z1w∗1z2 . . . znw∗nzn+1, there exists a run q
z−→→ q′,

eff(w) = eff(w′) + a1eff(w1) + · · ·+ aneff(wn), and
|w1|, . . . , |wn|, |w′| ≤ |Q| and |z1 . . . zn+1| ≤ |Q|2.
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Proof idea. We iterate a process that eliminates all the simple cycles from π. These simple
cycles are labelled by some words w1, . . . , wd and the process returns a cycle-free run π′ that
is labelled by a word w′. We can describe the additive effect of the run π as the effect of w′

plus the effect of all the simple cycles that we eliminated. Finally, we argue there exists a
short run from q to q′ that contains a vertex from each of these simple cycles. ◀

Proof. Consider the following iterative process on π. Initialise b⃗ = 0 ∈ QX .
Identify the first simple cycle r

πi,wi−−−→→ r in π and replace it by r. By simple cycle we
mean a run where only the first and last states are equal.
Update the value of the vector b⃗ to b⃗ + eff(wi).

Let q
π′,w′

−−−→→ q′ be the resulting run. This process guarantees that π′ is cycle-free and that
eff(w) = eff(w′) + b⃗ = eff(w′) + a1eff(w1) + · · ·+ aneff(wn), where ai is the number of times
we have eliminated a simple cycle with effect wi, for all 1 ≤ i ≤ n.

Let Q′ ⊆ Q be the set of states visited by π. The shortest run that visits all states of
Q′ has length at most |Q|2. Since every word wi corresponds to a simple cycle eliminated
by the process, it follows that there exists words z1, . . . , zn+1 such that for every word
z ∈ z1w∗1z2 . . . znw∗nzn+1, there exists a run q

z−→→ q′ and |z1 . . . zn+1| ≤ |Q|2 even if n can be
as large as 2|Q|. ◀

▶ Lemma 16 (Pumping lemma). If S ⊆ AX ∪ RX , then there exists a word w ∈ L(A)
with eval0(w) > 2d|Q|C, where C := maxc(S) if and only if there exist words α1, . . . , αd+1,
β1, . . . , βd ∈ A∗X such that

α1β+
1 α2 . . . αdβ+

d αd+1ηX ⊆ L(A),
|β1|, . . . , |βd| ≤ |Q|
|α1 . . . αd+1| < (d + 1)|Q|2, and
for each N ∈ N, there are a1, . . . , ad ∈ N with eval0(α1βa1

1 α2 . . . αdβad

d αd+1ηX)(x1) > N .

Proof idea. Given a run in A of sufficiently large value, we can split it into different segments
such that in each segment we know for every register if it is going to be reset in the future
or not. Thus, for every register, we can determine if a segment of the run is relevant for
determining its final value. Subsequently, we identify all cycles of this run and argue that
since all the registers hold large values at the end of the run, the total !! effect of the relevant
cycles (the ones after the last reset of the register) must be a large positive number for each
register. This allows us to use Lemma 15 to conclude that we do not have too many such
cycles and that we can pump them up in order to achieve unbounded register values. ◀

Proof. The right to left implication of this lemma is immediate, so we focus on the left to
right implication. Assume there exists a run π = qini

w−→ qfin, for some qfin ∈ Qfin such that
eval0(w)(x1) > 2d|Q|C.

We can assume that the value of each register is reset at least once along π, since we
can add additional reset substitutions to the beginning of w without changing the value of
eval0(w)(x1). For each i, 1 ≤ i ≤ d, the νi be the last reset substitution for register xi in w.
Without loss of generality, we can assume that in w the registers are reset for the last time
in the increasing order of their indices. Then π can be represented as

π = qini
π1,w1−−−−→→ q1

ν1−→ q′1
π2,w2−−−−→→ q2

ν2−→ . . .
πd,wd−−−−→→ qd

νd−→ q′d
πd+1,wd+1−−−−−−−→→ qd+1

ηX−−→ qfin .

Observe that for each i, 1 ≤ i ≤ d−1, we can replace in wi all reset substitutions of registers
xi+1, . . . , xd with the identity substitution without changing the value of eval0(w)(x1).
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Thus, w1, . . . , wd+1 become words over additive substitutions only. Hence we now get
that eval0(w1ν1 · · ·wd+1) = eff(w1) + · · ·+ eff(wd+1). By applying Lemma 15 to each run
π1, . . . , πd+1, we obtain that

eval0(w1ν1 . . . wd+1) = eff
(
w′1
)

+ a
(1)
1 eff

(
w

(1)
1

)
+ · · ·+ a(1)

n1
eff
(

w(1)
n1

)
...

...
...

eff
(
w′d+1

)
+ a

(d+1)
1 eff

(
w

(d+1)
1

)
+ · · ·+ a(d+1)

nd+1
eff
(

w(d+1)
nd+1

)
where w

(1)
1 , . . . , w

(d+1)
nd+1 , w′1, . . . , w′d+1 are all words of length smaller than |Q|. Since

eval0(w1ν1 · · ·wd+1)(x) > 2d|Q|C and eff
(
w′1 · · ·w′d+1

)
(x) ≤ (d + 1)|Q|C

for every x ∈ X, there must exists a vector b⃗ ∈ NX
+ such that b⃗ ∈ ConeN

({
w

(1)
1 , . . . , w

(d+1)
d+1

})
.

By Theorem 14, there exists a subset {β1, . . . , βd} ⊆
{

w
(1)
1 , . . . , w

(d+1)
d+1

}
such that b⃗′ ∈

ConeN({β1, . . . , βd}) and b⃗′ > 0 (pointwise).
It remains to show that there exist words α1, . . . , αd+1 such that |α1 . . . αd+1| < (d+1)|Q|2

and α1β+
1 α2 . . . αdβ+

d αd+1ηX ∈ L(A). Indeed, consider a run πi for some 1 ≤ i ≤ d + 1.
Either πi contains no cycles from {β1, . . . , βd}, in which case there exists a word w′i of length
at most |Q| corresponding to the run π′i, or it does contain some cycles {βj , . . . , βj+h} from
{β1, . . . , βd}. In the latter case, we can use Lemma 15 to argue that there exist words
z′j , . . . , z′j+h+1 such that for every word z ∈ z′jβ∗j z′j+1 . . . z′j+hβ∗j+hz′j+h+1, there exists a run
q′i−1

z−→→ qi. In both cases, either |w′| ≤ |Q| or |z′j . . . z′j+h+1| ≤ |Q|2. Thus, we can obtain
the required words α1, . . . , αd+1 by possibly concatenating the w′i and z′i words that we
identified. ◀

4 CRAs with two registers

In this section, we prove the following result.

▶ Theorem 17. The boundedness problem for CRAs with two registers is NL-complete if the
numbers in the substitutions are presented in unary, and in coNP if they are in binary.

By the results of the previous section, this theorem is equivalent to the following statement.

▶ Proposition 18. Boundedness of regular 2-register substitution languages is NL-complete
if the numbers in the substitutions are presented in unary, and in coNP if they are in binary.

The remainder of the section is devoted to proving Proposition 18. For the rest of this section,
fix the set of registers X := {x, y} and the output register x. Let us also fix for the rest of the
section an input NFA A = (Q, S, δ, qini, Qfin) such that S ⊂ TX∪AX∪MX∪RX ⊂ Subelem(X)
(which we can assume by Claim 13). We begin by providing a series of simplifying assumptions
for the automaton A in the input.

4.1 Simplifying assumptions
In this subsection, we introduce a normal form that significantly simplifies our arguments.

▶ Definition 19 (Graphical notation for Subelem(X)). We depict elementary substitutions in
Subelem(X) as shown in Figure 2; details of the notation are discussed in its caption.
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x

y{
x← y

y ← x
∈ TX

(a) Transposition.

x

y

0

{
x← 0
y ← y

∈ RX

(b) Reset substitution.

x

y{
x← x + c

y ← y
∈ AX

(c) Additive substitution.

x

y0{
x← min{x, y}
y ← 0

∈MX

(d) Minimum substitution.

Figure 2 Pictorial representation of elementary substitutions in Subelem({x, y}). Register x is
always drawn above y. A black dot stands for adding a constant – our graphical notation disregards
the particular values of constants in the substitutions. A branching depicts the minimum operation.
For the operations on y, the diagrams are symmetric. The effect of gluing several drawings together
horizontally naturally corresponds to composition of depicted substitutions.

For a word w = ν1ν2 · · · νn ∈ Subelem(X)∗, we define the output derivation tree out-tree(w)
as the derivation tree of the expression w(x). This tree can have three kinds of leaves:
constants 0 originating from reset or minimum substitutions, arbitrary constants from K
coming from additive substitutions, and variables occurring in ν1(x) or ν1(y) of the first
substitution ν1. We say that a path from a leaf to the root in out-tree(w) is leading if its
starting leaf comes from a substitution νi with the smallest i among all leaves that have
a path to the root. A path is called x-aligned if all its vertices originate from expressions
(νi(x))1≤i≤n. A word w is called x-aligned if the leading path of out-tree(w) is x-aligned.

▶ Example 20 (Depiction of out-tree(w)). For w ∈ Subelem(X)∗, out-tree(w) corresponds to
the tree rooted at the rightmost position corresponding to x in the pictorial representation.
Consider

w :=
{

x← x

y ← y + 3

{
x← x

y ← 0

{
x← x + 2
y ← y

{
x← x

y ← y + 2

{
x← min{x, y}
y ← 0

{
x← y

y ← x

{
x← x + 3
y ← y{

x← x + 3
y ← y

{
x← min{x, y}
y ← 0

{
x← x

y ← y + 5

{
x← x

y ← 0

{
x← min{x, y}
y ← 0

The depiction of w, in line with Definition 19, is as follows:

x

y0 0 0 0 0

The out-tree(w) corresponds to the subgraph drawn in black. The leading path π of
out-tree(w) is marked with a blue outline. Expressions in w corresponding to vertices of π

are typeset on blue background. As not all of them come from x← e mappings, path π is
not x-aligned. An x-aligned word w′ such that w(x) ≡ w′(x) has the following shape:

x

y0 0 0 0 0

▶ Lemma 21 (Leading branch x-aligned assumption). We can assume that each w ∈ L(A) is
x-aligned.

Therefore, in the remainder of this section we assume that each w ∈ L(A) is x-aligned.
This means that only parts (b), (c) and (d) from Figure 2 (and not their symmetric y-
counterparts) can be segments of runs.
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4.2 Unboundedness witnesses
In this subsection, we define the shape of witnesses that prove unboundedness of CRAs. Next
subsection shows that if a CRA is unbounded, it must contain such a witness. For the rest
of this section, fix two substitutions

η = {x← min{x, y}, y ← 0} and ρ = {x← x, y ← 0},

which will be referred to throughout the whole section. Let N := |Q| and C := maxc(S). We
introduce two new notations for special types of runs of A:

r1 s1
α1, w1

and
r2 s2

α2, w2

used to signify that w1 ∈ A∗X (i.e., has additive substitutions only), and w2 ∈ (AX ∪ {ρ})∗.

▶ Definition 22 (Unboundedness witness). A run π in A is called a trivial unboundedness
witness if it has the form

qini r r qfin
α1 θ α2

π =

such that |π| ≤ 3N , eff(θ)(x) > 0 and qfin ∈ Qfin.
A run π in A is called a nontrivial unboundedness witness if it has the form

π = qini
πa−→→ qa

πb−→→ qb
πc−→→ qc

such that |πa| ≤ N , |πb|, |πc| ≤ 3N2, run πb is pumpable, and πc is sustainable, where
pumpable and sustainable runs are defined below.

A trivial or nontrivial unboundedness witness is called just an unboundedness witness.

Intuitively, πa from this definition is used to reach a gadget enabling pumping, πb witnesses
that we can pump up the value of x to an arbitrarily large number and then end up in qb,
and πc certifies that we can maintain a large value of x to be output in qc ∈ Qfin.

▶ Definition 23 (Pumpable run). A run πb is called pumpable if it has one of the four forms:

Type A.1 (a cycle with a positive effect on x, then a reset of y)

qa qa s qb
θ α ρ

πb =

0
( )

such that θ is a cycle with eff(θ)(x) > 0 and α is a run with no η substitutions.
Type A.2 (a cycle with a positive effect on both x and y, then a minimum substitution)

qa qa s qb
θ α η

πb =

0
( )

such that θ is a cycle with no η and no ρ substitutions and with eff(θ) ∈ N2
+, and α is a

run with no η and no ρ substitutions.
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Type A.3 (two cycles combining for a positive effect on both x and y, then a minimum)

qa qa r r s qb
θ1 α1 θ2 α2 η

πb =

0
( )

such that θ1, θ2 are cycles with no η and no ρ substitutions and with a1eff(θ1)+a2eff(θ2) ∈
N2

+, for some a1, a2 ∈ N. Furthermore, α1, α2 are runs with no η and no ρ substitutions.
Type B (a cycle with a positive effect on x together with cycles supporting its value)

π = p1
π1−→→ p2

π2−→→ p3 −→→ · · · −→→ pn−1
πn−1−−−→→ pn

πn−−→→ p1

for some n ∈ N, where p1 = qa = qb, and for every i, 1 ≤ i ≤ n:

pi ri ri si pi+1
αi θi βi η

πi =

0
( )

such that αi is a run with no η substitutions, θi is a cycle with no η and no ρ substitutions
with eff(θi) ∈ N× N+ and βi is a run with no η substitutions. Furthermore, we require
eff(α1θ1β1α2θ2β2 · · ·αnθnβn)(x) > 0.

▶ Definition 24 (Sustainable run). A run πc is called sustainable if it is labelled by wc ∈
(AX ∪ {ρ, η})∗ and has the following form:

qb r1 r1 s1 t1 tn−1 rn rn sn tn qc
α1 θ1 β1 η αn θn βn η αn+1

. . .

. . .

. . .

0 00

for n ∈ N, runs αi, βi of the form as depicted in the picture, and cycles θi such that
eff(θi) ∈ Z× N+ for every i, 1 ≤ i ≤ n.

▶ Proposition 25. Given A, deciding if there exists a run in it which is an unboundedness
witness is in NL if the numbers in the substitutions are presented in unary, and in NP if
they are in binary.

Proof. Intuitively, using nondeterminism, we can guess a nontrivial witness π = πaπbπc as in
Definition 22 and verify that it has all the required properties. The case of a trivial witness
is handled in a similar way and is thus omitted.

Indeed, starting in qini, we guess one transition at a time until we verify the existence of
a witness or exceed the bound N + 4N2 on its length. During the traversal, we guess the
positions of states qa, qb, qc at appropriate distances from qini. This splits the search into
three phases corresponding to πa, πb and πc. We need to verify that πb is of one of four types
of pumpable runs (cf. Definition 23). At any point in time, if the definition of a pumpable
run requires it, we can guess that the current state r marks the start of the occurrence of a
simple cycle θ. In this case, we store r, follow only labels from AX ∪ {ρ} and compute the
effect of the run until r occurs again. This can easily be done in NL or NP depending on the
representation of the numbers in the substitutions. ◀

In order to complete the proof of Proposition 18, we need to show that the existence of
an unboundedness witness is equivalent to the fact that A is not bounded. We show it by
two implications stated below. We start with proving Lemma 26, and Lemma 29 is proved
in the next subsection.
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▶ Lemma 26. If there exists an unboundedness witness then L(A) is not bounded.

Proof. The proof is straightforward in case of a trivial unboundedness witness. Fix a
nontrivial unboundedness witness π as in Definition 22:

π = qini
πa−→→ qa

πb−→→ qb
πc−→→ qc .

Fix an arbitrary number N ∈ N. We construct a run π′ such that eval0(π′)(x) ≥ N . We
first prove that

▷ Claim 27. For every M ∈ N there is a run π′b of A from qa to qb such that eval0(πaπ′b) =
(M ′, 0) for some M ′ > M .

First, by Claim 12 we have that −CN ≤ eval0(πa)(x) ≤ CN . The claim is immediate
if πb contains a certificate of type A.1, A.2, or A.3. Indeed, we simply repeat the cycles
that occur there a sufficient number of times. If πb contains a certificate of type B, then
πb = p1

π1−→→ p2
π2−→→ p3 −→→ · · · −→→ pn−1

πn−1−−−→→ pn
πn−−→→ p1 is a cycle such that the overall effect

on x is positive. Since every sub-path π1, . . . , πn contains a cycle with a positive effect on y

and a non-negative effect on x, there is a path π′′b that repeats each such cycle M + CN

times. Note that π′′b is now a cycle with positive effect on x for any value of x smaller than
M + CN . Thus, we can take π′b to be the cycle π′′b taken M + CN times.

This finishes the proof of the claim. Now, it suffices to show the following:

▷ Claim 28. For every M ∈ N there exists a run π′c such that eval0(πaπ′bπ′c)(x) ≥M .

We prove this claim by induction on the number of occurrences of η in πc. Assume that
πc does not contain any occurrences of η. By Claim 27, there exists a path π′b such that
eval0(πaπ′b)(x) ≥M + CN . Thus, eval0(πaπ′bπc)(x) ≥M by Claim 12, since the length of πc

is bounded.
Assume now that there is at least one occurrence of η in πc. Then πc can be represented

as follows:

πc = qb
ρ1,α1−−−→→ q1

ρ2,α2−−−→→ q2
ρ3,α3−−−→→ · · · ρr,αr−−−→→ qfin ,

where the cutting points are states reached after reading η. Assume that there is a run
qini

πi−1,wi−1−−−−−−→→ qi−1 such that eval0(wi−1)(x) ≥ M ′, for every M ′ ∈ N. Then we can use
the cycle with positive effect on y inside ρi in order to conclude that there exists a run
qini

πi,wi−−−→→ qi such that eval0(wi) ≥M ′, for every M ′ ∈ N. This concludes the proof. ◀

▶ Lemma 29. If L(A) is not bounded, there exists an unboundedness witness.

4.3 Unboundedness implies the existence of a witness
Proof of Lemma 29. Assume that L(A) is not bounded. Let M := 15C2N3 and W :=
12CN2. Let π be the shortest accepting run of A such that eval0(π)(x) > M + W , and let w

be the word labelling π. Since π is x-aligned, it can be split into two parts

π = qini
πpre−−→→ q0

πsuf−−→→ qfin

for some q0 ∈ Q and qfin ∈ Qfin, such that πsuf is the shortest suffix of π satisfying
out-tree(π) = out-tree(πsuf). Note that eval0(πpref)(x) = 0, and πsuf features no substitu-
tion ν that resets x (i.e., for which ν(x) = 0). Recall that we defined

η = {x← min{x, y}, y ← 0} and ρ = {x← x, y ← 0}.
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Since π is x-aligned, we have that wsuf ∈ (AX ∪ {η, ρ})∗, where wsuf is the word labelling πsuf .
Let n ∈ N be the number of substitutions η in w. Split the run πsuf into segments (some
possibly empty)

q0
π1,w1−−−−→→ q1

π2,w2−−−−→→ q2 −→→ · · · −→→ qn
πn+1,wn+1−−−−−−−→→ qn+1

such that q1, . . . , qn are all the states reached directly after reading η each time. Define
vi := eval0(πprefπ1 · · ·πi)(x) for 0 ≤ i ≤ n + 1. Observe that v0 = 0 and vn+1 ≥M + W .

▶ Example 30. Consider a run π partitioned into segments as defined above:

qini q0

v0

q1

v1

q2

v2

q3

v3

q4

v4

q5

v5

πpre, wpre π1, w1 π2, w2 π3, w3 π4, w4 π5, w5

πsuf

0

0 0 0 0 0 0

Let us overlook the slight inaccuracy that a run reaching a large value would have many
more additive transitions (cf. Claim 12). The out-tree(w) is drawn in black, other (irrelevant)
lines are drawn in light grey. Run πsuf is the shortest one that contains all black lines. There
are n = 4 occurrences of η in wsuf , thus πsuf is split into 5 parts, and runs π1, . . . , π4 end
with a transition labelled by η.

We first show that unboundedness guarantees the existence of a sustainable part πc of a
witness. Define m := max{i | vi < M}.

▷ Claim 31. For every i > m and every transition s
ν−→ t in A such that t is a state visited

by πi and ν(y) = 0, there exists a sustainable run πc from t to qfin of length at most 3N2.

We prove the claim by downward induction on i, the index of the segment πi incident with
the state t of ν. Base case (i = n + 1) is trivial, as wn+1 ∈ A∗X . Assume our claim holds for
i + 1. Fix a transition s

ν−→ t such that t is a state visited by πi, and ν(y) = 0. Similarly
to the case of a trivial boundedness witness, a steep increase on y implies existence of a
run π′c = t

α−→→ r
θ,wθ−−−→→ r

β,wβ−−−→→ s
η−→ qi such that wθ, wβ ∈ A∗X , α, β are simple paths and θ a

simple cycle, and that eff(θ)(y) > 0. Finally, by applying the inductive hypothesis to s
η−→ qi,

we get a pumpable π′′c from qi to qfin; we have thus constructed a sustainable run π′cπ′′c , as
required.

It remains to show how to find πb, the pumpable part of the run. We consider two cases.

Case 1: vi+1 − vi > 4CN for some i ∈ N ∩ [m, n]. (aim: pumpable run of type A)
Fix such i ∈ N. Let A′ = (S, Q ∪ {q′i+1}, qi, {q′i+1}, δ′), where δ′ is constructed from δ by
removing transitions with minimum substitutions, and adding q

η−→ q′i+1 whenever q
η−→ qi+1

for some q ∈ Q. Note that wi ∈ L(A′) and that eval0(wi)(x) > 4CN , thus automaton A′
satisfies the premises of Lemma 16. Using this lemma, we obtain a short pumpable run π′b of
type A of A′ – cases A.1, A.2 and A.3 were designed to match all possible loop arrangements.
It naturally induces πb in A from qi to qi+1 of the same properties. Since qi is reachable
from qini, there exists a short run πa between them. Finally, by Claim 31, we obtain a
sustainable part πc of the witness, which completes the analysis of this case.

Case 2: vi+1 − vi ≤ 4CN for all i ∈ N ∩ [m, n]. (aim: witness exists or contradiction)
This case proves to be more difficult, as it involves a more complicated type B pumpable
run. The proof is by contradiction. Here, since vn+1 − vm > (M + W ) −M = 12CN2
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and each vi+1 provides an increase of at most 4CN compared to the previous value vi, any
maximal increasing subsequence of (vi)m≤i≤n must have at least 12CN2

4CN = 3N elements.
Therefore, there exist k, ℓ ∈ N such that

m ≤ k < ℓ ≤ n, vk < vℓ, M < vi < M + W for k ≤ i ≤ ℓ, and qk = qℓ

thus π(kℓ] := πk+1 · · ·πl is a cycle. For each i, k ≤ i ≤ l, define ci ∈ K to be the effect
on x of the run πi without its last transition labelled with η. We have vi+1 ≤ vi + ci, and
therefore

∑ℓ−1
i=k ci > vℓ − vk > 0. Assume that A has no pumpable run of type B from qk

to qℓ (otherwise we obtain a witness easily). Therefore, there exists i ∈ N∩ [k, l] such that πi

decomposes into

πi := qi−1
α,u−−→→ r1

β,v−−→→ r2
η−→ qi,

where β is the run of maximal length labelled by some v ∈ A∗X without ρ, run α is labelled by
u ∈ (AX ∪ {ρ})∗ (possibly empty), and no simple cycle θ with eff(θ) ∈ N× N+ is reachable
from r1 and backwards-reachable from r2. Note that eval0(πpreπ1π2 · · ·πi−1α)(y) = 0.

Assume that α contains a simple cycle θ. If eff(θ)(x) ≤ 0, this cycle can be removed
from π without decreasing the output value, which contradicts the assumption that π is the
shortest. If otherwise eff(θ)(x) > 0, we obtain a pumpable run of type A.1 featuring θ and a
simple path to r1. Again, a sustainable run to the final state qfin is guaranteed by Claim 31,
and thus in this case the proof is finished.

Hence, we can assume that α does not have simple cycles. Due to Claim 12, we have that
eff(α)(x) ∈ [−CN, CN ]. By Lemma 15, eff(β) decomposes into eff(β) = eff(β′) + (A, B)
for a run β′ from r1 to r2 of length ≤ N , and (A, B) ∈ ConeN(Θ), where Θ is the set of
simple cycles that are reachable from r1 and backwards-reachable from r2 by transitions
not involving ρ. By assumption, eff(θ) ̸∈ N × N+ for any θ ∈ Θ. Thus, for each θ ∈ Θ,
either eff(θ)(x) < 0 or eff(θ)(y) ≤ 0. Hence, for θ with eff(θ)(y) > 0, we have eff(θ)(x) < 0.
Take θ⟳ such that eff(θ⟳) = (a, b), b > 0 (and hence a < 0) and b

−a is the largest possible
among cycles satisfying these conditions. Every simple cycle has length at most N , therefore
its effect belongs to [−CN, CN ]2. Thus, CN

1 ≥
b
−a . Let ℓ(t) := b

a t. If there exists θ′ such
that eff(θ′) lies above line ℓ, then we have identified two cycles that span a cone having a
nonempty intersection with the positive quadrant; this yields a pumpable run of type A.3,
and, by Claim 31, we get a sustainable run starting at qi.

Otherwise, ConeN(Θ) lies below ℓ. Since πi ends with η and has effect at least M ,
eff(β)(y) > M , therefore B > 0. This in turn implies A < 0, because (A, B) is bellow ℓ.
Hence B < ℓA = b

a A ≤ −CNA. We know that eval(vi−1,0)(πi) ≥M , therefore

{
eval(vi−1,0)(αβ)(x) ≥M

eval(vi−1,0)(αβ)(y) ≥M
and thus

{
vi−1 + eff(α)(x) + eff(β′)(x) + A ≥M

0 + eff(β′)(y) + B ≥M

Since vi < M + W , and effects of simple runs α and β′ are bounded by Claim 12, we get{
��M + W + 2CN + A ≥��M

CN + B ≥M
and

{
12C2N3 + 2C2N2 ≥ −CNA

B ≥ 15C2N3 − CN

Since B < −CNA, we have 15C2N3 − CN < 12C2N3 + 2C2N2 and finally 3C2N3 <

2C2N2 + CN which yields a contradiction that concludes the proof. ◀
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5 Output-minimum CRAs

In this section, we consider CRAs in which minimum substitutions can only appear in the
output function. We call such CRAs output-minimum for brevity.

The main results of this section are as follows.

▶ Theorem 32. Boundedness of output-minimum CRAs with no transpositions is coNP-
complete, even if the numbers in the substitutions are presented in unary.

▶ Theorem 33. Boundedness of output-minimum CRAs is PSPACE-complete, even if the
numbers in the substitutions are presented in unary.

For the rest of the section, fix the set of registers X := {x1, . . . , xd}. Let ηX′ :=
{x1 ← min{x | x ∈ X ′}} for X ′ ⊆ X. Once again, we use the formalism of regular languages
of substitutions presented in Section 3. Recall that Subelem(X) = TX ∪RX ∪AX ∪MX . Since
we are considering output-minimum CRAs, similarly to Claim 13, we can assume that the
alphabet contains only elementary substitutions from TX ∪RX ∪AX , with the only exception
of a minimum transition which comes at the end of the word. Thus, in Section 5.1 and
Section 5.2 we consider the language boundedness problem for NFAs A such that for some
X ′ ⊆ X, we have, respectively, L(A) ⊆ (AX ∪RX)∗ηX′ and L(A) ⊆ (AX ∪RX ∪ TX)∗ηX′ .
As shown in Section 3, this is enough to prove Theorems 32 and 33.

5.1 Output-minimum CRAs with no transpositions
▶ Proposition 34. Boundedness for regular subsets of (AX ∪RX)∗ηX′ is coNP-complete,
even if the numbers in the substitutions are presented in unary.

Proof. As a certificate of unboundedness, we consider substitutions α1, . . . , αd+1, β1, . . . , βd

respecting the conditions of Lemma 16, together with a run π of A witnessing that
α1β+

1 α2 . . . αdβ+
d αd+1ηX′ ⊆ L(A). Checking the second and third conditions of Lemma 16

is trivial and by having π in the certificate, it is also easy to check the first condition in
linear time.

Checking the last conditions requires a bit more work. As argued in the proof of Lemma 16,
all substitutions in β1, . . . , βd can be modified so that they become additive substitutions
without changing the value of eval0(α1βa1

1 α2 . . . αdβad

d αd+1ηX′)(x1). Now, let the vectors
v⃗1, . . . , v⃗d be the effects of the modified substitutions β1, . . . , βd. By Theorem 14, we only
need to solve the following linear program

∃a1, . . . , ad ∈ Q≥0 s.t. a1v⃗1 + a2v⃗2 + · · ·+ adv⃗d > 0,

which can be done in polynomial time.
To prove coNP-hardness, we reduce the satisfiability problem, which is NP-complete [20],

to the complement of the boundedness problem.

▶ Problem 35 (Satisfiability).
Input A set C = {c1, . . . , cm} of clauses over boolean variables p1, . . . , pn.

Question Does there exist an assignment of Boolean values to the variables satisfying all
the clauses?

As registers, we take the set of all clauses: X = C = {c1, . . . , cm}. Let Cp :=
{c ∈ C | p ⊨ c} and C¬p := {c ∈ C | ¬p ⊨ c} be the sets of clauses satisfied by p = ⊤ and
p = ⊥, respectively. Also, for a literal x, let inc(x) := {c← c + 1 | c ∈ Cx}. Consider the
generalised NFA A in Figure 3.
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q0 q1 q2 qn qf
ηX

inc(p1)∗

inc(¬p1)∗

inc(pn)∗

inc(¬pn)∗

· · ·

· · ·

Figure 3 Generalised NFA A for satisfiability. Transitions are labelled by regular expressions.

It is readily seen that for any N ∈ N, there exists a word

w ∈
(

inc(Cp1)N ∪ inc(C¬p1)N
)
· · ·
(

inc(Cpn
)N ∪ inc(C¬pn

)N
)

ηX

such that eval0(w)(x1) ≥ N if and only if the variable assignment induced by w for variables
p1, . . . , pn satisfies all the clauses c1, . . . , cm. ◀

5.2 Output-minimum CRAs with transpositions
▶ Proposition 36. Boundedness for regular subsets of (AX ∪RX ∪ TX)∗ηX is in PSPACE.

Proof idea. We prove containment in PSPACE by operating on an exponentially larger
NFA PA, called permutation NFA. This NFA encodes all possible register permutations
inside its state space, and hence its alphabet contains only additive and reset substitutions.
It can be checked in NPSPACE whether this larger NFA admits a certificate of the type
presented in Lemma 16. By Savitch’s theorem we get that the problem is in PSPACE [38]. ◀

Proof. Fix a finite alphabet S ⊂ AX ∪ RX ∪ TX and let C = maxc(S). Fix NFA A =
(Q, S ∪ {ηX′}, δ, qini, Qfin) such that L(A) ⊆ S∗ηX′ . Let GX be the set of all permutations
of the set X and let PA = (Q′, S′ ∪ {ηX′}, δ′, q′ini, Q′fin), where Q′ = Q×GX , S′ = S \ TX ,
and Q′fin = Qfin ×GX . We also take qini

′ = (qini, τ0), where τ0 is the identity permutation.
Let id ∈ S be the additive substitution that adds 0 to every register. For s ∈ TX and τ ∈X

we define (τ ◦ s)(x) = s(τ(x)). Finally, δ′contains transitions

((q, τ), id, (q′, τ ◦ s)) ∈ δ′ for every (q, s, q′) ∈ δ such that s ∈ AX ,

((q, τ), s, (q′, τ)) ∈ δ′ for every (q, s, q′) ∈ δ such that s /∈ TX .

Clearly, A is unbounded if and only if PA is unbounded if and only if there exist words
α1, . . . , αd+1, β1, . . . , βd that adhere to the conditions of Lemma 16 and run π of PA witnessing
that α1β+

1 α2 . . . αdβ+
d αd+1ηX′ ⊆ L(PA). Since |Q′| = |Q| · d!, we can store one state with

polynomial space. Hence, an NPSPACE algorithm can non-deterministically search for the
run π without constructing PA explicitly. Verifying the first three conditions of Lemma 16
can be done on the fly in linear space. Also, a non-deterministic algorithm can guess and
verify that v⃗1 . . . , v⃗d are the effects of cycles β1, . . . , βd on the fly. Finally, it is easy to verify
that a positive linear combination of them has positive effect on all registers. Thus, we can
conclude the argument by recalling that NPSPACE = PSPACE by Savitch’s theorem [38]. ◀

▶ Proposition 37. Boundedness for regular subsets of (AX ∪RX ∪ TX)∗ηX is PSPACE-hard,
even if the numbers in the substitutions are presented in unary.

Proof idea. We reduce the DFA intersection problem, which is PSPACE-complete [27]. For
every state of each DFA, we create a separate register in the constructed CRA C. We simulate
reading a letter by all the DFAs by moving a large value to the registers corresponding to
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the new active states of the DFAs, and keeping the values of all remaining registers zero.
These large values come from a self-loop transition in the initial state of C, and C cannot
return to the initial state afterwards. All DFAs accept the same word if and only the large
values can be simultaneously brought to the registers corresponding to the final states of the
DFAs. The output of C is thus set to be the minimum of these registers. ◀

Proof. We reduce from the following PSPACE-complete problem [27]:

▶ Problem 38 (DFA intersection).
Input n ∈ N, alphabet Σ, n DFAs Ai = (Qi, Σ, δi, q

(i)
ini , Q

(i)
fin), 1 ≤ i ≤ n.

Question Does there exist a word accepted by all the DFAs?

We can assume that each DFA has only one final state, which can be ensured as follows:
add a new letter # to Σ and two new states q+

i , q−i to each Ai. For each i, make this new
letter # send all states from Q

(i)
fin to q+

i , and all other states of Ai to q−i . Make the new
letter induce a self-loop for both q+

i , q−i and make q+
i to be the only final state in each DFA.

We construct an NFA A such that the language L(A) is bounded if and only if⋂
1≤i≤n L(Ai) is empty. Let X =

{
q

(j)
i | 1 ≤ j ≤ n, qi ∈ Qj

}
. The idea is that the re-

gisters correspond to the states of the DFAs, and register r
(j)
i has a positive value after

reading w ∈ Σ if and only if the i’th state in Aj is active after reading w. Next, we
describe L(A) in terms of a regular language.

Let νinc =
{

q
(i)
ini ← q

(i)
ini + 1 | 1 ≤ i ≤ n

}
be a substitution that increments the registers

representing initial states for each Ai. Also, for every σ ∈ Σ, let

Ti,σ = {{q′ ← q} ∪ {q ← 0 | q ̸= q′} | (q, σ, q′) ∈ δi, q ̸= q′} and
Tσ = T1,σ · T2,σ · · · · · Tn,σ,

T =
⋃

σ∈Σ
Tσ.

There is a substitution in Ti,σ that simulates every transition inside Ai for letter σ ∈ Σ.
The idea is that after we guess the next letter σ ∈ Σ, for each Ai we need to simulate the
transition that is executed when reading this letter. If we pick the correct transition, we move
our positive value from register qi to q′i, and resetting all other registers does not change
their values. However, if we pick a wrong transition, we reset our positive value and we can
never recover. Then, a substitution from Tσ simulates executing a transition labelled by
letter σ in all Ai and a substitution from T simulates choosing a letter σ ∈ Σ and executing
a transition labelled by σ in all Ai. Finally let νout =

{
x← min{q(i)

fin | 1 ≤ i ≤ n}
}

. We
argue that L(A) = ν∗inc · T ∗ · νout is unbounded if and only if

⋂
1≤i≤n L(Ai) is non-empty.

Consider a word w = σ1 . . . σm ∈ Σ∗ and an integer N ∈ N. For every 1 ≤ i ≤ n

it follows inductively that there exists a word w′j ∈ incN+1 · Tσ1 · Tσ2 · · · · · Tσj such that
eval0

(
w′j
)
(q(i)) = N + 1, for q ∈ Qi if and only if q

(i)
ini

σ1...σj−−−−→ q(i). Thus, there exists a
word w′m ∈ ν∗inc · T ∗ · νout such that eval0(w′m) = N + 1 if and only if

⋂
1≤i≤n L(Ai) is

non-empty. ◀

6 Stateless CRAs

In this section, for every d ≥ 2 we present a fairly restricted family of unbounded CRAs with d

registers such that the length of a shortest run outputting a value N ∈ N is lower bounded by
Fd−1(N), the (d− 1)st function in the hierarchy of fast-growing functions. These functions
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are defined as follows. Let F1(n) = 2n and for every k ≥ 2 let Fk(n) = Fk−1 ◦ · · · ◦ Fk−1(1),
where ◦ denotes the composition of functions, and this composition is taken n times. For

example, F2(n) = 2n and F3(n) = 22···2

= Tower(n), where exponentiation is taken n times.
We construct these CRAs inductively in the following theorem.

▶ Theorem 39. For every d ≥ 2, there exists a stateless CRA C with d registers and d

transitions such that for every N ∈ N+, any run of Cd that outputs a value of at least N

must have length at least Fd−1(N).

Proof. For d = 2 and d = 3 consider the two CRAs in Figure 4.

q

min x1, x2

q

min x1, x2, x3

a1,

{
x1 ← x1 + 1
x2 ← 0

a2,

{
x1 ← x1 − 1
x2 ← x2 + 1

a1,

{
x1 ← x1 + 1
x2 ← 0
x3 ← 0

a2,

{
x1 ← x1 − 1
x2 ← x2 + 1
x3 ← x3

a3,

{
x1 ← min{x1, x2}
x2 ← 0
x3 ← x3 + 1

Figure 4 Unbounded CRAs C2 (left) and C3 (right) with 2 and 3 registers.

Let us prove that C2 and C3 satisfies the statement of the lemma. Let N ∈ N+ be an
arbitrary positive integer. Since we are dealing with stateless CRAs, we denote a configuration
(q, {x1 ← k1, x2 ← k2, . . . , xn ← kn}) by a vector (k1, k2, . . . , kn). Clearly, for both C2 and C3,
the transitions labelled by a1 are the only ones that can increase the value of register x1 and
since these transitions reset the values of all other counters, any run outputting N must start
by taking this transition m many times, m > 0, reaching in C2 and C3 the configurations
(m, 0) and (m, 0, 0), respectively. The value m can be seen as the initial budget that is
necessary for increasing the values of other registers. Clearly, the shortest run that outputs N

in C2 reaches the configuration (2N, 0), then takes N times the transition labelled by a2 and
outputs. Since it must start by getting to the configuration (2N, 0), its length is at most
F1(N) = 2N .

Let now π3 be a shortest run in C3 that outputs N . Clearly, π3 needs to increase the
value of register x3. The transition labelled by a3 is the only one that increases x3, however,
it contains a minimum update for x1. Since π3 is a shortest path outputting N , before
reading a3 it reaches a configuration in which the values of registers x2, x3 are equal, otherwise
some transitions can be removed from it without changing the output value.

Thus, π3 initialises the budget by reading am
1 , and then, before reading a3, it reads a

word in a∗2 which applies the function F−1
1 (·) = ·

2 to the value of register x1. We argue that
in order to output N , m = F−1

2 (N) = 2N . Indeed, π3 must reach a value m in register x1
and then apply N many times the function F−1

1 (·) to register x1, so m = F−1
2 (N). Thus,

the length of π3 must be longer than F2(N). Furthermore, we see that π3 has the following
shape (0, 0, 0) −→→ (F2(N), 0, 0) −→→ (N, N, N).

Assume now that there exists Cd−1 with the property from the statement of the lemma.
We modify it by adding a new letter ad to the alphabet Σ, and extend the substitutions of
the transitions as follows:

add xd ← 0 to a1,
add xd ← xd to ai for 1 < i < d− 1, and
let the substitution of ad be
{x1 ← min{x1, . . . , xd−1}, x2 ← 0, . . . , xd−1 ← 0, xd ← xd + 1}.



A. Draghici, R. Piórkowski, and A. Ryzhikov 20:21

We know that there exists a shortest path πd−1 with the following shape (0, . . . , 0) −→→
(Fd−2(N), 0, . . . , 0) −→→ (N, N, . . . , N, 0). So, in order to increase the register xd by one, we
need to have enough budget on register x1 to be able to apply the function F−1

d−2 to its value.
Since we need to increase the value of xd by one N times, it follows that we need to repeat this
process N times so that πd has shape (0, . . . , 0) −→→ (Fd−1(N), 0, . . . , 0) −→→ (N, N, . . . , N, N).
Thus its length must be at least Fd−1(N). ◀

7 Conclusions and open problems

The most obvious open problem left by this work is the decidability of boundedness for
copyless linear CRAs with resets with more than two registers. We conjecture that it is
decidable for arbitrary number of registers. Our techniques and the shapes of the witnesses
for the two-register case might be useful for proving that.

Another interesting open problem is the precise complexity of the two-register case where
numbers in the substitutions are presented in binary. We have proved that this problem
is NL-hard and in coNP, but no better bound is known even if minimum substitutions are
only allowed in the output. In the latter case, it follows from our results that the witness
of unboundedness consists of at most two cycles and some paths connecting them. This
relates to the following natural problem whose complexity we were not able to find in the
literature. Let G = (V, E) be a digraph, and ω : E → Z2 be a (bi-criteria) weighting function
on its edges. Given G and ω, find a cycle in G such that the sum of weights of its edges
is component-wise positive. This is of course a generalisation of the problem of finding
a cycle of negative weight in a digraph, which can be solved in polynomial time by e.g.
Bellman-Ford-Moore algorithm [6].
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